

Application Type Renewal
Facility Type Municipal
Major / Minor Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0082392

 APS ID
 278295

 Authorization ID
 1335711

Applicant and Facility Information

Applicant Name	Derry Township Municipal Authority	Facility Name	Derry Township Southwest STP
Applicant Address	670 Clearwater Road	Facility Address	1800 Swatara Creek Road
	Hershey, PA 17033-2453		Middletown, PA 17057
Applicant Contact	William Rehkop	Facility Contact	William Rehkop
Applicant Phone	(717) 566-3237	Facility Phone	(717) 566-3237
Client ID	86000	Site ID	445523
Ch 94 Load Status	Not Overloaded	Municipality	Derry Township
Connection Status		County	Dauphin
Date Application Receiv	ved December 8, 2020	EPA Waived?	No
Date Application Accep	ted <u>March 30, 2021</u>	If No, Reason	Significant CB Discharge
Purpose of Application	NPDES permit renewal for discharg	e of treated sewage	

Summary of Review

1.0 General Discussion

This fact sheet supports the renewal of an existing NPDES permit for discharge of treated wastewater from the Derry Township Municipal Authority's (Authority) Southwest wastewater treatment plant. The Authority owns, operates, and maintains the wastewater treatment plant located in Londonderry Township. The Southwest plant serves Southwest portion of Derry Township, Eastern portion of Lower Swatara Township (Fulling Mill Road Corridor) and the Northwestern portion of Londonderry Township. The collection system has no combined sewers. The facility has a hydraulic design capacity of 0.60 mgd with an organic design capacity of 1,050 lbs/day. The facility discharges treated wastewater to Swatara Creek, which is classified for warm Water Fishes and Migratory Fishes. The existing NPDES permit was issued on May 23, 2016 with an effective date of June 1, 2016 and expiration date of May 31, 2021. The applicant submitted a timely NPDES renewal application to the Department and is currently operating under the terms and conditions in the existing permit under administrative extension provisions pending Department action on the renewal application. A topographic map showing the discharge location is presented in attachment A.

1.1 Sludge use and disposal description and location(s):

Digested sludge is hauled out periodically to the Authority's Clearwater Road wastewater plant for further processing.

1.2 Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*,

Approve	Deny	Signatures	Date
х		<i>J. Pascal Kwedza</i> J. Pascal Kwedza, P.E. / Environmental Engineer	March 23, 2021
х		Maria D. Bebenek for Daniel W. Martin, P.E. / Environmental Engineer Manager	March 29, 2021
х		Maria D. Bebenek Maria D. Bebenek, P.E. / Program Manager	March 29, 2021

Summary of Review

DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

1.3 Changes to Existing Permit

Monitoring of E.Coli has been added.

1.4 Existing Limit and Monitoring Requirements

			Effluen	t Limitation	s		Monitoring Requirements		
Discharge	Mass Unit	s (lbs/day)		Concent	rations (mg	/L)	Minimum	Required	
Parameter	Monthly Average	Weekly Average	Minimum	Monthly Average	Weekly Average	Instantaneous Maximum	Measurement Frequency	Sample Type	
Flow (mgd)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured	
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/Day	Grab	
Dissolved Oxygen	XXX	XXX	5.0	XXX	XXX	XXX	1/Day	Grab	
UV Transmittance									
(%)	XXX	XXX	Report	XXX	XXX	XXX	1/day	Recorded	
TSS	150	225	XXX	30	45	60	1/week	24-hr comp	
CBOD ₅	125	200	XXX	25	40	50	1/week	24-hr comp	
NH3-N	XXX	XXX	XXX	Report	XXX	XXX	1/week	24-hr comp	
Total Phosphorus	10	XXX	XXX	2.0	XXX	4.0	1/week	24-hr comp	
Fecal Coliform (5/1 to 9/30) ⁽⁵⁾	XXX	XXX	XXX	200	XXX	XXX	1/week	Grab	
Fecal Coliform (10/1 to 4/30)	XXX	XXX	XXX	2,000	XXX	XXX	1/week	Grab	

1.4.1 Chesapeake Bay Permit Requirements

		Effluent l	Limitations			Monitoring Requirements			
Discharge Parameter	Mass L	oad(lbs)	Con	centrations (Minimum				
	Monthly	Annual	Minimum	Monthly Average	Maximum	Measurement Frequency	Required Sample Type		
AmmoniaN	Report	Report	XXX	Report	XXX	2/week	24-hr Comp		
KjeldahlN	Report	XXX	XXX	Report	XXX	2/Week	24-hr Comp		
Nitrate-Nitrite as N	Report	XXX	XXX	Report	XXX	2/Week	24-hr Comp		
Total Nitrogen	Report	Report	XXX	Report	XXX	1/Month	Calculate		
Total Phosphorus	Report	Report	XXX	Report	XXX	2/week	24-hr Comp		
Net Total Nitrogen	Report	10,959	XXX	XXX	XXX	1/Month	Calculate		
Net Total Phos.	Report	1,461	XXX	XXX	XXX	1/Month	Calculate		

1.5.0 Discharge, Receiving Waters and Water Su	upply Information				
Outfall No. 001	Design Flow (MGD)	0.6			
Latitude 40º 13' 24.00"	Longitude	-76º 43' 36.64"			
Quad Name Middletown	Quad Code	1732			
Wastewater Description: Sewage Effluent		1102			
Receiving Waters <u>Swatara Creek (WWF)</u>	Stream Code	09361			
NHD Com ID 56403711	RMI	4.6			
Drainage Area _556.8	Yield (cfs/mi ²)	0.14			
Q ₇₋₁₀ Flow (cfs)77.9	Q ₇₋₁₀ Basis	USGS Gage Station			
Elevation (ft)	Slope (ft/ft)				
Watershed No. 7-D	Chapter 93 Class.	WWF			
Existing Use	Existing Use Qualifier				
Exceptions to Use	Exceptions to Criteria				
Assessment Status Attaining Use(s)					
Cause(s) of Impairment					
Source(s) of Impairment					
TMDL Status	Name				
Background/Ambient Data	Data Source				
pH (SU)					
Temperature (°F)					
Hardness (mg/L)					
Other:					
Nearest Downstream Public Water Supply Intake	e Colombia Water Company				
PWS Waters Susquehanna River	Flow at Intake (cfs)				
PWS RMI	Distance from Outfall (mi)	<22			

Changes Since Last Permit Issuance: None

1.5.1 Water Supply Intake

The nearest downstream water supply intake is approximately 22 miles downstream by Colombia Water Company on Susquehanna River in York County. Due to the distance and dilution, no impact is expected from this discharge.

	2.0 Treatment Facility Summary										
Treatment Facility Na	me: Derry Township Southv	vest STP									
WQM Permit No.	Issuance Date										
2289203	1/7/2019										
2289203	6/25/1991										
	Degree of			Avg Annual							
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)							
	Secondary With										
	Ammonia And										
Sewage	Phosphorus	Oxidation Ditch	UV	0.6							
Hydraulic Capacity	Organic Capacity			Biosolids							
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal							
0.6	1050	Not Overloaded									

Changes Since Last Permit Issuance: A new WQM permit in currently under review to upgrade the treatment plant and treatment process.

2.1 Treatment facility Description

The existing treatment plant consists of influent pump station, Screening unit (Rotomat)/bar screen, Grit removal (aerated), 2 oxidation ditches, 2 final clarifiers, UV for disinfection and 2 aerated sludge holding tanks for sludge digestion.

Currently, influent enters influent pump station and pumped with 3 pumps to the rotomat screening unit. Grit removal system not operational, grit is removed once a year from pump station. From the headworks building, flow enters a distribution box and is divided to the two oxidation ditches. Effluent from oxidation ditches flow via a second distribution box to two final clarifiers and then through an inline UV system for disinfection. Prior to discharge, effluent passes through a post aeration zone for re-aeration.

2.2 Treatment Chemicals

Sodium Bicarbonate added for PH adjustment and Ferrous Chloride is added for phosphorus removal.

3.0 Compliance History

3.1 DMR Data for Outfall 001 (from February 1, 2021 to January 31, 2022)

Flow (MGD) Average Monthly 0.364 0.361 0.367 0.441 0.373 0.372 0.362 0.370 0.388 0.394 Flow (MGD) Daily Maximum 0.407 0.385 0.386 0.393 0.846 0.408 0.460 0.397 0.460 0.439 0.467 PH (S.U) Minimum 6.9 6.8 6.4 6.5 6.6 6.8 6.9 7.0 6.9 6.8 6.6 PH (S.U) Maximum 7.6 7.7 7.6 7.8 7.7 7.8 7.7 7.7 7.6 7.7 DO (mg/L) Minimum 7.8 7.1 7.2 6.3 5.3 5.8 6.2 6.5 6.6 5.3 6.0 CBOD5 (lbs/day) Verage Monthly 9 <9 <8 10 12 7 8 9 9 10 CBOD5 (lbs/day) Verage Monthly 3 <3 <2 3 4 2 3 3 3 3 3 3 3	Parameter	JAN-22	DEC-21	NOV-21	OCT-21	SEP-21	AUG-21	JUL-21	JUN-21	MAY-21	APR-21	MAR-21	FEB-21
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Flow (MGD)												
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Average Monthly	0.364	0.361	0.367	0.367	0.441	0.373	0.372	0.362	0.370	0.388	0.394	0.394
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Flow (MGD)												
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Daily Maximum	0.407	0.385	0.386	0.393	0.846	0.408	0.460	0.397	0.460	0.439	0.467	0.425
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	pH (S.U.)												
Maximum 7.6 7.7 7.6 7.8 7.7 7.8 7.8 7.7 7.7 7.6 7.7 DO (mg/L)		6.9	6.8	6.4	6.5	6.6	6.8	6.9	7.0	6.9	6.8	6.6	6.9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	pH (S.U.)												
Minimum 7.8 7.1 7.2 6.3 5.3 5.8 6.2 6.5 6.6 5.3 6.0 CBOD5 (lbs/day) 9 < 9		7.6	7.7	7.6	7.8	7.7	7.8	7.8	7.7	7.7	7.6	7.7	7.7
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	DO (mg/L)												
Average Monthly 9 < 9 < 8 8 10 12 7 8 9 9 10 CBOD5 (lbs/day)		7.8	7.1	7.2	6.3	5.3	5.8	6.2	6.5	6.6	5.3	6.0	5.8
CBOD5 (lbs/day) Veekly Average 16 < 10 9 13 14 9 12 11 14 13 CBOD5 (mg/L) 3 < 3	CBOD5 (lbs/day)												
Weekly Average 16 < 10 < 10 9 13 14 9 12 11 14 13 CBOD5 (mg/L) Average Monthly 3 < 3		9	< 9	< 8	8	10	12	7	8	9	9	10	8
CBOD5 (mg/L) Average Monthly 3 <3 <2 2 3 4 2 3 3 3 3 CBOD5 (mg/L) Weekly Average 5 <3													
Average Monthly 3 < 3 < 2 2 3 4 2 3		16	< 10	< 10	9	13	14	9	12	11	14	13	8
CBOD5 (mg/L) Second S													
Weekly Average 5 < 3 3 4 4 2 4 3 4 5 BOD5 (lbs/day) Raw Sewage Influent Aver. Monthly 582 748 565 608 619 635 620 611 737 594 764 BOD5 (lbs/day) Raw Sewage Influent Aver. Monthly 582 748 565 608 619 635 620 611 737 594 764 BOD5 (lbs/day) 		3	< 3	< 2	2	3	4	2	3	3	3	3	2
BOD5 (lbs/day) Raw Sewage Influent Aver. Monthly 582 748 565 608 619 635 620 611 737 594 764 BOD5 (lbs/day) Raw Sewage Influent > Daily Maximum 582 748 565 608 619 635 620 611 737 594 764 BOD5 (lbs/day) 	()												
Raw Sewage Influent 582 748 565 608 619 635 620 611 737 594 764 BOD5 (lbs/day) Raw Sewage Influent - <td></td> <td>5</td> <td>< 3</td> <td>3</td> <td>3</td> <td>4</td> <td>4</td> <td>2</td> <td>4</td> <td>3</td> <td>4</td> <td>5</td> <td>3</td>		5	< 3	3	3	4	4	2	4	3	4	5	3
 Aver. Monthly 582 748 565 608 619 635 620 611 737 594 764 BOD5 (lbs/day) Raw Sewage Influent > Daily Maximum 743 1259 812 806 845 757 1062 889 960 765 1446 BOD5 (mg/L) Raw Sewage Influent 													
BOD5 (lbs/day) Raw Sewage Influent Daily Maximum 743 1259 812 806 845 757 1062 889 960 765 1446 BOD5 (mg/L) Raw Sewage Influent Ave. Monthly 202 265 196 215 208 213 204 214 245 207 250													
Raw Sewage Influent 743 1259 812 806 845 757 1062 889 960 765 1446 BOD5 (mg/L) Raw Sewage Influent -		582	748	565	608	619	635	620	611	737	594	764	681
 boly Maximum 743 1259 812 806 845 757 1062 889 960 765 1446 BOD5 (mg/L) Raw Sewage Influent 													
BOD5 (mg/L) Raw Sewage Influent > Ave. Monthly 202 265 196 215 208 213 204 214 245 207 250		740	1050	010		0.45		4000			705		750
Raw Sewage Influent 202 265 196 215 208 213 204 214 245 207 250	,	743	1259	812	806	845	/5/	1062	889	960	765	1446	750
 Ave. Monthly 202 265 196 215 208 213 204 214 245 207 250													
		202	205	100	015	200	010	204	214	245	207	250	226
		202	205	196	215	208	213	204	214	245	207	250	220
Average Monthly 17 15 6 8 11 19 5 7 9 12 15		17	15	6	0	11	10	Б	7	0	12	15	13
Average monthly 17 15 6 6 11 19 5 7 9 12 15 TSS (lbs/day)		17	15	0	0	11	19	5	'	9	12	15	13
Raw Sewage Influent													
Kaw Sewage Initiatitity 520 984 449 572 734 591 644 576 831 537 717		520	984	119	572	734	591	644	576	831	537	717	634
Coll/>Ave. Monthly 520 984 449 572 734 591 644 576 651 537 717 TSS (lbs/day)		520	304	443	512	134	531	044	570	031	557	111	034
Raw Sewage Influent													
<pre>cbr/> Daily Maximum 921 2987 871 1145 1437 937 1271 1025 1390 768 963</pre>		921	2987	871	1145	1437	937	1271	1025	1390	768	963	812
TSS (lbs/day)	,	521	2007	0/1		1407		1411	1020	1000	,00		012
Weekly Average 23 18 9 9 27 30 7 13 12 25 29		23	18	9	9	27	30	7	13	12	25	29	20

NPDES Permit Fact Sheet Derry Township Southwest STP

TSS (mg/L)												
Average Monthly	5	5	2	2	3	6	2	2	3	4	4	4
TSS (mg/L)												
Raw Sewage Influent												
 br/> Ave. Monthly	181	347	156	204	245	196	212	201	273	187	236	210
TSS (mg/L)												
Weekly Average	7	6	3	3	8	9	2	4	4	7	9	6
Fecal Coliform												
(CFU/100 ml)												
Geometric Mean	13	8	6	17	13	46	16	10	4	7	169	4
Fecal Coliform												
(CFU/100 ml)												
Instant. Maximum	2420	2420	16	26	28	59	52	2420	9	136	2420	13
UV Transmittance (%)												
Minimum	57	66	62	64	60	64	64	64	55	63	61	66
Nitrate-Nitrite (mg/L)												
Average Monthly	18	16.4	14.38	9.68	5.6	1.17	2.2	2.23	4.93	11.58	12.78	15.14
Nitrate-Nitrite (lbs)												
Total Monthly	1751	1580	1351	878	594	113	226	202	473	1151	1336	1408
Total Nitrogen (mg/L)												
Average Monthly	19.46	17.91	15.63	< 10.58	6.96	3.51	3.09	< 3.65	6.51	13.18	14.47	17.12
Total Nitrogen (lbs)												
Effluent Net 												
Total Monthly	1892	1730	1468	< 963	721	341	316	< 328	630	1319	1510	1591
Total Nitrogen (lbs)												
Total Monthly	1892	1730	1468	< 963	721	341	316	< 328	630	1319	1510	1591
Total Nitrogen (lbs)												
Effluent Net 												
Total Annual					< 2765							
Total Nitrogen (lbs)												
Total Annual					< 11490							
Ammonia (mg/L)												
Average Monthly	0.96	0.45	0.68	0.64	0.73	1.37	< 0.34	0.78	1.05	1.11	0.9	1.51
Ammonia (lbs)												
Total Monthly	91	44	64	62	60	133	< 35	67	106	116	95	140
Ammonia (lbs)					0550							
Total Annual					< 2550							
TKN (mg/L)	4 47	4 5 4	4.05	0.04	10	0.04	0.00	1.40	4 50	1.0	1.00	4.00
Average Monthly	1.47	1.54	1.25	< 0.81	1.3	2.34	0.89	< 1.42	1.58	1.6	1.69	1.83
TKN (lbs)		4.40	447		46.4	007		405	453	407	474	470
Total Monthly	141	149	117	< 75	124	227	90	< 125	157	167	174	170
Total Phosphorus												
(lbs/day)	4	0.0	0.0			0	2	0	0	4		0.0
Average Monthly	1	0.9	0.8	1	1	2	2	2	2	1	1	0.8

Total Phosphorus (mg/L)												
Average Monthly	0.32	0.3	0.25	0.49	0.41	0.57	0.46	0.64	0.69	0.4	0.34	0.25
Total Phosphorus (lbs)												
Effluent Net 	04	00		40	10		47	50		40	05	0.4
Total Monthly	31	29	23	46	40	55	47	56	69	40	35	24
Total Phosphorus (lbs)												
Total Monthly	31	29	23	46	40	55	47	56	69	40	35	24
Total Phosphorus (lbs)												
Effluent Net 												
Total Annual					890							
Total Phosphorus (lbs)												
Total Annual					479							

3.2 Effluent Violations for Outfall 001, from: March 1, 2021 To: January 31, 2022

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
Fecal Coliform	06/30/21	IMAX	2420	CFU/100 ml	1000	CFU/100 ml

3.3 Summary of Discharge Monitoring Reports (DMRs):

DMRs review for the facility for the last 12 months of operation, presented on the table above in section 3.1 indicate permit limits have been met satisfactorily. One Fecal Coliform effluent violations noted on DMRs during the period reviewed presented is section 3.2. The violation appears to be a one-time occurrence.

3.4 Summary of Inspections:

The facility has been inspected a couple times during last permit cycle. No effluent violations identified during plant inspections. The facility has been operated and maintained well.

4.0 Development of Effluent Limitations

Outfall No.	001	Design Flow (MGD)	.6	
Latitude	40º 13' 24.08"	Longitude	-76º 43' 35.24"	
Wastewater De	escription: Sewage Effluent			

4.1 Basis for Effluent Limitations

In general, the Clean Water Act(AWA) requires that the effluent limits for a particular pollutant be the more stringent of either technology-based limits or water quality-based limits. Technology-based limits are set according to the level of treatment that is achievable using available technology. A water quality-based effluent limit is designed to ensure that the water quality standards applicable to a waterbody are being met and may be more stringent than technology-based effluent limits.

4.2 Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform (5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform (5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform (10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform (10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Comments: TRC is not applicable, UV disinfection is utilized at the site.

4.3 Mass-Based Limits

The federal regulation at 40 CFR 122.45(f) requires that effluent limits be expressed in terms of mass, if possible. The regulation at 40 CFR 122.45(b) requires that effluent limitations for POTWs be calculated based on the design flow of the facility. The mass-based limits are expressed in pounds per day and are calculated as follows:

Mass based limit (lb/day) = concentration limit (mg/L) × design flow (mgd) × 8.34

4.4 Water Quality-Based Limitations

4.4.1 Streamflow:

The Technical Support Document for Water Quality-Based Toxics Control (TSD) (EPA, 1991) and the Pennsylvania Water Quality Standards PA WQS) recommend the flow conditions to use in calculating water quality-based effluent limits (WQBELs) using steady-state modeling. The TSD and the PA WQS state that WQBELs intended to protect aquatic life uses should be based on the lowest seven-day average flow rate expected to occur once every ten years (Q_{7-10}) for chronic criteria and the lowest one-day average flow rate expected to occur once every ten years (Q_{1-10}) for acute criteria. However, because the chronic criterion for ammonia is a 30-day average concentration not to be exceeded more than once every three years, EPA has used the Q_{30-10} for the chronic ammonia criterion instead of the Q_{7-10} . The Q_{30-10} is a biologically based design flow intended to ensure an excursion frequency of once every three years for a 30-day average flow rate. These flows were determined by correlating with the yield of USGS gage No. 01573560 on Swatara Creek near Hershey.

The Q₇₋₁₀ and drainage area at the gage is 67.7ft3/s and 483mi² respectively. The resulting yields are as follows:

- $Q_{7-10} = (67.7 \text{ft}^3/\text{s})/483 \text{ mi}^2 = 0.14 \text{ft}^3/\text{s}/\text{ mi}^2$
- $Q_{30-10} / Q_{7-10} = 0.89$
- Q₁₋₁₀ / Q₇₋₁₀ = 1.23

The drainage area at discharge taken from the existing protection report = 557 mi² The Q_{7-10} at discharge = 557 mi² x 0.14 ft³/s/mi² = 77.98 ft³/s.

4.4.2 NH₃N Calculations

 NH_3N calculations will be based on the Department's Implementation Guidance of Section 93.7 Ammonia Criteria, dated 11/4/97 (ID No. 391-2000-013). The following data is necessary to determine the instream NH_3N criteria used in the attached computer model of the stream:

• Discharge pH

- = 6.9 (Default)
- Discharge Temperature
- = 25 ° C (Default)
- Stream pH
- Stream Temperature
- Background NH₃-N
- 5.0 (FIEVIOUS Protection Report)
 = 23 ° C (Previous Protection Report)
 = 0.0 (default

4.4.3 CBOD₅

The two Derry Township MA's facilities, (Clearwater and Southwest), along with Suez Water Hummelstown Plant and the Swatara Township STP were modeled together due to their proximity to each other. The attached results of the WQM 7.0 stream model presented in attachment B indicates that for the Derry Township Southwest facility discharge, a monthly average limit of 25 mg/l CBOD5 is required to protect the water quality of the stream. This is consistent with the existing permit limitation. Therefore, the existing average monthly limit (AML) of 25 mg/l, average weekly limit (AWL) of 40mg/l and IMAX of 50mg/l will remain in the permit. Past DMRs and inspection reports show the STP has been consistently achieving below 10 mg/l CBOD5. Mass limits are calculated using the equation presented in section 4.3.

<u>4.4.4 NH₃-N</u>

The attached results of the WQM 7.0 stream model (attachment B) also indicates no limitation on NH3-N is necessary to protect the aquatic life from toxicity effects. The existing monitoring of NH3-N will continue in the permit to ensure treatment efficiency.

4.4.5 Dissolved Oxygen

The existing permit contains a limit of 5 mg/l for Dissolved Oxygen (DO). DEP's Technical Guidance for the Development and Specification of Effluent Limitations (362-0400-001, 10/97) suggests that either the adopted minimum stream D.O. criteria for the receiving stream or the effluent level determined through water quality modeling be used for the limit. Since the WQM 7.0 model was run using a minimum D.O. of 5.0 mg/l, this limit will be continued in the renewed permit with a daily monitoring requirement.

4.4.6 Phosphorus

The limit of 2 mg/l established in the existing permit was for the protection of the Lower Susquehanna River basin. This approach has been superseded by the Chesapeake Bay Strategy, but the limit will remain in the permit due to antibacksliding. This STP was designed to remove phosphorus and contains phosphorus limits in all previous permits. Past DMRs and inspection reports show that the STP is in compliance with the phosphorus effluent limits. Mass limits are calculated using the equation presented in section 4.3.

4.4.7 Total Suspended Solids (TSS):

There is no water quality criteria for TSS. A limit of 30 mg/l AML in the existing permit which was based on the minimum level of effluent quality attainable by secondary treatment as defined in 40 CFR 133.102b(1) and 25 PA § 92a.47(a)(1) and

an AWL of 45mg/I per 40CFR 133.102(b)(2) and 25 PA § 92a.47(a)(2) with associated mass limits will remain in the permit. Mass limits are calculated using the equation presented in section 4.3.

4.4.8 Toxics

A reasonable potential (RP) analysis was done for pollutants sampled in support of the permit renewal application. All pollutants that were presented in the application sampling data were entered into DEP's Toxics Management Spreadsheet (TMS) to calculate Water Quality Based Effluent limits (WQBELs). It is noted that the permittee resampled some pollutants (Total Copper, Total Lead and Total, Zinc using a more sensitive method. The results of the TMS presented in attachment C indicate the discharge levels for all parameters analyzed were well below DEP's target quantitation limits (TQL) and calculated WQBELs, therefore no limitation or monitoring is required in the permit.

The recommended limits follow the logic presented in DEPs SOP, to establish limits in the permit where the maximum reported concentration exceeds 50% of the WQBEL, or for non-conservative pollutants to establish monitoring requirements where the maximum reported concentration is between 25% - 50% of the WQBEL, or to establish monitoring requirements for conservative pollutants where the maximum reported concentration is between 10% - 50% of the WQBEL.

4.4.9 Chesapeake Bay Strategy

The Department formulated a strategy in April 2007, to comply with the EPA and Chesapeake Bay requirements to reduce point source loadings of Total Nitrogen (TN) and Total Phosphorus (TP) to the Bay. In the Strategy, sewage dischargers have been prioritized by DEP based on their delivered TN loadings to the Bay. The highest priority (Phases 1, 2, and 3) dischargers received annual loading caps based on their design flow on August 29, 2005 and concentrations of 6 mg/l TN and 0.8 mg/l TP. Phase 4 (0.2 -0.4mgd) and Phase 5(below 0.2mdg) are required to monitor and report TN and TP during permit renewal and any facility in Phases 4 and 5 that undergoes expansion is subjected to cap load right away. EPA published Chesapeake Bay TMDL in December of 2010. In order to address the TMDL, Pennsylvania developed Chesapeake Watershed Implementation Plan (WIP) Phase 1, Phase 2 and currently Phase 3 WIP and a supplement to the WIPs to be implemented with the original Chesapeake Bay Strategy.

As outlined in the current Phase 3 WIP and the current supplement to the WIP, re-issuing permits for significant dischargers would follow the same phased approach formulated in the original Bay strategy whilst Phase 4 and Phase 5 will be required to monitor and report TN and TP during permit renewals.

This facility falls in phase 2 of the strategy and is required to meet a total maximum annual Total Nitrogen Cap load of 10,959 lbs/year based on a design annual wasteflow of 0.60MGD and 6 mg/l total and a TP cap load of 1,461 lbs/year based on annual wasteflow of 0.60 MGD and 0.8 mg/l total phosphorus.

The Authority is using the existing facility to meet TP cap load by chemical precipitation and using offsets from their Clearwater road facility to meet the cap load requirement. The Department approved offset adjustments between the Clearwater Road Plant and the Southwest Plant included in Part C of the permit

4.4.10 Influent BOD and TSS Monitoring

The permit includes influent BOD5 and TSS monitoring at the same frequency as is done for effluent in order to implement Chapter 94.12 and assess percent removal requirements.

4.4.11 Total Residual Chlorine

The discharge does not have the reasonable potential to cause or contribute to a water quality standards violation for total residual chlorine since the permittee no longer add chlorine to the wastewater for disinfection. Therefore, the proposed permit does not contain effluent limits for total residual chlorine. The permittee may use chlorine-based chemicals for cleaning and is required to optimize chlorine usage to prevent negative impacts on receiving stream. Daily UV transmittance (%) monitoring is required in the permit to ensure efficiency of the UV unit.

4.4.12 Fecal Coliform and E. Coli

The existing Fecal Coliform limit is consistent with the technology limits recommended in 92a.47(a)(4) and (a)(5) and will remain in the permit. In March of 2021, EPA approved DEP's Triennial Review of Water Quality Standards, which included a new swimming season criterion for E.coli. As a result, DEP is including monitoring requirements for E. Coli in new and renewed sewage permits above 2000gpd. Monitoring frequency is based on annual average flow as follows: 1/month for design flows \geq 1 MGD, 1/quarter for design flows \geq 0.05 and < 1 MGD and 1/year for design flows of 0.002 – 0.05 MGD. The annual average flow of 0.60MGD for this facility requires 1/quarter monitoring as included in the permit.

4.4.13 Industrial Users

This Wastewater Treatment Plant does not receive wastewater from any significant industrial users.

4.4.14 Pretreatment Requirements

The design annual average flow of the treatment plant is 0.60 MGD and the facility receives no flow from significant Industrial users. EPA does not require development of pretreatment program for facilities with design flow less than 5MGD. However, the authority has an approved pretreatment program for the Clearwater Road treatment facility that covers this facility. The permit will contain standard conditions requiring the permittee to monitor and control industrial users if applicable.

4.4.15 Biosolids Management

Sludge is wasted to aerobic digesters for digestion.

4.4.16 Stormwater

The application identifies outfall 002 (Lat: 40°13'23", Long: 76°43'36") as receiving stormwater runoff from the treatment plant site. This outfall will be included in Part C of the permit with stormwater requirements and BMP conditions.

5.0 Other Requirements

5.1 Anti-backsliding

Not applicable to this permit

5.2 Anti-Degradation (93.4)

The effluent limits for this discharge have been developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High-Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

5.3 Class A Wild Trout Fisheries

No Class A Wild Trout Fisheries are impacted by this discharge.

5.4 303d Listed Streams

The discharge is not located on a 303d listed stream segment.

5.5 Special Permit Conditions

The permit contains the following special conditions:

• Stormwater Prohibition, Approval Contingencies, Solids Management, Restriction on receipt of hauled in waste under certain conditions, Chlorine minimization and Storm water requirement.

5.6 Basis for Effluent and Surface Water Monitoring

Section 308 of the CWA and federal regulation 40 CFR 122.44(i) require monitoring in permits to determine compliance with effluent limitations. Monitoring may also be required to gather effluent and surface water data to determine if additional effluent limitations are required and/or to monitor effluent impacts on receiving water quality. The permittee is responsible for conducting the monitoring and for reporting results on Discharge Monitoring Reports (DMRs).

5.7 Effluent Monitoring Frequency

Monitoring frequencies are based on the nature and effect of the pollutant, as well as a determination of the minimum sampling necessary to adequately monitor the facility's performance. Permittees have the option of taking more frequent samples than are required under the permit. These samples can be used for averaging if they are conducted using EPA-approved test methods (generally found in 40 CFR 136) and if the Method Detection Limits are less than the effluent limits. The sampling location must be after the last treatment unit and prior to discharge to the receiving water. If no discharge occurs during the reporting period, "no discharge" shall be reported on the DMR.

6.0 Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	Effluent Limitations Monitoring Red								
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required				
Parameter	Average Monthly	Weekly Average	Daily Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type				
Flow (MGD)	Report	Report Daily Max	XXX	xxx	XXX	ххх	Continuous	Measured				
рН (S.U.)	ххх	XXX	6.0 Inst Min	xxx	XXX	9.0	1/day	Grab				
DO	ххх	XXX	5.0	XXX	XXX	XXX	1/day	Grab				
CBOD5	125	200	XXX	25	40	50	1/week	24-Hr Composite				
BOD5 Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	xxx	1/week	24-Hr Composite				
TSS Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	xxx	1/week	24-Hr Composite				
TSS	150	225	XXX	30	45	60	1/week	24-Hr Composite				
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	xxx	2000 Geo Mean	XXX	10000	1/week	Grab				
Fecal Coliform (No./100 ml) May 1 - Sep 30	ххх	xxx	XXX	200 Geo Mean	XXX	1000	1/week	Grab				
E. Coli (No./100 ml)	ХХХ	XXX	Report	XXX	XXX	ххх	1/quarter	Grab				
UV Transmittance (%)	xxx	xxx	Report	xxx	XXX	xxx	1/day	Recorded				
Nitrate-Nitrite	ХХХ	XXX	XXX	Report	XXX	XXX	2/week	24-Hr Composite				
Nitrate-Nitrite (lbs)	Report Total Mo	XXX	XXX	XXX	XXX	xxx	1/month	Calculation				

NPDES Permit Fact Sheet Derry Township Southwest STP

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Weekly Average	Daily Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Total Nitrogen	xxx	XXX	XXX	Report	ХХХ	XXX	1/month	Calculation
Total Nitrogen (lbs)	Report Total Mo	XXX	xxx	XXX	xxx	xxx	1/month	Calculation
Ammonia	XXX	XXX	xxx	Report	xxx	xxx	2/week	24-Hr Composite
Ammonia (Ibs)	Report Total Mo	XXX	xxx	xxx	XXX	XXX	1/month	Calculation
TKN	XXX	XXX	XXX	Report	XXX	XXX	2/week	24-Hr Composite
TKN (lbs)	Report Total Mo	XXX	xxx	XXX	xxx	XXX	1/month	Calculation
Total Phosphorus	10	XXX	XXX	2.0	XXX	4	2/week	24-Hr Composite
Total Phosphorus (lbs)	Report Total Mo	XXX	xxx	XXX	XXX	xxx	1/month	Calculation

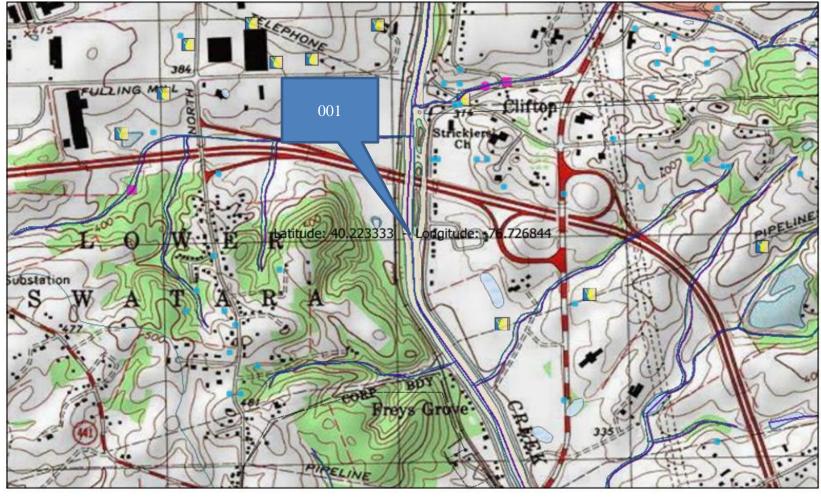
Compliance Sampling Location: At outfall 001

6.1 Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, to comply with Pennsylvania's Chesapeake Bay Tributary Strategy.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

Total Nitrogen (lbs) Ammonia (lbs) Total Phosphorus (lbs) Effluent Net				Monitoring Re	quirements			
otal Nitrogen (lbs) ffluent Net otal Nitrogen (lbs) mmonia (lbs) fotal Phosphorus (lbs) ffluent Net	Mass Unit	s (Ibs/day) ⁽¹⁾		Concentrat	tions (mg/L)		Minimum ⁽²⁾	Required
Faranieler	Monthly	Annual	Monthly	Monthly Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Total Nitrogen (lbs)		10959						
Effluent Net	XXX	Total Annual	XXX	XXX	XXX	XXX	1/year	Calculation
Total Nitrogen (lbs)	XXX	Report Total Annual	XXX	XXX	XXX	XXX	1/year	Calculation
Ammonia (lbs)	XXX	Report Total Annual	XXX	XXX	XXX	XXX	1/year	Calculation
Total Phosphorus (lbs) Effluent Net	XXX	1461 Total Annual	XXX	XXX	XXX	XXX	1/year	Calculation
Total Phosphorus (lbs)	ХХХ	Report Total Annual	XXX	XXX	XXX	XXX	1/year	Calculation


Compliance Sampling Location: At outfall 001

	7.0 Tools and References Used to Develop Permit
	WON for Windows Medal (acc Attachment D)
	WQM for Windows Model (see Attachment B)
	Toxics Management Spreadsheet (see Attachment C)
	TRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391- 2000-002, 4/97.
\square	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
\square	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
\square	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP: Establishing Effluent Limitations for Individual Sewage Permits
	Other:

NPDES Permit Fact Sheet Derry Township Southwest STP

8. Attachments

A. Topographical Map

1:18,056 0 0.1 0.2 0.4 mi 1 0.1 0.35 0.7 km

B. WQM Model Results

	SWP Basin Str	eam Code		Stream Name	2		
	07D	9361		SWATARA CRE	EK		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
14.600	Derry Clearwatr	PA0026484	5.020	CBOD5	20.63		
				NH3-N	6.51	13.02	
				Dissolved Oxygen			5
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
10.100	Suez Water	PA001464	0.250	CBOD5	25		
				NH3-N	16.39	32.78	
				Dissolved Oxygen			5
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
9.100	Swatara Twp	PA0026735	6.300	CBOD5	20.26		
				NH3-N	7.74	15.48	
				Dissolved Oxygen			5
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
4.600	Derry SW	PA0082393	0.600	CBOD5	25		
				NH3-N	25	50	
				Dissolved Oxygen			5

Saturday, March 5, 2022

Version 1.1

Page 1 of 1

Input	Data	WQM	7.0
прис	Dutu		1.0

	SWP Basin	Strea Coo		Stre	eam Name)	RM	Ele	evation (ft)	Drainage Area (sq mi)		. Wi	PWS thdrawal (mgd)	Apply FC
	07D	93	361 SWAT	ARA CRE	EEK		14.6	00	318.00	505.0	0.0	0000	0.00	\checkmark
						Stream Dat	ta							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth		<u>Tributary</u> 1p pl	н	<u>Stre</u> Temp	<u>eam</u> pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	:)		(°C)		
Q7-10 Q1-10	0.140	0.00		0.000 0.000	0.000		0.00	0.0	00 2	3.00	8.00	0.00	0.00	
Q30-10		0.00		0.000	0.000									
		Discharge Data												
			Name	Per	mit Numb	Existing Disc er Flow (mgd)	Permiti Disc Flow (mgd	/ Flo	sc Res ow Fa	erve T ictor	Disc emp (°C)	Disc pH		
		Derry	/ Clearwatr	PA	0026484	5.020	0 5.02	00 5.0	0200	0.000	25.00) 7.5	0	
						Parameter I	Data							
				Parameter	Namo			Trib Conc	Stream Conc	Fate Coef				
				arameler	Name	(m	ig/L) (mg/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			5.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

Version 1.1

1	D - 4 -	VALORA	7 0
Input	Data	WQW	1.0

	SWP Basir			Stre	eam Name		RMI	Elevati (ft)	A	inage vrea q mi)	Slope (ft/ft)	PWS Nithdrawal (mgd)	Apply FC
	07D	93	361 SWAT	ARA CRE	EEK		10.100) 31	1.00	526.00	0.00000	0.00	\checkmark
					8	Stream Dat	a						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	<u>Trib</u> Temp	<u>utary</u> pH	<u>S</u> Temp	<u>tream</u> pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10	0.140	0.00	0.00	0.000	0.000	0.0	0.00	0.00	23.00	8.0	0 0.0	00 0.00)
Q1-10		0.00	0.00	0.000	0.000								
Q30-10		0.00	0.00	0.000	0.000								
						Discharge [Data						
			Name	Per	mit Numbe	Existing Disc r Flow	Permitted Disc Flow	Design Disc Flow	Reserve Factor	Dis Tem			

Parameter Data

Conc

(mg/L)

25.00

5.00

25.00

0.2500 0.2500 0.2500

Trib

Conc

(mg/L)

2.00

8.24

0.00

0.000

(mg/L) (1/days)

0.00

0.00

0.00

Stream

Conc

Fate

Coef

1.50

0.00

0.70

20.00

6.40

Saturday, March 5, 2022

Suez Water

CBOD5

NH3-N

Dissolved Oxygen

PA001464

Parameter Name

Version 1.1

Page 2 of 5

Input Data WQM 7.0

	SWP Basir			Stre	eam Name)	RMI	Elevatio (ft)	Ar	ea	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	07D	9:	361 SWA1	TARA CRE	EK		9.10	0 30	5.00 5	549.00 (0.00000	0.00	
						Stream Dat	a						
Design Cond.	LFY (cfsm)	Trib Flow (cfs)	Stream Flow (cfs)	Rch Trav Time (days)	Rch Velocity (fps)	WD Ratio	Rch Width (ft)	Rch Depth (ft)	<u>Tribu</u> Temp (°C)	<u>tary</u> pH	<u>S</u> Temp (°C)	<u>tream</u> pH	
Q7-10	0.140	0.00	0.00	0.000	0.000		0.00	0.00	23.00	8.00	0.	0.0	0
Q1-10		0.00	0.00	0.000	0.000								
Q30-10		0.00	0.00	0.000	0.000								
						Discharge [Data						
			Name	Per	mit Numb	Existing Disc er Flow (mgd)	Permitted Disc Flow (mgd)	d Design Disc Flow (mgd)	Reserve Factor	Disc Temp (°C)	Disc pH		
		Swat	ara Twp	PA	026735	6.3000	0 6.3000	6.3000	0.000	25.	.00 6	.90	
						Parameter [Data						
				_					eam Fat onc Co				

(mg/L)

25.00

5.00

25.00

(mg/L)

2.00

8.24

0.00

(mg/L) (1/days)

1.50

0.00

0.70

0.00

0.00

0.00

Parameter Name

CBOD5

NH3-N

Dissolved Oxygen

Saturday, March 5, 2022

Version 1.1

Page 3 of 5

Input	Data	WQM	70
mpuι	Dala		1.0

	SWF Basi			Stre	eam Name)	RMI	Elevat (ft)		Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdraw (mgd)	App val FC	
	07D	9	361 SWAT	ARA CRE	EEK		4.60	00 28	89.00	557.00	0.00000	(0.00	/
						Stream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p pH	Tem	<u>Stream</u> p p	н	
Contai	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	I	(°C))		
Q 7-10	0.140	0.00	0.00	0.000	0.000	0.0	0.00	0.00	23	3.00 8.0	00 0	0.00	0.00	
ຊ1-10		0.00	0.00	0.000	0.000	1								
Q30-10		0.00	0.00	0.000	0.000	1								
		Discharge Data												
						Existing	Permitte	d Design		Dis	c Dis	sc		

	Dis	scharge D	ala					
Name	Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	Desi Dis Flo (mg	c Res w Fa	erve T ctor	Disc emp (°C)	Disc pH
Derry SW	PA0082393	0.6000	0.6000	0.6	000	0.000	25.00	6.90
	Pa	rameter D	ata					
	Parameter Name	Dis Co			Stream Conc	Fate Coef		
		(mg	ı/L) (mg	I/L)	(mg/L)	(1/days)		
CBOD5		2	5.00	2.00	0.00	1.50		
Dissolve	d Oxygen		5.00	8.24	0.00	0.00		
NH3-N		2	5.00	0.00	0.00	0.70		

Version 1.1

Input	Data	WQM	7.0
mpac	Dutu		

	SWP Basin	Strea Coo		Stre	eam Name	9	RMI	Elevati (ft)	on Draina Are (sq r	a	Slope (ft/ft)	PW: Withdr (mg	awal	Apply FC
	07D	93	361 SWAT	ARA CRI	EEK		2.30	0 27	7.00 5	69.00	0.00000		0.00	✓
						Stream Da	ta							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	<u>Tribut</u> Temp	ary pH	Tem		рН	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C	.)		
Q7-10	0.140	0.00	0.00	0.000	0.000		0.00	0.00	23.00	8.00)	0.00	0.00	
Q1-10		0.00	0.00	0.000	0.000									
Q30-10		0.00	0.00	0.000	0.000									
						Discharge I	Data							
			Name	Per	mit Numb	Existing Disc er Flow (mgd)	Permitte Disc Flow (mgd)	d Design Disc Flow (mgd)	Reserve Factor	Disc Temp (°C)	o p	sc iH		
						0.000	0.000	0 0.000	0.000	0	0.00	7.00		
						Parameter I	Data							
				Parameter	Nomo				eam Fate onc Coe					
				raiametei	Name	(w/l) (ma	· · · /) / · · · ·						

(mg/L) (mg/L)

2.00

8.24

0.00

25.00

3.00

25.00

(mg/L) (1/days)

1.50

0.00

0.70

0.00

0.00

0.00

Saturday, March 5, 2022

CBOD5

NH3-N

Dissolved Oxygen

Version 1.1

Page 5 of 5

	SWP Basin	Strea	am Code		St	ream Name		
	07D	9	9361		SWA	TARA CREE	(
NH3-N	Acute Alloc	atior	าร					
RMI	Discharge	Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
14.60	0 Derry Clearw	atr	3.55	32.35	3.55	28.63	3	11
10.10	0 Suez Water		3.6	50	4	44.26	3	11
9.10	0 Swatara Twp	,	5.93	47.55	6.24	42.09	3	11
4.60	0 Derry SW		3.41	50	6.37	50	0	0
NH3-N	Chronic All	ocati	ons					
RMI	Discharge N	ame	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
14.60	0 Derry Clearw	atr	.7	8.54	.7	6.51	3	24
10.10	0 Suez Water		.7	25	.75	19.05	3	24
9.10	0 Swatara Twp	,	.95	10.16	.98	7.74	3	24

WQM 7.0 Wasteload Allocations

Dissolved Oxygen Allocations

		CBC	<u>DD5</u>	NH	<u>3-N</u>	Dissolved	d Oxygen	Critical	Percent	
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction	
14.60	Derry Clearwatr	25	20.63	6.51	6.51	5	5	3	10	
10.10	Suez Water	25	25	19.05	16.39	5	5	3	10	
9.10	Swatara Twp	25	20.26	7.74	7.74	5	5	3	10	
4.60	Derry SW	25	25	25	25	5	5	0	0	

WQM 7.0 D.O.Simulation

SWP Basin S	tream Code			Stream Name	
07D	9361		s	WATARA CREEK	
<u>RMI</u>	Total Discharge	Flow (mgd)	Anal	ysis Temperature (°C)	<u>Analysis pH</u>
14.600	5.02	D		23.198	7.916
Reach Width (ft)	<u>Reach De</u>	oth (ft)		<u>Reach WDRatio</u>	Reach Velocity (fps)
153.076	1.10			138.733	0.465
Reach CBOD5 (mg/L)	<u>Reach Kc (</u>		<u>R</u>	each NH3-N (mg/L)	<u>Reach Kn (1/days)</u>
3.84	0.523 Deceb Kr (0.64 Kr Equation	0.895
Reach DO (mg/L)	<u>Reach Kr (</u> 0.68			Kr Equation	<u>Reach DO Goal (mg/L)</u> 5
7.922	0.06	9		Tsivoglou	5
Reach Travel Time (days)		Subreach			
0.592	TravTime (days)	CBOD5 (mg/L)	NH3-N (mg/L)	D.O. (mg/L)	
	0.059	3.71	0.61	7.60	
	0.118	3.58	0.58	7.31	
	0.178	3.45	0.55	7.04	
	0.237	3.33	0.52	6.80	
	0.296	3.21	0.49	6.58	
	0.355	3.09	0.47	6.38	
	0.414	2.98	0.44	6.20	
	0.474	2.88	0.42	6.04	
	0.533	2.77	0.40	5.89	
	0.000		0.10		
	0.592	2.68	0.38	5.77	
RMI	0.592	2.68	0.38	5.77	Analysis nH
<u>RMI</u> 10.100	0.592 Total Discharge	2.68 Flow (mgd)	0.38	5.77 ysis Temperature (°C)	<u>Analysis pH</u> 7 857
<u>RMI</u> 10.100 Reach Width (ft)	0.592 <u>Total Discharge</u> 5.27	2.68 Flow (mgd)	0.38	5.77 <u>ysis Temperature (°C)</u> 23.176	7.857
10.100	0.592 Total Discharge	2.68 Flow (mgd) D Doth (ft)	0.38	5.77 ysis Temperature (°C)	
10.100 Reach Width (ft)	0.592 <u>Total Discharge</u> 5.27(<u>Reach De</u>	2.68 Flow (mgd) 0 0 0 0 0	0.38 <u>Ana</u> l	5.77 ysis Temperature (°C) 23.176 Reach WDRatio	7.857 <u>Reach Velocity (fps)</u>
10.100 <u>Reach Width (ft)</u> 148.849	0.592 <u>Total Discharge</u> 5.27(<u>Reach De</u> 1.08(2.68 <u>Flow (mgd)</u> 0 <u>oth (ft)</u> 0 <u>1/days)</u>	0.38 <u>Ana</u> l	5.77 ysis Temperature (°C) 23.176 <u>Reach WDRatio</u> 137.885 <u>each NH3-N (mg/L)</u> 0.44	7.857 <u>Reach Velocity (fps)</u> 0.509 <u>Reach Kn (1/days)</u> 0.894
10.100 <u>Reach Width (ft)</u> 148.849 <u>Reach CBOD5 (mg/L)</u>	0.592 <u>Total Discharge</u> 5.270 <u>Reach Dej</u> 1.080 <u>Reach Kc (</u> 0.410 <u>Reach Kr (</u>	2.68 <u>Flow (mgd)</u> 0 <u>oth (ft)</u> 0 <u>1/days)</u> 6 <u>1/days)</u>	0.38 <u>Ana</u> l	5.77 ysis Temperature (°C) 23.176 Reach WDRatio 137.885 each NH3-N (mg/L) 0.44 Kr Equation	7.857 <u>Reach Velocity (fps)</u> 0.509 <u>Reach Kn (1/days)</u> 0.894 <u>Reach DO Goal (mg/L)</u>
10.100 <u>Reach Width (ft)</u> 148.849 <u>Reach CBOD5 (mg/L)</u> 2.76	0.592 <u>Total Discharge</u> 5.270 <u>Reach Dej</u> 1.080 <u>Reach Kc (</u> 0.410	2.68 <u>Flow (mgd)</u> 0 <u>oth (ft)</u> 0 <u>1/days)</u> 6 <u>1/days)</u>	0.38 <u>Ana</u> l	5.77 ysis Temperature (°C) 23.176 <u>Reach WDRatio</u> 137.885 <u>each NH3-N (mg/L)</u> 0.44	7.857 <u>Reach Velocity (fps)</u> 0.509 <u>Reach Kn (1/days)</u> 0.894
10.100 <u>Reach Width (ft)</u> 148.849 <u>Reach CBOD5 (mg/L)</u> 2.76 <u>Reach DO (mg/L)</u> 5.851	0.592 <u>Total Discharge</u> 5.270 <u>Reach Dej</u> 1.080 <u>Reach Kc (</u> 0.410 <u>Reach Kr (</u>	2.68 Flow (mgd) 0 0 0 1/days) 3 1/days) 9	0.38 <u>Anal</u> <u>R</u>	5.77 ysis Temperature (°C) 23.176 Reach WDRatio 137.885 each NH3-N (mg/L) 0.44 Kr Equation	7.857 <u>Reach Velocity (fps)</u> 0.509 <u>Reach Kn (1/days)</u> 0.894 <u>Reach DO Goal (mg/L)</u>
10.100 <u>Reach Width (ft)</u> 148.849 <u>Reach CBOD5 (mg/L)</u> 2.76 <u>Reach DO (mg/L)</u> 5.851	0.592 <u>Total Discharge</u> 5.270 <u>Reach Dej</u> 1.080 <u>Reach Kc (</u> 0.410 <u>Reach Kr (</u>	2.68 <u>Flow (mgd)</u> 0 <u>oth (ft)</u> 0 <u>1/days)</u> 6 <u>1/days)</u>	0.38 <u>Anal</u> <u>R</u>	5.77 ysis Temperature (°C) 23.176 Reach WDRatio 137.885 each NH3-N (mg/L) 0.44 Kr Equation	7.857 <u>Reach Velocity (fps)</u> 0.509 <u>Reach Kn (1/days)</u> 0.894 <u>Reach DO Goal (mg/L)</u>
10.100 <u>Reach Width (ft)</u> 148.849 <u>Reach CBOD5 (mg/L)</u> 2.76 <u>Reach DO (mg/L)</u> 5.851 Reach Travel Time (days)	0.592 <u>Total Discharge</u> 5.27 <u>Reach De</u> 1.08 <u>Reach Kc (</u> 0.41 <u>Reach Kr (</u> 2.90	2.68 Flow (mgd) 2 2 2 2 2 2 2 2 2 3 1/days) 3 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5	0.38 <u>Anal</u> <u>R</u> esults	5.77 ysis Temperature (°C) 23.176 Reach WDRatio 137.885 each NH3-N (mg/L) 0.44 <u>Kr Equation</u> Tsivoglou	7.857 <u>Reach Velocity (fps)</u> 0.509 <u>Reach Kn (1/days)</u> 0.894 <u>Reach DO Goal (mg/L)</u>
10.100 <u>Reach Width (ft)</u> 148.849 <u>Reach CBOD5 (mg/L)</u> 2.76 <u>Reach DO (mg/L)</u> 5.851 <u>Reach Travel Time (days)</u>	0.592 <u>Total Discharge</u> 5.27 <u>Reach Deg</u> 1.08 <u>Reach Kc (</u> 0.41 <u>Reach Kr (</u> 2.90 TravTime	2.68 Flow (mgd) 0 0 0 0 1/days) 6 1/days) 9 Subreach CBOD5 (mg/L) 2.74	0.38 <u>Anal</u> <u>Results</u> NH3-N	5.77 ysis Temperature (°C) 23.176 Reach WDRatio 137.885 each NH3-N (mg/L) 0.44 <u>Kr Equation</u> Tsivoglou D.O. (mg/L) 5.90	7.857 <u>Reach Velocity (fps)</u> 0.509 <u>Reach Kn (1/days)</u> 0.894 <u>Reach DO Goal (mg/L)</u>
10.100 <u>Reach Width (ft)</u> 148.849 <u>Reach CBOD5 (mg/L)</u> 2.76 <u>Reach DO (mg/L)</u> 5.851 <u>Reach Travel Time (days)</u>	0.592 <u>Total Discharge</u> 5.27 <u>Reach Der</u> 1.08 <u>Reach Kc (</u> 0.41 <u>Reach Kr (</u> 0.41 <u>Reach Kr (</u> 2.90 <u>TravTime</u> (days) 0.012 0.024	2.68 Flow (mgd) 0 0 0 0 1/days) 6 1/days) 9 Subreach CBOD5 (mg/L) 2.74 2.73	0.38 <u>Anal</u> <u>R</u> Results NH3-N (mg/L)	5.77 <u>ysis Temperature (°C)</u> 23.176 <u>Reach WDRatio</u> 137.885 <u>each NH3-N (mg/L)</u> 0.44 <u>Kr Equation</u> Tsivoglou D.O. (mg/L) 5.90 5.95	7.857 <u>Reach Velocity (fps)</u> 0.509 <u>Reach Kn (1/days)</u> 0.894 <u>Reach DO Goal (mg/L)</u>
10.100 <u>Reach Width (ft)</u> 148.849 <u>Reach CBOD5 (mg/L)</u> 2.76 <u>Reach DO (mg/L)</u> 5.851 <u>Reach Travel Time (days)</u>	0.592 <u>Total Discharge</u> 5.27 <u>Reach Deg</u> 1.08 <u>Reach Kc (</u> 0.41 <u>Reach Kr (</u> 2.90 TravTime (days) 0.012	2.68 Flow (mgd) 0 0 0 0 1/days) 6 1/days) 9 Subreach CBOD5 (mg/L) 2.74	0.38 Anal Results NH3-N (mg/L) 0.44	5.77 ysis Temperature (°C) 23.176 Reach WDRatio 137.885 each NH3-N (mg/L) 0.44 <u>Kr Equation</u> Tsivoglou D.O. (mg/L) 5.90	7.857 <u>Reach Velocity (fps)</u> 0.509 <u>Reach Kn (1/days)</u> 0.894 <u>Reach DO Goal (mg/L)</u>
10.100 <u>Reach Width (ft)</u> 148.849 <u>Reach CBOD5 (mg/L)</u> 2.76 <u>Reach DO (mg/L)</u> 5.851 <u>Reach Travel Time (days)</u>	0.592 <u>Total Discharge</u> 5.27 <u>Reach Der</u> 1.08 <u>Reach Kc (</u> 0.41 <u>Reach Kr (</u> 0.41 <u>Reach Kr (</u> 2.90 <u>TravTime</u> (days) 0.012 0.024	2.68 Flow (mgd) 0 0 0 0 1/days) 6 1/days) 9 Subreach CBOD5 (mg/L) 2.74 2.73	0.38 <u>Anal</u> <u>Results</u> NH3-N (mg/L) 0.44 0.43	5.77 ysis Temperature (°C) 23.176 Reach WDRatio 137.885 each NH3-N (mg/L) 0.44 <u>Kr Equation</u> Tsivoglou D.O. (mg/L) 5.90 5.95	7.857 <u>Reach Velocity (fps)</u> 0.509 <u>Reach Kn (1/days)</u> 0.894 <u>Reach DO Goal (mg/L)</u>
10.100 <u>Reach Width (ft)</u> 148.849 <u>Reach CBOD5 (mg/L)</u> 2.76 <u>Reach DO (mg/L)</u> 5.851 Reach Travel Time (days)	0.592 <u>Total Discharge</u> 5.27 <u>Reach Der</u> 1.08 <u>Reach Kc (</u> 0.41 <u>Reach Kr (</u> 0.41 <u>Reach Kr (</u> 2.90 <u>TravTime</u> (days) 0.012 0.024 0.036	2.68 Flow (mgd) 0 0 0 1/days) 6 3 1/days) 9 Subreach CBOD5 (mg/L) 2.74 2.73 2.71	0.38 Anal Results NH3-N (mg/L) 0.44 0.43 0.43 0.42 0.42	5.77 ysis Temperature (°C) 23.176 Reach WDRatio 137.885 each NH3-N (mg/L) 0.44 <u>Kr Equation</u> Tsivoglou D.O. (mg/L) 5.90 5.95 6.00	7.857 <u>Reach Velocity (fps)</u> 0.509 <u>Reach Kn (1/days)</u> 0.894 <u>Reach DO Goal (mg/L)</u>
10.100 <u>Reach Width (ft)</u> 148.849 <u>Reach CBOD5 (mg/L)</u> 2.76 <u>Reach DO (mg/L)</u> 5.851 teach Travel Time (days)	0.592 <u>Total Discharge</u> 5.27 <u>Reach Der</u> 1.08 <u>Reach Kc (</u> 0.41 <u>Reach Kr (</u> 0.41 <u>Reach Kr (</u> 0.2.90 <u>TravTime</u> (days) 0.012 0.024 0.036 0.048	2.68 Flow (mgd) 2 2 2 2 2 2 2 2 2 2 2 2 2	0.38 Anal Results NH3-N (mg/L) 0.44 0.43 0.43 0.43 0.42	5.77 ysis Temperature (°C) 23.176 Reach WDRatio 137.885 each NH3-N (mg/L) 0.44 <u>Kr Equation</u> Tsivoglou D.O. (mg/L) 5.90 5.95 6.00 6.05	7.857 <u>Reach Velocity (fps)</u> 0.509 <u>Reach Kn (1/days)</u> 0.894 <u>Reach DO Goal (mg/L)</u>
10.100 <u>Reach Width (ft)</u> 148.849 <u>Reach CBOD5 (mg/L)</u> 2.76 <u>Reach DO (mg/L)</u> 5.851 Reach Travel Time (days)	0.592 <u>Total Discharge</u> 5.27 <u>Reach Der</u> 1.08 <u>Reach Kc (</u> 0.41 <u>Reach Kr (</u> 0.41 <u>Reach Kr (</u> 2.90 <u>TravTime</u> (days) 0.012 0.024 0.036 0.048 0.060	2.68 Flow (mgd) 2 2 2 2 2 2 2 2 2 2 2 2 2	0.38 Anal Results NH3-N (mg/L) 0.44 0.43 0.43 0.42 0.42	5.77 ysis Temperature (°C) 23.176 Reach WDRatio 137.885 each NH3-N (mg/L) 0.44 <u>Kr Equation</u> Tsivoglou D.O. (mg/L) 5.90 5.95 6.00 6.05 6.09	7.857 <u>Reach Velocity (fps)</u> 0.509 <u>Reach Kn (1/days)</u> 0.894 <u>Reach DO Goal (mg/L)</u>
10.100 <u>Reach Width (ft)</u> 148.849 <u>Reach CBOD5 (mg/L)</u> 2.76 <u>Reach DO (mg/L)</u> 5.851 <u>Reach Travel Time (days)</u>	0.592 <u>Total Discharge</u> 5.27 <u>Reach Der</u> 1.08 <u>Reach Kc (</u> 0.41 <u>Reach Kr (</u> 0.41 <u>Reach Kr (</u> 2.90 <u>TravTime</u> (days) 0.012 0.024 0.036 0.048 0.060 0.072	2.68 Flow (mgd) 0 0 0 1/days) 3 1/days) 3 5 (mg/L) 2.74 2.73 2.71 2.69 2.68 2.66	0.38 Anal Results NH3-N (mg/L) 0.44 0.43 0.43 0.42 0.42 0.42 0.42 0.41	5.77 ysis Temperature (°C) 23.176 Reach WDRatio 137.885 each NH3-N (mg/L) 0.44 <u>Kr Equation</u> Tsivoglou D.O. (mg/L) 5.90 5.95 6.00 6.05 6.09 6.14	7.857 <u>Reach Velocity (fps)</u> 0.509 <u>Reach Kn (1/days)</u> 0.894 <u>Reach DO Goal (mg/L)</u>
10.100 <u>Reach Width (ft)</u> 148.849 <u>Reach CBOD5 (mg/L)</u> 2.76 <u>Reach DO (mg/L)</u> 5.851 <u>Reach Travel Time (days)</u>	0.592 <u>Total Discharge</u> 5.27 <u>Reach Der</u> 1.08 <u>Reach Kc (</u> 0.41 <u>Reach Kr (</u> 0.41 <u>Reach Kr (</u> 2.90 <u>TravTime</u> (days) 0.012 0.024 0.036 0.048 0.060 0.072 0.084	2.68 Flow (mgd) 0 0 0 1/days) 3 1/days) 3 CBOD5 (mg/L) 2.74 2.73 2.71 2.69 2.68 2.66 2.65	0.38 Anal Results NH3-N (mg/L) 0.44 0.43 0.43 0.43 0.42 0.42 0.42 0.42 0.41 0.41	5.77 ysis Temperature (°C) 23.176 Reach WDRatio 137.885 each NH3-N (mg/L) 0.44 <u>Kr Equation</u> Tsivoglou D.O. (mg/L) 5.90 5.95 6.00 6.05 6.09 6.14 6.18	7.857 <u>Reach Velocity (fps)</u> 0.509 <u>Reach Kn (1/days)</u> 0.894 <u>Reach DO Goal (mg/L)</u>

Saturday, March 5, 2022

Version 1.1

Page 1 of 2

WQM	7.0 D.0	O.Simu	lation
-----	---------	--------	--------

	ream Code			<u>Stream Name</u>	
07D	9361		S	WATARA CREEK	
RMI	Total Discharge	Flow (mgd)	Anal	ysis Temperature (°C)	<u>Analysis pH</u>
9.100	11.57	0		23.357	7.597
Reach Width (ft)	Reach De	pth (ft)		Reach WDRatio	Reach Velocity (fps)
161.955	1.09	6		147.709	0.534
Reach CBOD5 (mg/L)	<u>Reach Kc (</u>		<u>R</u>	each NH3-N (mg/L)	<u>Reach Kn (1/days)</u>
4.40	0.66	-		1.14	0.906
Reach DO (mg/L)	<u>Reach Kr (</u>			Kr Equation	Reach DO Goal (mg/L)
6.238	1.81	5		Tsivoglou	5
<u>Reach Travel Time (days)</u>		Subreach	Results		
0.515	TravTime	CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.052	4.23	1.09	5.98	
	0.103	4.06	1.04	5.76	
	0.155	3.90	0.99	5.58	
	0.206	3.75	0.94	5.44	
	0.258	3.60	0.90	5.32	
	0.309	3.46	0.86	5.23	
	0.361	3.32	0.82	5.17	
	0.001			5.13	
	0.412	3.19			
	0.412 0.464	3.19 3.07	0.78 0.75		
	0.412 0.464 0.515	3.19 3.07 2.95	0.78 0.75 0.71	5.11 5.10	
	0.464	3.07	0.75	5.11	
	0.464 0.515 <u>Total Discharge</u>	3.07 2.95 Flow (mgd)	0.75 0.71	5.11 5.10 <u>ysis Temperature (°C)</u>	<u>Analysis pH</u>
4.600	0.464 0.515 <u>Total Discharge</u> 12.17	3.07 2.95 Flow (mgd) 70	0.75 0.71	5.11 5.10 ysis Temperature (°C) 23.369	7.584
4.600 <u>Reach Width (ft)</u>	0.464 0.515 <u>Total Discharge</u> 12.17 <u>Reach De</u>	3.07 2.95 <u>Flow (mgd)</u> '0 <u>pth (ft)</u>	0.75 0.71	5.11 5.10 ysis Temperature (°C) 23.369 Reach WDRatio	7.584 Reach Velocity (fps)
4.600 <u>Reach Width (ft)</u> 161.138	0.464 0.515 <u>Total Discharge</u> 12.17 <u>Reach De</u> 1.09	3.07 2.95 Flow (mgd) 70 pth (ft) 2	0.75 0.71 <u>Anal</u>	5.11 5.10 ysis Temperature (°C) 23.369 <u>Reach WDRatio</u> 147.620	7.584 <u>Reach Velocity (fps)</u> 0.550
4.600 <u>Reach Width (ft)</u> 161.138 <u>Reach CBOD5 (mg/L)</u>	0.464 0.515 <u>Total Discharge</u> 12.17 <u>Reach De</u> 1.09 <u>Reach Kc (</u>	3.07 2.95 Flow (mgd) 70 pth (ft) 2 1/days)	0.75 0.71 <u>Anal</u>	5.11 5.10 ysis Temperature (°C) 23.369 Reach WDRatio 147.620 each NH3-N (mg/L)	7.584 <u>Reach Velocity (fps)</u> 0.550 <u>Reach Kn (1/days)</u>
4.600 <u>Reach Width (ft)</u> 161.138 <u>Reach CBOD5 (mg/L)</u> 3.15	0.464 0.515 <u>Total Discharge</u> 12.17 <u>Reach De</u> 1.09 <u>Reach Kc (</u> 0.56	3.07 2.95 Flow (mgd) 70 pth (ft) 2 1/days) 0	0.75 0.71 <u>Anal</u>	5.11 5.10 <u>vsis Temperature (°C)</u> 23.369 <u>Reach WDRatio</u> 147.620 <u>each NH3-N (mg/L)</u> 0.94	7.584 <u>Reach Velocity (fps)</u> 0.550 <u>Reach Kn (1/days)</u> 0.907
4.600 <u>Reach Width (ft)</u> 161.138 <u>Reach CBOD5 (mg/L)</u> 3.15 <u>Reach DO (mg/L)</u>	0.464 0.515 <u>Total Discharge</u> 12.17 <u>Reach De</u> 1.09 <u>Reach Kc (</u> 0.56 <u>Reach Kr (</u>	3.07 2.95 Flow (mgd) 70 pth (ft) 2 1/days) 0 1/days)	0.75 0.71 <u>Anal</u>	5.11 5.10 ysis Temperature (°C) 23.369 Reach WDRatio 147.620 each NH3-N (mg/L) 0.94 Kr Equation	7.584 <u>Reach Velocity (fps)</u> 0.550 <u>Reach Kn (1/days)</u> 0.907 <u>Reach DO Goal (mg/L)</u>
4.600 <u>Reach Width (ft)</u> 161.138 <u>Reach CBOD5 (mg/L)</u> 3.15 <u>Reach DO (mg/L)</u> 5.133	0.464 0.515 <u>Total Discharge</u> 12.17 <u>Reach De</u> 1.09 <u>Reach Kc (</u> 0.56	3.07 2.95 Flow (mgd) 70 pth (ft) 2 1/days) 0 1/days)	0.75 0.71 <u>Anal</u>	5.11 5.10 <u>vsis Temperature (°C)</u> 23.369 <u>Reach WDRatio</u> 147.620 <u>each NH3-N (mg/L)</u> 0.94	7.584 <u>Reach Velocity (fps)</u> 0.550 <u>Reach Kn (1/days)</u> 0.907
4.600 <u>Reach Width (ft)</u> 161.138 <u>Reach CBOD5 (mg/L)</u> 3.15 <u>Reach DO (mg/L)</u> 5.133 <u>Reach Travel Time (days)</u>	0.464 0.515 <u>Total Discharge</u> 12.17 <u>Reach De</u> 1.09 <u>Reach Kc (</u> 0.56 <u>Reach Kr (</u> 2.74	3.07 2.95 Flow (mgd) 70 pth (ft) 2 1/days) 0 1/days) 8 Subreach	0.75 0.71 <u>Anal</u> <u>R</u> esults	5.11 5.10 ysis Temperature (°C) 23.369 Reach WDRatio 147.620 each NH3-N (mg/L) 0.94 Kr Equation Tsivoglou	7.584 <u>Reach Velocity (fps)</u> 0.550 <u>Reach Kn (1/davs)</u> 0.907 <u>Reach DO Goal (mg/L)</u>
4.600 <u>Reach Width (ft)</u> 161.138 <u>Reach CBOD5 (mg/L)</u> 3.15 <u>Reach DO (mg/L)</u> 5.133	0.464 0.515 <u>Total Discharge</u> 12.17 <u>Reach De</u> 1.09 <u>Reach Kc (</u> 0.56 <u>Reach Kr (</u> 2.74 TravTime	3.07 2.95 Flow (mgd) 70 pth (ft) 2 1/days) 0 1/days) 8 Subreach CBOD5	0.75 0.71 <u>Anal</u> <u>R</u> esults NH3-N	5.11 5.10 vsis Temperature (°C) 23.369 Reach WDRatio 147.620 each NH3-N (mg/L) 0.94 <u>Kr Equation</u> Tsivoglou D.O.	7.584 <u>Reach Velocity (fps)</u> 0.550 <u>Reach Kn (1/davs)</u> 0.907 <u>Reach DO Goal (mg/L)</u>
4.600 <u>Reach Width (ft)</u> 161.138 <u>Reach CBOD5 (mg/L)</u> 3.15 <u>Reach DO (mg/L)</u> 5.133 Reach Travel Time (days)	0.464 0.515 <u>Total Discharge</u> 12.17 <u>Reach De</u> 1.09 <u>Reach Kc (</u> 0.56 <u>Reach Kr (</u> 2.74	3.07 2.95 Flow (mgd) 70 pth (ft) 2 1/days) 0 1/days) 8 Subreach	0.75 0.71 <u>Anal</u> <u>R</u> esults	5.11 5.10 ysis Temperature (°C) 23.369 Reach WDRatio 147.620 each NH3-N (mg/L) 0.94 Kr Equation Tsivoglou	7.584 <u>Reach Velocity (fps)</u> 0.550 <u>Reach Kn (1/davs)</u> 0.907 <u>Reach DO Goal (mg/L)</u>
4.600 <u>Reach Width (ft)</u> 161.138 <u>Reach CBOD5 (mg/L)</u> 3.15 <u>Reach DO (mg/L)</u> 5.133 <u>Reach Travel Time (days)</u>	0.464 0.515 <u>Total Discharge</u> 12.17 <u>Reach De</u> 1.09 <u>Reach Kc (</u> 0.56 <u>Reach Kr (</u> 2.74 TravTime	3.07 2.95 Flow (mgd) 70 pth (ft) 2 1/days) 0 1/days) 8 Subreach CBOD5	0.75 0.71 <u>Anal</u> <u>R</u> esults NH3-N	5.11 5.10 vsis Temperature (°C) 23.369 Reach WDRatio 147.620 each NH3-N (mg/L) 0.94 <u>Kr Equation</u> Tsivoglou D.O.	7.584 <u>Reach Velocity (fps)</u> 0.550 <u>Reach Kn (1/days)</u> 0.907 <u>Reach DO Goal (mg/L)</u>
4.600 <u>Reach Width (ft)</u> 161.138 <u>Reach CBOD5 (mg/L)</u> 3.15 <u>Reach DO (mg/L)</u> 5.133 <u>Reach Travel Time (days)</u>	0.464 0.515 <u>Total Discharge</u> 12.17 <u>Reach De</u> 1.09 <u>Reach Kr (</u> 0.56 <u>Reach Kr (</u> 2.74 TravTime (days)	3.07 2.95 Flow (mgd) 70 pth (ft) 2 1/days) 0 1/days) 8 Subreach CBOD5 (mg/L)	0.75 0.71 <u>Anal</u> <u>Results</u> NH3-N (mg/L)	5.11 5.10 ysis Temperature (°C) 23.369 Reach WDRatio 147.620 each NH3-N (mg/L) 0.94 <u>Kr Equation</u> Tsivoglou D.O. (mg/L)	7.584 <u>Reach Velocity (fps)</u> 0.550 <u>Reach Kn (1/days)</u> 0.907 <u>Reach DO Goal (mg/L)</u>
4.600 <u>Reach Width (ft)</u> 161.138 <u>Reach CBOD5 (mg/L)</u> 3.15 <u>Reach DO (mg/L)</u> 5.133 Reach Travel Time (days)	0.464 0.515 <u>Total Discharge</u> 12.17 <u>Reach De</u> 1.09 <u>Reach Kc (</u> 0.56 <u>Reach Kr (</u> 2.74 TravTime (days) 0.026	3.07 2.95 Flow (mgd) 70 pth (ft) 2 1/days) 0 1/days) 8 Subreach CBOD5 (mg/L) 3.10	0.75 0.71 <u>Anal</u> <u>Results</u> NH3-N (mg/L) 0.92	5.11 5.10 ysis Temperature (°C) 23.369 Reach WDRatio 147.620 each NH3-N (mg/L) 0.94 <u>Kr Equation</u> Tsivoglou D.O. (mg/L) 5.20	7.584 <u>Reach Velocity (fps)</u> 0.550 <u>Reach Kn (1/days)</u> 0.907 <u>Reach DO Goal (mg/L)</u>
4.600 <u>Reach Width (ft)</u> 161.138 <u>Reach CBOD5 (mg/L)</u> 3.15 <u>Reach DO (mg/L)</u> 5.133 Reach Travel Time (days)	0.464 0.515 <u>Total Discharge</u> 12.17 <u>Reach De</u> 1.09 <u>Reach Kc (</u> 0.56 <u>Reach Kr (</u> 2.74 TravTime (days) 0.026 0.051	3.07 2.95 Flow (mgd) 70 pth (ft) 2 1/days) 0 1/days) 8 Subreach CBOD5 (mg/L) 3.10 3.05	0.75 0.71 <u>Anal</u> <u>Results</u> NH3-N (mg/L) 0.92 0.90	5.11 5.10 ysis Temperature (°C) 23.369 Reach WDRatio 147.620 each NH3-N (mg/L) 0.94 <u>Kr Equation</u> Tsivoglou D.O. (mg/L) 5.20 5.26	7.584 <u>Reach Velocity (fps)</u> 0.550 <u>Reach Kn (1/days)</u> 0.907 <u>Reach DO Goal (mg/L)</u>
4.600 <u>Reach Width (ft)</u> 161.138 <u>Reach CBOD5 (mg/L)</u> 3.15 <u>Reach DO (mg/L)</u> 5.133 Reach Travel Time (days)	0.464 0.515 <u>Total Discharge</u> 12.17 <u>Reach De</u> 1.09 <u>Reach Kc (</u> 0.56 <u>Reach Kr (</u> 2.74 <u>TravTime</u> (days) 0.026 0.051 0.077 0.102	3.07 2.95 Flow (mgd) 70 pth (ft) 2 1/days) 0 1/days) 8 Subreach CBOD5 (mg/L) 3.10 3.05 3.00 2.95	0.75 0.71 <u>Anal</u> <u>Results</u> NH3-N (mg/L) 0.92 0.90 0.88 0.86	5.11 5.10 ysis Temperature (°C) 23.369 Reach WDRatio 147.620 each NH3-N (mg/L) 0.94 <u>Kr Equation</u> Tsivoglou D.O. (mg/L) 5.20 5.26 5.33	7.584 <u>Reach Velocity (fps)</u> 0.550 <u>Reach Kn (1/days)</u> 0.907 <u>Reach DO Goal (mg/L)</u>
4.600 <u>Reach Width (ft)</u> 161.138 <u>Reach CBOD5 (mg/L)</u> 3.15 <u>Reach DO (mg/L)</u> 5.133 Reach Travel Time (days)	0.464 0.515 <u>Total Discharge</u> 12.17 <u>Reach De</u> 1.09 <u>Reach Kc (</u> 0.56 <u>Reach Kr (</u> 2.74 <u>TravTime</u> (days) 0.026 0.051 0.077 0.102 0.128	3.07 2.95 Flow (mgd) 70 pth (ft) 2 1/days) 0 1/days) 8 Subreach CBOD5 (mg/L) 3.10 3.05 3.00	0.75 0.71 <u>Anal</u> <u>Results</u> NH3-N (mg/L) 0.92 0.90 0.88 0.86 0.84	5.11 5.10 <u>23.369</u> <u>Reach WDRatio</u> 147.620 <u>each NH3-N (mg/L)</u> 0.94 <u>Kr Equation</u> Tsivoglou D.O. (mg/L) 5.20 5.26 5.33 5.39	7.584 <u>Reach Velocity (fps)</u> 0.550 <u>Reach Kn (1/days)</u> 0.907 <u>Reach DO Goal (mg/L)</u>
4.600 <u>Reach Width (ft)</u> 161.138 <u>Reach CBOD5 (mg/L)</u> 3.15 <u>Reach DO (mg/L)</u> 5.133 Reach Travel Time (days)	0.464 0.515 <u>Total Discharge</u> 12.17 <u>Reach De</u> 1.09 <u>Reach Kc (</u> 0.56 <u>Reach Kr (</u> 2.74 <u>TravTime</u> (days) 0.026 0.051 0.077 0.102 0.128 0.153	3.07 2.95 Flow (mgd) 70 pth (ft) 2 1/days) 0 1/days) 8 Subreach CBOD5 (mg/L) 3.10 3.05 3.00 2.95 2.90 2.85	0.75 0.71 <u>Anal</u> <u>R</u> Results NH3-N (mg/L) 0.92 0.90 0.88 0.86 0.84 0.82	5.11 5.10 ysis Temperature (°C) 23.369 Reach WDRatio 147.620 each NH3-N (mg/L) 0.94 <u>Kr Equation</u> Tsivoglou D.O. (mg/L) 5.20 5.26 5.33 5.39 5.45 5.51	7.584 <u>Reach Velocity (fps)</u> 0.550 <u>Reach Kn (1/days)</u> 0.907 <u>Reach DO Goal (mg/L)</u>
4.600 <u>Reach Width (ft)</u> 161.138 <u>Reach CBOD5 (mg/L)</u> 3.15 <u>Reach DO (mg/L)</u> 5.133 <u>Reach Travel Time (days)</u>	0.464 0.515 <u>Total Discharge</u> 12.17 <u>Reach De</u> 1.09 <u>Reach Kc (</u> 0.56 <u>Reach Kr (</u> 2.74 <u>TravTime</u> (days) 0.026 0.051 0.077 0.102 0.128 0.153 0.179	3.07 2.95 Flow (mgd) o th (ft) 2 1/days) 0 1/days) 8 Subreach CBOD5 (mg/L) 3.10 3.05 3.00 2.95 2.90 2.85 2.80	0.75 0.71 <u>Anal</u> <u>Results</u> NH3-N (mg/L) 0.92 0.90 0.88 0.86 0.84 0.82 0.80	5.11 5.10 ysis Temperature (°C) 23.369 Reach WDRatio 147.620 each NH3-N (mg/L) 0.94 <u>Kr Equation</u> Tsivoglou D.O. (mg/L) 5.20 5.26 5.33 5.39 5.45 5.51 5.57	7.584 <u>Reach Velocity (fps)</u> 0.550 <u>Reach Kn (1/davs)</u> 0.907 <u>Reach DO Goal (mg/L)</u>
4.600 <u>Reach Width (ft)</u> 161.138 <u>Reach CBOD5 (mg/L)</u> 3.15 <u>Reach DO (mg/L)</u> 5.133 <u>Reach Travel Time (days)</u>	0.464 0.515 <u>Total Discharge</u> 12.17 <u>Reach De</u> 1.09 <u>Reach Kc (</u> 0.56 <u>Reach Kr (</u> 2.74 <u>TravTime</u> (days) 0.026 0.051 0.077 0.102 0.128 0.153	3.07 2.95 Flow (mgd) 70 pth (ft) 2 1/days) 0 1/days) 8 Subreach CBOD5 (mg/L) 3.10 3.05 3.00 2.95 2.90 2.85	0.75 0.71 <u>Anal</u> <u>R</u> Results NH3-N (mg/L) 0.92 0.90 0.88 0.86 0.84 0.82	5.11 5.10 ysis Temperature (°C) 23.369 Reach WDRatio 147.620 each NH3-N (mg/L) 0.94 <u>Kr Equation</u> Tsivoglou D.O. (mg/L) 5.20 5.26 5.33 5.39 5.45 5.51	7.584 <u>Reach Velocity (fps)</u> 0.550 <u>Reach Kn (1/davs)</u> 0.907 <u>Reach DO Goal (mg/L)</u>

Saturday, March 5, 2022

Version 1.1

Page 2 of 2

			1 1.0	пуч	ouyn	anno	Out	Juis			
<u>sw</u>	P Basin	Strea	um Code				Stream	Name			
	07D	9	9361			SI	WATARA	CREEK			
Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
0 Flow											
70.70	0.00	70.70	7.7659	0.00029	1.103	153.08	138.73	0.46	0.592	23.20	7.92
73.64	0.00	73.64	8.1527	0.00114	1.08	148.85	137.88	0.51	0.120	23.18	7.86
76.86	0.00	76.86	17.8988	0.00067	1.096	161.96	147.71	0.53	0.515	23.36	7.60
77.98	0.00	77.98	18.827	0.00099	1.092	161.14	147.62	0.55	0.255	23.37	7.58
0 Flow											
62.92	0.00	62.92	7.7659	0.00029	NA	NA	NA	0.44	0.628	23.22	7.91
65.54	0.00	65.54	8.1527	0.00114	NA	NA	NA	0.48	0.127	23.20	7.84
68.41	0.00	68.41	17.8988	0.00067	NA	NA	NA	0.51	0.543	23.39	7.57
69.40	0.00	69.40	18.827	0.00099	NA	NA	NA	0.52	0.269	23.40	7.56
10 Flow	/										
86.96	0.00	86.96	7.7659	0.00029	NA	NA	NA	0.52	0.533	23.16	7.93
90.58	0.00	90.58	8.1527	0.00114	NA	NA	NA	0.57	0.108	23.15	7.88
94.54	0.00	94.54	17.8988	0.00067	NA	NA	NA	0.59	0.468	23.30	7.64
95.92	0.00	95.92	18.827	0.00099	NA	NA	NA	0.61	0.232	23.31	7.63
	Stream Flow (cfs) 7 Flow 70.70 73.64 76.86 77.98 7 Flow 62.92 65.54 68.41 69.40 10 Flow 86.96 90.58 94.54	Flow With (cfs) (cfs) D Flow 70.70 0.00 73.64 0.00 76.86 0.00 76.86 0.00 77.98 0.00 D Flow 62.92 0.00 65.54 0.00 68.41 0.00 69.40 0.00 10 Flow 86.96 0.00 90.58 0.00 94.54 0.00 94.54 0.00	SWP Basin Stream 07D Stream 07D Stream Flow With Stream (cfs) (cfs) Ket (cfs) (cfs) (cfs) 07D 0.00 70.70 70.70 0.00 70.70 73.64 0.00 73.64 76.86 0.00 76.86 77.98 0.00 77.98 0 Flow 62.92 0.00 62.92 65.54 0.00 65.54 68.41 69.40 0.00 69.40 10 Flow 68.96 90.58 86.96 0.00 86.96 90.58 0.00 90.58 94.54 0.00 94.54	SWP Basin Stream O7D Stream O9361 Stream PWS Net Disc Analysis Flow With Stream Plow Cfs) (cfs) (cfs) Cfs) Plow Cfs) 70.70 0.00 70.70 7.7659 73.64 0.00 73.64 8.1527 76.86 0.00 77.98 18.827 0 Flow 62.92 0.00 62.92 7.7659 65.54 0.00 65.54 8.1527 68.41 17.8988 69.40 0.00 69.40 18.827 10 Flow 68.96 0.00 69.40 18.827 0 Flow 68.96 0.00 69.40 18.827 0 Flow 68.96 7.7659 69.40 18.827 0 Flow 68.96 7.7659 69.40 18.827 0 Flow 69.40 18.827 69.40 18.827	SWP Basin 07D Stream Code 9361 Stream Flow PWS With Net Stream Flow Disc Analysis Flow Reach Slope Flow 0.00 Cfs) Cfs) Disc (cfs) Reach Slope 70.70 0.00 70.70 7.7659 0.00029 73.64 0.00 73.64 8.1527 0.00114 76.86 0.00 76.86 17.8988 0.00067 77.98 0.00 62.92 7.7659 0.0029 0 62.92 0.00 62.92 7.7659 0.0029 65.54 0.00 65.54 8.1527 0.00114 68.41 0.00 69.40 18.827 0.0029 0D Flow 18.827 0.00114 68.41 0.00 69.40 18.827 0.0029 0D 69.40 18.827 0.0029 0.0029 0D 69.40 0.00 69.40 18.827 0.0029 0D 69.40 18.827 0.0029 0.0029 0.	SWP Basin Stream Code 07D 9361 Stream PWS With Net Stream Flow Disc Mith Reach Slope Depth Stream (cfs) (cfs) C(cfs) Disc (cfs) Reach (ft/ft) Depth 70.70 0.00 70.70 7.7659 0.00029 1.103 73.64 0.00 73.64 8.1527 0.00114 1.08 76.86 0.00 77.98 18.827 0.0009 1.096 77.98 0.00 62.92 7.7659 0.00029 NA 65.54 0.00 65.54 8.1527 0.00114 NA 65.54 0.00 65.54 8.1527 0.00114 NA 65.54 0.00 65.54 8.1527 0.00114 NA 68.41 0.00 68.41 17.8988 0.00067 NA 69.40 0.00 69.40 18.827 0.0014 NA 69.40 0.00 69.40 18.827 0.0029<	SWP Basin Stream Code 07D 9361 Stream Stream PWS Flow Net With Disc Stream Reach Slope Depth Width Stream Crs (cfs) (cfs) (cfs) Stream Analysis Flow Slope Depth Width (cfs) (cfs) (cfs) (cfs) (ft/ft) (ft) (ft) 0 Flow 70.70 0.00 70.70 7.7659 0.00029 1.103 153.08 73.64 0.00 73.64 8.1527 0.00114 1.08 148.85 76.86 0.00 76.86 17.8988 0.00067 1.092 161.14 0 Flow 62.92 0.00 65.54 8.1527 0.00114 NA 65.54 0.00 65.54 8.1527 0.00144 NA NA 68.41 0.00 69.40 18.827 0.0009 NA NA 69.40 0.00 69.40 </td <td>SWP Basin Stream Code Stream 07D 9361 SWATARA Stream PWS Flow Net With Disc Stream Reach Flow Depth Width W/D Ratio 07D 9361 SWATARA Stream PWS With Net Stream Disc Flow Reach (cfs) Depth Width W/D Ratio 0 (cfs) (cfs) (cfs) (ft/ft) (ft) (ft) 0 Flow 70.70 0.00 70.70 7.7659 0.00029 1.103 153.08 138.73 73.64 0.00 73.64 8.1527 0.00114 1.08 148.85 137.88 76.86 0.00 77.98 18.827 0.00099 1.092 161.14 147.62 0 Flow 62.92 0.00 62.92 7.7659 0.00029 NA NA NA 65.54 0.00 69.40 18.827 0.0009 NA NA NA 69.40 0.00<td>07D 9361 SWATARA CREEK Stream Flow PWS With (cfs) Net Stream (cfs) Disc Flow (cfs) Reach Analysis Flow (cfs) Depth (ft) Width (ft) W/D Ratio Velocity Ratio 0 (cfs) 0(fs) 0(fs) (ft/ft) (ft) (ft)</td><td>SWP Basin Stream Code Stream Name 07D 9361 SWATARA CREEK Stream PWS Flow Net (cfs) Disc Flow Reach Analysis Flow Depth Width W/D Ratio Velocity (fps) Reach Trav Time 07D PWS (cfs) Net (cfs) Disc Flow Reach Slope Depth Width W/D Ratio Velocity (fps) Reach Trav Time 0 Cfs) 0.00 70.70 0.00 70.70 7.7659 0.00029 1.103 153.08 138.73 0.46 0.592 73.64 0.00 73.64 8.1527 0.00114 1.08 148.85 137.88 0.51 0.120 76.86 0.00 77.98 18.827 0.0009 1.092 161.14 147.62 0.55 0.255 OFIow 62.92 7.7659 0.00029 NA NA NA 0.44 0.628 65.54 0.00 65.54 8.1527 0.00114 NA NA 0.44</td><td>SWP Basin Stream Code 9361 Stream Name Stream PWS Flow Net (cfs) Disc Flow Reach Analysis Flow Depth (ftft) Width (ft) W/D (ft) Velocity Ratio Reach Trav (fps) Analysis Temp OFD With (cfs) Net (cfs) Disc Flow Reach (cfs) Depth (ftft) Width (ft) W/D (ft) Velocity Ratio Reach Trav (fps) Analysis Temp 70.70 0.00 70.70 7.7659 0.0029 1.103 153.08 138.73 0.46 0.592 23.20 73.64 0.00 73.64 8.1527 0.00114 1.08 148.85 137.88 0.51 0.120 23.18 76.86 0.00 76.86 17.8988 0.00067 1.092 161.14 147.62 0.55 0.255 23.37 OFlow 62.92 0.00 65.54 8.1527 0.00114 NA NA 0.44 0.628 23.22 65.54 0.00 68.41 17.8988 0.00067 NA</td></td>	SWP Basin Stream Code Stream 07D 9361 SWATARA Stream PWS Flow Net With Disc Stream Reach Flow Depth Width W/D Ratio 07D 9361 SWATARA Stream PWS With Net Stream Disc Flow Reach (cfs) Depth Width W/D Ratio 0 (cfs) (cfs) (cfs) (ft/ft) (ft) (ft) 0 Flow 70.70 0.00 70.70 7.7659 0.00029 1.103 153.08 138.73 73.64 0.00 73.64 8.1527 0.00114 1.08 148.85 137.88 76.86 0.00 77.98 18.827 0.00099 1.092 161.14 147.62 0 Flow 62.92 0.00 62.92 7.7659 0.00029 NA NA NA 65.54 0.00 69.40 18.827 0.0009 NA NA NA 69.40 0.00 <td>07D 9361 SWATARA CREEK Stream Flow PWS With (cfs) Net Stream (cfs) Disc Flow (cfs) Reach Analysis Flow (cfs) Depth (ft) Width (ft) W/D Ratio Velocity Ratio 0 (cfs) 0(fs) 0(fs) (ft/ft) (ft) (ft)</td> <td>SWP Basin Stream Code Stream Name 07D 9361 SWATARA CREEK Stream PWS Flow Net (cfs) Disc Flow Reach Analysis Flow Depth Width W/D Ratio Velocity (fps) Reach Trav Time 07D PWS (cfs) Net (cfs) Disc Flow Reach Slope Depth Width W/D Ratio Velocity (fps) Reach Trav Time 0 Cfs) 0.00 70.70 0.00 70.70 7.7659 0.00029 1.103 153.08 138.73 0.46 0.592 73.64 0.00 73.64 8.1527 0.00114 1.08 148.85 137.88 0.51 0.120 76.86 0.00 77.98 18.827 0.0009 1.092 161.14 147.62 0.55 0.255 OFIow 62.92 7.7659 0.00029 NA NA NA 0.44 0.628 65.54 0.00 65.54 8.1527 0.00114 NA NA 0.44</td> <td>SWP Basin Stream Code 9361 Stream Name Stream PWS Flow Net (cfs) Disc Flow Reach Analysis Flow Depth (ftft) Width (ft) W/D (ft) Velocity Ratio Reach Trav (fps) Analysis Temp OFD With (cfs) Net (cfs) Disc Flow Reach (cfs) Depth (ftft) Width (ft) W/D (ft) Velocity Ratio Reach Trav (fps) Analysis Temp 70.70 0.00 70.70 7.7659 0.0029 1.103 153.08 138.73 0.46 0.592 23.20 73.64 0.00 73.64 8.1527 0.00114 1.08 148.85 137.88 0.51 0.120 23.18 76.86 0.00 76.86 17.8988 0.00067 1.092 161.14 147.62 0.55 0.255 23.37 OFlow 62.92 0.00 65.54 8.1527 0.00114 NA NA 0.44 0.628 23.22 65.54 0.00 68.41 17.8988 0.00067 NA</td>	07D 9361 SWATARA CREEK Stream Flow PWS With (cfs) Net Stream (cfs) Disc Flow (cfs) Reach Analysis Flow (cfs) Depth (ft) Width (ft) W/D Ratio Velocity Ratio 0 (cfs) 0(fs) 0(fs) (ft/ft) (ft) (ft)	SWP Basin Stream Code Stream Name 07D 9361 SWATARA CREEK Stream PWS Flow Net (cfs) Disc Flow Reach Analysis Flow Depth Width W/D Ratio Velocity (fps) Reach Trav Time 07D PWS (cfs) Net (cfs) Disc Flow Reach Slope Depth Width W/D Ratio Velocity (fps) Reach Trav Time 0 Cfs) 0.00 70.70 0.00 70.70 7.7659 0.00029 1.103 153.08 138.73 0.46 0.592 73.64 0.00 73.64 8.1527 0.00114 1.08 148.85 137.88 0.51 0.120 76.86 0.00 77.98 18.827 0.0009 1.092 161.14 147.62 0.55 0.255 OFIow 62.92 7.7659 0.00029 NA NA NA 0.44 0.628 65.54 0.00 65.54 8.1527 0.00114 NA NA 0.44	SWP Basin Stream Code 9361 Stream Name Stream PWS Flow Net (cfs) Disc Flow Reach Analysis Flow Depth (ftft) Width (ft) W/D (ft) Velocity Ratio Reach Trav (fps) Analysis Temp OFD With (cfs) Net (cfs) Disc Flow Reach (cfs) Depth (ftft) Width (ft) W/D (ft) Velocity Ratio Reach Trav (fps) Analysis Temp 70.70 0.00 70.70 7.7659 0.0029 1.103 153.08 138.73 0.46 0.592 23.20 73.64 0.00 73.64 8.1527 0.00114 1.08 148.85 137.88 0.51 0.120 23.18 76.86 0.00 76.86 17.8988 0.00067 1.092 161.14 147.62 0.55 0.255 23.37 OFlow 62.92 0.00 65.54 8.1527 0.00114 NA NA 0.44 0.628 23.22 65.54 0.00 68.41 17.8988 0.00067 NA

WQM 7.0 Hydrodynamic Outputs

Saturday, March 5, 2022

Version 1.1

Page 1 of 1

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.89	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.23	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	5		

Saturday, March 5, 2022

Version 1.1

C. Toxics Management Spreadsheet (TMS)

Toxics Management Spreadsheet Version 1.8, March 2021

Discharge Information

Inst	ructions D	ischarge Stream													
Fac	lity: Den	ry Twp MA Southwe		NPI	DES Per	nit No.:	PA0082	392		Outfall No.: 001					
Eva	luation Type:	Major Sewage /	Industr	lal W	Vacte		Wa	stewater	Descript	ton: <mark>Sev</mark>	vage				
<u> </u>					Disaha			racterict							
_					Disons									x Times	(and and
D	(MGD)*	Hardness (mg/l)*	pH (8U)*	AFI			al Mix Fa CFC	otore (r THF		CRL				(min)
	0.6	100	c	.9	AP	-		CFC	100	•	CHL.	G.	-10		9 1
	u.o	100	0		-										
							0 10 km	tblank	05.00	et blank		if left blen		1.004	bleck
								Long In			-		<u> </u>		
	Discha	arge Pollutant	Units	Ma	x Discharge Conc		rib mc	Stream Conc	Daily CV	Hourty CV	Strea m CV	Fate Coeff	F08	Criteri a Mod	Chem Transi
	Total Dissolve	d Solida (PWS)	mgL.		415										
Ξ	Chioride (PW		mgL		139										
Quoup	Bromide		mg/L	- A.	0.2										
8	Sulfate (PWS)		mg/L		49.4										
	Fluoride (PW?		mgL.												
	Total Aluminu		HQ1												
	Total Antimon	Y	HQ1												
	Total Amenic		Hg/L	- 45											
	Total Barlum Total Berviliur		HQ4	~											
	Total Beron		µgL µgL	24											
	Total Cadmiu		Hot.	<											
	Total Chromiu		101	~											
	Hexavalent Cl		µg/L	-											
	Total Cobalt		ug/L												
	Total Copper		HQL.		7										
194 (194	Free Cyanida		LQL.												
8	Total Cyanide		HQ4												
ē	Dissolved Iror	1	d d												
	Total Iron		HQ4												
1	Total Lead Total Mangan		HQL.	4	1		_								
1	Total Mangan Total Marcury		µgL µgL	~											
	Total Mercury Total Nickel		HOL.	-											
		(Phenolica) (PWS)													
	Total Seleniur		Hot.	4											
	Total Silver	-	LoL.	4											
1	Total Thailium	1	µg/L.	4											
1	Total Zinc		LQL.		8										
	Total Molybde	num	LQL.												
	Acrolein		HQ4L	4											
1	Acrylamide		10	4											
1	Acrylonitrile		µg/L.	4											
1	Benzene		HQL.	4											
I	Bromoform		µg4_	4											

Stream / Surface Water Information

Derry Twp MA Southwest STP, NPDES Permit No. PA0082392, Outfall 001

Instructions Discha	rge Stream
---------------------	------------

Receiving Surface Water Name: §	Swatara Creek
---------------------------------	---------------

			Elevation	,		PWS Withdrawal	Apply Fish
Location	Stream Code*	RMI*	(ft)*	DA (mi ²)*	Slope (ft/ft)	(MGD)	Criteria*
Point of Discharge	009361	4.6	289	557			Yes
End of Reach 1	009361	2.3	277	569			Yes

Statewide Criteria
 Great Lakes Criteria
 ORSANCO Criteria

Q 7-10

Location	RMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time	Tributary		Stream		Analysis	
Location	NWI	(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness*	pH*	Hardness	pН
Point of Discharge	4.6	0.14										172	8		
End of Reach 1	2.3	0.14													

No. Reaches to Model: 1

Qh

Leastion	RMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time	Tributa	iry	Strea	m	Analys	sis
Location	RIVII	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness	pН	Hardness	pН
Point of Discharge	4.6														
End of Reach 1	2.3														

Model Results

Derry Twp MA Southwest STP, NPDES Permit No. PA0082392, Outfall 001

Instruction	s Results	RETURN TO INPUTS	SAVE AS PDF	PRINT	AI	\bigcirc Inputs	Results	🔿 Limits	
	-								

Hydrodynamics

Q 7-10

RMI	Stream Flow (cfs)	PWS Withdrawal (cfs)	Net Stream Flow (cfs)	Discharge Analysis Flow (cfs)	Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Time (days)	Complete Mix Time (min)
4.6	77.98		77.98	0.928	0.00099	1.082	148.587	137.333	0.491	0.286	835.395
2.3	79.66		79.66								

Qh

RMI	Stream Flow (cfs)	PWS Withdrawal (cfs)	Net Stream Flow (cfs)	Discharge Analysis Flow (cfs)	Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Time (days)	Complete Mix Time (min)
4.6	334.64		334.64	0.928	0.00099	2.046	148.587	72.638	1.104	0.127	327.225
2.3	340.936		340.94								

Wasteload Allocations

✓ AFC	CCT (min):	15	PMF:	0.134	naly	sis Hardnes	s (mg/l):	166.1 Analysis pH: 7.71
Pollutants	Stream Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)) 0			0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	21.680	22.6	277	Chem Translator of 0.96 applied
Total Lead	0	0		0	111.710	156	1,910	Chem Translator of 0.717 applied
Total Zinc	0	0		0	180.149	184	2,258	Chem Translator of 0.978 applied

CFC	CCT (min): 7	20	PMF:	0.928	An	alysis Hardn	ess (mg/l):	171.1 Analysis pH: 7.94
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS	6) 0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	14.171	14.8	1,166	Chem Translator of 0.96 applied
Total Lead	0	0		0	4.492	6.3	498	Chem Translator of 0.713 applied
Total Zinc	0	0		0	186.209	189	14,918	Chem Translator of 0.986 applied
⊘ тнн	CCT (min): 72	0 Stream	PMF:	0.928 Fate	Ana WQC	lysis Hardne WQ Obj	ss (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc (ug/L)	CV	(µg/L)	Coef	(µg/L)	(µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)) 0	0		0	500,000	500,000	N/A	
Chloride (PWS)	0	0		0	250,000	250,000	N/A	
Sulfate (PWS)	0	0		0	250,000	250,000	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	
CRL	CCT (min): ##		PMF:	1] An	alysis Hardn	ess (mg/l):	N/A Analysis pH: N/A
Model Results					3/8	/2022		Paį

Pollutants	Conc (uo/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits		Concentra	tion Limits				
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments