

 Application Type
 Renewal

 Facility Type
 Industrial

 Major / Minor
 Minor

NPDES PERMIT FACT SHEET INDIVIDUAL INDUSTRIAL WASTE (IW) AND IW STORMWATER

 Application No.
 PA0081850

 APS ID
 1084

 Authorization ID
 1255156

Applicant and Facility Information

Applicant Name Authori		burg Borough Municipal ity Adams County	Facility Name	Gettysburg Municipal Authority Water System		
Applicant Address	601 E M	Viddle Street, PO Box 3307	Facility Address	Water Works Road		
	Gettyst	ourg, PA 17325-1951	_	Gettysburg, PA 17325		
Applicant Contact	Mark G	uise	Facility Contact	Mark Guise		
Applicant Phone	(717) 334-6738		Facility Phone	(717) 334-6738		
Client ID	78262		Site ID	239068		
SIC Code	4941		Municipality	Cumberland Township		
SIC Description	Trans.	& Utilities - Water Supply	County	Adams		
Date Application Recei	ved	November 30, 2018	EPA Waived?	Yes		
Date Application Accepted		December 13, 2018	If No, Reason			
Purpose of Application		NPDES permit renewal.				

Summary of Review

Gettysburg Municipal Authority has applied to the Pennsylvania Department of Environmental Protection (DEP) for reissuance of its NPDES permit. The permit No. PA0081850 was last reissued on May 23, 2014 and became effective on June 1, 2014. The permit expired on May 31, 2019 but the terms and conditions of the permit have been extended since that time.

The treatment plant is designed for 100% recycle of filter backwash water and treatment plant overflow. However, in the event that 100% recycle is not possible, the authority has chosen to continue to renew the NPDES permit for the discharge. Outfall 001 discharges to a dry swale which flows to Marsh Creek. The point of first use is the confluence with Marsh Creek approximately 8.14 miles.

Marsh Creek is classified as Cold-Water Fishes (CWF) according to chapter 93. The design flow is 0.215 MGD. According to previous protection reports, inspection reports, and DMR data, there has been only one discharge from this facility (on December 2018) since June 01, 2014.

Based on the review outline in this fact sheet, it is recommended that the permit be drafted and publish in the Pennsylvania Bulletin for public comments for 30 days.

Approve	Deny	Signatures	Date
Х			
		Hilary H. Le / Environmental Engineering Specialist	December 23, 2019
		Daniel W. Martin, P.E. / Environmental Engineer Manager	
		Maria D. Bebenek, P.E. / Clean Water Program Manager	

Discharge, Receiving Waters and Water Supply Information								
Outfall No. <u>001</u> Latitude <u>39º 4</u> Quad Name <u>Fai</u> Wastewater Descrip	7' 49.8" rfield otion: Sludge thickener decant	Design Flow (MGD) Longitude Quad Code	0.215 -77º 16' 28.7"					
Receiving Waters NHD Com ID Drainage Area Q ₇₋₁₀ Flow (cfs) Elevation (ft) Watershed No. Existing Use Exceptions to Use Assessment Status Cause(s) of Impairm	Marsh Creek (CWF) 53320624 56.4 mi.² 2.85 460.67 13-D Not Assessed nent	Stream Code RMI Yield (cfs/mi ²) Q ₇₋₁₀ Basis Slope (ft/ft) Chapter 93 Class. Existing Use Qualifier Exceptions to Criteria	NA (dry swale) (58903) 8.14 mile 0.05 cfs/mi. ² USGS StreamStats CWF					
TMDL Status		Name						
Nearest Downstrear PWS Waters <u>N</u> PWS RMI	n Public Water Supply Intake Ionocacy River	<u>City of Frederick, Maryland</u> Flow at Intake (cfs) Distance from Outfall (mi)	Approximate 40 miles					

Drainage Area

The discharge is to Marsh Creek at RMI 8.14 miles. A drainage area upstream of the discharge is estimated to be 56.4 mi.², according to USGS PA StreamStats available at <u>https://streamstats.usgs.gov/ss/</u>.

Stream Flow

According to the previous protection report, the discharge is to a dry swale to Marsh Creek (58903). According to USGS StreamStats available at <u>https://streamstats.usgs.gov/ss/</u>, the discharge point has a Q₇₋₁₀ of 2.85 cfs and a drainage area of 56.4 mi.², which results in a theoretical low flow yield of 0.05 cfs/mi.² (2.85 cfs / 56.4 mi.²).

The resulting Q7-10 dilution ratio is: Qstream / Qdischarge = 2.85 cfs / [0.215 MGD * (1.55 cfs/MGD)] = 8.55:1

Public Water Supply

The nearest downstream public water supply intake is for the city of Frederick, Maryland on the Monocacy River, approximately 40 miles downstream of this discharge. Considering distance and dilution, the discharge is not expected to impact the water supply.

NPDES Permit Fact Sheet Gettysburg Municipal Authority Water System

Treatment Facility Summary								
Treatment Facility Name: Gettysburg Water Treatment Plant								
WQM Permit No.	Issuance Date							
	1	1						
	Degree of			Avg Annual				
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)				
Industrial	Primary	Sedimentation Tanks	No Disinfection	0.215				
			·					
Hydraulic Capacity	Organic Capacity			Biosolids				
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal				
0.215		Not Overloaded						

Changes Since Last Permit Issuance: none

<u>Other Comments</u>: The treatment facility consists only of a gravity sludge thickener (used to treat filter backwash). Supernatant from the sludge thickener is designed to be recycled back through the water treatment plant with a discharge only occurring in emergency situations. Sludge is hauled out periodically.

Compliance History						
Summary of DMRs:	There were Discharge Monitoring Reports (DMRs) reports but there were no data because there has been only one discharge from the facility (on December 2018) since June 1, 2014.					
Summary of Inspections:	10/30/2017: Mr. Bowen, DEP WQS, conducted compliance evaluation inspection. There were no violations noted during inspection. NPDES permitted outfall receives flow from a gravity overflow standpipe on the water treatment plant backwash gravity thickener. Filters are generally backwashed once per three days. Sludge is removed from the thickener approximately every 12 weeks and hauled to Maryland for land application.					
Other Comments:	There are no open violations associated with this facility or permittee.					

Development of Effluent Limitations

 Outfall No.
 001

 Latitude
 39° 47' 49.8"

Design Flow (MGD) 0.215 Longitude -77° 1

-77º 16' 28.7"

Wastewater Description: Sludge thickener decant

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Parameter	Limit (mg/l)	SBC	Federal Regulation	State Regulation	
pH	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)	
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)	

Water Quality-Based Limitations

Effluent Limitations Evaluation:

The previous protection report developed limitations based on Best Practicable Control Technology Currently Available (BPT), according to guidance document 362-2183-003 (*Technology-Based Control Requirements for Water Treatment Plant Wastes*).

The attached Total Residual Chlorine (TRC) Excel spreadsheet calculator, which uses the equations and calculations from guidance document 391-2000-015, was also used (Pages # 6). However, the limits from the existing permit will remain in the proposed permit since they are more stringent.

The Department's guidance document for discharges to "dry streams" (391-2000-014) states that "for wastewater discharges other than discharges of treated sewage and similar oxygen-consuming wastes, no additional treatment requirements are applicable under this guidance. However, federal Effluent Limitation Guidelines (ELGs) are still applicable, and other technology-based requirements may be applied consistent with regional requirements."

As noted in the previous protection report, document 362-2183-003 states that due to the cost of finished water quality concern, Best Available Technology Economically Achievable (BAT) options may not be feasible. Therefore, it may not be appropriate to require further effluent reduction to controls beyond BPT options. Except where the recycle of wastewater is feasible, BAT and Best Conventional Pollutant Control Technology (BCT) should be equivalent to BPT.

This facility has chosen to recycle as the first option for disposal of the backwash water and overflow. Therefore, BPTbased limitations are appropriate for this facility.

The guidance document defines BPT technology-based effluent control requirements as follows:

Parameter	Monthly Average (mg/L)	Daily Maximum (mg/L)
Total Suspended Solids	30	60
Total Iron	2	4
Total Aluminum	4	8
Total Manganese	1	2
Flow	Mc	onitor
рН	6 to 9 a	t all times
Total Residual Chlorine	0.5	1.0

The limits in the above table are equivalent to the existing permit limits. It is recommended that all existing effluent limitations remain in effect.

Toxics:

An evaluation of the data submitted with the permit application and the previous protection reports indicates that there are no additional parameters of concern.

Chesapeake Bay Strategy:

The Supplement to Phase II Watershed Implementation Plan states the following (Pages # 19): "For non-significant Industrial Waste (IW) facilities, monitoring and reporting of Total Nitrogen (TN) and Total Phosphorus (TP) will be required throughout the permit term in renewed or amended permits anytime the facility has the potential to introduce a net TN or TP increase to the load contained within the intake water used in processing. In general, facilities that discharge groundwater and cooling water with no addition of chemicals containing N or P do not require monitoring."

NPDES Permit Fact Sheet Gettysburg Municipal Authority Water System

This is a non-significant industrial discharge facility that will not need a phosphorus or nitrogen loading cap. TN and TP "Monitor & Report" requirement will not be necessary since this facility discharges groundwater without any chemical additives containing nitrogen or phosphorus.

Antidegradation (93.4)

The effluent limits for this discharge have been developed to ensure that existing in-stream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High-Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

303d Listed Streams

The discharge is not located on a 303d listed stream segment.

Class A Wild Trout Fisheries

No Class A Wild Trout Fisheries are impacted by this discharge.

TRC Spreadsheet:

	_	_	_	_	·					
TRC EVAL	UATION									
Input appropriate values in A3:A9 and D3:D9										
2.85	= Q stream	n (cfs)	0.5	= CV Daily						
0.215	= Q discha	arge (MGD)	0.5	= CV Hourly						
30	= no. sam	oles	1	= AFC_Partia	I Mix Factor					
0.3	= Chlorine	Demand of Stream	1	= CFC Partial Mix Factor						
0	= Chlorine	Demand of Discharge	15	= AFC_Criteria Compliance Time (min)						
0.5	= BAT/BPJ	l Value	720	= CFC_Criter	ia Compliance Time (min)					
0	= % Facto	r of Safety (FOS)		=Decay Coef	ficient (K)					
Source	Reference	AFC Calculations		Reference	CFC Calculations					
TRC	1.3.2.iii	WLA afc =	2.752	1.3.2.iii	WLA cfc = 2.676					
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581					
PENTOXSD TRG	5.1b	LTA_afc=	1.026	5.1d	LTA_cfc = 1.556					
Source		Effluer	nt Limit Calcu	lations						
PENTOXSD TRG	6 5.1f		AML MULT =	1.231						
PENTOXSD TRG	6 5.1g	AVG MON L	IMIT (mg/l) =	0.500	BAT/BPJ					
		INST MAX L	IMIT (mg/l) =	1.635						
WLA afc	(.019/e(-k*	AFC_tc)) + [(AFC_Yc*Q	s*.019/Qd*(e(- k*A FC_tc))						
	+ Xd + (/	AFC_Yc*Qs*Xs/Qd)j*(1-	FOS/100)		-					
LIAMULIATC	EXP((0.5°LN	(cvh^2+1))-2.320°LN(cvh^2	(+1)^0.5)		-					
LIA_atc	wia_atc*L14	AWULI_atc			-					
WIA of o	(011/a(_k*		* 011/04**	(-k*CEC_te))						
HLA_CIC	+ Xd + ((FOS/100)	(x 010_10))						
	EXP((0.5*1 N	(cvd^2/no_samples+1))-2.3	26*1 N(cvd^2	/no_samples+1	0.0.5)					
LTA cfc	wla cfc*LTA	MULT cfc	20 2.0010 2		,, 0.0,					
AML MULT	EXP(2.326*L	N((cvd^2/no_samples+1)^(0.5)-0.5*LN(c	vd^2/no_sampl	es+1))					
AVG MON LIMIT	MIN(BAT B	PJ,MIN(LTA_afc,LTA_cfc)*	AML_MULT)							
INST MAX LIMIT	1.5*((av_m	non_limit/AML_MULT)/L1	AMULT_af	c)						

Existing Effluent Limitations and Monitoring Requirements

		Monitoring Requirements						
Baramatar	Mass Unit	s (lbs/day)	Concentrations (mg/L)				Minimum	Required
Farameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	xxx	xxx	XXX	Daily when Discharging	Estimate
pH (S.U.)	ххх	xxx	6.0	xxx	xxx	9.0	Daily when Discharging	Grab
Total Residual Chlorine	ххх	xxx	XXX	0.5	xxx	1.0	Daily when Discharging	Grab
Total Suspended Solids	XXX	XXX	XXX	30	60	75	2/month	8-Hr Composite
Total Aluminum	XXX	XXX	xxx	4.0	8.0	10.0	2/month	8-Hr Composite
Total Iron	XXX	XXX	XXX	2.0	4.0	5.0	2/month	8-Hr Composite
Total Manganese	XXX	xxx	XXX	1.0	2.0	2.5	2/month	8-Hr Composite

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

		Monitoring Requirements						
Paramotor	Mass Units	; (lbs/day) ⁽¹⁾	Concentrations (mg/L)				Minimum ⁽²⁾	Required
Faiameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	xxx	xxx	xxx	XXX	Daily when Discharging	Estimate
pH (S.U.)	XXX	xxx	6.0	xxx	xxx	9.0	Daily when Discharging	Grab
TRC	ХХХ	XXX	XXX	0.5	XXX	1.0	Daily when Discharging	Grab
TSS	ХХХ	XXX	xxx	30	60	75	2/month	8-Hr Composite
Total Aluminum	xxx	XXX	xxx	4.0	8.0	10	2/month	8-Hr Composite
Total Iron	XXX	xxx	xxx	2.0	4.0	5	2/month	8-Hr Composite
Total Manganese	XXX	xxx	xxx	1.0	2.0	2.5	2/month	8-Hr Composite

Compliance Sampling Location:

Other Comments: No changes are being made to the existing permit limits.

Tools and References Used to Develop Permit WQM for Windows Model (see Attachment PENTOXSD for Windows Model (see Attachment \times TRC Model Spreadsheet (see Attachment Temperature Model Spreadsheet (see Attachment Toxics Screening Analysis Spreadsheet (see Attachment Water Quality Toxics Management Strategy, 361-0100-003, 4/06. Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97. Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98. Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96. Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97. Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97. Pennsylvania CSO Policy, 385-2000-011, 9/08. Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03. Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97. Х Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97. Implementation Guidance Design Conditions, 391-2000-006, 9/97. Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004. Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997. Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99. Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004. Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97. Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008. \times Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994. Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09. Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97. Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97. Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99. Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999. Design Stream Flows, 391-2000-023, 9/98. Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98. Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97. X Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07. SOP: Other: