

Application Type	Renewal
Facility Type	Municipal
Major / Minor	Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0082198

 APS ID
 2305

 Authorization ID
 1332222

Applicant and Facility Information

Applicant Name	Peters	Township Board of Supervisors	Facility Name	Upton Village STP
Applicant Address	5000 S	teele Avenue	Facility Address	8739 Kuhn Road
	Lemast	ers, PA 17231-0088		Greencastle, PA 17225
Applicant Contact	Roger I	Price	Facility Contact	Roger Price
Applicant Phone	(717) 3	28-3352	Facility Phone	(717) 328-3352
Client ID	75099		Site ID	451952
Ch 94 Load Status	Project	ed Organic Overload	Municipality	Peters Township
Connection Status	No Exc	eptions Allowed	County	Franklin
Date Application Received October 27, 2		October 27, 2020	EPA Waived?	Yes
Date Application Accepted		November 6, 2020	If No, Reason	
Purpose of Application	1	NPDES Renewal.		

Summary of Review

Peters Township Board of Supervisors (Peters Township) had applied to the Pennsylvania Department of Environmental Protection (DEP) for reissuance of its NPDES permit for Upton Village Sewage Treatment Plant. The permit was last reissued on April 20, 2016 and became effective on May 1, 2016. The permit will expire on April 30, 2021. In the event the permit expires prior to issuance of this permit renewal, the terms and conditions of the permit will be administratively extended in accordance with 25 Pa Code §92a.7(b).

Based on the review, it is recommended that the permit be drafted.

Sludge use and disposal description and location(s): Sludge is hauled off site to another WWTP for ultimate treatment/disposal.

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
х		<i>Jiusu Kim</i> Jinsu Kim / Environmental Engineering Specialist	March 5, 2021
х		/s/ Daniel W. Martin, P.E. / Environmental Engineer Manager	March 12, 2021
x		/s/ Maria D. Bebenek, P.E. / Program Manager	March 12, 2021

	Discharge, Receiving Wat	ers and Water Supply Information	tion
	9' 12.00" liamson otion: Treated sewage	Design Flow (MGD) Longitude Quad Code	0.025 77° 48' 0.00" 2023
Receiving Waters NHD Com ID Drainage Area Q ₇₋₁₀ Flow (cfs) Elevation (ft) Watershed No. Existing Use Exceptions to Use Assessment Status Cause(s) of Impair Source(s) of Impair	nent N/A N/A	Stream Code RMI Yield (cfs/mi ²) Q7-10 Basis Slope (ft/ft) Chapter 93 Class. Existing Use Qualifier Exceptions to Criteria	59884 0.572 0.11 USGS Gage no. 01614500 WWF, MF None None
	N/A m Public Water Supply Intake Potomac River	Name N/A Hagerstown, MD Flow at Intake (cfs) Distance from Outfall (mi)	35

Drainage Area

The discharge is to an Unnamed Tributary of Conococheague Creek at RM 0.572. A drainage area upstream of the discharge is determined to be 0.24 sq.mi. according to USGS StreamStats available at https://water.usgs.gov/osw/streamstats/pennsylvania.html.

Stream Flow

USGS StreamStats produced a Q7-10 flow of 0.00414 cfs. However, the estimated drainage area is below the minimum value required to properly calculate the low flow statistics; as a result, unknown error have occurred when calculating the Q7-10. DEP therefore determined to use the following low-flow yield method to calculate the Q7-10:

Lowflow Yield = Q7-10_{gage} / Drainage Area_{gage} = $55/494 = 0.11 \text{ cfs/mi}^2$. Q₃₀₋₁₀:Q₇₋₁₀ = 65.3/55 = 1.19:1; Q₁₋₁₀:Q₇₋₁₀ = 48.1/55 = 0.87:1; Q₇₋₁₀ = 0.11*0.24=0.0264 cfs

Unnamed Tributary of Conococheague Creek

25 Pa Code §93.9z classifies all unnamed tributaries of Conococheague Creek between LR28017 to PA-MD State Border as warm water fishes and support migratory fishes. No special protection waters are impacted by this discharge. The discharge is located in a stream segment listed as attaining uses. DEP's latest integrated water quality report published n 2020 indicates that the discharge is located within a stream segment listed as attaining uses. No local TMDL has been taken into consideration during this review.

Public Water Supply Intake

The fact sheet developed for the last permit renewal indicates that the closest downstream public water supply intake from the discharge point is at Hagerstown, MD on the Potomac River. The distance from the discharge to the intake is approximately 35 miles. The discharge will not impact the intake because of the distance, additional dilution from the Potomac River, and the effluent limits.

	Tre	atment Facility Summa	ry	
Freatment Facility Na	me: Upton Village STP			
WQM Permit No.	Issuance Date			
2807403	05/23/2007			
	Degree of			Avg Annual
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)
	Secondary With	2.	Chlorine With	Y
Sewage	Ammonia Reduction	Extended Aeration	Dechlorination	0.025
ocwage			Decinomation	0.020
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposa
· · ·	· · · · · · · ·	Projected Organic		•
0.025	50	Overload	Aerobic Digestion	Other WWTP

Peters Township owns and operates a sanitary wastewater treatment plant located at 8739 Kuhn Road, Greencastle, PA 17225, serving the areas of Peters Township. All sewer systems are 100% separated. The treatment plant is an extended aeration activated sludge treatment plant consisting of screening, EQ tanks (2), aeration tanks (3), clarifier, chlorine contact tank, post aeration tank, dechlor chamber, and outfall structure. A lagoon is also on line as a backup treatment system. The plant is rated for 0.025 MGD as an annual average flow and hydraulic design capacity with an organic design capacity of 50 lbsBOD/day. A sludge holding tank is used to store sludge prior to being hauled off site to another WWTP for ultimate treatment and disposal. The application indicates that there is no industrial or commercial users contributing wastewater to the sewer system. Calcium hypochlorite is used for chlorination and sodium sulfite is used for dechlorination. Lime and Delta Floc are used for pH control and settling, respectively.

	Compliance History							
Summary of DMRs:	A summary of 12-month DMR data is presented on the next page.							
Summary of Inspections:	10/29/2017: Patrick Bowen, former DEP Water Quality Specialist, conducted a routine inspection. No violations were noted at the time of inspection.							
Other Comments:	DEP's database revealed that no effluent violations have been reported since the last permit renewal. The database also indicates that there is no open violation associated with this permittee or facility.							

Effluent Data

DMR Data for Outfall 001 (from February 1, 2020 to January 31, 2021)

Parameter	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20	AUG-20	JUL-20	JUN-20	MAY-20	APR-20	MAR-20	FEB-20
Flow (MGD)												
Average Monthly	0.015	0.016	0.014	0.015	0.015	0.015	0.014	0.015	0.016	0.016	0.015	0.013
Flow (MGD)												
Daily Maximum	0.017	0.027	0.017	0.018	0.018	0.022	0.017	0.020	0.023	0.021	0.017	0.017
pH (S.U.)												
Minimum	7.5	7.6	7.4	7.7	7.7	7.8	7.2	7.2	7.7	7.8	7.6	7.4
pH (S.U.)												
Maximum	7.9	7.8	8.1	8.2	8.8	8.4	8.2	8.3	8.2	8.2	8.1	8.2
DO (mg/L)												
Minimum	11.7	9.1	8.7	8.0	7.3	6.9	7.0	6.6	6.8	9.3	10.0	11.4
TRC (mg/L)												
Average Monthly	< 0.02	< 0.04	< 0.04	< 0.03	< 0.03	< 0.04	< 0.05	< 0.04	< 0.02	< 0.02	< 0.04	< 0.03
TRC (mg/L)												
Instantaneous												
Maximum	0.08	0.17	0.22	0.08	0.13	0.23	0.15	0.20	0.09	0.09	0.14	0.17
CBOD5 (lbs/day)												
Average Monthly	0.6	1.0	< 0.4	< 0.003	< 1.1	< 0.2	< 0.2	0.5	0.5	< 0.3	1.0	0.6
CBOD5 (lbs/day)					- -							
Weekly Average	0.8	1.0	0.5	0.4	0.5	< 0.2	< 0.2	0.6	0.8	0.4	2.0	0.8
CBOD5 (mg/L)		0.7	0.5	0.4				1.0				
Average Monthly	3.8	6.7	< 3.5	< 2.4	< 2.9	< 2.0	< 2.0	4.6	6.2	< 2.8	9.0	4.4
CBOD5 (mg/L)	5.0	7.0	5.0	2.0	4.0	. 2.0	2.0	6.0	8.0	4.0	21.0	6.0
Weekly Average	5.0	7.0	5.0	3.0	4.0	< 2.0	2.0	6.0	8.0	4.0	21.0	6.0
BOD5 (lbs/day)												
Raw Sewage Influent Average Monthly	29	31	18	25	25	19	28	27	25	28	41	32
BOD5 (lbs/day)	29	51	10	23	20	19	20	21	25	20	41	52
Raw Sewage Influent												
Daily Maximum	30	32	24	25	31	27	37	31	26	30	51	32
BOD5 (mg/L)	00	02	27	20	01	21	07	01	20	00	01	02
Raw Sewage Influent												
Average Monthly	202	213	168	187	195	204	252	252	220	242	340	253
TSS (lbs/day)	202	210	100	107	100	201	202	202			0.10	200
Average Monthly	1.1	0.7	0.7	0.4	0.5	0.2	0.2	0.4	0.2	0.8	0.6	0.6
TSS (lbs/day)					0.0	0.2	0.2			0.0		0.0
Raw Sewage Influent												
Average Monthly	10	12	9	15	11	7	8	9	9	9	13	12
TSS (lbs/day)	-										-	
Raw Sewage Influent												
Daily Maximum	11	12	9	17	14	8	10	10	9	9	17	12

NPDES Permit Fact Sheet Upton Village STP

NPDES Permit No. PA0082198

TSS (lbs/day)												
Weekly Average	1.3	0.8	0.9	0.6	0.6	0.3	0.2	0.6	0.2	1.3	0.7	0.6
TSS (mg/L)												
Average Monthly	7.8	4.8	5.5	3.3	3.8	3.0	1.8	4.0	3.5	6.5	5.2	4.8
TSS (mg/L)												
Raw Sewage Influent												
Average Monthly	66	79	82	109	87	79	74	85	77	74	108	93
TSS (mg/L)												
Weekly Average	9.0	6.0	6.0	5.0	5.0	4.0	2.0	6.0	5.0	0.10	7.0	5.0
Fecal Coliform												
(CFU/100 ml)				40	70	05	4.47	05	10		400	
Geometric Mean	115	389	11	49	78	85	117	95	42	60	462	> 39
Fecal Coliform												
(CFU/100 ml)												
Instantaneous Maximum	292	398	20	75	79	96	174	452	292	182	< 500	> 500
Nitrate-Nitrite (mg/L)	292	390	20	75	19		174	452	292	102	< 300	> 300
Average Monthly	37.3	< 0.2	49.3	51	< 0.2	52.2	47.3	36.8	38.7	41.2	44	34.5
Nitrate-Nitrite (lbs)	07.0	< 0.2	10.0		< 0.2	02.2	17.0	00.0	00.7	11.2		01.0
Total Monthly	168	< 0.9	184	0.8	< 0.8	< 0.6	166	< 2	< 0.4	143	< 0.2	125
Total Nitrogen (mg/L)												
Average Monthly	< 40.1	48.1	< 53	< 53	< 55	< 54	< 49.7	< 39.2	41.2	42.6	46.1	37
Total Nitrogen (lbs)												
Total Monthly	< 181	217	< 196	< 219	< 212	< 148	< 174	< 128	94	< 149	161	132
Total Nitrogen (lbs)												
Total Annual					< 1877							
Ammonia (lbs/day)												
Average Monthly	< 0.07	< 0.07	< 0.1	< 0.07	< 0.06	< 0.04	< 0.06	< 0.05	< 0.04	< 0.06	< 0.07	< 0.06
Ammonia (mg/L)												
Average Monthly	< 0.5	< 0.5	< 0.81	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.6	< 0.5
Ammonia (lbs)	0.0			0.4	4.0		4 7	1.0		4.0		1.0
Total Monthly	< 2.3	< 2.3	< 3.2	< 2.1	< 1.9	< 1.4	< 1.7	< 1.6	< 1.1	< 1.8	< 2.2	< 1.8
Ammonia (lbs) Total Annual					< 21.3							
TKN (mg/L)					< 21.5							
Average Monthly	2.18	2.1	1.79	1.48	< 1.63	< 1.0	< 1.46	< 1.32	< 1.84	< 1.0	1.23	1.75
TKN (lbs)	2.10	<u> </u>	1.75	1.70	× 1.00	× 1.0	<u> </u>	× 1.02	× 1.07	<u> </u>	1.20	1.70
Total Monthly	10	9.0	7.0	6	< 7.0	< 3.0	< 5	< 4	< 5.0	< 4	4.0	6.0
Total Phosphorus		0.0										0.0
(mg/L)												
Average Monthly	0.33	0.34	0.168	0.203	0.23	0.122	0.321	0.399	0.408	0.2	0.5	0.266
Total Phosphorus (lbs)												
Total Monthly	1.0	2.0	0.6	0.8	0.9	0.3	1	1	0.9	0.07	2.0	1.0
Total Phosphorus (lbs)												
Total Annual					10.9							

Existing Effluent Limits and Monitoring Requirements

The table below summarizes effluent limitations and monitoring requirements specified in the current NPDES permit renewal.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Uni	ts (lbs/day)		Concentrat	ions (mg/L)		Minimum	Required
	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
		Report	~~~~					
Flow (MGD)	Report	Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
BOD₅ (mg/l) Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	2/month	8-Hr Comp
pH (S.U.)	XXX	XXX	6.0	XXX	9.0 Max	XXX	1/day	Grab
Dissolved Oxygen	XXX	XXX	5	XXX	XXX	XXX	1/day	Grab
Total Residual Chlorine (TRC)	XXX	XXX	XXX	0.1	XXX	0.36	1/day	Grab
Carbonaceous Biochemical	7000	7007	7000	0.1	7007	0.00	liday	8-Hr
Oxygen Demand (CBOD5)	5.2	8.3	XXX	25.0	40.0	50	2/month	Composite
								8-Hr
Total Suspended Solids	6.3	9.4	XXX	30.0	45.0	60	2/month	Composite
Total Suspended Solids (mg/l) Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	2/month	8-Hr comp
Fecal Coliform (CFU/100 ml)				2000				
Oct 1 - Apr 30	XXX	XXX	XXX	Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (CFU/100 ml)				200				
May 1 - Sep 30	XXX	XXX	XXX	Geo Mean	XXX	1000	2/month	Grab
Ammonia-Nitrogen								8-Hr
Nov 1 - Apr 30	1.5	XXX	XXX	7.5	XXX	15	2/month	Composite
Ammonia-Nitrogen								8-Hr
May 1 - Oct 31	0.5	XXX	XXX	2.5	XXX	5	2/month	Composite
								8-Hr
AmmoniaN	Report	Report	XXX	Report	XXX	XXX	2/month	Composite
	_			_				8-Hr
KjeldahlN	Report	XXX	XXX	Report	XXX	XXX	2/month	Composite
Nitrate-Nitrite as N	Report	xxx	XXX	Report	XXX	XXX	2/month	8-Hr Composite
Total Nitrogen	Report	Report	XXX	Report	XXX	XXX	1/month	Calculation
Ŭ T								8-Hr
Total Phosphorus	Report	Report	XXX	Report	XXX	XXX	2/month	Composite

Development of Effluent Limitations and Monitoring Requirements

Outfall No.	001	Design Flow (MGD)	.025
Latitude	39º 49' 12.00"	Longitude	-77º 48' 0.00"
Wastewater De	escription: Sewage Effluent		

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 - 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 - 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations

CBOD5, NH3-N and Dissolved Oxygen (DO)

WQM 7.0 version 1.0b is a water quality model designed to assist DEP to determine appropriate permit requirements for CBOD5, NH3-N and DO. DEP's guidance no. 391-2000-007 provides the technical methods contained in WQM 7.0 for conducting wasteload allocation and for determining recommended NPDES effluent limits for point source discharges. The model was utilized and the model output indicated that existing TBEL of 25 mg/L for CBOD5 and the existing WQBEL of 2.5 mg/L for NH-3N are still appropriate. No changes are therefore recommended.

Total Residual Chlorine

Since calcium hypochlorite is used for disinfection, Total Residual Chlorine (TRC) effluent levels must be regulated in accordance with 25 Pa Code §92a.48(b). DEP's TRC_CALC worksheet is utilized and indicates that existing limits of 0.1 mg/L (average monthly) and 0.36 mg/L (IMAX) are still protective of water quality.

Toxics

DEP's NPDES permit application for minor sewages less than 0.1 MGD) requires samples of heavy metals including Total Copper, Total Lead, and Total Zinc only when the facility receives industrial or commercial contributions. As mentioned before the facility does not receive such contributions. Therefore, no toxic pollutants are determined to be pollutants of concern for this facility.

Best Professional Judgment (BPJ) Limitations

Dissolved Oxygen

A minimum of 5.0 mg/L for DO is an existing effluent limit and will remain unchanged in the draft permit as recommended by DEP's SOP. This requirement has also been assigned to other major sewage facilities in the region. 5.0 mg/L is taken directly from 25 Pa. Code § 93.7(a) and it is also determined to be appropriate according to water quality modeling.

Total Phosphorus & Total Nitrogen

DEP's SOP no. BPNPSM-PMT-033 recommends monitoring requirements for Total Phosphorus and Total Nitrogen for all sewage facilities. Therefore, the existing requirement to monitor for Total Phosphorus and Total Nitrogen remain

NPDES Permit Fact Sheet Upton Village STP

unchanged. Given the size of this facility, the fact that the facility has not had significant violations over the past 5 years and the receiving stream is not impaired for nutrients, it is recommended that the monthly monitoring be reduced to quarterly monitoring.

Additional Considerations

Flow Monitoring

The requirement to monitor the volume of effluent will remain in the draft permit per 40 CFR § 122.44(i)(1)(ii).

Influent BOD & TSS Monitoring

As a result of negotiation with EPA, the existing influent monitoring reporting requirement for TSS and BOD5 will be maintained in the draft permit. This requirement has been consistently assigned to all municipal wastewater treatment facilities.

Chesapeake Bay TMDL

DEP's Phase II Watershed Implementation Plan (WIP) categorizes this facility as a phase 5 non-significant sewage facility that has a design flow less than 0.2 MGD but greater than 0.002 MGD. the WIP recommends monitoring and reporting for Total Nitrogen and Total Phosphorus throughout the permit term at a frequency no less than annually. As mentioned above, monitoring of these pollutants will be written in the permit as recommended by DEP's SOP. Therefore, no additional requirements will be necessary.

Total Dissolved Solids (TDS)

TDS and its associated solids including Bromide, Chloride, and Sulfate have become statewide pollutants of concern. The requirement to monitor these pollutants must be considered under the criteria specified in 25 Pa. Code § 95.10 and the following January 23, 2014 DEP Central Office Directive:

For point source discharges and upon issuance or reissuance of an individual NPDES permit:

-Where the concentration of TDS in the discharge exceeds 1,000 mg/L, or the net TDS load from a discharge exceeds 20,000 lbs/day, and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for TDS, sulfate, chloride, and bromide. Discharges of 0.1 MGD or less should monitor and report for TDS, sulfate, chloride, and bromide if the concentration of TDS in the discharge exceeds 5,000 mg/L.

No TDS sample is available as the facility does not meet the flow threshold.

Monitoring Frequency and Sample Type

Unless otherwise specified throughout this fact sheet, existing monitoring frequencies and sample types will remain unchanged in the permit.

Mass Loading Limitations

All effluent mass loading limits will be based on the formula: design flow x concentration limit x conversion factor of 8.34.

Antibacksliding

All effluent limitations and monitoring requirements have been developed as stringent as the requirements specified in the existing permit.

Class A Wild Trout Streams

The receiving stream is not a Class A Wild Trout stream; therefore no Class A Wild Trout Fishery is impacted by this discharge.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	s (Ibs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
	Average Monthly	Weekly Average	Instant. Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	xxx	xxx	xxx	xxx	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0	xxx	9.0	ххх	1/day	Grab
DO	XXX	XXX	5.0	xxx	XXX	ХХХ	1/day	Grab
TRC	xxx	xxx	XXX	0.1	xxx	0.36	1/day	Grab
BOD5 Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	ХХХ	2/month	8-Hr Comp
CBOD5	5.2	8.3	XXX	25.0	40.0	50	2/month	8-Hr Composite
TSS	6.3	9.4	XXX	30.0	45.0	60	2/month	8-Hr Composite
TSS Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	2/month	8-Hr comp
Fecal Coliform Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab
Ammonia Nov 1 - Apr 30	1.5	xxx	xxx	7.5	xxx	15	2/month	8-Hr Composite
Ammonia May 1 - Oct 31	0.5	XXX	XXX	2.5	XXX	5	2/month	8-Hr Composite
Total Nitrogen	XXX	Report Daily Max	XXX	xxx	Report Daily Max	xxx	1/quarter	Calculation
TKN	XXX	Report Daily Max	XXX	xxx	Report Daily Max	xxx	1/quarter	8-Hr Composite
Nitrate-Nitrite	XXX	Report Daily Max	XXX	xxx	Report Daily Max	xxx	1/quarter	8-Hr Composite

NPDES Permit No. PA0082198

			Effluent L	imitations			Monitoring Requirements		
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required			
Farameter	Average Monthly	Weekly Average	Instant. Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type	
		Report			Report			8-Hr	
Total Phosphorus	XXX	Daily Max	XXX	XXX	Daily Max	XXX	1/quarter	Composite	

Tools and References Used to Develop Permit
WQM for Windows Model (see Attachment
Toxics Management Spreadsheet (see Attachment)
TRC Model Spreadsheet (see Attachment)
Temperature Model Spreadsheet (see Attachment)
Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
Pennsylvania CSO Policy, 385-2000-011, 9/08.
Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
Implementation Guidance Design Conditions, 391-2000-006, 9/97.
Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
Design Stream Flows, 391-2000-023, 9/98.
Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
SOP:
Other:

Attachments

1. StreamStats

StreamStats Report

 Region ID:
 PA

 Workspace ID:
 PA20210305133742456000

 Clicked Point (Latitude, Longitude):
 39.82012, -77.79968

 Time:
 2021-03-05 08:37:58 -0500

Basin Characte	nsucs		
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	0.24	square miles
PRECIP	Mean Annual Precipitation	39	inches
STRDEN	Stream Density total length of streams divided by drainage area	3.35	miles per square mile
ROCKDEP	Depth to rock	5	feet
CARBON	Percentage of area of carbonate rock	6.91	percent

https://streamstats.usgs.gov/ss/

Low-Flow Statistics Parameters[Low Flow Region 2]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.24	square miles	4.93	1280
PRECIP	Mean Annual Precipitation	39	inches	35	50.4
STRDEN	Stream Density	3.35	miles per square mile	0.51	3.1
ROCKDEP	Depth to Rock	5	feet	3.32	5.65
CARBON	Percent Carbonate	6.91	percent	0	99

Low-Flow Statistics Disclaimers[Low Flow Region 2]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

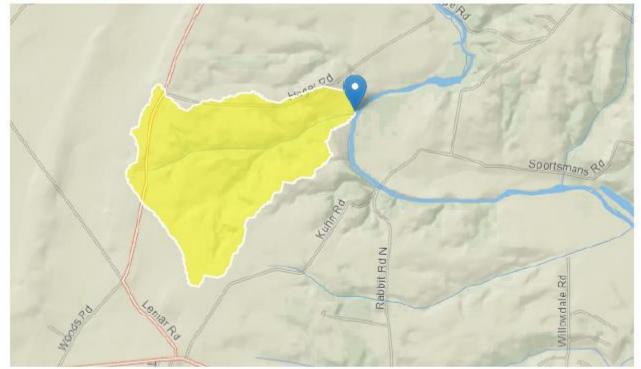
Low-Flow Statistics Flow Report[Low Flow Region 2]

Statistic	Value	Unit
7 Day 2 Year Low Flow	0.0104	ft^3/s
30 Day 2 Year Low Flow	0.0149	ft^3/s
7 Day 10 Year Low Flow	0.00414	ft^3/s
30 Day 10 Year Low Flow	0.00577	ft^3/s
90 Day 10 Year Low Flow	0.00963	ft^3/s

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.


StreamStats Report

 Region ID:
 PA

 Workspace ID:
 PA20210305141440044000

 Clicked Point (Latitude, Longitude):
 39.82334, -77.79084

 Time:
 2021-03-05 09:14:55 -0500

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	0.64	square miles
PRECIP	Mean Annual Precipitation		inches
STRDEN	Stream Density total length of streams divided by drainage area	3.6	miles per square mile
ROCKDEP	Depth to rock		feet
CARBON	Percentage of area of carbonate rock		percent

tps://streamstats.usgs.gov/ss/

1/2

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit					
DRNAREA	Drainage Area	0.64	square miles	4.93	1280					
PRECIP	Mean Annual Precipitation		inches	35	50.4					
STRDEN	Stream Density	3.6	miles per square mile	0.51	3.1					
ROCKDEP	Depth to Rock		feet	3.32	5.65					
CARBON	Percent Carbonate		percent	0	99					
Low-Flow Statistics Flow Report[Low Flow Region 2]										
Statistic		Value		Unit						
Low-Flow Statistic	es Citations									

Low-Flow Statistics Parameters[Low Flow Region 2]

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.4.0

2. WQM Modeling

						at Dutt							
	SWP Basir			Stre	eam Name		RMI	Elevat (ft)	A	rea	Slope V (ft/ft)	PWS Vithdrawal (mgd)	App FC
	13C	59	884 Trib 59	9884 to C	onococheag	gue Creek	0.57	72 52	20.00	0.24 0	0.00000	0.00	•
					St	ream Dat	a						
Design Cond.	LFY (cfsm)	Trib Flow (cfs)	Stream Flow (cfs)	Rch Trav Time (days)	Rch Velocity (fps)	WD Ratio	Rch Width (ft)	Rch Depth (ft)	<u>Tribu</u> Temp (°C)	pH	Si Temp (°C)	tream pH	
Q7-10 Q1-10 Q30-10	0.110	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.00	25.00	7.00	0.0	0 0.00	
					Di	ischarge l	Data						
			Name	Per	mit Numbe	Disc	Permitte Disc Flow (mgd)		Reserve Factor	Disc Temp (ºC)	Disc pH		
		Uptor	n STP	PA	0082198	0.0250	0 0.025	0 0.025	0 0.000	20.	.00 7.	90	
					Pa	arameter l	Data						
			,	r Name				ream Fa Xonc Co	te xef				
						(m	ig/L) (n	ng/L) (m	ng/L) (1/d	ays)			
			CBOD5			:	25.00	2.00	0.00	1.50			

5.00

2.50

8.24

0.00

0.00

0.00

0.00

0.70

Dissolved Oxygen

NH3-N

Input Data WQM 7.0

Version 1.0b

	SWF Basir			Stre	am Name		RMI	Eleva (ft		Drainage Area (sq mi)	Slope (ft/ft)	PW Withd (mg	rawal	Appl FC
	13C	598	84 Trib 59	9884 to Co	onocochea	gue Creek	0.00	00 4	64.00	0.64	0.00000)	0.00	✓
					S	tream Dat	ta							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p pH	Ter	<u>Strean</u> mp	рН	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(%	C)		
Q7-10 Q1-10 Q30-10	0.110	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	2	5.00 7.	.00	0.00	0.00	
					D	ischarge	Data							
			Name	Per	mit Numbe	Disc	Disc Flow	Flow	Res Fa	erve Te ctor)isc pH		
						0.000	0 0.000	0.000	00 (0.000	25.00	7.00		
					P	arameter	Data							
			I	Paramete	r Name	c	ione C	Conc (tream Conc mg/L)	Fate Coef (1/days)				
	-		CBOD5				25.00	2.00	0.00	1.50		-		
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

Input Data WQM 7.0

<u>SWP Basin</u> <u>St</u> 13C	ream Code 59884		Trib 59884	Stream Name		•k					
RMI	Total Discharge	Flow (mgd	l) Anal	ysis Temperatu	re (ºC)	Analysis pH					
0.572	0.02	5		22.028		7.318					
Reach Width (ft)	Reach De	pth (ft)		Reach WDRat	0	Reach Velocity (fps)					
2.784	0.33	7		8.267		0.069					
Reach CBOD5 (mg/L)	Reach Ko	(1/days)	R	each NH3-N (m	g/L)	Reach Kn (1/days)					
15.67	1.38	3		1.49		0.818					
Reach DO (mg/L)	Reach Kr (Kr Equation		Reach DO Goal (mg/L)					
6.316	28.5	59			5						
Reach Travel Time (days)	Reach Travel Time (days) Subreach Results										
0.503	TravTime (days)		NH3-N (mg/L)	D.O. (mg/L)							
	0.050	14.52	1.43	7.17							
	0.101	13.45	1.37	7.45							
	0.151	12.46	1.31	7.59							
	0.201	11.54	1.26	7.68							
	0.252	10.69	1.21	7.76							
	0.302	9.91	1.16	7.83							
	0.352	9.18	1.11	7.90							
	0.403	8.50	1.07	7.94							
	0.453		1.03	7.94							
	0.503		0.98	7.94							

WQM 7.0 D.O.Simulation

Version 1.0b

	SW	P Basin	Strea	m Code				Stream	Name			
		13C 59884				Trib 59884 to Conococheague Creek						
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
0.572	0.03	0.00	0.03	.0387	0.01854	.337	2.78	8.27	0.07	0.503	22.03	7.32
Q1-1	0 Flow											
0.572	0.02	0.00	0.02	.0387	0.01854	NA	NA	NA	0.07	0.519	21.86	7.35
Q30-	10 Flow	,										
0.572	0.03	0.00	0.03	.0387	0.01854	NA	NA	NA	0.07	0.483	22.24	7.29

WQM 7.0 Hydrodynamic Outputs

Friday, March 5, 2021

Version 1.0b

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.87	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.19	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	~
D.O. Goal	5		

Friday, March 5, 2021

Version 1.0b

	13C	59884		10 33004 10	Conocochea	Jue Creek	
NH3-N	Acute Allocatio	ns					
RMI	Discharge Nan	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
0.5	72 Upton STP	6.2	5	6.2	5	0	0
NH3-N	Chronic Alloca	tions					
						-	
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
	Discharge Name	Criterion	WLA (mg/L)	Criterion	WLA		

WQM 7.0 Wasteload Allocations

 (mg/L)
 (mg/L)
 (mg/L)
 (mg/L)
 (mg/L)
 (mg/L)
 (mg/L)

 0.57 Upton STP
 25
 25
 2.5
 5
 0
 0

Version 1.0b

	<u>SWP Basin</u> St 13C	ream Code 59884	Trib	Stream Name 59884 to Conocoche			
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
0.572	Upton STP	PA0082198	0.025	CBOD5	25		
				NH3-N	2.5	5	
				Dissolved Oxygen			5

WQM 7.0 Effluent Limits

Friday, March 5, 2021

Version 1.0b

3. TRC_CALC Worksheet

	1A	В	С	D	Е	F	G			
-				D	L		G			
_	2									
_	3			in B4:B8 and E4:E7						
_	4		= Q stream			= CV Daily				
	-5	0.025	= Q discha	arge (MGD)	0.5	= CV Hourly				
	6	30	= no. sam	ples	1	= AFC_Partia	l Mix Factor			
	-7	0.3	= Chlorine	Demand of Stream	1	= CFC_Partia	l Mix Factor			
	8	0	= Chlorine	Demand of Disch	15	= AFC_Criter	ia Compliance Tin	ne (min)		
	9	0.5	0.5 = BAT/BPJ Value		720	= CFC_Criter	eria Compliance Time (mi			
)		0	= % Facto	r of Safety (FOS)		=Decay Coef	ficient (K)			
	10	Source	Reference	AFC Calculations		Reference	CFC Calculations			
2	11	TRC	1.3.2.iii	WLA afc =	0.237	1.3.2.iii	WLA cfc = ().223		
}	12	PENTOXSD TRO	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = (0.581		
1	13	PENTOXSD TRO	5.1b	LTA_afc=	0.088	5.1d	LTA_cfc = (0.130		
5	14									
5	15	Source		Effluent	Limit Cal	culations				
2	16	PENTOXSD TRO	(5.1f	AMI	_ MULT =	1.231				
}	17	PENTOXSD TRO	5.1g	AVG MON LIMI	Г (mg/l) =	0.109	AFC			
3	18			INST MAX LIMI	Г (mg/l) =	0.355				
)										
2										
}_		WLA afc	(.019/e(-k*	'AFC_tc)) + [(AFC_	Yc*Qs*	.019/Qd*e(-k*	AFC_tc))			
1				AFC_Yc*Qs*Xs/Qd		-				
j_		LTAMULT afc EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5)								
ì		LTA_afc wla_afc*LTAMULT_afc								
2										
1		WLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc))								
늰		+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)								
J.		LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) LTA_cfc wla_cfc*LTAMULT_cfc								
,		LTA_cfc	wia_ctc^L1/	AMULI_CTC						
-			EVD(2.226*I	N/(oud^2/no_complete	a+1)40 5	0.5*1 N/ourd 0.2	no eampleat())			
		AML MULT EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1)) AVG MON LIMIT MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)								
1		INST MAX LIMIT 1.5*((av_mon_limit/AML_MULT)/LTAMULT_afc)								
) }										
7										
3										
i l										
j										
2		(0.011/EXP(-K	*CFC tc/14	40))+(((CFC_Yc*Q	s*0.011)/(1.547*Qd).				
3)))+Xd+(CFC_Yc*Q						