

Southcentral Regional Office CLEAN WATER PROGRAM

 Application Type
 Renewal

 Facility Type
 Industrial

 Major / Minor
 Minor

NPDES PERMIT FACT SHEET INDIVIDUAL INDUSTRIAL WASTE (IW) AND IW STORMWATER

Application No.PA0082538APS ID4003Authorization ID1214849

Applicant and Facility Information

Applicant Name	Altoona	Water Authority	Facility Name	Altoona City Water System
Applicant Address	900 Che	stnut Avenue	Facility Address	1923 Veterans Memorial Highway
	Altoona,	PA 16601-4617		Altoona, PA 16602
Applicant Contact	Doug De	Angelis	Facility Contact	Doug DeAngelis
Applicant Phone	(814) 94	4-2597	Facility Phone	(814) 944-2597
Client ID	85897		Site ID	238359
SIC Code	4941		Municipality	Logan Township
SIC Description	Trans. &	Utilities - Water Supply	County	Blair
Date Application Rec	eived	December 29, 2017	EPA Waived?	Yes
Date Application Acc	ented	February 5, 2018	If No, Reason	

Summary of Review

Approve	Deny	Signatures	Date
x		Nicholas Hong, P.E. / Environmental Engineer Nick Hong (via electronic signature)	January 25, 2021
		Daniel W. Martin, P.E. / Environmental Engineer Manager	
		Maria Bebenek, P.E. / Environmental Program Manager	

Summary of Review

The application submitted by the applicant requests a NPDES renewal permit for the Altoona City Water System (Andronic PAPPAS Water Treatment Plant) located at 1923 Veterans Memorial Highway, Altoona, PA 16601 in Blair County, municipality of Logan Township. The NPDES became effective July 1, 2013 and expired on June 30, 2018. The application for renewal was received by DEP Southcentral Regional Office (SCRO) on February 23, 2018. Supplementary information was received on January 15, 2021.

The purpose of this Fact Sheet is to present the basis of information used for establishing the proposed NPDES permit effluent limitations. The Fact Sheet includes a description of the facility, a description of the facility's receiving waters, a description of the facility's receiving waters attainment/non-attainment assessment status, and a description of any changes to the proposed monitoring/sampling frequency. Section 6 provides the justification for the proposed NPDES effluent limits derived from technology based effluent limits (TBEL), water quality based effluent limits (WQBEL), total maximum daily loading (TMDL), antidegradation, anti-backsliding, and/or whole effluent toxicity (WET). A brief summary of the outlined descriptions has been included in the Summary of Review section.

The subject facility is a 0.35 MGD treatment facility. The applicant anticipates proposed upgrades to the treatment facility in the next five years. The facility anticipates (a) the ozone generating system converted to a liquid oxygen (LOX) system; (b) the conventional gravity filters converted to membrane filtration. The NPDES application has been processed as an Industrial Wastewater Facility due to the type of wastewater and the design flow rate for the facility. The applicant disclosed the Act 14 requirement to Blair County Court House and Logan Township Supervisors and the notice was received by the parties on February 14, 2018. Since the facility is an industrial waste facility, planning approval was not necessary.

Utilizing the DEP's web-based Emap-PA information system, the receiving waters has been determined to be initially Lake Altoona and then Burgoon Run. The sequence of receiving streams that Burgoon Run discharges into are the Beaverdam Branch, the Frankstown Branch Juniata River, the Juniata River, and the Susquehanna River which eventually drains into the Chesapeake Bay. The subject site is subject to the Chesapeake Bay implementation requirements. The receiving water has protected water usage for trout stocking fishes (TSF) and migratory fishes (MF). No Class A Wild Trout fisheries are impacted by this discharge. The absence of high quality and/or exceptional value surface waters removes the need for an additional evaluation of anti-degradation requirements.

Burgoon Run is a Category 4a and 5 stream listed in the 2020 Integrated List of All Waters (formerly 303d Listed Streams). This stream is impaired for pH and siltation due to abandoned mine drainage. The receiving waters is subject to the Beaverdam Branch Watershed total maximum daily load (TMDL) plan to improve water quality in the subject facility's watershed.

The existing permit and proposed permit differ as follows:

• There are no changes to the monitoring frequency or effluent performance requirements.

The proposed permit will expire five (5) years from the effective date.

Based on the review in this report, it is recommended that the permit be drafted. DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Any additional information or public review of documents associated with the discharge or facility may be available at PA DEP Southcentral Regional Office (SCRO), 909 Elmerton Avenue, Harrisburg, PA 17110. To make an appointment for file review, contact the SCRO File Review Coordinator at 717.705.4700.

1.0 Applicant

1.1 General Information

This fact sheet summarizes PA Department of Environmental Protection's review for the NPDES renewal for the following subject facility.

Facility Name:	Altoona Water Authority- Andronic Pappas Water Treatment Plant
NPDES Permit #	PA0082538
Physical Address:	1923 Veterans Memorial Highway Altoona, PA 16601
Mailing Address:	900 Chestnut Avenue Altoona, PA 16602
Contact:	Doug DeAngelis Supervisor Water Treatment Operations DDeAngelis@altoonawater.com
Consultant:	There was no consultant utilized for this NPDES renewal

1.2 Permit History

Permit submittal included the following information.

- NPDES- Industrial Wastewater Application (revised 4/2011)
- Plant Schematic
- Pollutant Groups 1 and 2
- NPDES renewal application resubmittal on 1/15/2021

2.0 Treatment Facility Summary

2.1 Site location

The physical address for the facility is 1923 Veterans Memorial Highway, Altoona, PA 16601. A topographical and an aerial photograph of the facility are depicted as Figure 1 and Figure 2.

NPDES Permit Fact Sheet Altoona City Water System

Figure 1: Topographical map of the subject facility

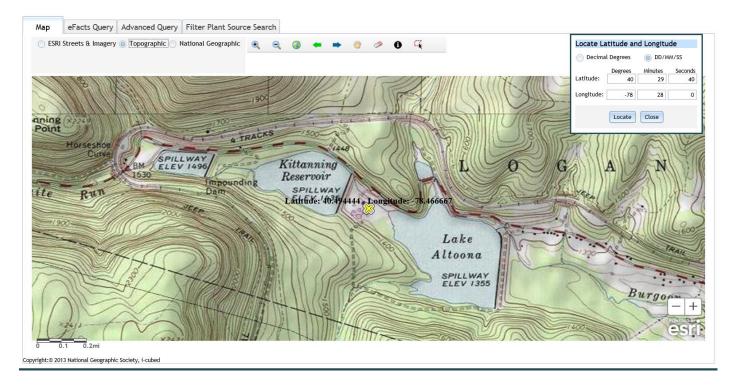
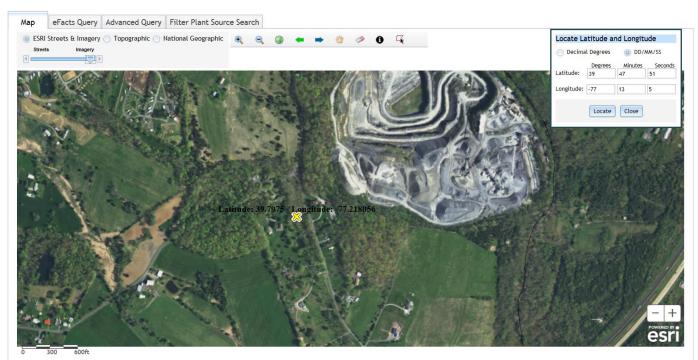



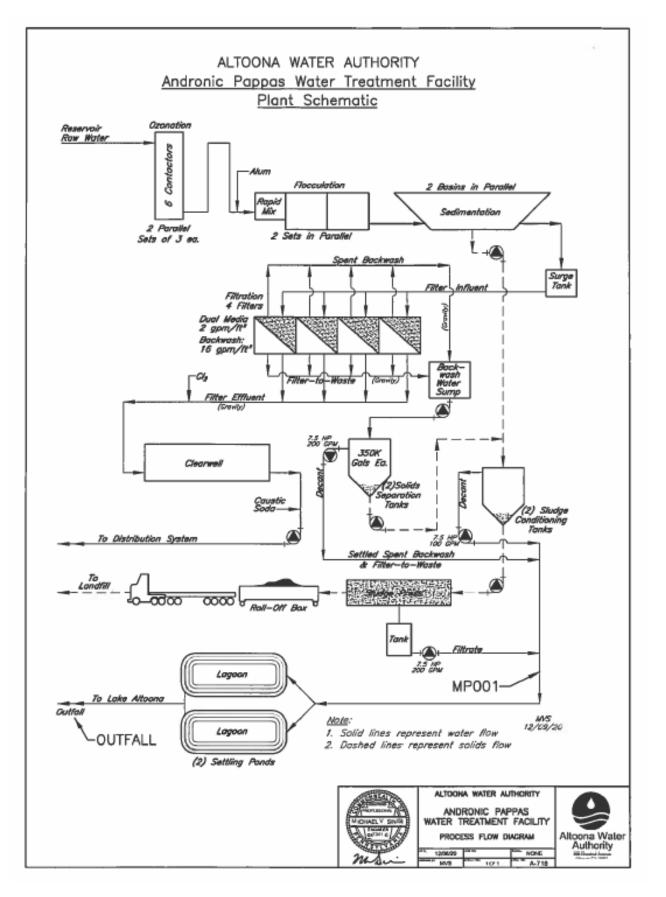
Figure 2: Aerial Photograph of the subject facility

magery: undefined; ESRI Streets: Sources: Exrl, HERE, DeLorme, USGS, Intermap, INCREMENT P, NRCan, Esri Japan, METI, Esri China (Hong Kong), Esri Korea, Esri (Thailand), MapmyIndia, NGCC, © OpenStreetMap contributors, and the GIS User Community

2.2 Description of Wastewater Treatment Process

The subject facility is a 0.35 MGD design flow facility. The facility is a water plant. The primary source of wastewater is backwash water from the drinking water plant. Wastewater discharges from Outfall 001 to the wash water lagoons and finally into Lake Altoona. Lake Altoona then flows into Burgoon Run. The facility is being evaluated for flow, pH, TRC, TSS, aluminum, iron, manganese, nitrogen, and phosphorus. The existing permits limits for the facility is summarized in Section 2.4.

The treatment process is summarized in the table.


Treatment Facility Summary

Treatment Facility Name: Altoona C A / Horseshoe Curve Ws

Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
Industrial			No Disinfection	0.35
Hydraulic Capacity	Organic Capacity			Biosolids
Hydraulic Capacity (MGD)	Organic Capacity (Ibs/day)	Load Status	Biosolids Treatment	Biosolids Use/Disposa

NPDES Permit Fact Sheet Altoona City Water System

A schematic of the process for the plant is shown in the figure.

2.3 Facility Outfall Information

The facility has the following outfall information.

Outfall No.	001	Design Flow (MGD)	.35
Latitude	40° 29' 38.00"	Longitude	-78º 27' 55.00"
Wastewater D	escription: Water Treatment Effluent		

2.3.1 Operational Considerations- Chemical Additives

Chemical additives are chemical products introduced into a waste stream that is used for cleaning, disinfecting, or maintenance and which may be detected in effluent discharged to waters of the Commonwealth. Chemicals excluded are those used for neutralization of waste streams, the production of goods, and treatment of wastewater.

The subject facility utilizes the following chemicals as part of their treatment process.

The facility did not report any chemicals used in the past two years for wastewater treatment.

2.4 Existing NPDES Permits Limits

The existing NPDES permit limits are summarized in the table.

PART A - EFFLUENT LIMITATIONS, MONITORING, RECORDKEEPING AND REPORTING REQUIREMENTS

I. A.	For Outfall 001	_, Latitude _40° 29' 38.00" _, Longitude _78° 27' 55.00" _, River Mile Index _3.30 _, Stream Code _16416
	Receiving Waters:	Burgoon Run
	Type of Effluent:	Water treatment filter backwash

- 1. The permittee is authorized to discharge during the period from July 1, 2013 through June 30, 2018.
- 2. Based on the anticipated wastewater characteristics and flows described in the permit application and its supporting documents and/or amendments, the following effluent limitations and monitoring requirements apply (see also Additional Requirements and Footnotes).

			Monitoring Re	quirements				
Parameter	Mass Units	s (lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required		
Farameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	xxx	xxx	xxx	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0	xxx	XXX	9.0	1/day	Grab
Total Residual Chlorine	XXX	XXX	XXX	0.4	XXX	1.4	1/day	Grab
Total Suspended Solids	Report	Report	XXX	30	60	75	1/week	24-Hr Composite
Total Aluminum	6.3	Report	XXX	4.0	8.0	9.0	1/week	24-Hr Composite
Total Iron	3.2	Report	XXX	2.0	4.0	5.0	1/week	24-Hr Composite
Total Manganese	Report	Report	XXX	1.0	2.0	2.5	1/week	24-Hr Composite
Total Nitrogen	XXX	Report Total Annual	XXX	Report Annl Avg	XXX	XXX	1/year	Calculation
Total Phosphorus	XXX	Report Total Annual	XXX	Report Appl Avg	XXX	XXX	1/year	24-Hr Composite

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s): at Outfall 001

3.0 Facility NPDES Compliance History

3.1 Summary of Inspections

A summary of the most recent inspections during the existing permit review cycle is as follows.

The DEP inspector noted the following during the inspection:

02/24/2016:

• There was nothing significant to report.

03/23/2017:

- The facility had permit violations in December 2016 for aluminum, manganese, and TSS. The operator attributed the violations to lack of sludge wasting before sampling event.
- The facility was advised to complete a Non-Compliance Reporting Form as needed.

04/18/2018:

- The backwash flow was measured with an in-pipe magmeter.
- The facility has 2 concrete backwash settling tanks. The tanks are alternated for use. The west side tank had a hole in the concrete wall and was scheduled for repair. Currently, the discharge to the tank was kept below the level of the hole.
- Effluent pH test results should only be reported for days there was an effluent discharge from the plant.
- The effluent storage refrigerator needed a thermometer.

04/19/2019:

- Both concrete settling tanks were repaired last year. The concrete around the inlet pipes were deteriorated and causing leaking.
- The effluent storage refrigerator was replaced with a thermometer.

3.2 Summary of DMR Data

A review of approximately 1-year of DMR data shows that the monthly average flow data for the facility below the design capacity of the treatment system. The maximum average flow data for the DMR reviewed was 0.1359 MGD in March 2020. The design capacity of the treatment system is 0.35 MGD.

The off-site laboratory used for the analysis of the parameters was Fairway Laboratory located at 2019 Ninth Avenue, Altoona, PA 16601.

DMR Data for Outfall 001 (from December 1, 2019 to November 30, 2020)

Parameter	NOV-20	OCT-20	SEP-20	AUG-20	JUL-20	JUN-20	MAY-20	APR-20	MAR-20	FEB-20	JAN-20	DEC-19
Flow (MGD)												
Average Monthly	0.1238	0.1214	0.1247	0.1157	0.1259	0.1249	0.1221	0.1256	0.1359	0.1276	0.1279	0.1245
Flow (MGD)												
Daily Maximum	0.2401	0.2093	0.1912	0.2120	0.2145	0.2092	0.2090	0.2048	0.2114	0.2194	0.2247	0.2268
pH (S.U.)												
Minimum	7.33	7.28	7.22	7.35	7.42	7.29	7.0	7.06	7.21	7.00	7.07	7.21
pH (S.U.)												
Maximum	7.78	7.77	7.91	7.83	7.89	7.81	7.78	7.77	7.76	7.75	7.89	7.89
TRC (mg/L)												
Average Monthly	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.03	< 0.02	< 0.02	< 0.03	< 0.04	< 0.03	< 0.03
TRC (mg/L)												
Instantaneous												
Maximum	0.06	0.06	0.03	0.04	0.09	0.1	0.07	0.07	0.12	0.16	0.1	0.10
TSS (lbs/day)												
Average Monthly	< 4	< 3	< 3	< 2	< 4	< 3	< 5	< 4	< 5	< 5	< 9.0	< 3
TSS (lbs/day)												
Daily Maximum	8	5	5	< 3	7	< 6	10	7	14	12	32	6
TSS (mg/L)												
Average Monthly	< 5	< 3	< 3	< 2	< 4	< 3	< 5	< 3	< 4	< 4	< 6	< 3
TSS (mg/L)												
Daily Maximum	11.6	5.8	5.5	2.8	10.4	< 4	11	5.8	15	8	19.5	4.3
Total Nitrogen (mg/L)												
Annual Average												< 1.85
Total Nitrogen (lbs)												
Total Annual												< 1113
Total Phosphorus												
(mg/L)												
Annual Average												< 0.11
Total Phosphorus (lbs)												
Total Annual												< 66
Total Aluminum												
(lbs/day)												
Average Monthly	0.6	0.4	0.4	0.2	0.5	0.3	0.9	0.9	0.9	0.9	1.6	0.50
Total Aluminum												
(lbs/day)					_			_		_	_	
Daily Maximum	1	0.9	1	0.4	2	0.6	2.0	2	3	2	6	1
Total Aluminum												
(mg/L)												
Average Monthly	0.7	0.4	0.4	0.2	0.5	0.3	0.9	0.8	0.8	0.7	1.1	0.50

NPDES Permit Fact Sheet Altoona City Water System

NPDES Permit No. PA0082538

Total Aluminum												
(mg/L) Daily Maximum	1.617	1.172	1.256	0.547	1.657	0.59	1.840	1.543	3.678	1.758	3.63	0.727
Total Iron (lbs/day)												
Average Monthly	< 0.05	< 0.06	< 0.06	< 0.04	< 0.06	< 0.06	< 0.09	< 0.08	< 0.09	< 0.09	< 0.1	< 0.05
Total Iron (lbs/day)												
Daily Maximum	< 0.08	< 0.09	< 0.08	< 0.07	0.09	< 0.08	0.1	0.1	0.2	0.2	0.4	0.09
Total Iron (mg/L)												
Average Monthly	< 0.1	< 0.1	< 0.1	< 0.05	< 0.1	< 0.05	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Total Iron (mg/L)												
Daily Maximum	< 0.074	0.098	< 0.062	< 0.05	0.112	< 0.05	0.146	0.105	0.231	0.114	0.267	0.06
Total Manganese												
(lbs/day)												
Average Monthly	< 0.2	< 0.3	< 0.08	< 0.04	0.3	< 0.3	0.1	0.2	< 0.1	0.3	0.2	0.1
Total Manganese												
(lbs/day)												
Daily Maximum	0.3	2	0.1	< 0.07	2.0	2	0.2	0.3	0.3	0.9	0.7	0.2
Total Manganese												
(mg/L)												
Average Monthly	< 0.2	< 0.2	< 0.1	< 0.1	< 0.4	< 0.2	0.1	0.2	< 0.1	0.2	0.2	0.1
Total Manganese												
(mg/L)												
Daily Maximum	0.4	1.034	0.137	0.078	2.643	1.136	0.28	0.29	0.298	1.018	0.406	0.142

3.3 Non-Compliance

3.3.1 Non-Compliance- NPDES Effluent

A summary of the non-compliance to the permit limits for the existing permit cycle is as follows.

Summary of Non Compliance with NPDES Effluent Permit Limits Beginning 07/01/2013 and ending 01/05/2021

NON COMPLIANCE DATE	NON COMPLIANCE CATEGORY	PARAMETER	SAMPLE VALUE	VIOLATION	PERMIT VALUE	UNIT OF MEASURE	STATISTICAL BASE CODE
12/12/2015	Concentration 3 Effluent Violation	Manganese, Total	3.4	>	2.0	mg/L	Daily Maximum
02/23/2016	Concentration 3 Effluent Violation	Manganese, Total	2.33	>	2.0	mg/L	Daily Maximum
04/22/2016	Concentration 3 Effluent Violation	Aluminum, Total	9.903	>	8.0	mg/L	Daily Maximum
01/20/2017	Concentration 3 Effluent Violation	Total Suspended Solids	86	>	60	mg/L	Daily Maximum
01/20/2017	Concentration 3 Effluent Violation	Aluminum, Total	19.34	>	8.0	mg/L	Daily Maximum
01/20/2017	Concentration 3 Effluent Violation	Manganese, Total	3.271	>	2.0	mg/L	Daily Maximum
02/27/2019	Concentration 3 Effluent	Aluminum, Total	10.95	>	8.0	mg/L	Daily Maximum
08/25/2020	Concentration 3 Effluent	Manganese, Total	2.643	>	2.0	mg/L	Daily Maximum

3.3.2 Non-Compliance- Enforcement Actions

A summary of the non-compliance enforcement actions for the current permit cycle is as follows:

There were no enforcement actions taken from 07/01/2013 to 01/05/2021.

3.4 Summary of Industrial Sludge Disposal

A summary of the sludge disposed of from the facility is as follows.

2019 Sludge Production Information										
	Hauled Off-Site									
2019	Tons Dewatered	% Solids	Dry Tons							
January	13.26	22.4	2.97							
February	10.94	22.3	2.44							
March										
April	12.47	21.8	2.72							
Notes:	Notes:									
Greentree L	Greentree Landfill, Permit #101397									

3.5 Open Violations

As of January 2021, there were no open violations.

4.0 Receiving Waters and Water Supply Information Detail Summary

4.1 Receiving Waters

The receiving waters has been determined to be initially Lake Altoona and then Burgoon Run.. The sequence of receiving streams that Burgoon Run discharges into are the Beaverdam Branch, the Frankstown Branch Juniata River, the Juniata River and the Susquehanna River which eventually drains into the Chesapeake Bay.

4.2 Public Water Supply (PWS) Intake

The closest PWS to the subject facility is Mifflintown Municipal Authority (PWS ID # 4340008) located approximately 106 miles downstream of the subject facility on the Juniata River. Based upon the distance and the flow rate of the facility, the PWS should not be impacted.

4.3 Class A Wild Trout Streams

Class A Wild Trout Streams are waters that support a population of naturally produced trout of sufficient size and abundance to support long-term and rewarding sport fishery. DEP classifies these waters as high-quality coldwater fisheries.

The information obtained from EMAP suggests that no Class A Wild Trout Fishery will be impacted by this discharge.

4.4 2020 Integrated List of All Waters (303d Listed Streams):

Section 303(d) of the Clean Water Act requires States to list all impaired surface waters not supporting uses even after appropriate and required water pollution control technologies have been applied. The 303(d) list includes the reason for impairment which may be one or more point sources (i.e. industrial or sewage discharges) or non-point sources (i.e. abandoned mine lands or agricultural runoff and the pollutant causing the impairment such as metals, pH, mercury or siltation).

States or the U.S. Environmental Protection Agency (EPA) must determine the conditions that would return the water to a condition that meets water quality standards. As a follow-up to listing, the state or EPA must develop a Total Maximum Daily Load (TMDL) for each waterbody on the list. A TMDL identifies allowable pollutant loads to a waterbody from both point and non-point sources that will prevent a violation of water quality standards. A TMDL also includes a margin of safety to ensure protection of the water.

The water quality status of Pennsylvania's waters uses a five-part categorization (lists) of waters per their attainment use status. The categories represent varying levels of attainment, ranging from Category 1, where all designated water uses are met to Category 5 where impairment by pollutants requires a TMDL for water quality protection.

The receiving waters is listed in the 2020 Pennsylvania Integrated Water Quality Monitoring and Assessment Report as a Category 4a and 5 waterbody. The surface waters is impaired for aquatic life due to pH and siltation from abandoned mine drainage. The designated use has been classified as protected waters for trout stocking fishes (TSF) and migratory fishes (MF).

4.5 Low Flow Stream Conditions

Water quality modeling estimates are based upon conservative data inputs. The data are typically estimated using either a stream gauge or through USGS web based StreamStats program. The NPDES effluent limits are based upon the combined flows from both the stream and the facility discharge.

A conservative approach to estimate the impact of the facility discharge using values which minimize the total combined volume of the stream and the facility discharge. The volumetric flow rate for the stream is based upon the seven-day, 10-year low flow (Q710) which is the lowest estimated flow rate of the stream during a 7 consecutive day period that occurs once in 10 year time period. The facility discharge is based upon a known design capacity of the subject facility.

The closest WQN to the subject facility is the Beaver Dam Branch Juniata River (WQN252). This WQN station is located approximately 9 miles downstream of the subject facility

The closest gauge station (USGS station number 1556000) to the subject facility is the Frankstown Branch Juniata River at Williamsburg, PA. The gauge station is located 23 miles downstream of the subject facility.

For WQM modeling, pH and stream water temperature data from the water quality network station was used. pH was estimated to be 7.3 and the stream water temperature was estimated to be 19.5 C.

NPDES Permit Fact Sheet Altoona City Water System

The low flow yield and the Q710 for the subject facility was estimated as shown below.

	Gauge Station Data		
USGS Station Number	000		
Station Name	Frankstown Branch Juniata Rive	r at Williamsburg, PA	
Q710	47.8	ft ³ /sec	
Drainage Area (DA)	291	mi ²	
Calculations			
The low flow yield of the	gauge station is:		
Low Flow Yield (LFY) = Q7			
LFY =	(47.8 ft ³ /sec / 291 mi ²)		
LFY =	0.1643	ft ³ /sec/mi ²	
The low flow at the subje	ct site is based upon the DA of	9.87	mi ²
Q710 = (LFY@gauge stati			
Q710 = (0.1643 ft ³ /sec/m	^{ii²})(9.87 mi²)		
Q710 =	1.621	ft ³ /sec	

The discharge from the subject facility is the Lake Altoona. Lake Altoona then discharges to Burgoon Run. The calculated Q710 is utilized for total residual chlorine permit limits. Its likely the long detention time in the lagoon and the dilution in Lake Altoona will dissipate impacts from total residual chlorine. Consistent with the existing permit, the TRC effluent limit has been carried to the proposed permit.

Outfall No. 001 Design Flow (MGD) .35 Latitude 40Ű 29' 39.41" Longitude -78Ű 27' 54.55" Quad Name Quad Code Quad Code Wastewater Description: Water Treatment Effluent Xteram Code 16416 NHD Com ID 65608058 RMI 3.7 Drainage Area 9.87 Yield (cfs/mi²) 0.1643 Qr-to Flow (cfs) 1.62 Qr-to Basis StreamStats/Stream Gauge Elevation (ft) 1367 Slope (ft/ft) Stream Stats/Stream Gauge Existing Use Same as Chapter 93 Existing Use Qualifier Exceptions to Criteria Source(s) of Impairment Metals Source(s) of Impairment None ActID MINE DRAINAGE, ACID MINE DRAINAGE Timal Name Beaverdam Branch Watershed Background/Ambient Data Data Source WQN252; median July to Sept WQN252; median July to Sept Hardness (mg/L) 120 WQN252; median July to Sept WQN252; median July to Sept Hardness (mg/L) 120 WQN252; median July to Sept WQN252; median July to Sept Hardness (mg/L) 120 WQN252; median July to Sept	4.6 Summary of Disc	harge,	Receiving Waters and Wa	ater Supply Information			
Latitude 40Ű 29' 39.41" Longitude -78Ű 27' 54.55" Quad Name Quad Code Quad Code Wastewater Description: Water Treatment Effluent Quad Code Receiving Waters Burgoon Run Stream Code 16416 NHD Com ID 65608058 RMI 3.7 Drainage Area 9.87 Yield (cfs/mi²) 0.1643 Qr.to Flow (cfs) 1.62 Qr.to Basis StreamStats/Stream Gauge Elevation (ft) 1367 Slope (ft/ft) Externam Gauge Watershed No. 11-A Chapter 93 Class. TSF, MF Existing Use Same as Chapter 93 Existing Use Qualifier None Assessment Status Impaired for aquatic life None None Cause(s) of Impairment ACID MINE DRAINAGE, ACID MINE DRAINAGE Tmal Name Beaverdam Branch Watershed Background/Ambient Data pt (SU) 7.3 WQN252; median July to Sept WQN252; median July to Sept Temperature (°C) 19.5 WQN252; median July to Sept WQN252; median historical Other: Mifflintown Municipal Authority <							
Latitude 40Ű 29' 39.41" Longitude -78Ű 27' 54.55" Quad Name Quad Code Quad Code Wastewater Description: Water Treatment Effluent Quad Code Receiving Waters Burgoon Run Stream Code 16416 NHD Com ID 65608058 RMI 3.7 Drainage Area 9.87 Yield (cfs/mi²) 0.1643 Qr.to Flow (cfs) 1.62 Qr.to Basis StreamStats/Stream Gauge Elevation (ft) 1367 Slope (ft/ft) Externam Gauge Watershed No. 11-A Chapter 93 Class. TSF, MF Existing Use Same as Chapter 93 Existing Use Qualifier None Assessment Status Impaired for aquatic life None None Cause(s) of Impairment ACID MINE DRAINAGE, ACID MINE DRAINAGE Tmal Name Beaverdam Branch Watershed Background/Ambient Data pt (SU) 7.3 WQN252; median July to Sept WQN252; median July to Sept Temperature (°C) 19.5 WQN252; median July to Sept WQN252; median historical Other: Mifflintown Municipal Authority <	Outfall No. 001			Design Flow (MGD)	.35		
Quad Name Quad Code Wastewater Description: Water Treatment Effluent Receiving Waters Burgoon Run NHD Com ID 65608058 Drainage Area 9.87 Qr-to Flow (cfs) 1.62 Reveiving Waters Stream Code Multicity 1.62 Qr-to Flow (cfs) Impairment Same as Chapter 93 Existing Use Qualifier Exceptions to Use ACID MINE DRAINAGE, ACID MINE DRAINAGE TMDL Statu	Latitude 40°	29' 39.4	.1"	U ()			
Receiving Waters Burgoon Run Stream Code 16416 NHD Com ID 65608058 RMI 3.7 Drainage Area 9.87 Yield (cfs/mi²) 0.1643 Q7-10 Flow (cfs) 1.62 Q7-10 Basis Stream Stats/Stream Gauge Elevation (ft) 1367 Slope (ft/ft)			-				
NHD Com ID 65608058 RMI 3.7 Drainage Area 9.87 Yield (cfs/mi²) 0.1643 Qr-10 Flow (cfs) 1.62 Qr-10 Basis StreamStats/Stream Gauge Elevation (ft) 1367 Slope (ft/ft)	Wastewater Descrip	otion:	Water Treatment Effluent	:			
NHD Com ID 65608058 RMI 3.7 Drainage Area 9.87 Yield (cfs/mi²) 0.1643 Qr-10 Flow (cfs) 1.62 Qr-10 Basis StreamStats/Stream Gauge Elevation (ft) 1367 Slope (ft/ft)							
Drainage Area 9.87 Yield (cfs/mi²) 0.1643 Qr-to Flow (cfs) 1.62 Qr-to Basis StreamStats/Stream Gauge Elevation (ft) 1367 Slope (ft/ft) Watershed No. 11-A Chapter 93 Class. TSF, MF Existing Use Same as Chapter 93 Existing Use Qualifier None Exceptions to Use	Receiving Waters	Burgo	on Run	Stream Code	16416		
Q7-10 Flow (cfs) 1.62 Q7-10 Basis StreamStats/Stream Gauge Elevation (ft) 1367 Slope (ft/ft)	NHD Com ID	65608	058	RMI	3.7		
Elevation (ft) 1367 Slope (ft/ft) Watershed No. 11-A Chapter 93 Class. TSF, MF Existing Use Same as Chapter 93 Existing Use Qualifier None Exceptions to Use Exceptions to Criteria None Assessment Status Impaired for aquatic life None Cause(s) of Impairment Metals ACID MINE DRAINAGE, ACID MINE DRAINAGE Source(s) of Impairment ACID MINE DRAINAGE, ACID MINE DRAINAGE TMDL Status Final Name Beaverdam Branch Watershed Background/Ambient Data Data Source pH pH (SU) 7.3 WQN252; median July to Sept Temperature (°C) 19.5 WQN252; median July to Sept Hardness (mg/L) 120 WQN252; median July to Sept Other:	Drainage Area	9.87		Yield (cfs/mi ²)	0.1643		
Watershed No. 11-A Chapter 93 Class. TSF, MF Existing Use Same as Chapter 93 Existing Use Qualifier None Exceptions to Use Exceptions to Criteria None Assessment Status Impaired for aquatic life None Cause(s) of Impairment Metals ACID MINE DRAINAGE, ACID MINE DRAINAGE Metals Source(s) of Impairment ACID MINE DRAINAGE, ACID MINE DRAINAGE Final Name Beaverdam Branch Watershed Background/Ambient Data Final Name Beaverdam Branch Watershed Metals Background/Ambient Data Data Source PH (SU) 7.3 WQN252; median July to Sept Temperature (°C) 19.5 WQN252; median July to Sept Hardness (mg/L) 120 WQN252; median historical Other:	Q ₇₋₁₀ Flow (cfs)	1.62		Q7-10 Basis	StreamStats/Stream Gauge		
Existing Use Same as Chapter 93 Existing Use Qualifier Exceptions to Use Exceptions to Criteria None Assessment Status Impaired for aquatic life None Cause(s) of Impairment Metals ACID MINE DRAINAGE, ACID MINE DRAINAGE Source(s) of Impairment ACID MINE DRAINAGE, ACID MINE DRAINAGE Final TMDL Status Final Name Beaverdam Branch Watershed Background/Ambient Data Data Source PH (SU) 7.3 WQN252; median July to Sept Temperature (°C) 19.5 WQN252; median July to Sept PM QN252; median historical Other: 120 WQN252; median historical PW QN252; median historical Nearest Downstream Public Water Supply Intake Mifflintown Municipal Authority Pws Waters Juniata River Flow at Intake (cfs)	Elevation (ft)	1367		Slope (ft/ft)			
Exceptions to Use Exceptions to Criteria None Assessment Status Impaired for aquatic life Impaired for aquatic life Cause(s) of Impairment Metals Metals Source(s) of Impairment ACID MINE DRAINAGE, ACID MINE DRAINAGE Impaired for aquatic life TMDL Status Final Name Beaverdam Branch Watershed Background/Ambient Data Data Source Data Source pH (SU) 7.3 WQN252; median July to Sept Temperature (°C) 19.5 WQN252; median July to Sept Hardness (mg/L) 120 WQN252; median historical Other: Nearest Downstream Public Water Supply Intake Mifflintown Municipal Authority PWS Waters Juniata River Flow at Intake (cfs)	Watershed No.	11-A		Chapter 93 Class.	TSF, MF		
Assessment Status Impaired for aquatic life Cause(s) of Impairment Metals Source(s) of Impairment ACID MINE DRAINAGE, ACID MINE DRAINAGE TMDL Status Final Background/Ambient Data Data Source pH (SU) 7.3 Temperature (°C) 19.5 Hardness (mg/L) 120 Other: WQN252; median July to Sept Nearest Downstream Public Water Supply Intake Mifflintown Municipal Authority PWS Waters Juniata River Flow at Intake (cfs)	Existing Use	Same	as Chapter 93	Existing Use Qualifier			
Cause(s) of Impairment Metals Source(s) of Impairment ACID MINE DRAINAGE, ACID MINE DRAINAGE TMDL Status Final Name Background/Ambient Data Data Source pH (SU) 7.3 WQN252; median July to Sept Temperature (°C) 19.5 WQN252; median July to Sept Hardness (mg/L) 120 WQN252; median historical Other: Metals Mifflintown Municipal Authority PWS Waters Juniata River Flow at Intake (cfs)	Exceptions to Use			Exceptions to Criteria	None		
Source(s) of Impairment ACID MINE DRAINAGE, ACID MINE DRAINAGE TMDL Status Final Name Beaverdam Branch Watershed Background/Ambient Data Data Source pH (SU) 7.3 WQN252; median July to Sept Temperature (°C) 19.5 WQN252; median July to Sept Hardness (mg/L) 120 WQN252; median historical Other: Nearest Downstream Public Water Supply Intake Mifflintown Municipal Authority PWS Waters Juniata River Flow at Intake (cfs)	Assessment Status		Impaired for aquatic life				
TMDL Status Final Name Beaverdam Branch Watershed Background/Ambient Data Data Source pH (SU) 7.3 WQN252; median July to Sept Temperature (°C) 19.5 WQN252; median July to Sept Hardness (mg/L) 120 WQN252; median historical Other: Mifflintown Municipal Authority PWS Waters Juniata River Flow at Intake (cfs)	Cause(s) of Impairm	nent	Metals				
Background/Ambient Data Data Source pH (SU) 7.3 WQN252; median July to Sept Temperature (°C) 19.5 WQN252; median July to Sept Hardness (mg/L) 120 WQN252; median historical Other: Mifflintown Municipal Authority PWS Waters Juniata River Flow at Intake (cfs)	Source(s) of Impairr	ment	ACID MINE DRAINAGE,	ACID MINE DRAINAGE			
pH (SU) 7.3 WQN252; median July to Sept Temperature (°C) 19.5 WQN252; median July to Sept Hardness (mg/L) 120 WQN252; median historical Other: Mifflintown Municipal Authority PWS Waters Juniata River Flow at Intake (cfs)	TMDL Status		Final	Name Beaverdam	Branch Watershed		
pH (SU) 7.3 WQN252; median July to Sept Temperature (°C) 19.5 WQN252; median July to Sept Hardness (mg/L) 120 WQN252; median historical Other: Mifflintown Municipal Authority PWS Waters Juniata River Flow at Intake (cfs)							
Temperature (°C) 19.5 WQN252; median July to Sept Hardness (mg/L) 120 WQN252; median historical Other: Mifflintown Municipal Authority Nearest Downstream Public Water Supply Intake Mifflintown Municipal Authority PWS Waters Juniata River Flow at Intake (cfs)	-	nt Data					
Hardness (mg/L) 120 WQN252; median historical Other: Mifflintown Municipal Authority Nearest Downstream Public Water Supply Intake Mifflintown Municipal Authority PWS Waters Juniata River							
Other:	•				t		
Nearest Downstream Public Water Supply Intake Mifflintown Municipal Authority PWS Waters Juniata River Flow at Intake (cfs)			120	WQN252; median historical			
PWS Waters Juniata River Flow at Intake (cfs)	Other:						
PWS Waters Juniata River Flow at Intake (cfs)	Nearest Downstrear	m Public	c Water Supply Intake	Mifflintown Municipal Authority	V		
					106		

5.0: Overview of Presiding Water Quality Standards

5.1 General

There are at least six (6) different policies which determines the effluent performance limits for the NPDES permit. The policies are technology based effluent limits (TBEL), water quality based effluent limits (WQBEL), antidegradation, total maximum daily loading (TMDL), anti-backsliding, and whole effluent toxicity (WET) The effluent performance limitations enforced are the selected permit limits that is most protective to the designated use of the receiving waters. An overview of each of the policies that are applicable to the subject facility has been presented in Section 6.

5.2 Technology-Based Limitations

TBEL treatment requirements under section 301(b) of the Act represent the minimum level of control that must be imposed in a permit issued under section 402 of the Act (40 CFR 125.3).

Water treatment plants are subject to the following TBEL effluent limits.

Parameter	Monthly Average	Daily Max		
Parameter	mg/l	mg/l		
Suspended Solids	30	60		
Iron (total)	2	4		
Aluminum (total)	4	8		
Manganese (total)	1	2		
рН	6 - 9			
TRC	0.5	1		
Notes:				
Source: TECHNOLOG	Y-BASED CONTROL			
REQUIREMENTS FOR	WATER TREATMEN	T PLANT WASTES		

5.2.2 Mass Based Limits

For publicly owned treatment works (POTW), mass loadings are calculated based upon design flow rate of the facility and the permit limit concentration. The generalized calculation for mass loadings is shown below:

Quantity
$$\left(\frac{lb}{day}\right) = (MGD)(Concentration)(8.34)$$

5.3 Water Quality-Based Limitations

WQBEL are based on the need to attain or maintain the water quality criteria and to assure protection of designated and existing uses (PA Code 25, Chapter 92a.2). The subject facility that is typically enforced is the more stringent limit of either the TBEL or the WQBEL.

Determination of WQBEL is calculated by spreadsheet analysis or by a computer modeling program developed by DEP. DEP permit engineers utilize the following computing programs for WQBEL permit limitations: (1) MS Excel worksheet for Total Residual Chorine (TRC); (2) WQM 7.0 for Windows Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen Version 1.0 (WQM Model) and (3) PENTOXSD for Windows 2.0 (PENTOXSD) for Toxics pollutants.

5.3.1 Water Quality Modeling 7.0

The facility is not subject to WQM.

5.3.2 Toxics Modeling

Modeling was not completed.

The facility discharges into Lake Altoona which is an 82-acre lake. Best professional judgment yields sufficient dilution. Technology based effluent limits have been applied for the permit. The facility will be subject to a local TMDL.

5.3.3 Whole Effluent Toxicity (WET)

WET is not applicable to the subject facility.

5.4 Total Maximum Daily Loading (TMDL)

5.4.1 TMDL

The goal of the Clean Water Act (CWA), which governs water pollution, is to ensure that all of the Nation's waters are clean and healthy enough to support aquatic life and recreation. To achieve this goal, the CWA created programs designed to regulate and reduce the amount of pollution entering United States waters. Section 303(d) of the CWA requires states to assess their waterbodies to identify those not meeting water quality standards. If a waterbody is not meeting standards, it is listed as impaired and reported to the U.S. Environmental Protection Agency. The state then develops a plan to clean up the impaired waterbody. This plan includes the development of a Total Maximum Daily Load (TMDL) for the pollutant(s) that were found to be the cause of the water quality violations. A Total Maximum Daily Load (tmdl) calculates the maximum amount of a specific pollutant that a waterbody can receive and still meet water quality standards.

Pennsylvania has committed to restoring all impaired waters by developing TMDLs and TMDL alternatives for all impaired waterbodies. The TMDL serves as the starting point or planning tool for restoring water quality.

5.4.1.1 Local TMDL

The subject facility discharges into a local TMDL named the Beaverdam Branch TMDL.

Beaverdam Branch flows about six miles from its headwaters to its confluence with the Frankstown Branch Juniata River. The entire length of Beaverdam Branch is listed as impaired, as well as three of its tributaries: Mill Run, Sugar Run, and Burgoon Run.

Due to high levels of metals, a Total Maximum Daily Load (TMDL) was developed for a stream segment in the Beaverdam Branch Watershed. The sources of the impairments are listed as urban runoff/storm sewers and combined sewer overflows (CSOs). The TMDL addresses the two primary metals (iron and aluminum) which have been identified as the causes of impairment in the watershed. Beaverdam Branch is listed for abandoned mine drainage.

The table below summarizes the TMDL waste load allocation for Altoona Water Treatment Plant (PA0082538).

TMDL	Waste Load Allocation for	Altoona Water (P	A0082538)
Parameter	Monthly Average Allowable Concentration	Flow	Allowable Load
	mg/l	MGD	lbs/day
Iron	2.0	0.19	3.2
Aluminum	4.0	0.19	6.3
Notes:			
- Beaverdam Branch	Watershed TMDL, Table 5		

5.4.1.2 Chesapeake Bay TMDL Requirement

The Chesapeake Bay Watershed is a large ecosystem that encompasses approximately 64,000 square miles in Maryland, Delaware, Virginia, West Virginia, Pennsylvania, New York and the District of Columbia. An ecosystem is composed of interrelated parts that interact with each other to form a whole. All of the plants and animals in an ecosystem depend on each other in some way. Every living thing needs a healthy ecosystem to survive. Human activities affect the Chesapeake Bay ecosystem by adding pollution, using resources and changing the character of the land.

Most of the Chesapeake Bay and many of its tidal tributaries have been listed as impaired under Section 303(d) of the federal Water Pollution Control Act ("Clean Water Act"), 33 U.S.C. § 1313(d). While the Chesapeake Bay is outside the boundaries of Pennsylvania, more than half of the State lies within the watershed. Two major rivers in Pennsylvania are part of the Chesapeake Bay Watershed. They are (a) the Susquehanna River and (b) the Potomac River. These two rivers total 40 percent of the entire Chesapeake Bay watershed.

The overall management approach needed for reducing nitrogen, phosphorus and sediment are provided in the Bay TMDL document and the Phase I, II, and III WIPs which is described in the Bay TMDL document and Executive Order 13508.

The Bay TMDL is a comprehensive pollution reduction effort in the Chesapeake Bay watershed identifying the necessary pollution reductions of nitrogen, phosphorus and sediment across the seven Bay watershed jurisdictions of Delaware, Maryland, New York, Pennsylvania, Virginia, West Virginia and the District of Columbia to meet applicable water quality standards in the Bay and its tidal waters.

The Watershed Implementation Plans (WIPs) provides objectives for how the jurisdictions in partnership with federal and local governments will achieve the Bay TMDL's nutrient and sediment allocations.

Phase 3 WIP provides an update on Chesapeake Bay TMDL implementation activities for point sources and DEP's current implementation strategy for wastewater. The latest revision of the supplement was December 17, 2019.

The Chesapeake Bay TMDL (Appendix Q) categorizes point sources into four sectors:

- Sector A- significant sewage dischargers;
- Sector B- significant industrial waste (IW) dischargers;
- Sector C- non-significant dischargers (both sewage and IW facilities); and
- Sector D- combined sewer overflows (CSOs).

All sectors contain a listing of individual facilities with NPDES permits that were believed to be discharging at the time the TMDL was published (2010). All sectors with the exception of the non-significant dischargers have individual wasteload allocations (WLAs) for TN and TP assigned to specific facilities. Non-significant dischargers have a bulk or aggregate allocation for TN and TP based on the facilities in that sector that were believed to be discharging at that time and their estimated nutrient loads.

Based upon the supplement the subject facility has been categorized as a Sector C discharger. The supplement defines Sector C as a non-significant dischargers include sewage facilities (Phase 4 facilities: ≥ 0.2 MGD and < 0.4 MGD and Phase 5 facilities: > 0.002 MGD and < 0.2 MGD), small flow/single residence sewage treatment facilities (≤ 0.002 MGD), and non-significant IW facilities, all of which may be covered by statewide General Permits or may have individual NPDES permits.

For non-significant IW facilities, monitoring and reporting of TN and TP will be required throughout the permit term in renewed or amended permits anytime the facility has the potential to introduce a net TN or TP increase to the load contained within the intake water used in processing.

Non-significant IW facilities that propose expansion or production increases and as a result will discharge at least 75 lbs/day TN or 25 lbs/day TP (on an annual average basis), will be classified as Significant IW dischargers and receive Cap Loads in their permits based on existing performance (existing TN/TP concentrations at current average annual flow).

In general, for new non-significant IW discharges (including existing facilities discharging without a permit), DEP will issue permits containing Cap Loads of "0" and these facilities will be expected to purchase credits and/or apply offsets to achieve compliance.

This facility is subject to Sector C monitoring requirements. Monitoring has been recommended at least 1x/yr.

5.5 Anti-Degradation Requirement

Chapter 93.4a of the PA regulations requires that surface water of the Commonwealth of Pennsylvania may not be degraded below levels that protect the existing uses. The regulations specifically state that *Existing instream water uses and the level of water quality necessary to protect the existing uses shall be maintained and protected*. Antidegradation requirements are implemented through DEP's guidance manual entitled Water Quality Antidegradation Implementation Guidance (Document #391-0300-02).

The policy requires DEP to protect the existing uses of all surface waters and the existing quality of High Quality (HQ) and Exceptional Value (EV) Waters. Existing uses are protected when DEP makes a final decision on any permit or approval for an activity that may affect a protected use. Existing uses are protected based upon DEP's evaluation of the best available information (which satisfies DEP protocols and Quality Assurance/Quality Control (QA/QC) procedures) that indicates the protected use of the waterbody.

For a new, additional, or increased point source discharge to an HQ or EV water, the person proposing the discharge is required to utilize a nondischarge alternative that is cost-effective and environmentally sound when compared with the cost of the proposed discharge. If a nondischarge alternative is not cost-effective and environmentally sound, the person must use the best available combination of treatment, pollution prevention, and wastewater reuse technologies and assure that any discharge is nondegrading. In the case of HQ waters, DEP may find that after satisfaction of intergovernmental coordination and public participation requirements lower water quality is necessary to accommodate important economic or social development in the area in which the waters are located. In addition, DEP will assure that cost-effective and reasonable best management practices for nonpoint source control in HQ and EV waters are achieved.

The subject facility's discharge will be to a non-special protection waters and the permit conditions are imposed to protect existing instream water quality and uses. Neither HQ waters or EV waters is impacted by this discharge.

5.6 Anti-Backsliding

Anti-backsliding is a federal regulation which prohibits a permit from being renewed, reissued, or modified containing effluent limitations which are less stringent than the comparable effluent limitations in the previous permit (40 CFR 122.I.1 and 40 CFR 122.I.2). A review of the existing permit limitations with the proposed permit limitations confirm that the facility is consistent with anti-backsliding requirements. The facility has proposed effluent limitations that are as stringent as the existing permit.

6.0 NPDES Parameter Details

The basis for the proposed sampling and their monitoring frequency that will appear in the permit for each individual parameter are itemized in this Section. The final limits are the more stringent of technology based effluent treatment (TBEL) requirements, water quality based (WQBEL) limits, TMDL, antidegradation, anti-degradation, or WET.

The reader will find in this section:

- a) a justification of recommended permit monitoring requirements and limitations for each parameter in the proposed NPDES permit;
- b) a summary of changes from the existing NPDES permit to the proposed permit; and
- c) a summary of the proposed NPDES effluent limits.

6.1 Recommended Monitoring Requirements and Effluent Limitations

A summary of the recommended monitoring requirements and effluent limitations are itemized in the tables. The tables are categorized by (a) Conventional Pollutants and Disinfection, (b) Nitrogen Species and Phosphorus, and (c) Toxics.

The facility discharges into Lake Altoona which is an 82-acre lake. Best professional judgment yields sufficient dilution. Technology based effluent limits have been applied for the permit. The facility will be subject to a local TMDL.

6.1.1 Conventional Pollutants and Disinfection

	Summary o		PDES Parameter Details for Conventional Pollutants and Disinfection
		Altoor	na Water Authority- Andronic Pappas; PA0082538
Parameter	Permit Limitation Required by ¹ :		Recommendation
		Monitoring:	The monitoring frequency shall be daily as a grab sample (Table 6-4).
		Effluent Limit:	Effluent limits may range from $pH = 6.0$ to 9.0
рН (S.U.)	TBEL	Rationale:	The monitoring frequency has been assigned in accordance with Table 6-4 and the effluent limits assigned by Chapter 95.2(1) and Technology Based Control Requirements for Water Treatment Plant Wastes
		Monitoring:	The monitoring frequency shall be on a daily basis as a grab sample.
		Effluent Limit:	The average monthly limit should not exceed 0.4 mg/l and/or 1.4 mg/l as an instantaneous maximum.
TRC	WQBEL	Rationale:	Chlorine in both combined (chloramine) and free form is extremely toxic to freshwater fish and other forms of aquatic life (Implementation Guidance Total Residual Chlorine 1). The TRC effluent limitations to be imposed on a discharger shall be the more stringent of either the WQBEL or TBEL requirements and shall be expressed in the NPDES permit as an average monthly and instantaneous maximum effluent concentration (Implementation Guidance Total Residual Chlorine 4). Based on the stream flow rate (lowest 7-day flow rate in 10 years) and the design flow rate of the subject facility calculated by the TRC Evaluation worksheet, the WQBEL is more stringent than the TBEL.
		Monitoring:	The monitoring frequency shall be 1/week as a 24-hr composite sample (Table 6-4).
TSS	DEP Guidance Document- Water Treatment Plant	Effluent Limit:	The effluent limit should not exceed 30 mg/l as an average monthly.
	Wastes	Rationale:	The monitoring frequency has been assigned in accordance with Table 6-4 and the effluent limits assigned by Technology Based Control Requirements for Water Treatment Plant Wastes.
Notes:			
1 The NPDES	permit was limited by	(a) anti-Backsli	ding, (b) Anti-Degradation, (c) SOP, (d) TBEL, (e) TMDL, and/or (f) WQBEL
2 Monitoring f	requency based on flow	w rate of 0.35 N	/GD.
			trial Discharges) in Technical Guidance for the Development and Specification of Effluent Permits) (Document # 362-0400-001) Revised 10/97
4 Water Quali	ty Antidegradation Imp	lementaton Gui	dance (Document # 391-0300-002)
- DI		-	

5 Phase 2 Watershed Implementation Plan Wastewater Supplement, Revised September 6, 2017

6.1.2 Nitrogen Species and Phosphorus

		Altoor	a Water Authority- Andronic Pappas; PA0082538
Parameter	Permit Limitation Required by ¹ :		Recommendation
		Monitoring:	The monitoring frequency shall be 1x/yr as a 24-hr composite sample
TotalCheapeake BayNitrogenTMDL	Effluent Limit:	No effluent requirements.	
	TMDL	Rationale:	Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at least 1x/yr.
		Monitoring:	The monitoring frequency shall be 1x/yr as a 24-hr composite sample
Total	Cheapeake Bay	Effluent Limit:	No effluent requirements.
Phosphorus	TMDL	Rationale:	Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at least 1x/yr.
Notes:			
The NPDES	permit was limited by	(a) anti-Backsli	ding, (b) Anti-Degradation, (c) SOP, (d) TBEL, (e) TMDL, and/or (f) WQBEL
2 Monitoring fr	equency based on flo	w rate of 0.35 M	NGD.
•	• .		trial Discharges) in Technical Guidance for the Development and Specification of Effluent Permits) (Document # 362-0400-001) Revised 10/97
			dance (Document # 391-0300-002)

5 Phase 2 Watershed Implementation Plan Wastewater Supplement, Revised September 6, 2017

6.1.3 Toxics

6.1.3.2 Summary of Toxics Monitoring/Limits

		Altoor	na Water Authority- Andronic Pappas; PA0082538
Parameter	Permit Limitation Required by ¹ :		Recommendation
	DEP Guidance	Monitoring:	The monitoring frequency shall be 1x/wk as a 24-hr composite sample (Table 6-4).
Total	Document- Water Treatment Plant	Effluent Limit:	The effluent limit should not exceed 4.0 mg/l as an average monthly. The TMDL load shall not exceed 6.3 lbs/day.
Aluminum Wastes- TBEL/ Beaverdam BranchTMDL	Rationale:	The monitoring frequency has been assigned in accordance with Table 6-4 and the effluent limits assigned by TBEL and TMDL. Limits are established by the Technology Based Control Requirements for Water Treatment Plant Wastes and the TMDL loadings from the Beaverdam Branch Watershed TMDL- Blair and Cambria Counties.	
	DEP Guidance	Monitoring:	The monitoring frequency shall be 1x/wk as a 24-hr composite sample (Table 6-4).
Total Iron Beaverdan	Document- Water	Effluent Limit:	The effluent limit should not exceed 2 mg/l as an average monthly. The TMDL load shall not exceed 3.2 lbs/day.
	Wastes- TBEL/ Beaverdam BranchTMDL	Rationale:	The monitoring frequency has been assigned in accordance with Table 6-4 and the effluent limit assigned by TBEL and TMDL. Limits are established by the Technology Based Control Requirements for Water Treatment Plant Wastes and the TMDL loadings from the Beaverdam Branch Watershed TMDL- Blair and Cambria Counties.
		Monitoring:	The monitoring frequency shall be 1x/wk as a 24-hr composite sample (Table 6-4).
T . (.)	DEP Guidance	Effluent Limit:	
Total Manganese	Document- Water Treatment Plant Wastes- TBEL	Rationale:	The monitoring frequency has been assigned in accordance with Table 6-4 and the effluent limit assigned by Technology Based Control Requirements for Water Treatment Plant Wastes.
lotes:			
The NPDES	permit was limited by	(a) anti-Backsli	ding, (b) Anti-Degradation, (c) SOP, (d) TBEL, (e) TMDL, and/or (f) WQBEL
	requency based on flo		
0			trial Discharges) in Technical Guidance for the Development and Specification of Effluent

5 Phase 2 Watershed Implementation Plan Wastewater Supplement, Revised September 6, 2017

6.2 Summary of Changes From Existing Permit to Proposed Permit

A summary of how the proposed NPDES permit differs from the existing NPDES permit is summarized as follows.

• There are no changes to the monitoring frequency or effluent limit requirements.

6.3.1 Summary of Proposed NPDES Effluent Limits

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

The proposed NPDES effluent limitations are summarized in the table below.

PART A - EFFLUENT LIMITATIONS, MONITORING, RECORDKEEPING AND REPORTING REQUIREMENTS

I.A. For Outfall 001 , Latitude 40° 29' 38.00" , Longitude 78° 27' 55.00" , River Mile Index 3.7 , Stream Code 16416

Receiving Waters: Burgoon Run (TSF)

Type of Effluent: Water Treatment Effluent

1. The permittee is authorized to discharge during the period from <u>Permit Effective Date</u> through <u>Permit Expiration Date</u>.

2. Based on the anticipated wastewater characteristics and flows described in the permit application and its supporting documents and/or amendments, the following effluent limitations and monitoring requirements apply (see also Additional Requirements and Footnotes).

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	; (lbs/day) (1)		Concentrat	tions (mg/L)		Minimum (2)	Required
Falanetei	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
Total Residual Chlorine (TRC)	XXX	XXX	XXX	0.4	XXX	1.4	1/day	Grab
Total Suspended Solids	Report	Report	XXX	30	60	75	1/week	24-Hr Composite
Total Nitrogen	XXX	XXX	XXX	Report Appl Avg	XXX	XXX	1/year	Calculation
Total Nitrogen (Total Load, Ibs) (Ibs)	XXX	Report Total Annual	XXX	XXX	XXX	XXX	1/year	Calculation
Total Phosphorus	XXX	XXX	XXX	Report Appl Avg	XXX	XXX	1/year	24-Hr Composite
Total Phosphorus (Total Load, Ibs) (Ibs)	XXX	Report Total Annual	XXX	XXX	xxx	XXX	1/vear	Calculation
Aluminum, Total	6.3	Report	XXX	4.0	8.0	9	1/week	24-Hr Composite
Iron, Total	3.2	Report	XXX	2.0	4.0	5	1/week	24-Hr Composite
Manganese, Total	Report	Report	XXX	1.0	2.0	2.5	1/week	24-Hr Composite

6.3.2 Summary of Proposed Permit Part C Conditions

The subject facility has the following Part C conditions.

- Chlorine Minimization
- Chesapeake Bay Nutrient Definitions
- Water Treatment Plant Basin Cleaning

	Tools and References Used to Develop Permit
	WQM for Windows Model (see Attachment
	PENTOXSD for Windows Model (see Attachment)
	TRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment)
	Toxics Screening Analysis Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
Π	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000- 002, 4/97.
<u> </u>	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
<u> </u>	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
<u> </u>	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
\square	SOP: New and Reissuance Industrial Waste and Industrial Stormwater
	Other:

Attachment A

Stream Stats/Gauge Data

Table 1. List of U.S. Geological Survey streamgage locations in and near Pennsylvania with updated streamflow statistics.-Continued

[Latitude and Longitude in decimal degrees; mi², square miles]

01541308 Bradley Run near Ashville, Pa. 40.509 -78.584 6.77 N 01541300 Clearfield Creek at Dimeling, Pa. 40.972 -78.406 371 Y 01542000 Moshannon Creek at Osceola Mills, Pa. 40.850 -78.268 68.8 N 01542500 WB Susquehanna River at Karthaus, Pa. 41.118 -78.109 1,462 Y 01542810 Waldy Run near Emporium, Pa. 41.579 -78.293 5.24 N 01543000 Driftwood Branch Sinnemahoning Creek at Sterling Run, Pa. 41.317 -78.103 685 N 01543500 Sinnemahoning Creek near Sinnemahoning, Pa. 41.402 -78.024 245 Y 01544500 Kettle Creek at Cross Fork, Pa. 41.476 -77.874 233 Y	Streamgage number	Streamgage name	Latitude	Longitude	Drainage area (mi²)	Regulated
D1541308 Bradley Run paer Ashrülle, Pa. 40.509 -78.584 6.77 N D1541500 Clearfield Creek at Oixeela Mills, Pa. 40.872 -78.406 371 Y D1541500 Wohshmon Creek at Oixeela Mills, Pa. 40.857 -78.268 68.8 N D154200 Wohshmon Creek at Oixeela Mills, Pa. 41.118 -78.109 1,462 Y D154300 Driftwood Branch Sinnemahoning, Creek at Sterling Run, Pa. 41.413 -78.197 272 N D154300 Driftwood Branch Sinnemahoning, Pa. 41.131 -78.103 685 N D154400 Fertle Creek at Cross Fork, Pa. 41.320 -77.874 233 Y D154500 Kertle Creek ner Westport, Pa. 41.320 -77.774 2.975 Y D154500 West Branch Staquehanna River at Renovo, Pa. 41.350 -77.761 46.2 N D154500 West Branch Staquehanna, Pa. 40.834 -77.782 58.5 N D154500 Spring Creek at Houserville, Pa. 40.830 -77.786 142 N D154500 Spring Creek at At Milesburg, Pa. 40.83	01541303	West Branch Susquehanna River at Hyde, Pa.	41.005	-78.457	474	Y
D154200 Moshanaou Creek et Osceol Mülls, Pa. 40.850 -78.268 68.8 N D154200 WB Susgehanna River at Karthaus, Pa. 41.178 -78.109 1,462 Y D154200 Driftwood Branch Sinnemahoning Creek at Sterling Run, Pa. 41.131 -78.107 27.2 N D154300 Driftwood Branch Sinnemahoning Creek at Sterling Run, Pa. 41.131 -78.107 685 N D154400 Furt Fork Sinnemahoning Creek at Sinnemahoning, Pa. 41.807 -77.8103 685 N D154500 Kettle Creek at RWestport, Pa. 41.320 -77.874 233 Y D154500 West Branch Susquehanna River at Renovo, Pa. 41.320 -77.781 2,975 Y D154500 Young Wonanas Creek near Renovo, Pa. 41.390 -77.761 46.2 N D154600 Spring Creek at Houserville, Pa. 40.834 -77.878 2.85 N D154400 Spring Creek at Houserville, Pa. 40.980 -77.794 87.2 N D154400 Spring Creek at Milesburg, Pa. 40.980 -77.794 87.2 N D154700 Bald Eagle	01541308		40.509	-78.584	6.77	N
D1542500 WB Susquehama River at Karthane, Pa. 41.118 -78.109 1,462 Y D1542100 Waldy Run near Emportum, Pa. 41.579 -78.293 5.24 N D1543000 Simmemahoning Creek at Simmemahoning, Pa. 41.317 -78.103 665 N D154500 Simmemahoning Creek at Simmemahoning, Pa. 41.402 -78.102 213 Y D154500 Kettle Creek near Westport, Pa. 41.320 -77.751 2.975 Y D154500 West Branch Suxquehama River at Renovo, Pa. 41.320 -77.781 119 N D154600 North Bald Eagle Creek at Milesburg, Pa. 40.042 -77.794 87.2 N D154600 Spring Creek at Milesburg, Pa. 40.890 -77.794 87.2 N D154700 Bald Eagle Creek at Milesburg, Pa. 40.932 -77.786 142 N D154700 Spring Creek at Blanchard, Pa. 41.052 -77.604 339 Y D154700 Bald Eagle Creek at Simon, Pa. 41.052 -77.604 319 Y D154700 Bald Eagle Creek at Simon, Pa. 41.052 -	01541500	Clearfield Creek at Dimeling, Pa.	40.972	-78.406	371	Y
D1542810 Waldy Pam near Emporium, Pa. 41.579 -78.293 5.24 N D1543000 Driftwood Branch Sinnemahoning Creek at Sterling Run, Pa. 41.131 -78.197 272 N D1544000 First Fork Sinnemahoning Creek near Sinnemahoning, Pa. 41.137 -78.103 685 N D1544000 First Fork Sinnemahoning Creek near Sinnemahoning, Pa. 41.402 -78.024 245 Y D1545000 Kettle Creek are Westport, Pa. 41.320 -77.874 233 Y D1545000 West Branch Susquehama River at Renovo, Pa. 41.320 -77.871 2.975 Y D1546000 North Bald Eagle Creek at Milesburg, Pa. 40.834 -77.823 88.5 N D1546000 Spring Creek at Mouserville, Pa. 40.834 -77.823 88.5 N D1547000 Spring Creek at Milesburg, Pa. 40.834 -77.784 87.2 N D1547000 Bald Eagle Creek hillesburg, Pa. 40.933 -77.786 142 N D1547000 Bald Eagle Creek at Milesburg, Pa. 41.052 -77.864 39 Y D1547000 Bald Eagle C	01542000		40.850	-78.268	68.8	N
D1542810 Waldy Pam near Emporium, Pa. 41.579 -78.293 5.24 N D1543000 Driftwood Branch Sinnemahoning Creek at Sterling Run, Pa. 41.131 -78.197 272 N D1544000 First Fork Sinnemahoning Creek near Sinnemahoning, Pa. 41.137 -78.103 685 N D1544000 First Fork Sinnemahoning Creek near Sinnemahoning, Pa. 41.402 -78.024 245 Y D1545000 Kettle Creek are Westport, Pa. 41.320 -77.874 233 Y D1545000 West Branch Susquehama River at Renovo, Pa. 41.320 -77.871 2.975 Y D1546000 North Bald Eagle Creek at Milesburg, Pa. 40.834 -77.823 88.5 N D1546000 Spring Creek at Mouserville, Pa. 40.834 -77.823 88.5 N D1547000 Spring Creek at Milesburg, Pa. 40.834 -77.784 87.2 N D1547000 Bald Eagle Creek hillesburg, Pa. 40.933 -77.786 142 N D1547000 Bald Eagle Creek at Milesburg, Pa. 41.052 -77.864 39 Y D1547000 Bald Eagle C	01542500		41.118	-78.109	1.462	Y
D1543000 Driftwood Branch Sinnemahoning Creek at Sterling Run, Pa. 41.413 -78.197 272 N D154300 Sinnemahoning Creek at Sinnemahoning, Pa. 41.317 -78.103 685 N D1544000 First Fork Sinnemahoning, Creek atest Sinnemahoning, Pa. 41.476 -77.82.6 136 N D154500 Kettle Creek ater Wetport, Pa. 41.320 -77.87.4 2.33 Y D154500 Wett Branch Susquehanna River at Renovo, Pa. 41.320 -77.76.1 46.2 N D154500 Wett Branch Susquehanna River at Renovo, Pa. 40.942 -77.79.1 46.2 N D154500 North Bald Eagle Creek at Milesburg, Pa. 40.842 -77.521 58.5 N D154600 Spring Creek at Houserville, Pa. 40.932 -77.77.64 87.2 N D154700 Bald Eagle Creek at Milesburg, Pa. 40.932 -77.766 142 N D154700 Bald Eagle Creek at Milesburg, Pa. 41.052 -77.766 33.9 Y D154700 Bald Eagle Creek at Mournent, Pa. 41.052 -77.604 32.2 N D154700 Sor	01542810		41.579	-78.293		N
D1543500 Sinnemahoning Creek at Sinnemahoning, Pa. 41.317 -78.103 685 N D1544000 Furst Fork Sinnemahoning, Creek near Sinnemahoning, Pa. 41.407 -78.024 245 Y D1544000 Kettle Creek at Cross Fork, Pa. 41.320 -77.874 233 Y D1545000 Kettle Creek near Westport, Pa. 41.320 -77.874 233 Y D1545000 Young Wonnans Creek near Renovo, Pa. 41.320 -77.791 2.975 Y D1546000 North Bald Eagle Creek at Milesburg, Pa. 40.942 -77.794 119 N D1546000 Spring Creek at Milesburg, Pa. 40.834 -77.86 142 N D154700 Spring Creek at Milesburg, Pa. 40.932 -77.786 142 N D1547000 Bald Eagle Creek at Blanchard, Pa. 41.060 -77.66 44.1 N D1547000 Bald Eagle Creek at Blanchard, Pa. 41.024 -77.604 339 Y D1547000 Back Creek at Monumant, Pa. 41.024 -77.549 562	01543000		41.413	-78.197	272	N
D1544000 First Fork Simmemahoning Creek near Simmemahoning, Pa. 41.402 -78.024 245 Y D1544500 Kettle Creek at Cross Fork, Pa. 41.320 -77.826 136 N D154500 Kettle Creek at Rear Westport, Pa. 41.320 -77.874 233 Y D154500 West Branch Susquehana River at Renovo, Pa. 41.320 -77.751 2.975 Y D154500 North Bald Engle Creek at Milesburg, Pa. 40.942 -77.794 119 N D154600 Spring Creek at Houserville, Pa. 40.894 -77.826 58.5 N D154600 Spring Creek at Houserville, Pa. 40.932 -77.786 142 N D154700 Bald Engle Creek at Blanchard, Pa. 41.052 -77.64 339 Y D154700 South Fork Beech Creek arear Snow Shoe, Pa. 41.052 -77.604 42.2 N D154700 South Fork Beech Creek arear Snow Shoe, Pa. 41.024 -77.904 12.2 N D154700 Bald Engle Creek near Snow Shoe, Pa. 41.024 -77.904	01543500		41.317	-78.103	685	N
D1544500 Kettle Creek at Cross Fork, Pa. 41.476 -77.826 136 N D154500 Kettle Creek near Westport, Pa. 41.320 -77.874 233 Y D154500 West Branch Susquehanan River at Renovo, Pa. 41.320 -77.874 233 Y D154500 Young Womans Creek at Milesburg, Pa. 40.942 -77.751 2.975 Y D154600 Spring Creek at Milesburg, Pa. 40.943 -77.784 119 N D154600 Spring Creek at Milesburg, Pa. 40.934 -77.786 142 N D154700 Baid Eagle Creek at Blanchard, Pa. 41.052 -77.604 339 Y D154700 Baid Eagle Creek at Blanchard, Pa. 41.054 -77.704 87.2 N D154700 Baid Eagle Creek at Blanchard, Pa. 41.024 -77.704 339 Y D154700 Baid Eagle Creek at Blanchard, Pa. 41.024 -77.704 12.2 N D154700 Baid Eagle Creek at Rame Snow Shoe, Pa. 41.024 -77.84 62 Y	01544000					Y
D1545000 Kettle Creek near Westport, Pa. 41.320 -77.874 233 Y D1545500 West Branch Susquebanna River at Renovo, Pa. 41.320 -77.751 2,975 Y D1545500 North Bald Eagle Creek at Milesburg, Pa. 41.390 -77.691 46.2 N D1546000 North Bald Eagle Creek at Hilesburg, Pa. 40.834 -77.828 58.5 N D1546000 Spring Creek at Houserville, Pa. 40.832 -77.786 142 N D1547100 Spring Creek at Milesburg, Pa. 40.932 -77.786 265 N D1547200 Bald Eagle Creek at Blanchard, Pa. 41.062 -77.604 339 Y D1547700 Marsh Creek at Blanchard, Pa. 41.024 -77.904 12.2 N D1547700 Bald Eagle Creek at Blanchard, Pa. 41.101 -77.702 152 N D1547800 South Fork Beech Creek near Snow Shoe, Pa. 41.024 -77.904 12.2 N D1547800 Bald Eagle Creek at Monument, Pa. 41.112 -77.324 944 Y D1548000 Pine Creek anear Thout Rum, Pa. 41.274 <td>01544500</td> <td></td> <td></td> <td></td> <td></td> <td></td>	01544500					
01545500 West Branch Susquehama River at Renovo, Pa. 41.325 -77.751 2.975 Y 01545600 North Bald Eagle Creek near Renovo, Pa. 41.390 -77.791 46.2 N 01546000 North Bald Eagle Creek at Milesburg, Pa. 40.834 -77.828 58.5 N 01546000 Spring Creek at Houserville, Pa. 40.830 -77.794 87.2 N 0154700 Bald Eagle Creek at Milesburg, Pa. 40.943 -77.786 142 N 01547700 Bald Eagle Creek at Blanchard, Pa. 41.052 -77.604 339 Y 01547700 Marsh Creek at Blanchard, Pa. 41.064 -77.904 12.2 N 01547800 South Fork Beech Creek near Snow Shoe, Pa. 41.024 -77.404 12.2 N 01547800 Bald Eagle Creek ane Monument, Pa. 41.52 -77.447 604 N 01548005 Bald Eagle Creek near Waterville, Pa. 41.624 -77.337 750 N 01548000 Disc Creek at Monument, Pa. 41.525 -76.912 44						
D1545600 Young Womans Creek near Renovo, Pa. 41.390 -77.691 46.2 N D1546000 North Bald Eagle Creek at Milesburg, Pa. 40.942 -77.794 119 N D1546000 Spring Creek at Houserville, Pa. 40.834 -77.825 58.5 N D1547000 Bald Eagle Creek at Milesburg, Pa. 40.932 -77.786 142 N D1547100 Bald Eagle Creek at Blanchard, Pa. 41.052 -77.606 44.1 N D1547700 Marsh Creek at Blanchard, Pa. 41.060 -77.606 44.1 N D1547700 Bald Eagle Creek at Blanchard, Pa. 41.022 -77.606 44.1 N D1547800 South Fork Beech Creek Station, Pa. 41.024 -77.904 12.2 N D1548005 Bald Eagle Creek near Snow Shoe, Pa. 41.031 -77.739 750 N D1548000 Bine Creek at Coder Run, Pa. 41.122 -77.447 604 N D1549500 Biockhouse Creek near Tourt Run, Pa. 41.374 -77.324 944 Y D1549500 Diockhouse Creek near Tourt Run, Pa. 41.376 <t< td=""><td>01545500</td><td>• ·</td><td></td><td></td><td></td><td></td></t<>	01545500	• ·				
D1546000 North Bald Eagle Creek at Milesburg, Pa. 40.942 -77.794 119 N D1546000 Spring Creek at Houserville, Pa. 40.834 -77.828 \$8.5 N D1546500 Spring Creek at Milesburg, Pa. 40.932 -77.786 142 N D1547100 Bald Eagle Creek at Blanchard, Pa. 40.943 -77.786 265 N D1547700 Bald Eagle Creek at Blanchard, Pa. 41.052 -77.604 339 Y D1547700 Marsh Creek at Blanchard, Pa. 41.052 -77.604 44.1 N D1547800 South Fork Beech Creek near Snow Shoe, Pa. 41.024 -77.904 12.2 N D1547800 Bald Eagle Creek near Snow Shoe, Pa. 41.024 -77.549 562 Y D1548000 Pine Creek at Cedar Run, Pa. 41.313 -77.379 750 N D1549000 Pine Creek near Snow Kater, Pa. 41.474 -77.324 944 Y D1549000 Pine Creek near Tork Run, Pa. 41.236 -76.6997 5,682 Y		-			-	
D1546400 Spring Creek at Houserville, Pa. 40.834 -77.828 58.5 N D1546500 Spring Creek at Axemann, Pa. 40.890 -77.794 87.2 N D1547200 Bald Eagle Creek at Milesburg, Pa. 40.932 -77.786 142 N D1547200 Bald Eagle Creek at Blanchard, Pa. 41.052 -77.604 339 Y D1547700 Marsh Creek at Blanchard, Pa. 41.060 -77.606 44.1 N D1547800 South Fork Beech Creek at Blanchard, Pa. 41.024 -77.904 12.2 N D1547800 Bald Eagle Creek at Monument, Pa. 41.0124 -77.7904 12.2 N D1548005 Bald Eagle Creek near Beech Creek Station, Pa. 41.081 -77.549 562 Y D1548000 Pine Creek near Waterville, Pa. 41.522 -77.447 604 N D1549000 Pine Creek bear Materville, Pa. 41.474 -77.321 37.7 N D1549000 Biockhouse Creek near Trout Run, Pa. 41.226 -76.997 5,662 Y <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td>		-				
Spring Creek near Accemann, Pa. 40.890 -77.794 87.2 N D1547100 Spring Creek at Milesburg, Pa. 40.932 -77.786 142 N D1547200 Bald Eagle Creek below Spring Creek at Milesburg, Pa. 40.932 -77.786 142 N D1547200 Bald Eagle Creek tow Spring Creek at Milesburg, Pa. 41.052 -77.786 142 N D1547200 Marsh Creek at Blanchard, Pa. 41.052 -77.606 44.1 N D1547500 South Fork Beech Creek near Snow Shoe, Pa. 41.024 -77.904 12.2 N D1547950 Beech Creek at Monument, Pa. 41.024 -77.7904 12.2 N D1547950 Beech Creek at Deech Creek station, Pa. 41.021 -77.721 152 N D1548050 Pine Creek at Pace Reech Creek Station, Pa. 41.031 -77.379 750 N D1549000 Pine Creek at Marrille, Pa. 41.274 -77.31 37.7 N D1549500 Blockhouse Creek near Tout Run, Pa. 41.1474 -77.331 37.7						
D1547100 Spring Creek at Milesburg, Pa. 40.932 -77.786 142 N D1547200 Bald Eagle Creek below Spring Creek at Milesburg, Pa. 40.943 -77.786 265 N D1547500 Bald Eagle Creek at Blanchard, Pa. 41.062 -77.604 339 Y D1547500 South Fork Beech Creek at Blanchard, Pa. 41.024 -77.904 12.2 N D1547500 Beld Eagle Creek near Snow Shoe, Pa. 41.024 -77.904 12.2 N D1547500 Beech Creek at Monument, Pa. 41.031 -77.739 562 Y D1548500 Pine Creek near Beech Creek Station, Pa. 41.313 -77.379 750 N D1549500 Blockhouse Creek near English Center, Pa. 41.313 -77.324 944 Y D155000 Lycoming Creek near Trout Rm, Pa. 41.264 -77.933 173 N D155000 Lycoming Creek near Sonestown, Pa. 41.236 -76.897 5,682 Y D1551500 Muscy Creek at Waitingsport, Pa. 41.357 -76.535 23.8 <td></td> <td>• •</td> <td></td> <td></td> <td></td> <td></td>		• •				
D1547200 Bald Eagle Creek below Spring Creek at Milesburg, Pa. 40.943 -77.786 265 N D1547500 Bald Eagle Creek at Blanchard, Pa. 41.052 -77.604 339 Y D1547700 Marsh Creek at Blanchard, Pa. 41.060 -77.604 44.1 N D1547700 South Fork Beech Creek at Blanchard, Pa. 41.024 -77.904 12.2 N D1547800 Beech Creek at Monument, Pa. 41.021 -77.702 152 N D1548005 Bald Eagle Creek near Beech Creek Station, Pa. 41.081 -77.349 562 Y D1548500 Pine Creek at Cedar Run, Pa. 41.522 -77.447 604 N D1549500 Blockhouse Creek user English Center, Pa. 41.474 -77.321 37.7 N D1549700 Pine Creek near Tout Run, Pa. 41.418 -77.033 173 N D155000 Lycoming Creek near Sonestown, Pa. 41.325 -76.912 435 N D1551500 WB susquehana River at Williamsport, Pa. 41.059 -77.077 4.93 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
D1547500 Bald Eagle Creek at Blanchard, Pa. 41.052 -77.604 339 Y D1547700 Marsh Creek at Blanchard, Pa. 41.060 -77.606 44.1 N D1547700 South Fork Beech Creek at Blanchard, Pa. 41.024 -77.904 12.2 N D1547950 Beech Creek at Monument, Pa. 41.012 -77.549 562 Y D1548005 Bald Eagle Creek near Beech Creek Station, Pa. 41.051 -77.549 562 Y D1548050 Pine Creek near Waterville, Pa. 41.522 -77.447 604 N D1549000 Pine Creek near English Center, Pa. 41.474 -77.324 944 Y D155000 Blockhouse Creek near Tour Run, Pa. 41.418 -77.033 173 N D155000 Lycoming Creek near Sonestown, Pa. 41.325 -76.912 435 N D1551500 WB Susquehanna River at Williamsport, Pa. 41.357 -76.535 23.8 N D1553100 Loyalsock Creek at Loyalsockville, Pa. 40.059 -77.077 4.93						
D1547700 Marsh Creek at Blanchard, Pa. 41.060 -77.606 44.1 N D1547800 South Fork Beech Creek near Snow Shoe, Pa. 41.024 -77.904 12.2 N D1547800 Beech Creek at Monument, Pa. 41.112 -77.702 152 N D1548005 Bald Eagle Creek near Beech Creek Station, Pa. 41.081 -77.549 562 Y D1548500 Pine Creek at Cedar Run, Pa. 41.522 -77.447 604 N D1549500 Blockhouse Creek near English Center, Pa. 41.474 -77.321 37.7 N D1549500 Blockhouse Creek near Trout Run, Pa. 41.418 -77.033 173 N D155000 Lycoming Creek at Loyalsockville, Pa. 41.235 -76.6912 435 N D155100 WB Susquehana River at Williamsport, Pa. 41.059 -77.077 4.93 N D1552000 Loyalsock Creek at Loyalsockville, Pa. 41.059 -76.876 6.847 Y D1553100 Sand Spring Run near White Deer, Pa. 41.062 -76.680 51.3						
D1547800 South Fork Beech Creek near Snow Shoe, Pa. 41.024 -77.904 12.2 N D1547950 Beech Creek at Monument, Pa. 41.112 -77.702 152 N D1548005 Bald Eagle Creek near Beech Creek Station, Pa. 41.081 -77.549 562 Y D1548500 Pine Creek at Cedar Run, Pa. 41.522 -77.447 604 N D1549500 Blockhouse Creek near English Center, Pa. 41.474 -77.231 37.7 N D1549700 Pine Creek below Little Pine Creek near Waterville, Pa. 41.274 -77.324 944 Y D155000 Lycoming Creek near Trout Run, Pa. 41.325 -76.912 435 N D1552000 Loyalsock Creek at Loyalsockville, Pa. 41.357 -76.535 23.8 N D1552000 Muncy Creek near Somestown, Pa. 41.062 -76.886 51.3 N D1553700 Chillisquaque Creek at Washingtonville, Pa. 40.968 -76.876 6,847 Y D1554500 Shamokin Creek near Sunmokin, Pa. 40.810 -76.887 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
D1547950 Beech Creek at Monument, Pa. 41.112 -77.702 152 N D1548005 Bald Eagle Creek near Beech Creek Station, Pa. 41.081 -77.549 562 Y D1548000 Pine Creek at Cedar Run, Pa. 41.522 -77.447 604 N D1549000 Pine Creek near Waterville, Pa. 41.313 -77.379 750 N D1549500 Blockhouse Creek near English Center, Pa. 41.474 -77.324 944 Y D155000 Lycoming Creek near Trout Run, Pa. 41.274 -77.033 173 N D155000 Lycoming Creek near Trout Run, Pa. 41.326 -76.997 5,682 Y D155000 Loyalsock Creek at Loyalsockville, Pa. 41.325 -76.912 435 N D155200 Loyalsock Creek near Sonestown, Pa. 41.059 -77.077 4.93 N D155310 Sand Spring Run near White Deer, Pa. 40.059 -76.876 6,847 Y D1554500 Susquehana River at Lewisburg, Pa. 40.810 -76.584 54.2 N </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
D1548005 Bald Eagle Creek near Beech Creek Station, Pa. 41.081 -77.549 562 Y D1548500 Pine Creek at Cedar Run, Pa. 41.522 -77.447 604 N D1549000 Pine Creek near Waterville, Pa. 41.313 -77.379 750 N D1549000 Blockhouse Creek near English Center, Pa. 41.474 -77.324 944 Y D1549700 Pine Creek below Little Pine Creek near Waterville, Pa. 41.274 -77.324 944 Y D1550000 Lycoming Creek near Trout Run, Pa. 41.274 -77.324 944 Y D155100 Muscynehana River at Williamsport, Pa. 41.236 -76.997 5,682 Y D155200 Loyalsock Creek at Loyalsockville, Pa. 41.357 -76.535 23.8 N D155200 Muncy Creek near Sonestown, Pa. 41.059 -77.077 4.93 N D1553700 Chillisquaque Creek at Washingtonville, Pa. 40.835 -76.827 18.300 Y D1554000 Shamokin Creek near Shamokin, Pa. 40.831 -77.048						
D1548500 Pine Creek at Cedar Run, Pa. 41.522 -77.447 604 N D1549000 Pine Creek near Waterville, Pa. 41.313 -77.379 750 N D1549500 Blockhouse Creek near English Center, Pa. 41.474 -77.324 944 Y D1549700 Pine Creek below Little Pine Creek near Waterville, Pa. 41.274 -77.324 944 Y D155000 Lycoming Creek near Trout Run, Pa. 41.418 -77.033 173 N D155100 WB Susquehanna River at Williamsport, Pa. 41.325 -76.912 435 N D1551200 Loyalsock Creek at Loyalsockville, Pa. 41.357 -76.535 23.8 N D1551300 West Branch Susquehanna River at Lewisburg, Pa. 40.968 -76.876 6,847 Y D1553700 Chillisquaque Creek at Washingtonville, Pa. 40.835 -76.827 18,300 Y D1554000 Susquehanna River at Sumbury, Pa. 40.887 -77.048 301 N D1555500 Shamokin Creek near Shamokin, Pa. 40.810 -76.584		· · · · · · · · · · · · · · · · · · ·				
D1549000 Pine Creek near Waterville, Pa. 41.313 -77.379 750 N D1549500 Blockhouse Creek near English Center, Pa. 41.474 -77.324 944 Y D1549700 Pine Creek below Little Pine Creek near Waterville, Pa. 41.274 -77.324 944 Y D155000 Lycoming Creek near Trout Run, Pa. 41.418 -77.033 173 N D1551500 WB Susquehanna River at Williamsport, Pa. 41.325 -76.912 435 N D155200 Loyalsock Creek at Loyalsockville, Pa. 41.357 -76.535 23.8 N D155200 Muncy Creek near Sonestown, Pa. 41.059 -77.077 4.93 N D1553130 Sand Spring Run near White Deer, Pa. 41.062 -76.807 6,847 Y D1553700 Chillisquaque Creek at Washingtonville, Pa. 40.968 -76.827 18,300 Y D1554000 Susquehanna River at Sumbury, Pa. 40.810 -76.827 18,300 Y D1555000 Penns Creek at Penns Creek, Pa. 40.810 -76.812		-				
D1549500 Blockhouse Creek near English Center, Pa. 41.474 -77.231 37.7 N D1549700 Pine Creek below Little Pine Creek near Waterville, Pa. 41.274 -77.324 944 Y D155000 Lycoming Creek near Trout Run, Pa. 41.418 -77.033 173 N D155100 WB Susquehanna River at Williamsport, Pa. 41.236 -76.997 5,682 Y D155200 Loyalsock Creek at Loyalsockville, Pa. 41.325 -76.912 435 N D155200 Muncy Creek near Sonestown, Pa. 41.357 -76.535 23.8 N D1553130 Sand Spring Run near White Deer, Pa. 41.059 -77.077 4.93 N D1553700 Chillisquaque Creek at Washingtonville, Pa. 41.062 -76.680 51.3 N D1554000 Susquehanna River at Sumbury, Pa. 40.835 -76.827 18,300 Y D1554000 Susquehanna River at Sumbury, Pa. 40.810 -76.824 54.2 N D1555000 Penns Creek at Penns Creek, Pa. 40.611 -76.912						
D1549700 Pine Creek below Little Pine Creek near Waterville, Pa. 41.274 -77.324 944 Y 0155000 Lycoming Creek near Trout Run, Pa. 41.418 -77.033 173 N 0155100 WB Susquehanna River at Williamsport, Pa. 41.236 -76.997 5,682 Y 0155200 Loyalsock Creek at Loyalsockville, Pa. 41.325 -76.912 435 N 0155200 Muncy Creek near Sonestown, Pa. 41.357 -76.535 23.8 N 01553130 Sand Spring Run near White Deer, Pa. 41.059 -77.077 4.93 N 0155300 West Branch Susquehanna River at Lewisburg, Pa. 40.968 -76.876 6,847 Y 0155300 Susquehanna River at Sunbury, Pa. 40.835 -76.827 18,300 Y 0155400 Susquehanna River at Sunbury, Pa. 40.810 -76.584 54.2 N 0155500 Penns Creek near Shamokin, Pa. 40.867 -77.048 301 N 0155500 East Mahantango Creek near Dalmatia, Pa. 40.611 -76.912						
D1550000 Lycoming Creek near Trout Run, Pa. 41.418 -77.033 173 N D1551500 WB Susquehanna River at Williamsport, Pa. 41.236 -76.997 5,682 Y D1552000 Loyalsock Creek at Loyalsockville, Pa. 41.325 -76.912 435 N D1552000 Muncy Creek near Sonestown, Pa. 41.357 -76.535 23.8 N D1553130 Sand Spring Run near White Deer, Pa. 41.059 -77.077 4.93 N D1553500 West Branch Susquehanna River at Lewisburg, Pa. 40.968 -76.876 6,847 Y D1553700 Chillisquaque Creek at Washingtonville, Pa. 41.062 -76.680 51.3 N D1554000 Susquehanna River at Sumbury, Pa. 40.810 -76.584 54.2 N D1555000 Penns Creek near Shamokin, Pa. 40.611 -76.912 162 N D1555000 East Mahantango Creek, pa. 40.611 -76.912 162 N D1555000 Frankstown Branch Juniata River at Williamsburg, Pa. 40.684 -78.204						
D1551500 WB Susquehanna River at Williamsport, Pa. 41.236 -76.997 5,682 Y D1552000 Loyalsock Creek at Loyalsockville, Pa. 41.325 -76.912 435 N D1552500 Muncy Creek near Sonestown, Pa. 41.357 -76.535 23.8 N D1553130 Sand Spring Run near White Deer, Pa. 41.059 -77.077 4.93 N D1553500 West Branch Susquehanna River at Lewisburg, Pa. 40.968 -76.876 6,847 Y D1553700 Chillisquaque Creek at Washingtonville, Pa. 41.062 -76.680 51.3 N D1554000 Susquehanna River at Sunbury, Pa. 40.835 -76.827 18,300 Y D1554500 Shamokin Creek near Shamokin, Pa. 40.810 -76.584 54.2 N D1555500 Penns Creek at Penns Creek, Pa. 40.611 -76.912 162 N D1555500 East Mahantango Creek near Dalmatia, Pa. 40.611 -76.912 162 N D1555500 Bald Eagle Creek at Tyrone, Pa. 40.684 -78.200						
D1552000 Loyalsock Creek at Loyalsockville, Pa. 41.325 -76.912 435 N D1552500 Muncy Creek near Sonestown, Pa. 41.357 -76.535 23.8 N D1553130 Sand Spring Run near White Deer, Pa. 41.059 -77.077 4.93 N D1553500 West Branch Susquehanna River at Lewisburg, Pa. 40.968 -76.876 6,847 Y D1553700 Chillisquaque Creek at Washingtonville, Pa. 41.062 -76.680 51.3 N D1554500 Susquehanna River at Sumbury, Pa. 40.835 -76.827 18,300 Y D1554500 Shamokin Creek near Shamokin, Pa. 40.810 -76.584 54.2 N D1555000 Penns Creek at Penns Creek, Pa. 40.611 -76.912 162 N D1555000 East Mahantango Creek near Dalmatia, Pa. 40.611 -76.912 162 N D1555000 Frankstown Branch Juniata River at Williamsburg, Pa. 40.663 -78.200 291 N D1555000 Little Juniata River at Spruce Creek, Pa. 40.613 -		· ·				
D1552500 Muncy Creek near Sonestown, Pa. 41.357 -76.535 23.8 N D1553130 Sand Spring Run near White Deer, Pa. 41.059 -77.077 4.93 N D1553500 West Branch Susquehanna River at Lewisburg, Pa. 40.968 -76.876 6,847 Y D1553700 Chillisquaque Creek at Washingtonville, Pa. 41.062 -76.680 51.3 N D1554000 Susquehanna River at Sunbury, Pa. 40.835 -76.827 18,300 Y D1554000 Shamokin Creek near Shamokin, Pa. 40.810 -76.584 54.2 N D1555000 Penns Creek at Penns Creek, Pa. 40.611 -76.912 162 N D1555000 Frankstown Branch Juniata River at Williamsburg, Pa. 40.663 -78.200 291 N D1557500 Bald Eagle Creek at Tyrone, Pa. 40.613 -78.141 20 N D1557500 Little Juniata River at Spruce Creek, Pa. 40.613 -78.141 20 N D1559000 Juniata River at Huntingdon, Pa. 40.524 -77.971					-	
01553130 Sand Spring Run near White Deer, Pa. 41.059 -77.077 4.93 N 01553500 West Branch Susquehanna River at Lewisburg, Pa. 40.968 -76.876 6,847 Y 01553700 Chillisquaque Creek at Washingtonville, Pa. 41.062 -76.680 51.3 N 01554000 Susquehanna River at Sunbury, Pa. 40.835 -76.827 18,300 Y 01554000 Shamokin Creek near Shamokin, Pa. 40.810 -76.584 54.2 N 01555000 Penns Creek at Penns Creek, Pa. 40.611 -76.912 162 N 01555000 Frankstown Branch Juniata River at Williamsburg, Pa. 40.684 -78.200 291 N 01555000 Bald Eagle Creek at Tyrone, Pa. 40.613 -78.141 220 N 01555000 Little Juniata River at Spruce Creek, Pa. 40.613 -78.141 220 N 01555000 Juniata River at Huntingdon, Pa. 40.485 -78.019 816 LF 01559000 Juniata River at Huntingdon, Pa. 40.524 -77.971						
D1553500 West Branch Susquehanna River at Lewisburg, Pa. 40.968 -76.876 6,847 Y D1553700 Chillisquaque Creek at Washingtonville, Pa. 41.062 -76.680 51.3 N D1554000 Susquehanna River at Sunbury, Pa. 40.835 -76.827 18,300 Y D1554000 Shamokin Creek near Shamokin, Pa. 40.810 -76.584 54.2 N D1555000 Penns Creek, Pa. 40.611 -76.912 162 N D1555000 East Mahantango Creek near Dalmatia, Pa. 40.611 -76.912 162 N D1555000 Frankstown Branch Juniata River at Williamsburg, Pa. 40.684 -78.200 291 N D1557500 Bald Eagle Creek at Tyrone, Pa. 40.613 -78.141 220 N D1557500 Little Juniata River at Spruce Creek, Pa. 40.613 -78.019 816 LF D1559000 Juniata River at Huntingdon, Pa. 40.524 -77.971 128 N D1559700 Standing Stone Creek near Huntingdon, Pa. 39.978 -78.619						
01553700 Chillisquaque Creek at Washingtonville, Pa. 41.062 -76.680 51.3 N 01554000 Susquehanna River at Sunbury, Pa. 40.835 -76.827 18,300 Y 01554000 Shamokin Creek near Shamokin, Pa. 40.810 -76.584 54.2 N 01555000 Penns Creek, at Penns Creek, Pa. 40.867 -77.048 301 N 0155500 East Mahantango Creek near Dalmatia, Pa. 40.611 -76.912 162 N 0155500 Frankstown Branch Juniata River at Williamsburg, Pa. 40.663 -78.200 291 N 01557500 Bald Eagle Creek at Tyrone, Pa. 40.613 -78.234 44.1 N 01557500 Little Juniata River at Spruce Creek, Pa. 40.613 -78.141 220 N 01559000 Juniata River at Huntingdon, Pa. 40.524 -77.971 128 N 01559700 Standing Stone Creek near Huntingdon, Pa. 40.524 -77.971 128 N 01559700 Sulphur Springs Creek near Manns Choice, Pa. 39.978 -78.619 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
01554000 Susquehana River at Sunbury, Pa. 40.835 -76.827 18,300 Y 01554500 Shamokin Creek near Shamokin, Pa. 40.810 -76.584 54.2 N 01555000 Penns Creek at Penns Creek, Pa. 40.867 -77.048 301 N 01555500 East Mahantango Creek near Dalmatia, Pa. 40.611 -76.912 162 N 01555000 Frankstown Branch Juniata River at Williamsburg, Pa. 40.663 -78.200 291 N 01557500 Bald Eagle Creek at Tyrone, Pa. 40.613 -78.141 220 N 01559000 Little Juniata River at Spruce Creek, Pa. 40.613 -78.019 816 LF 01559000 Juniata River at Huntingdon, Pa. 40.524 -77.971 128 N 01559700 Standing Stone Creek near Huntingdon, Pa. 39.978 -78.619 5.28 N					-	
01554500 Shamokin Creek near Shamokin, Pa. 40.810 -76.584 54.2 N 01555000 Penns Creek at Penns Creek, Pa. 40.867 -77.048 301 N 01555500 East Mahantango Creek near Dalmatia, Pa. 40.611 -76.912 162 N 01555500 Frankstown Branch Juniata River at Williamsburg, Pa. 40.463 -78.200 291 N 01557500 Bald Eagle Creek at Tyrone, Pa. 40.684 -78.234 44.1 N 01558000 Little Juniata River at Spruce Creek, Pa. 40.613 -78.141 220 N 01559000 Juniata River at Huntingdon, Pa. 40.524 -77.971 128 N 01559700 Standing Stone Creek near Huntingdon, Pa. 39.978 -78.619 5.28 N						
01555000 Penns Creek at Penns Creek, Pa. 40.867 -77.048 301 N 01555500 East Mahantango Creek near Dalmatia, Pa. 40.611 -76.912 162 N 01555500 Frankstown Branch Juniata River at Williamsburg, Pa. 40.463 -78.200 291 N 01557500 Bald Eagle Creek at Tyrone, Pa. 40.684 -78.234 44.1 N 01558000 Little Juniata River at Spruce Creek, Pa. 40.613 -78.141 220 N 01559000 Juniata River at Huntingdon, Pa. 40.485 -78.019 816 LF 01559500 Standing Stone Creek near Huntingdon, Pa. 40.524 -77.971 128 N 01559700 Sulphur Springs Creek near Manns Choice, Pa. 39.978 -78.619 5.28 N						
D1555500 East Mahantango Creek near Dalmatia, Pa. 40.611 -76.912 162 N 015556000 Frankstown Branch Juniata River at Williamsburg, Pa. 40.463 -78.200 291 N 01557500 Bald Eagle Creek at Tyrone, Pa. 40.684 -78.234 44.1 N 01558000 Little Juniata River at Spruce Creek, Pa. 40.613 -78.141 220 N 01559000 Juniata River at Huntingdon, Pa. 40.485 -78.019 816 LF 01559500 Standing Stone Creek near Huntingdon, Pa. 40.524 -77.971 128 N 01559700 Sulphur Springs Creek near Manns Choice, Pa. 39.978 -78.619 5.28 N						
D1556000 Frankstown Branch Juniata River at Williamsburg, Pa. 40.463 -78.200 291 N 01557500 Bald Eagle Creek at Tyrone, Pa. 40.684 -78.234 44.1 N 01558000 Little Juniata River at Spruce Creek, Pa. 40.613 -78.141 220 N 01559000 Juniata River at Huntingdon, Pa. 40.485 -78.019 816 LF 01559500 Standing Stone Creek near Huntingdon, Pa. 40.524 -77.971 128 N 01559700 Sulphur Springs Creek near Manns Choice, Pa. 39.978 -78.619 5.28 N						
D1557500 Bald Eagle Creek at Tyrone, Pa. 40.684 -78.234 44.1 N 01557500 Little Juniata River at Spruce Creek, Pa. 40.613 -78.141 220 N 01559000 Juniata River at Huntingdon, Pa. 40.485 -78.019 816 LF 01559500 Standing Stone Creek near Huntingdon, Pa. 40.524 -77.971 128 N 01559700 Sulphur Springs Creek near Manns Choice, Pa. 39.978 -78.619 5.28 N		- · · · · · · · · · · · · · · · · · · ·				
D1558000 Little Juniata River at Spruce Creek, Pa. 40.613 -78.141 220 N 01559000 Juniata River at Huntingdon, Pa. 40.485 -78.019 816 LF 01559500 Standing Stone Creek near Huntingdon, Pa. 40.524 -77.971 128 N 01559700 Sulphur Springs Creek near Manns Choice, Pa. 39.978 -78.619 5.28 N						
D1559000 Juniata River at Huntingdon, Pa. 40.485 -78.019 816 LF 01559500 Standing Stone Creek near Huntingdon, Pa. 40.524 -77.971 128 N 01559700 Sulphur Springs Creek near Manns Choice, Pa. 39.978 -78.619 5.28 N						
D1559500 Standing Stone Creek near Huntingdon, Pa. 40.524 -77.971 128 N D1559700 Sulphur Springs Creek near Manns Choice, Pa. 39.978 -78.619 5.28 N		•				
01559700 Sulphur Springs Creek near Manns Choice, Pa. 39.978 -78.619 5.28 N		- · ·				
•••						
01500000 Dunning Creek at Beiden, Pa. 40.072 -78.493 172 N		••••				
	01560000	Dunning Creek at Belden, Pa.	40.072	-78.495	172	N

Table 2. Selected low-flow statistics for streamgage locations in and near Pennsylvania.—Continued

[ft³/s; cubic feet per second; ---, statistic not computed; <, less than]

Streamgage number	Period of record used in analysis'	Number of years used in analysis	1-day, 10-year (ft³/s)	7-day, 10-year (ft∛s)	7-day, 2-year (ft³/s)	30-day, 10-year (ft³/s)	30-day, 2-year (ft³/s)	90-day, 10-year (ft³/s)
01546000	1912-1934	17	1.8	2.2	6.8	3.7	12.1	11.2
01546400	1986-2008	23	13.5	14.0	19.6	15.4	22.3	18.7
01546500	1942-2008	67	26.8	29.0	41.3	31.2	44.2	33.7
01547100	1969-2008	40	102	105	128	111	133	117
01547200	1957-2008	52	99.4	101	132	106	142	115
01547500	21971-2008	38	28.2	109	151	131	172	153
01547500	31956-1969	14	90.0	94.9	123	98.1	131	105
01547700	1957-2008	52	.5	.6	2.7	1.1	3.9	2.2
01547800	1971-1981	11	1.6	1.8	2.4	2.1	2.9	3.5
01547950	1970-2008	39	12.1	13.6	28.2	17.3	36.4	23.8
01548005	21971-2000	25	142	151	206	178	241	223
01548005	31912-1969	58	105	114	147	125	165	140
01548500	1920-2008	89	21.2	24.2	50.1	33.6	68.6	49.3
01549000	1910-1920	11	26.0	32.9	78.0	46.4	106	89.8
01549500	1942-2008	67	.6	.8	2.5	1.4	3.9	2.6
01549700	1959-2008	50	33.3	37.2	83.8	51.2	117	78.4
01550000	1915-2008	94	6.6	7.6	16.8	11.2	24.6	18.6
01551500	21963-2008	46	520	578	1,020	678	1,330	919
01551500	31901-1961	61	400	439	742	523	943	752
01552000	1927-2008	80	20.5	22.2	49.5	29.2	69.8	49.6
01552500	1942-2008	67	.9	1.2	3.1	1.7	4.4	3.3
01553130	1969-1981	13	1.0	1.1	1.5	1.3	1.8	1.7
01553500	21968-2008	41	760	838	1,440	1,000	1,850	1,470
01553500	31941-1966	26	562	619	880	690	1,090	881
01553700	1981-2008	28	9.1	10.9	15.0	12.6	17.1	15.2
01554000	21981-2008	28	1,830	1,990	3,270	2,320	4,210	3,160
01554000	31939-1979	41	1,560	1,630	2,870	1,880	3,620	2,570
01554500	1941-1993	53	16.2	22.0	31.2	25.9	35.7	31.4
01555000	1931-2008	78	33.5	37.6	58.8	43.4	69.6	54.6
01555500	1931-2008	78	4.9	6.5	18.0	9.4	24.3	16.6
01556000	1918-2008	91	43.3	47.8	66.0	55.1	75.0	63.7
01557500	1946-2008	63	2.8	3.2	6.3	4.2	8.1	5.8
01558000	1940-2008	69	56.3	59.0	79.8	65.7	86.2	73.7
01559000	1943-2008	66	104	177	249	198	279	227
01559500	1931-1958	28	9.3	10.5	15.0	12.4	17.8	15.8
01559700	1963-1978	16	.1	.1	.2	.1	.3	.2
01560000	1941-2008	68	8.5	9.4	15.6	12.0	20.2	16.2
01561000	1932-1958	27	.4	.5	1.6	.8	2.5	1.7
01562000	1913-2008	96	64.1	67.1	106	77.4	122	94.5
01562500	1931-1957	27	1.1	1.6	3.8	2.3	5.4	3.7
01563200	21974-2008	35	_	_	_	112	266	129
01563200	31948-1972	25	10.3	28.2	86.1	64.5	113	95.5
01563500	21974-2008	35	384	415	519	441	580	493
01563500	31939-1972	34	153	242	343	278	399	333

Attachment B

TRC Evaluation

	~		-	-	~
B	C	D	E	F	G
TRCEVALU					
		B4:B8 and E4:E7			
	= Qstream (e	•		=CV Daily	
	= Q discharg = no. sample			= CV Hourly = AFC Partial I	En Castor
		s emand of Siream		= CFC Partial	
		emand of Discharge		_	Compliance Time (min)
	= BAT/BPJ V	-		_	Compliance Time (min)
0	= %Factor o	f Safety (FOS)	0	=Decay Coeffic	;ient (K)
Source	Heterence	AFC Calculations		Reference	CFC Calculations
TRC	1.3.2.iii	WLA afc =		1.3.2ii	WLA cfc = 0.942
PENTOXSD TRG		LTAMULT afc =		5.1c	LTAMULT cfc = 0.581
PENTOXSD TRG	5.1b	LTA_afc=	0.363	5.1d	LTA_cfc = 0.548
Source		Effluent	Limit Cak	ulations	
PENTOXSD TRG	5.1f		L MULT =		
PENTOXSD TRG					AFC
	0.19	INST MAX LIMI			
			* 019104	*e(-k*AFC_tc))	
WLA afc LTAMULT afc	+Xd+(AF EXP((0.5*LN)	C_Yc*Qs*Xs/Qd)]*(1-F cvh^2+1))-2.326*LN(d	OS(100)	0.5)	
	+Xd+(AF	C_Yc*Qs*Xs/Qd)]*(1-F cvh^2+1))-2.326*LN(d	OS(100)	0.5)	
LTAMULT afc LTA_afc	+Xd+(AF(EXP((0.5°LN) wla_afc*LTA (.011/e(-k*Cl +Xd+(CF(C_Yc ⁴ Qs ⁴ Xs/Qd)]*(1-F cvh^2+1)}-2.326*LN(d MULT_afc FC_tc) + [(CFC_Yc ⁴ Qs C_Yc ⁴ Qs ⁴ Xs/Qd)]*(1-F	OS/100) avh^2+1)^ *.011/Qd* OS/100)	e(-k*CFC_tc))	
LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc	+Xd+(AF(EXP((0.5°LN) wla_afc*LTA (.011/e(-k*C) +Xd+(CF(EXP((0.5°LN)	C_Yc*Qs*Xs/Qd)]*(1-F cvh^2+1))-2.326*LN(c MULT_afc C_tc) + [(CFC_Yc*Qs C_Yc*Qs*Xs/Qd)]*(1-F cvd^2/no_samples+1)	OS/100) avh^2+1)^ *.011/Qd* OS/100)	e(-k*CFC_tc))	
_TAMULT afc _TA_afc WLA_cfc _TAMULT_cfc	+Xd+(AF(EXP((0.5°LN) wla_afc*LTA (.011/e(-k*Cl +Xd+(CF(C_Yc*Qs*Xs/Qd)]*(1-F cvh^2+1))-2.326*LN(c MULT_afc C_tc) + [(CFC_Yc*Qs C_Yc*Qs*Xs/Qd)]*(1-F cvd^2/no_samples+1)	OS/100) avh^2+1)^ *.011/Qd* OS/100)	e(-k*CFC_tc))	
LTAMULT afc LTA_afc WLA_cfc	+Xd+(AF(EXP((0.5°LN) wla_afc*LTA) (.011/e(-k*C) +Xd+(CF(EXP((0.5°LN) wla_cfc*LTA)	C_Yc*Qs*Xs/Qd)]*(1-F cvh^2+1))-2.326*LN(c MULT_afc C_tc) + [(CFC_Yc*Qs C_Yc*Qs*Xs/Qd)]*(1-F cvd^2/no_samples+1)	05/100) >>h^2+1)^ *.011/Qd ⁴ 05/100) I)-2.326 [°] LI	e(-k*CFC_tc)) N(cvd^2/no_san	nples+1)^0.5)