

Southcentral Regional Office CLEAN WATER PROGRAM

Application Type	Renewal
Facility Type	Municipal
Major / Minor	Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No.	PA0082279
APS ID	5459
Authorization ID	1315552

Applicant and Facility Information											
Applicant Name	•	g Creek Joint Sewer Authority ngdon County	Facility Name	Spring Creek STP							
Applicant Address	PO Bo	ox 373	Facility Address	Pa-994 East Of Three Springs Boro							
	Three	Springs, PA 17264-0373	_	Three Springs, PA 17264							
Applicant Contact	Robei	rt Trego	Facility Contact	Rodney Thomas							
Applicant Phone	(814)	448-3414	Facility Phone	(814) 448-3414							
Client ID	14358	33	Site ID	246978							
Ch 94 Load Status	Not O	verloaded	Municipality	Clay Township							
Connection Status	No Lir	mitations	County	Huntingdon							
Date Application Rece	eived	May 5, 2020	EPA Waived?	Yes							
Date Application Accepted		June 3, 2020	If No, Reason								
Purpose of Application	า	NPDES Renewal.									

Summary of Review

Spring Creek Sewer Authority has applied to the Pennsylvania Department of Environmental Protection (DEP) for reissuance of its NPDES permit. The permit was last reissued on September 23, 2015 and became effective on October 1, 2015. The permit expired on September 30, 2020, and the permit has been administratively extended since that time.

The facility has an average annual design flow of 0.132 MGD and hydraulic capacity is 0.17 MGD that discharges to Three Springs Creek. The application states the following flow contribution sources: 54% of Three Springs Borough, 37% of Saltillo Borough, and 9% of Clay Township.

WQM Part II No. 3109401 original was issued on May 28, 2009.

Changes from the previous permit: Unit of Fecal Coliform changed from CFU/100 ml to No./100 ml.

Based on the review outline in this fact sheet, it is recommended that the permit be drafted and published in the Pennsylvania Bulletin for public comments for 30 days.

Approve	Deny	Signatures	Date
Х		Hilaryle Hilary H. Le / Environmental Engineering Specialist	October 29, 2020
		Daniel W. Martin, P.E. / Environmental Engineer Manager	

ischarge, Receivin	g Waters and Water Supply Infor	mation	
Outfall No. 001		Design Flow (MGD)	0.17
Latitude 40°	11' 34.85"	Longitude	-77º 58' 24.95"
Quad Name Or	bisonia	Quad Code	
Wastewater Descr	iption: Sewage Effluent		
Receiving Waters	Three Springs Creek (CWF)	Stream Code	12866
NHD Com ID	66212017	RMI	3.35
Drainage Area	23.6 mi. ²	Yield (cfs/mi²)	0.02
Q ₇₋₁₀ Flow (cfs)	0.43	Q ₇₋₁₀ Basis	USGS StreamStats
Elevation (ft)	696.99	Slope (ft/ft)	
Watershed No.	12-C	Chapter 93 Class.	CWF
Existing Use		Existing Use Qualifier	
Exceptions to Use		Exceptions to Criteria	
Assessment Status	Attaining Use(s)		
Cause(s) of Impair	ment		
Source(s) of Impai	rment		
TMDL Status		Name	
Nearest Downstrea	am Public Water Supply Intake	Mifflintown Municipal Authority	, Juniata County
PWS Waters	Juniata River	Flow at Intake (cfs)	•
-	34.4 miles	Distance from Outfall (mi)	Approximate 64 miles

Changes Since Last Permit Issuance: none

Drainage Area

The discharge is to Three Springs Creek at RMI 3.35 miles. A drainage area upstream of the discharge is estimated to be 23.6 mi.², according to USGS PA StreamStats available at https://streamstats.usgs.gov/ss/.

Streamflow

According to StreamStats, the discharge point on Three Springs Creek has a Q_{7-10} of 0.43 cfs and a drainage area of 23.6 mi.², which results in a Q_{7-10} low flow yield of 0.02 cfs/mi.². This information is used to obtain a chronic or 30-day (Q_{30-10}), and an acute or 1-day (Q_{1-10}) exposure stream flow for the discharge point as follows (Guidance No. 391-2000-023):

 $\begin{array}{c} Q_{7\text{-}10} = 0.43 \text{ cfs} \\ \text{Low Flow Yield} = 0.43 \text{ cfs} \ / \ 23.6 \text{ mi.}^2 \approx 0.02 \text{ cfs/mi.}^2 \\ Q_{30\text{-}10} = 1.36 \ ^* \ 0.43 \text{ cfs} \approx 0.58 \text{ cfs} \\ Q_{1\text{-}10} = 0.64 \ ^* \ 0.4 \text{ 3cfs} \approx 0.28 \text{ cfs} \\ \end{array}$

The resulting Q_{7-10} dilution ratio is: $Q_{\text{stream}} / Q_{\text{discharge}} = 0.43 \text{ cfs} / [0.132 \text{ MGD} * (1.55 \text{ cfs/MGD})] = 2.1:1$

Three Springs Creek

25 Pa Code § 93.9n classifies Three Springs Creek as Cold Water and Migratory Fishes (CWF, MF) surface water. Based on the 2018 Integrated Report, Three Springs Creek, assessment unit ID 9875, is not impaired. A TMDL currently does not exist for this stream segment, therefore, no TMDL has been taken into consideration during this review.

Public Water Supply

The nearest downstream public water supply intake is the Mifflintown Municipal Authority, Juniata County, approximately 64 miles downstream of this discharge. Considering distance and dilution, the discharge is not expected to impact the water supply.

	Treatment Facility Summary											
Treatment Facility Na	me: Spring Creek STP											
WQM Permit No.	Issuance Date											
3109401	5/28/2009											
	Degree of		1	Avg Annual								
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)								
	Secondary With	71		, ,								
	Ammonia And	Sequencing Batch										
Sewage	Phosphorus	Reactor	Gas Chlorine	0.132								
Hydraulic Capacity	Organic Capacity			Biosolids								
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal								
0.17	275	Not Overloaded	Aerobic Digestion	Landfill								

Changes Since Last Permit Issuance: none

Other Comments: The facility hydraulic capacity is a 170,000 GPD system with the following treatment units:

One (1), Wet Well

Two (2), Sequencing Batch Reactors

One (1), Chlorine Contact Tank

One (1), Dechlorination Tank

One (1), Post Aeration Tank

Two (2), Reed Beds

Two (2), Aerobic Digesters

One (1), Sludge Pad

The chemical is used at treatment Sodium Hypochlorite (liquid) for disinfection, and Sodium Bisulfite (liquid) for dechlorination.

	Compliance History
Summary of DMRs:	The DMRs reported from September 1, 2019 to August 31, 2020 is summarized in the Table below (Pages # 5, 6, & 7).
Summary of Inspections:	11/4/2019: Mr. Clark, DEP WQS, conducted compliance evaluation inspection. There was recommendation to create and post Standard Operating Procedure for plant operations. The effluent was clear. The field test results were within permit limits. There were no violations noted during inspection.
	10/24/2018: Mr. Clark, DEP WQS, conducted compliance evaluation inspection. There were recommendations to remove weeds from chlorine contact tank and SBR basin; and remove leaves from effluent meter stilling well. The effluent was clear. The field tests results were within the permit limits. There were no violations noted during inspection.
	10/4/2017: Mr. Clark, DEP WQS, conducted compliance evaluation inspection. There were recommendations to remove weeds from chlorine contact tank, and more accurate TRC results. The effluent was clear. The field test results were within permit limits. There were no violations noted during inspection.
Other Comments:	There are currently no open violations associated to the permittee or the facility.

Other Comment:

The table below summarizes the influent/effluent testing results submitted along with the application.

Int	fluent Testing Result	ts	Eff	Effluent Testing Results			
Parameter	Min/Max Value	Average Value	Parameter	Min/Max Value	Average Value		
BOD ₅ (mg/L)	742 mg/L	mg/L	pH (minimum)	6.4 S.U.			
BOD ₅ (lbs/day)	756 lbs/day	lbs/day	pH (maximum)	8.0 S.U.			
TSS (mg/L)	444 mg/L	mg/L	D.O (minimum)	6.2 mg/L	mg/L		
TSS (lbs/day)	1070 lbs/day	lbs/day	TRC	0.61 mg/L	<0.04 mg/L		
TN (mg/L)	14.37 mg/L	mg/L	Fecal Coliform	1,376	3.0 No./100 mL		
TN (lbs/day)	21.93 lbs/day	lbs/day	CBOD ₅	No./100mL 12.6 mg/L	< 4.92 mg/L		
TP (mg/L)	4.30 mg/L	mg/L	TSS	11.6 mg/L	mg/L		
TP (lbs/day)	6.56 lbs/day	lbs/day	NH ₃ -N	0.35 mg/L	mg/L		
NH ₃ -N (mg/L)	21.96 mg/L	mg/L	TN	19.97 mg/L	mg/L		
NH ₃ -N (lbs/day)	33.52 lbs/day	lbs/day	TP	4.05 mg/L	mg/L		
TDS (mg/L)	388 mg/L	mg/L	Temp	55.4 F	F		
TDS (lbs/day)	592 lbs/day	lbs/day	TKN	2.29 mg/L	mg/L		
TKN	14.32 mg/L	mg/L	NO ₂ -N + NO ₃ -N	18.82 mg/L	mg/L		
NO_2 -N + NO_3 -N	<0.05 mg/L	mg/L	TDS	286 mg/L	mg/L		
			Chloride	54.8 mg/L	mg/L		
			Bromide	< 0.4 mg/L	mg/L		
			Sulfate	50.2 mg/L	mg/L		
			Oil and Grease	< 5.0 mg/L	mg/L		
			Total Copper	< 0.01 mg/L	mg/L		
			Total Lead	< 0.008 mg/L	mg/L		
			Total Zinc	0.053 mg/L	mg/L		

Compliance History

DMR Data for Outfall 001 (from September 1, 2019 to August 31, 2020)

Parameter	AUG-20	JUL-20	JUN-20	MAY-20	APR-20	MAR-20	FEB-20	JAN-20	DEC-19	NOV-19	OCT-19	SEP-19
Flow (MGD)												
Average Monthly	0.050	0.057	0.063	0.116	0.144	0.104	0.086	0.088	0.072	0.056	0.050	0.053
Flow (MGD)												
Daily Maximum	0.072	0.084	0.092	0.271	0.36	0.324	0.115	0.216	0.133	0.152	0.183	111
pH (S.U.) Minimum	6.8	6.6	6.6	7.0	7.2	6.7	6.8	6.8	6.6	6.9	6.8	6.9
pH (S.U.) Maximum	7.5	7.4	7.6	7.6	7.6	7.5	7.6	7.5	7.5	7.6	7.5	7.6
DO (mg/L) Minimum	5.2	6.3	7.2	8.7	8.6	5.8	7.5	8.1	8.6	6.8	7.2	6.7
TRC (mg/L)												
Average Monthly	0.07	< 0.03	< 0.06	< 0.02	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
TRC (mg/L)												
Instantaneous												
Maximum	0.52	0.13	0.61	0.16	0.24	0.10	0.13	0.08	0.10	0.19	0.13	0.10
CBOD5 (lbs/day)												
Average Monthly	< 2	3	5	8	5	< 5	4	< 3	< 2	< 3	< 2	3
CBOD5 (lbs/day)												
Daily Maximum	3	5	10	17	8	12	5	4	4	4	2	4
CBOD5 (mg/L)												
Average Monthly	< 5	5	10	9	4	< 6	6	< 4	< 4	< 6	< 4	6
CBOD5 (mg/L)												
Weekly Average	7	6	23	22	7	9	7	6	6	8	5	9
BOD5 (lbs/day)												
Raw Sewage Influent												
Average Monthly	56	60	53	95	109	116	85	71	115	147	99	84
BOD5 (lbs/day)												
Raw Sewage Influent												
Daily Maximum	79	89	90	145	177	161	101	145	175	316	195	115
BOD5 (mg/L)												
Raw Sewage Influent												
Average Monthly	151.6	124	103.8	102	93.3	160	122	103.8	205.5	347.9	232	179
TSS (lbs/day)												
Average Monthly	2	2	5	4	5	4	2	3	3	3	2	2
TSS (lbs/day)												
Raw Sewage Influent												
Average Monthly	67	74	83	102	158	94	57	105	111	125	128	109
TSS (lbs/day)												
Raw Sewage Influent												
Daily Maximum	78	85	128	116	295	135	78	159	181	167	195	152
TSS (lbs/day)	_	_		_		_		_		_		
Weekly Average	3	3	13	6	10	5	3	5	3	4	3	4

NPDES Permit Fact Sheet

NPDES Permit No. PA0082279

Spring Creek STP

pring Creek 31P												
TSS (mg/L)				_		_	_	_	_	_	_	_
Average Monthly	5	4	10	5	4	5	3	4	6	7	5	5
TSS (mg/L)												
Raw Sewage Influent Average Monthly	174	150	164	113	120	133	83	133	202	290	314	229
TSS (mg/L)	174	150	104	113	120	133	03	133	202	290	314	229
Weekly Average	9	4	23	8	6	10	5	6	7	12	7	8
Fecal Coliform	9	4	23	0	U	10	3	0	,	12	,	0
(CFU/100 ml)												
Average Monthly	< 10	67	10	< 3	< 2	< 3	< 1	< 1	19	< 2	< 3	< 3
Fecal Coliform	V 10	07	10	_ ` ` `	\	_ ` 0	` '	` '	10	\	\ 0	\ 0
(CFU/100 ml)												
Instantaneous												
Maximum	1203.3	613	191.8	11.9	3	21.6	1	2	378.4	3.1	130.5	8.3
Nitrate-Nitrite (mg/L)												
Average Monthly	5.246	8.723	7.442	4.159	4.159	3.607	3.557	5.706	9.759	9.186	8.963	9.216
Nitrate-Nitrite (lbs)												
Total Monthly	65	145	111	119	166	87	73	126	168	118	111	133
Total Nitrogen (mg/L)												
Average Monthly	6.56	9.4025	9.4045	5.118	4.794	3.76	4.26	6.42	10.637	10.31	10.086	10.316
Total Nitrogen (lbs)												
Effluent Net Total												
Monthly	79	155	140	144	190	88	88	142	183	132	125	150
Total Nitrogen (lbs)												
Total Monthly	79	155	140	144	190	88	88	142	183	132	125	150
Total Nitrogen (lbs)												
Effluent Net Total												2022
Annual												2232
Total Nitrogen (lbs)												2232
Total Annual Ammonia (lbs/day)												2232
Arimonia (ibs/day) Average Monthly	< 0.02	< 0.02	< 0.02	< 0.07	< 0.06	< 0.04	< 0.03	< 0.04	< 0.03	< 0.02	< 0.05	< 0.05
Ammonia (mg/L)	< 0.02	< 0.02	< 0.02	< 0.07	< 0.00	< 0.04	< 0.03	< 0.04	< 0.03	< 0.02	< 0.03	< 0.03
Average Monthly	< 0.05	< 0.05	< 0.05	< 0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	< 0.1
Ammonia (lbs)	< 0.00	< 0.00	V 0.00	V 0.1	V 0.00	V 0.00	V 0.00	V 0.00	V 0.00	V 0.00	V 0.1	V 0.1
Total Monthly	< 0.06	< 0.8	< 0.7	< 2.3	< 2	< 1	< 1	< 1	< 0.9	< 0.6	< 1	< 1.6
Ammonia (lbs)	1 0.00	7 0.0	10	12.0	12	` .			10.0	10.0		110
Total Annual												< 20.4
TKN (mg/L)												
Average Monthly	< 1.27	< 0.63	< 1.915	< 0.87	< 0.588	0.86	< 0.65	< 0.67	< 0.831	< 1.08	< 1	< 1
TKN (lbs)												
Total Monthly	< 15	< 10	< 29	< 23	< 22	21	< 13	< 15	< 15	< 14	< 12	< 15
Total Phosphorus												
(mg/L)												
Average Monthly	4.23	3.9	2.83	1.85	1.58	1.76	1.73	1.67	2.01	2.4	3.4	2.98

NPDES Permit Fact Sheet

NPDES Permit No. PA0082279

Spring Creek STP

<u>. J. J</u>												
Total Phosphorus (lbs)												
Effluent Net Total												
Monthly	50	63	42	51	62	38	35	36	36	31	40	41
Total Phosphorus (lbs)												
Total Monthly	50	63	42	51	62	38	35	36	36	31	40	41
Total Phosphorus (lbs)												
Effluent Net Total												
Annual												537
Total Phosphorus (lbs)												
Total Annual												537

Development of Effluent Limitations										
Outfall No.	001	Design Flow (MGD)	0.132							
Latitude	40° 11' 34.81"	Longitude	-77º 58' 24.91"							
Wastewater D	Wastewater Description: Sewage Effluent									

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations

Carbonaceous Biochemical Oxygen Demand (CBOD₅):

The attached computer printout of the WQM 7.0 stream model indicates that a monthly average limit of 25 mg/L, or secondary treatment, is adequate to protect the water quality of the stream. However, the existing limits of 25 mg/L monthly average (AML), 40mg/l average weekly limit (AWL), and 50 mg/L instantaneous maximum will remain in the proposed permit as per guidance document 391-2000-014. Recent DMRs and inspection reports show that the facility has been consistently achieving these limits. Mass limits are calculated as follows:

Average monthly mass limit: $25 \text{ mg/L} \times 0.17 \text{ MGD} \times 8.34 = 35.45 (35.0) \text{ lbs/day}$ Average weekly mass limit: $40 \text{ mg/L} \times 0.17 \text{ MGD} \times 8.34 = 56.71 (57.0) \text{ lbs/day}$

Ammonia (NH₃-N):

NH₃N calculations are based on the Department's Implementation Guidance of Section 93.7 Ammonia Criteria, dated 11/4/97 (ID No. 391-2000-013). The following data is necessary to determine the in-stream NH₃-N criteria used in the attached WQM 7.0 computer model of the stream:

*	Discharge pH	=	7.0	(Default)
*	Discharge Temperature	=	20°C	(Default)
*	Stream pH	=	7.0	(Default)
*	Stream Temperature	=	25°C	(Default)
*	Background NH₃-N	=	0 mg/L	(Default)

The model input data and results are attached. The printout of the WQM 7.0 output indicates that at a discharge of 0.17 MGD, limits (rounded according to the NPDES Technical Guidance 362-0400-001) of 5.94 mg/L NH₃-N as a monthly average and 11.88 mg/L NH₃-N instantaneous maximum are necessary to protect the aquatic life from toxicity effects. The more stringent summer in existing limits of 4.5 mg/L monthly average & 9.0 mg/L IMAX will remain in the proposed permit due to anti-backsliding requirements. The winter effluent limit will be set at three-times the summer limits. Recent DMRs and inspection reports indicate that the facility has been consistently achieving these limits. Mass limits are calculated as follows:

Summer average monthly mass limit: 4.5 mg/L x 0.17 MGD x 8.34 = 6.38 (6.4) lbs/day Winter average monthly mass limit: 6.4 lbs/day x 3 = 19.14 (19.0) lbs/day

Total Suspended Solids (TSS):

The existing technology-based limits of 30 mg/L average monthly, 45 mg/L average weekly, and 60 mg/L instantaneous maximum will remain in the proposed permit based on the minimum level of effluent quality attainable by secondary treatment based on 25 Pa. Code § 92a.47. Recent DMRs and inspection reports show that the facility has been consistently achieving these limits. Mass limits are calculated as follows:

Average monthly mass limit: $30 \text{ mg/L} \times 0.17 \text{ MGD} \times 8.34 = 42.53 (42.0) \text{ lbs/day}$ Average weekly mass limit: $45 \text{ mg/L} \times 0.17 \text{ MGD} \times 8.34 = 63.80 (64.0) \text{ lbs/day}$

Dissolved Oxygen (DO):

A minimum D.O. of 5.0 mg/L is required per 25 Pa. Code § 93.7. This is consistent with the previous permit and current Department criteria.

pH:

The effluent discharge pH should remain above 6 and below 9 standard units according to 25 Pa. Code § 95.2(1).

Fecal Coliform:

The recent coliform guidance in 25 Pa. Code § 92a.47.(a)(4) requires a summer technology limit of 200/100 ml as a geometric mean and an instantaneous maximum not greater than 1,000/100 ml and 25 Pa. Code § 92a.47.(a)(5) requires a winter limit of 2,000/100 ml as a geometric mean and an instantaneous maximum not greater than 10,000/100 ml.

Total Residual Chlorine (TRC):

The attached computer printout utilizes the equations and calculations as presented in the Department's 2003 Implementation Guidance for Residual Chlorine (TRC) (ID # 391-2000-015) for developing chlorine limitations. The attached printout indicates that an average monthly water quality limit of 0.25 mg/L and IMAX of 0.81 mg/L would be needed to prevent toxicity concerns. The existing permit had an average monthly water limit of 0.25 mg/L and IMAX of 0.82 mg/L. This is consistent with the existing permit. Recent DMR data indicates that the facility has been consistently achieving concentrations below these more stringent limits.

Chesapeake Bay Strategy:

In the Phase 2 WIP Wastewater Supplement revised on December 17, 2019, Attachment C Non-Significant Discharges with Cap Loads in NPDES Permits of this document shows that Spring Creek STP has been allocated 7,306 lbs/year of TN and 974 lbs/year of TP. This approach is consistent with the Chesapeake Bay TMDL and was based on the actual performance data previously evaluated by the Department. Since the permittee is easily capable of achieving compliance with these loads, the Department determines that no "compliance schedule" for the requirements associated with the Chesapeake Bay Strategy is necessary. Accordingly, the Chesapeake Bay nutrient existing limitations and monitoring requirements will remain in the proposed permit.

Influent BOD₅ and TSS Monitoring:

The permit will include influent BOD₅ and TSS monitoring at the same frequency as is done for effluent in order to implement 25 Pa. Code § 94.12 and assess percent removal requirements, per DEP policy.

Stormwater:

There is no stormwater outfall associated with this facility.

Biosolids Management:

Dried biosolids periodically removed from the sludge drying beds and then disposed of by a certified hauler.

Antidegradation (93.4):

The effluent limits for this discharge have been developed to ensure that existing in-stream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High-Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

303d Listed Streams:

The discharge is not located on a 303d listed stream segment. The stream segment that receive the discharge is listed as attaining its uses for aquatic life and fish consumption.

Class A Wild Trout Fisheries:

No Class A Wild Trout Fisheries are impacted by this discharge.

WQM 7.0 Data

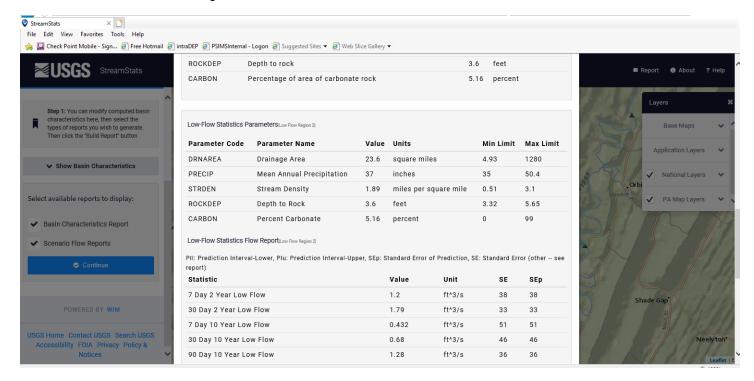
D.O. Goal: 5.0 mg/L

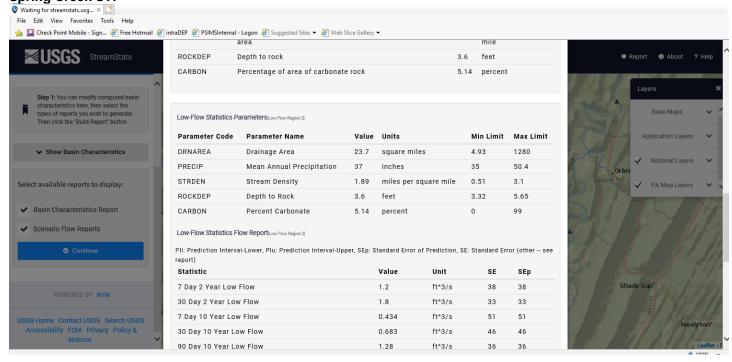
Node 1: Outfall 001 on Three Springs Creek (12866)

Elevation: 696.99 ft (USGS National Map Viewer)
Drainage Area: 23.6 mi.² (USGS PA StreamStats)

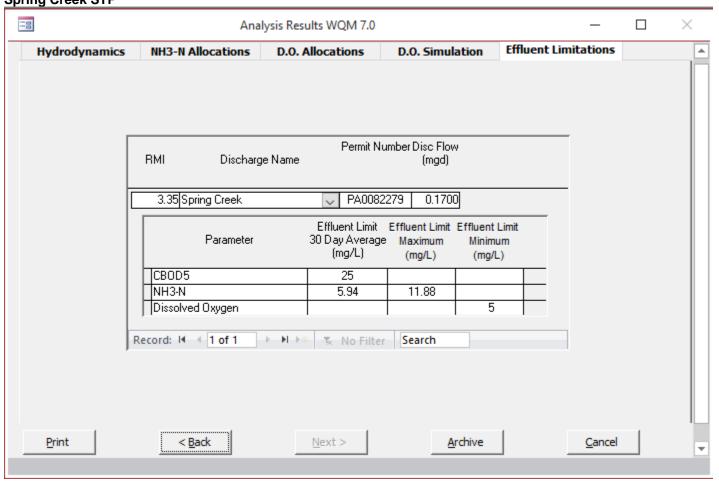
River Mile Index: 3.35 (PA DEP eMapPA)

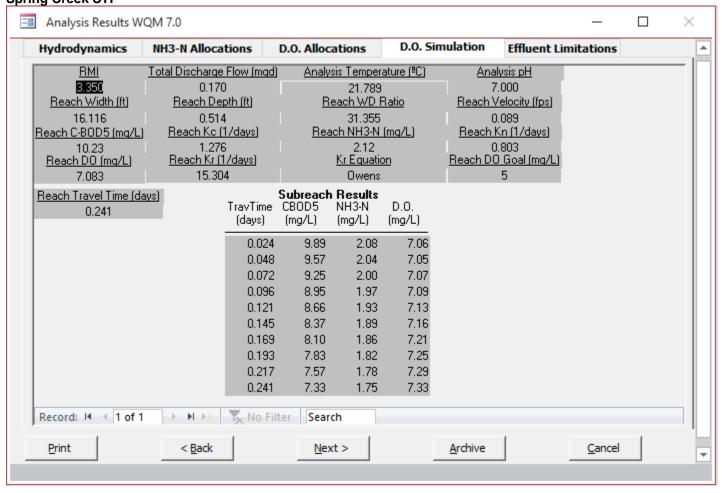
Q₇₋₁₀ Low Flow Yield: 0.020 cfs/mi.²


Discharge Flow: 0.17 MGD (NPDES permit)

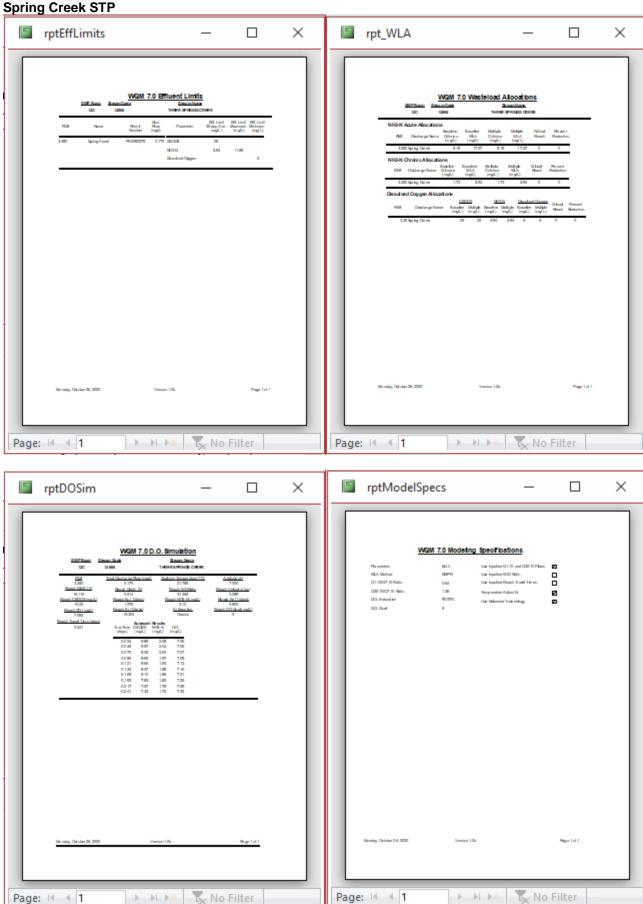

Node 2: Just before confluence with Trib. 12874 to Three Springs Creek

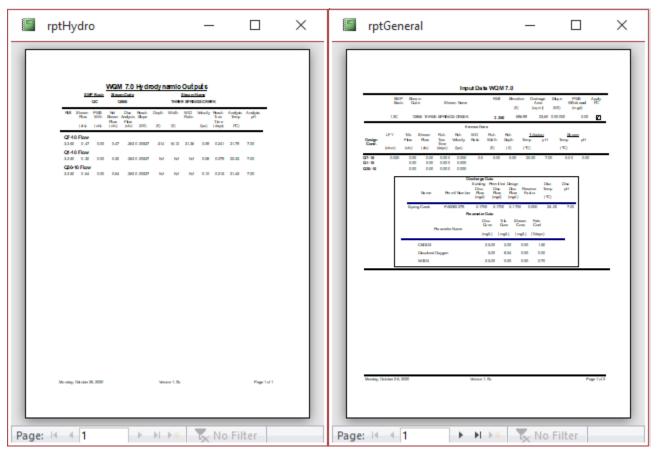
Elevation: 687.07 ft (USGS National Map Viewer)
Drainage Area: 23.7 mi.² (USGS PA StreamStats)

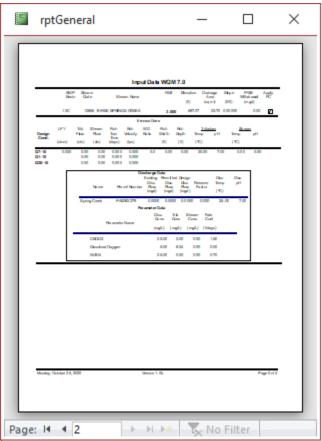

River Mile Index: 3.00 (PA DEP eMapPA)


Q₇₋₁₀ Low Flow Yield: 0.020 cfs/mi.² Discharge Flow: 0.000 MGD

TRO ENGL							
INC EVAL	NOITAU.						
Input appropr	iate values ir	1 A3:A9 and D3:D9					
0.4	3 = Q stream	n (cfs)	= CV Daily				
0.1	7 = Q discha	rge (MGD)	0.5	= CV Hourly			
3/	0 = no. samp	oles	1	= AFC_Partial Mix Factor			
0.	3 = Chlorine	Demand of Stream	1	= CFC_Partia	al Mix Factor		
	0 = Chlorine	Demand of Discharge	15	= AFC_Criter	ria Compliance Time (min)		
0.	5 = BAT/BPJ	l Value	720	= CFC_Criter	ria Compliance Time (min)		
	0 = % Factor	r of Safety (FOS)		=Decay Coef	ficient (K)		
Source	Reference	AFC Calculations		Reference	CFC Calculations		
TRC	1.3.2.iii	WLA afc =	0.541	1.3.2.iii	WLA cfc = 0.519		
PENTOXSD TRO		LTAMULT afc =		5.1c	LTAMULT cfc = 0.581		
PENTOXSD TRO	G 5.1b	LTA_afc=	0.201	5.1d	LTA_cfc = 0.302		
_							
Source			nt Limit Calcu				
PENTOXSD TRO							
DENTAVAD TO	0 54-	AUG MONI	IDALT / III	0.040	450		
PENTOXSD TRO	G 5.1g		.IMIT (mg/l) =		AFC		
PENTOXSD TR	G 5.1g		.IMIT (mg/l) = .IMIT (mg/l) =		AFC		
PENTOXSD TR	G 5.1g				AFC		
PENTOXSD TRO			.IMIT (mg/l) =	0.811			
	(.019/e(-k*	INST MAX L	.IMIT (mg/l) = s*.019/Qd*	0.811			
	(.019/e(-k* + Xd + (/	INST MAX L AFC_tc)) + [(AFC_Yc*Q	.IMIT (mg/l) = s*.019/Qd*c FOS/100)	0.811			
WLA afc LTAMULT afc	(.019/e(-k* + Xd + (/	INST MAX L AFC_tc)) + [(AFC_Yc*Q AFC_Yc*Qs*Xs/Qd)]*(1- (cvh^2+1))-2.326*LN(cvh^2	.IMIT (mg/l) = s*.019/Qd*c FOS/100)	0.811			
WLA afc LTAMULT afc LTA_afc	(.019/e(-k* + Xd + (/ EXP((0.5*LN wla_afc*LTA	INST MAX L AFC_tc)) + [(AFC_Yc*Q AFC_Yc*Qs*Xs/Qd)]*(1-(cvh^2+1))-2.326*LN(cvh^2	s*.019/Qd*6 FOS/100) 2+1)^0.5)	0.811 e(-k*AFC_tc))			
WLA afc	(.019/e(-k* + Xd + (/ EXP((0.5*LN wla_afc*LTA (.011/e(-k*	INST MAX L AFC_tc)) + [(AFC_Yc*Q AFC_Yc*Qs*Xs/Qd)]*(1-(cvh^2+1))-2.326*LN(cvh^2 MULT_afc CFC_tc) + [(CFC_Yc*Qs	s*.019/Qd*6 FOS/100) 2+1)^0.5)	0.811 e(-k*AFC_tc))			
WLA afc LTAMULT afc LTA_afc WLA_cfc	(.019/e(-k* + Xd + (/ EXP((0.5*LN wla_afc*LTA (.011/e(-k* + Xd + (0	INST MAX L AFC_tc)) + [(AFC_Yc*Q AFC_Yc*Qs*Xs/Qd)]*(1- (cvh^2+1))-2.326*LN(cvh^2 MULT_afc CFC_tc) + [(CFC_Yc*Qs CFC_Yc*Qs*Xs/Qd)]*(1-	s*.019/Qd*6 FOS/100) 2+1)^0.5) s*.011/Qd*e FOS/100)	0.811 e(-k*AFC_tc)) e(-k*CFC_tc))			
WLA afc LTAMULT afc LTA_afc	(.019/e(-k* + Xd + (/ EXP((0.5*LN wla_afc*LTA (.011/e(-k* + Xd + (0	INST MAX L AFC_tc)) + [(AFC_Yc*Q AFC_Yc*Qs*Xs/Qd)]*(1- (cvh^2+1))-2.326*LN(cvh^2 AMULT_afc CFC_tc) + [(CFC_Yc*Qs CFC_Yc*Qs*Xs/Qd)]*(1- (cvd^2/no_samples+1))-2.3	s*.019/Qd*6 FOS/100) 2+1)^0.5) s*.011/Qd*e FOS/100)	0.811 e(-k*AFC_tc)) e(-k*CFC_tc))			
WLA afc LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc	(.019/e(-k* + Xd + (/ EXP((0.5*LN wla_afc*LTA (.011/e(-k* + Xd + ((EXP((0.5*LN wla_cfc*LTA	INST MAX L AFC_tc)) + [(AFC_Yc*Q AFC_Yc*Qs*Xs/Qd)]*(1- (cvh^2+1))-2.326*LN(cvh^2 AMULT_afc CFC_tc) + [(CFC_Yc*Qs CFC_Yc*Qs*Xs/Qd)]*(1- (cvd^2/no_samples+1))-2.3	s*.019/Qd*6 FOS/100) 2+1)^0.5) s*.011/Qd*e FOS/100)	0.811 e(-k*AFC_tc)) e(-k*CFC_tc)) 2/no_samples+1	···· ··· !)^0.5)		
WLA afc LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc LTA_cfc	(.019/e(-k* + Xd + (/ EXP((0.5*LN wla_afc*LTA (.011/e(-k* + Xd + ((EXP((0.5*LN wla_cfc*LTA EXP(2.326*L	AFC_tc)) + [(AFC_Yc*QAFC_Yc*QAFC_Yc*Qs*Xs/Qd)]*(1-(cvh^2+1))-2.326*LN(cvh^2AMULT_afcCFC_tc) + [(CFC_Yc*Qs*CFC_Yc*Qs*Xs/Qd)]*(1-(cvd^2/no_samples+1))-2.34MULT_cfc	s*.019/Qd*6 FOS/100) 2+1)^0.5) s*.011/Qd*e FOS/100) 326*LN(cvd^2	0.811 e(-k*AFC_tc)) e(-k*CFC_tc)) 2/no_samples+1	···· ··· !)^0.5)		




NPDES Permit Fact Sheet


Page: I ← 1

▶ ▶I ▶* No Filter

Page: I← ← 1

Existing Effluent Limitations and Monitoring Requirements

			Effluent L	imitations			Monitoring Red	quirements
Parameter	Mass Unit	ts (lbs/day)	Concentrations (mg/L)				Minimum	Required
	Average Monthly	Daily Maximum	Minimum	Average Monthly	Average Weekly	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	Continuous	Measured
Influent (BOD₅ and TSS)	Report	Report	XXX	Report	XXX	XXX	1/week	8-Hr Composite
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab
Dissolved Oxygen	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab
Total Residual Chlorine	XXX	XXX	XXX	0.25	XXX	0.82	1/day	Grab
CBOD₅	35	57	XXX	25	40	50	1/week	8-Hr Composite
Total Suspended Solids	42	64	XXX	30	45	60	1/week	8-Hr Composite
NH ₃ -N (5/1 to 10/31)	6.4	XXX	XXX	4.5	XXX	9.0	1/week	8-Hr Composite
NH ₃ -N (11/1 to 4/30)	19	XXX	XXX	13.5	XXX	27	1/week	8-Hr Composite
Fecal Coliform (CFU/100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1,000	1/week	Grab
Fecal Coliform (CFU/100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2,000 Geo Mean	XXX	10,000	1/week	Grab

Existing Effluent Limitations and Monitoring Requirements

			Effluent L	imitations			Monitoring Requirement		
Parameter	Mass Units	Mass Units (lbs/day)		Concentrat	Minimum	Required			
	Average Monthly	Annual	Minimum	Average Monthly	Average Weekly	Instant. Maximum	Measurement Frequency	Sample Type	
AmmoniaN	Report	Report	XXX	Report	XXX	XXX	1/week	8-Hr Composite	
KjeldahlN	Report	XXX	XXX	Report	XXX	XXX	1/week	8-Hr Composite	
Nitrate-Nitrite as N	Report	XXX	XXX	Report	XXX	XXX	1/week	8-Hr Composite	
Total Nitrogen	Report	Report	XXX	Report	XXX	XXX	1/month	Calculate	
Total Phosphorus	Report	Report	XXX	Report	XXX	XXX	1/week	8-Hr Composite	
Net Total Nitrogen	Report	7,306	XXX	XXX	XXX	XXX	1/month	Calculate	
Net Total Phosphorus	Report	974	XXX	XXX	XXX	XXX	1/month	Calculate	

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Requirements	
Parameter	Mass Units	(lbs/day) (1)	Concentrations (mg/L)				Minimum ⁽²⁾	Required
	Average Monthly	Daily Maximum	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.25	XXX	0.82	1/day	Grab
CBOD5	35.0	57.0 Wkly Avg	XXX	25.0	40.0	50	1/week	8-Hr Composite
TSS	42.0	64.0 Wkly Avg	XXX	30.0	45.0	60.0	1/week	8-Hr Composite
BOD5 Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	1/week	8-Hr Composite
TSS Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	1/week	8-Hr Composite
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1,000	1/week	Grab
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2,000 Geo Mean	XXX	10,000	1/week	Grab
Ammonia May 1 - Sep 30	6.4	XXX	XXX	4.5	XXX	9.0	1/week	8-Hr Composite
Ammonia Oct 1 - Apr 30	19.0	XXX	XXX	13.5	XXX	27.0	1/week	8-Hr Composite

Compliance Sampling Location:

Other Comments:

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	Mass Units (lbs/day) (1)		Concentra	Minimum (2)	Required		
	Monthly	Annual	Monthly	Monthly Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
AmmoniaN	Report	Report	XXX	Report	XXX	XXX	1/week	8-Hr Composite
KjeldahlN	Report	XXX	XXX	Report	XXX	XXX	1/week	8-Hr Composite
Nitrate-Nitrite as N	Report	XXX	XXX	Report	XXX	XXX	1/week	8-Hr Composite
Total Nitrogen	Report	Report	XXX	Report	XXX	XXX	1/month	Calculation
Total Phosphorus	Report	Report	XXX	Report	XXX	XXX	1/week	8-Hr Composite
Net Total Nitrogen	Report	7,306	XXX	XXX	XXX	XXX	1/month	Calculation
Net Total Phosphorus	Report	974	XXX	XXX	XXX	XXX	1/month	Calculation

Compliance Sampling Location:

Other Comments:

	Tools and References Used to Develop Permit
\square	WQM for Windows Model (see Attachment)
	PENTOXSD for Windows Model (see Attachment)
	TRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment)
一	Toxics Screening Analysis Spreadsheet (see Attachment)
一百	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
\boxtimes	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
\boxtimes	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
\boxtimes	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
<u> </u>	SOP:
	Other: