

Southcentral Regional Office CLEAN WATER PROGRAM

Application Type Renewal
Facility Type Industrial
Major / Minor Minor

NPDES PERMIT FACT SHEET INDIVIDUAL INDUSTRIAL WASTE (IW) AND IW STORMWATER

 Application No.
 PA0082953

 APS ID
 278375

 Authorization ID
 1300579

		Applicant and	Facility Information	
Applicant Name	Dille	Transfer Station LLC	Facility Name	Diller Transfer Station
Applicant Address	1184	Mcclellandtown Road	Facility Address	6820 Wertzville Road
	Mccle	ellandtown, PA 15458	_	Enola, PA 17025
Applicant Contact	Josep	oh Santangelo	Facility Contact	Joseph Santangelo
Applicant Phone	(724)	892-2199	Facility Phone	(724) 892-2199
Client ID	4375	6	Site ID	269585
SIC Code	4953		Municipality	Hampden Township
SIC Description	Trans	s. & Utilities - Refuse Systems	County	Cumberland
Date Application Rece	ived	December 23, 2019	EPA Waived?	Yes
Date Application Acce	pted	January 7, 2020	If No, Reason	
Purpose of Application	1	NPDES Renewal.		

Summary of Review

Diller Transfer Station LLC (DTS) has applied to the Pennsylvania Department of Environmental Protection (DEP) for reissuance of its NPDES permit. The permit was last reissued on June 9, 20215 and became effective on July 1, 2015. The permit expired on June 30, 2020 but the terms and conditions of the permit have been administratively extended since that time. It is noteworthy that the company has changed its name from Diller Transfer Station Inc. to Diller Transfer Station LLC during this permit term; but no permit amendment application was received. DEP has decided to process this name change in conjunction with this permit renewal.

It is recommended that the permit be drafted.

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
Х		Jinsu Zim	
^		Jinsu Kim / Environmental Engineering Specialist	February 24, 2021
		Daniel W. Martin, P.E. / Environmental Engineer Manager	
Х		/s/ Maria D. Bebenek, P.E. / Program Manager	March 11, 2021

		Discharge, Receiving Wate	rs and Water Supply Informat	tion
	17' 16.00)"	Design Flow (MGD) Longitude Quad Code	0.01 77° 0' 39.00" 1629
Wastewater Des		Treated Industrial Wastewa		1023
Receiving				
Waters	Sears	Run	Stream Code	10210
NHD Com ID	56402	2941	RMI	4.13
Drainage Area	0.85 r	ni ²	Yield (cfs/mi²)	0.1596
Q ₇₋₁₀ Flow (cfs)	0.135	7	Q ₇₋₁₀ Basis	USGS gage 01570000
Elevation (ft)	431		Slope (ft/ft)	0.0044
Watershed No.	7-B		Chapter 93 Class.	WWF
Existing Use	None		Existing Use Qualifier	N/A
Exceptions to Use	N/A		Exceptions to Criteria	N/A
Assessment Stat	us	Impaired		
Cause(s) of Impa	irment	Siltation, Cause Unknown		
Source(s) of Imp	airment	Construction, Land Dispos	al	
TMDL Status		Pending	Name N/A	
Nearest Downstr	eam Pub	lic Water Supply Intake	Steelton Municipal Waterwork	S
PWS Waters		nanna River	Flow at Intake (cfs)	3490
PWS RMI	68.98		Distance from Outfall (mi)	17.9

Drainage Area

The discharge is to Sears Run at RM 4.13. A drainage area upstream of the point of discharge is estimated to be 0.85 using USGS StreamStats available at https://streamstats.usgs.gov/ss/.

Streamflow

USGS StreamStats produced a Q7-10 flow of 0.0389 cfs at the point of discharge. However, the estimated drainage area is lower than the minimum required drainage area; this resulted in unknown errors in calculating low flow statistics. Since this Q7-10 may not be valid, the previous low flow method is used. Q7-10 of 0.1357 cfs is determined based on the correlation with the USGS stream gage no. 0.1570000.

Sears Run

Sears Run is not explicitly listed in 25 Pa Code §93.9. Sears Run is a tributary of Conodoguinet Creek. Under 25 Pa Code §93.9, all unnamed tributaries of Conodoguinet Creek from PA 997 at Roxbury to Mouth are designated as warm water fishes and support migratory fishes. No special protection water is impacted by this discharge. Sears Run at the point of discharge is impaired for siltation and for unknown cause as a result of construction and land disposal, respectively. A TMDL has not been developed to address the impairments; yet, it is clear that the discharge contributes significantly to the impairment that was caused of land disposal. This information will be considered in developing permit requirements.

Public Water Supply

Considering the distance and dilution, the discharge is not expected to affect the water supply.

	Treatment Facility Summary									
Treatment Facility Na Diller Transfer Station		2177201 01.			I/1977 6/2010					
Waste Type	Degree of Treatment	Process Type)	Disinfed	ction	Avg An Flow (N				
Industrial Waste	Biological (Industrial Waste)	Activated Sludg	je	No Disinf	ection	0.01	1			
Hydraulic Capacity (MGD)	Organic Capacity (lbs/day)	Load Status		Biosolids T	reatment	Biosol Use/Dis				
_0.01	85	Not Overloade	d	Holding	Tank	Other W	WTP			

DTS utilizes a refuse system (SIC code 4953) and is a municipal solid waste transfer station and recycling facility. DTS treats leachate generated from the closed landfill area by on-site wastewater treatment facility. The treatment facility was originally designed to treat sanitary wastewater, treating up to 0.02 MGD of sanitary wastewater generated from a mobile home park. Following the purchase of the property, Boyd Diller Inc. relocated the treatment facility and began using the system to treat a combination of groundwater and leachate from its closed landfill.

Following issuance of the NPDES permit in February of 2010, the existing WQM permit was amended to replace coarse bubble diffusers with 18 fine bubble diffusers to increase transfer efficiency and to reduce ammonia level to NPDES limit of 4.9 mg/L. During this amendment, the design flow has also decreased from 0.02 MGD to 0.01 MGD. This change was already considered in developing permit requirements for the last permit renewal.

Along with sedimentation basins and an influent pump station, the treatment system, according to the application, is as follows: Aeration basin \rightarrow Clarifier \rightarrow Manganese filter system \rightarrow outfall to Sears Run.

A sludge holding tank is installed for on-site sludge handling. Sludge generated from sedimentation basins, aeration basin, and from the sludge holding tank is currently pumped to offsite WWTP disposal. Supernatant from clarifier is pumped to effluent filter system. Used filters are disposed through waste transfer station.

	Compliance History
Summary of DMRs:	A summary of past 12-month DMR data is presented on the next page.
Summary of Inspections:	07/23/2019: Mike Benham (Water Quality Specialist) and Kevin Buss (Environmental Compliance Specialist) conducted a routine inspection. O&M recommendations were given but no violation was identified at the time of inspection. 04/13/2018: Pat Bowen, a former water quality specialist, conducted a routine inspection and noted that effluent at Outfall 001 appeared clear. No issued were found at the time of inspection.
Other Comments:	A number of effluent violations occurred from December 2018 through June 2019 that are associated with Manganese and ammonia-nitrogen. A Notice of Violation was issued on April 17, 2019 and July 30, 2019 addressing these violations. DEP and DTS entered a Consent Assessment of Civil Penalty (CACP) on May 22, 2020. As of the date of this fact sheet, there is no open violation associated with this facility or permittee.

Effluent Data

DMR Data for Outfall 001 (from August 1, 2019 to July 31, 2020)

Parameter	JUL-20	JUN-20	MAY-20	APR-20	MAR-20	FEB-20	JAN-20	DEC-19	NOV-19	OCT-19	SEP-19	AUG-19
Flow (MGD)	0.00175	0.00361	0.00549	0.00595	0.00598	0.00543	0.00484	0.00470	0.00353	0.00277	0.00168	0.00240
Average Monthly	1	6	4	4	8	8	9	2	9	1	9	7
Flow (MGD)												
Daily Maximum	0.00326	0.00778	0.01985	0.00929	0.01662	0.01216	0.01382	0.00949	0.02353	0.00832	0.00415	0.00352
pH (S.U.)												
Minimum	8.01	7.87	7.80	7.87	7.57	7.82	7.83	7.80	7.85	7.88	8.09	7.56
pH (S.U.)												
Instantaneous												
Maximum	8.29	8.18	8.10	8.07	8.05	8.11	8.12	8.14	8.16	8.36	8.30	8.21
DO (mg/L)												
Minimum	6.74	6.55	6.22	8.15	9.61	7.85	8.6	9.1	9.2	8.3	8.1	7.9
TRC (mg/L)												
Average Monthly		< 0.5			< 0.4			< 0.2			< 0.2	
TRC (mg/L)												
Instantaneous												
Maximum		< 0.5			< 0.4			< 0.2			< 0.2	
CBOD5 (lbs/day)												
Average Monthly	0.032	0.044	0.069	0.11	0.073	0.062	0.072	0.135	< 0.042	0.01	< 0.034	0.034
CBOD5 (lbs/day)												
Daily Maximum	0.041	0.064	0.098	0.114	0.108	0.085	0.074	0.153	0.054	0.01	0.04	0.05
CBOD5 (mg/L)												
Average Monthly	2	1.5	2	2	1.5	1.5	2	3	< 1.67	1	< 2	1.5
CBOD5 (mg/L)												
Daily Maximum	2	2	2	2	2	2	2	4	2	1	2	2
TSS (lbs/day)												
Average Monthly	< 0.049	0.154	0.257	0.353	0.151	< 0.082	< 0.072	0.182	< 0.06	< 0.019	< 0.048	< 0.058
TSS (lbs/day)												
Daily Maximum	0.057	0.161	0.376	0.479	0.193	< 0.085	< 0.074	0.306	0.082	0.03	0.08	0.08
TSS (mg/L)												
Average Monthly	< 3.5	5.5	6.67	6.5	3.5	< 2	< 2	3	< 2.33	< 2	< 3	< 3
TSS (mg/L)												
Daily Maximum	5	6	10	9	5	< 2	< 2	4	3	3	4	5
Fecal Coliform												
(CFU/100 ml)												
Geometric Mean	41.2	97.2	23.2	1	3	< 1	2	8	64.8	65.1	14	42.4
Nitrate-Nitrite (lbs/day)												
Average Monthly	0.135	0.293	0.213	0.278	0.242	0.275	0.237	0.296	0.144	0.067	0.134	0.18
Nitrate-Nitrite (lbs/day)												
Daily Maximum	0.18	0.33	0.24	0.31	0.27	0.30	0.26	0.44	0.19	0.07	0.18	0.21

Nitrate-Nitrite (mg/L)							I	1		I		
Average Monthly	8.21	10.35	6.93	5.04	5.27	6.71	6.53	5.49	5.66	7.06	8.98	8.61
Total Nitrogen	0.21	10.55	0.93	3.04	5.21	0.71	0.55	3.43	3.00	7.00	0.90	0.01
(lbs/day)												
Average Monthly	< 0.16	0.371	0.333	0.53	0.48	0.474	0.322	0.372	< 0.189	< 0.116	< 0.16	0.232
Total Nitrogen	< 0.10	0.57 1	0.555	0.00	0.40	0.474	0.022	0.572	< 0.103	< 0.110	< 0.10	0.202
(lbs/day)												
Daily Maximum	< 0.23	0.41	0.40	0.55	0.54	0.51	0.34	0.55	< 0.25	< 0.21	< 0.24	0.30
Total Nitrogen (mg/L)	7 0.20	0.11	0.10	0.00	0.01	0.01	0.01	0.00	1 0.20	10.21	10.21	0.00
Average Monthly	< 9.56	13.15	10.3	9.64	10.42	11.51	8.88	6.89	< 7.39	< 11.83	< 10.48	10.88
Ammonia (lbs/day)		70110		0.0			0.00	0.00				70100
Average Monthly	0.0111	0.0321	0.11	0.2076	0.1924	0.0947	0.0485	0.046	0.0112	< 0.0004	< 0.0011	< 0.006
Ammonia (lbs/day)												
Daily Maximum	0.0213	0.053	0.1605	0.2282	0.1999	0.1195	0.0509	0.078	0.0139	< 0.0004	0.0023	0.01
Ammonia (mg/L)												
Average Monthly	0.555	1.055	2.913	3.79	4.24	2.285	1.34	0.75	0.447	< 0.04	< 0.063	< 0.267
Ammonia (mg/L)												
Daily Maximum	1.03	1.65	3.68	4.29	4.79	2.82	1.38	1.02	0.51	< 0.04	0.11	0.41
TKN (lbs/day)												
Average Monthly	< 0.026	0.078	0.121	0.253	0.238	0.199	0.085	0.076	< 0.045	< 0.049	< 0.026	0.052
TKN (lbs/day)												
Daily Maximum	< 0.045	0.084	0.158	0.261	0.271	0.263	0.092	0.115	< 0.069	< 0.14	< 0.05	0.09
TKN (mg/L)												
Average Monthly	< 1.4	2.8	3.4	4.6	5.2	4.8	2.4	1.4	< 1.7	< 4.8	< 1.5	2.3
Total Phosphorus												
(lbs/day)												
Average Monthly	0.00036	0.00057	0.00097	0.00138	0.00087	0.00031	0.00055	0.00106	0.00028	0.0002	0.00032	0.0004
Total Phosphorus												
(lbs/day)	0.0005	0.0000	0.0045	0.0047	0.0040	0.0004	0.0007	0.0045	0.000	0.000	0.0004	0.0005
Daily Maximum	0.0005	0.0006	0.0015	0.0017	0.0010	0.0004	0.0007	0.0015	0.0003	0.0002	0.0004	0.0005
Total Phosphorus												
(mg/L) Average Monthly	0.022	0.02	0.027	0.025	0.019	0.008	0.015	0.02	0.011	0.022	0.022	0.019
Total Phosphorus	0.022	0.02	0.027	0.025	0.019	0.006	0.015	0.02	0.011	0.022	0.022	0.019
(mg/L)												
Daily Maximum	0.024	0.02	0.04	0.03	0.02	0.01	0.02	0.02	0.03	0.03	0.03	0.03
Total Arsenic (lbs/day)	<	<	<	<	<	<	<	<	<	< 0.00	<	0.00
Average Monthly	0.00016	0.00028	0.00041	0.00055	0.00046	0.00041	0.00036	0.00053	0.00035	0.00007	0.00012	< 0.0002
Total Arsenic (lbs/day)	<	<	<	<	<	<	<	<	<	0.00001	<	₹ 0.0002
Daily Maximum	0.00021	0.00032	0.00049	0.00057	0.00054	0.00042	0.00037	0.00076	0.00054	< 0.0001	0.00021	< 0.0005
Total Arsenic (mg/L)	0.00021	0.00002	0.00010	0.00001	0.00007	0.00012	0.00001	0.00070	0.0000 r	1 0.0001	0.00021	, 0.0000
Average Monthly	< 0.01	< 0.01	< 0.0133	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.0133	< 0.0074	< 0.0077	< 0.011
Total Arsenic (mg/L)												
Daily Maximum	< 0.01	< 0.01	< 0.02	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.02	< 0.01	< 0.01	< 0.02

Total Copper (lbs/day)	<	<		<	<	<	<	<		<	<	<
Average Monthly	0.00054	0.00014	< 0.0002	0.00028	0.00023	0.00021	0.00018	0.00026	< 0.0002	0.00004	0.00006	0.00018
Total Copper (lbs/day)	<	<	< 0.0002	<	<	<	<	0.00020	< 0.0002	<	0.00000	<
Daily Maximum	0.00103	0.00016	0.00024	0.00028	0.00027	0.00021	0.00018	0.00038	0.00027	0.00005	< 0.0001	0.00026
Total Copper (mg/L)	0.00100	0.00010	0.00024	0.00020	0.00021	0.00021	0.00010	0.00000	0.00021	0.00000	< 0.0001	0.00020
Average Monthly	< 0.0275	< 0.005	< 0.0067	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.008	< 0.0038	< 0.0037	< 0.008
Total Copper (mg/L)	10.02.0	10.000	10.000.	10.000	10.000	, 0.000	, 0.000	, 0.000	1 0.000	1 0.0000	10.000.	1 0.000
Daily Maximum	< 0.05	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	0.005	< 0.01	< 0.005	< 0.005	0.009
Dissolved Iron												0.000
(lbs/day)												
Average Monthly	< 0.0003	< 0.0006	< 0.0009	< 0.0034	< 0.0009	< 0.0008	< 0.0007	< 0.0011	< 0.0008	< 0.0002	< 0.0003	< 0.0007
Dissolved Iron												
(lbs/day)					<	<	<	<		<	<	
Daily Maximum	< 0.0004	< 0.0006	< 0.001	0.0057	0.00108	0.00085	0.00074	0.00153	0.00136	0.00021	0.00042	< 0.0013
Dissolved Iron (mg/L)												
Average Monthly	< 0.02	< 0.02	< 0.03	< 0.06	< 0.02	< 0.02	< 0.02	< 0.02	< 0.03	< 0.02	< 0.02	< 0.03
Dissolved Iron (mg/L)												
Daily Maximum	< 0.02	< 0.02	< 0.05	0.1	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	< 0.02	0.02	< 0.05
Total Manganese												
(lbs/day)												
Average Monthly	0.0021	0.0097	0.0313	0.0512	0.0276	0.0165	0.015	0.0249	0.0059	0.0005	0.0007	0.001
Total Manganese												
(lbs/day)		0.0440	0.0404			0.040=		0.0400				
Daily Maximum	0.0023	0.0148	0.0431	0.0553	0.0309	0.0195	0.017	0.0436	0.0076	0.0006	0.001	0.002
Total Manganese												
(mg/L)	0.445	0.005	0.000	0.005	0.0	0.4	0.445	0.00	0.0007	0.0404	0.0400	0.000
Average Monthly	0.145	0.325	0.833	0.935	0.6	0.4	0.415	0.39	0.2307	0.0484	0.0498	0.069
Total Manganese (mg/L)												
Daily Maximum	0.2	0.46	1.12	1.04	0.63	0.46	0.48	0.57	0.28	0.06	0.05	0.08
Total Silver (lbs/day)	< 0.2	< 0.40	< 1.12	< 1.04	< 0.03	< 0.40	< 0.46	0.5 <i>1</i>	< 0.20	< 0.06	< 0.05	< 0.06
Average Monthly	0.00003	0.00006	0.00009	0.00011	0.00009	0.00008	0.00007	0.00011	0.00008	0.00001	0.00003	0.00006
Total Silver (lbs/day)	<	<	0.00003	<	<	<	<	<	0.00000	<	<	<
Daily Maximum	0.00004	0.00006	< 0.0001	0.00011	0.00011	0.00008	0.00007	0.00015	0.00014	0.00002	0.00004	0.00013
Total Silver (mg/L)	0.00001	0.00000	V 0.0001	0.00011	0.00011	0.00000	0.00007	0.00010	0.00011	0.00002	0.00001	0.00010
Average Monthly	< 0.002	< 0.002	< 0.003	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.003	< 0.0014	< 0.0017	< 0.003
Total Silver (mg/L)	10.002	10.002	10.000	, 0.002	10.002	, 0.002	, 0.002	, 0.002	1 0.000	10.001	10.00	10.000
Daily Maximum	< 0.002	< 0.002	< 0.005	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.005	< 0.002	< 0.002	< 0.005
Total Zinc (lbs/day)	<	<		<	<	<	<		<		<	<
Average Monthly	0.00008	0.00014	< 0.0002	0.00028	0.00023	0.00021	0.00018	< 0.0003	0.00018	< 0.0002	0.00011	0.00014
Total Zinc (lbs/day)		<	<	<	<	<		<				
Daily Maximum	< 0.0001	0.00016	0.00024	0.00028	0.00027	0.00021	0.00018	0.00031	< 0.0003	< 0.0005	< 0.0002	< 0.0003
Total Zinc (mg/L)												
Average Monthly	< 0.005	< 0.005	< 0.0067	< 0.005	< 0.005	< 0.005	< 0.005	< 0.007	< 0.007	< 0.0204	< 0.0065	< 0.006

NPDES Permit No. PA0082953

Total Zinc (mg/L)												
Daily Maximum	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.01	< 0.01	< 0.05	< 0.01	< 0.01
Phenol (lbs/day)		<						<				
Average Monthly		0.00018						0.00027				
Phenol (lbs/day)		<						<				
Daily Maximum		0.00018						0.00027				
Phenol (mg/L)												
Average Monthly		< 0.010						< 0.010				
Phenol (mg/L)												
Daily Maximum		< 0.010						< 0.010				
a-Terpineol (lbs/day)		<						<				
Average Monthly		0.00018						0.00027				
a-Terpineol (lbs/day)		<						<				
Daily Maximum		0.00018						0.00027				
a-Terpineol (mg/L)												
Average Monthly		< 0.010						< 0.010				
a-Terpineol (mg/L)												
Daily Maximum		< 0.010						< 0.010				
Benzoic Acid (lbs/day)		<						<				
Average Monthly		0.00035						0.00057				
Benzoic Acid (lbs/day)		<						<				
Daily Maximum		0.00035						0.00057				
Benzoic Acid (mg/L)												
Average Monthly		< 0.020						< 0.021				
Benzoic Acid (mg/L)												
Daily Maximum		< 0.020						< 0.021				
p-Cresol (lbs/day)		<						<				
Average Monthly		0.00018						0.00027				
p-Cresol (lbs/day)		<						<				
Daily Maximum		0.00018						0.00027				
p-Cresol (mg/L)												
Average Monthly		< 0.010						< 0.010				
p-Cresol (mg/L)												
Daily Maximum		< 0.010						< 0.010				

Existing Permit Requirements

A table below summarizes effluent limits and monitoring requirements placed in the current permit:

	Effluent Limitations							Monitoring Requirements		
Parameter	Mass Unit	s (lbs/day)		Concentrat	ions (mg/L)		Minimum	Required		
i arameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type		
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	Continuous	Measured		
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab		
Dissolved Oxygen	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab		
Total Residual Chlorine	XXX	XXX	XXX	0.5	XXX	1.6	1/quarter	Grab		
CBOD5	2.1	4.1	xxx	25	50	60	2/month	24-Hr Composite		
Total Suspended Solids	2.2	4.5	XXX	27	54	68	2/month	24-Hr Composite		
Fecal Coliform (CFU/100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	XXX	1/month	Grab		
Fecal Coliform (CFU/100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2,000 Geo Mean	XXX	XXX	1/month	Grab		
Total Phosphorus	0.17	0.33	XXX	2.0	4.0	5.0	2/month	24-Hr Composite		
Ammonia-Nitrogen	0.4	0.8	XXX	4.9	10	12	2/month	24-Hr Composite		
Nitrate-Nitrite as N	Report	Report	XXX	Report	XXX	XXX	2/month	24-Hr Composite		
Total Kjeldahl Nitrogen	Report	Report	XXX	Report	XXX	XXX	2/month	24-Hr Composite		
Total Nitrogen	Report	Report	XXX	Report	XXX	XXX	2/month	Calculation		
Total Arsenic	Report	Report	XXX	0.05	0.10	0.125	2/month	24-Hr Composite		
Total Copper	Report	Report	XXX	0.05	0.10	0.125	2/month	24-Hr Composite		
Dissolved Iron	0.23	0.46	XXX	2.8	5.6	7.0	2/month	24-Hr Composite		
Total Manganese	Report	Report	XXX	1.0	2.0	2.5	2/month	24-Hr Composite		

NPDES Permit No. PA0082953

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Unit	s (lbs/day)		Concentra	Minimum	Required		
Farameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
	1							24-Hr
Total Silver	Report	Report	XXX	0.01	0.02	0.025	2/month	Composite
								24-Hr
Total Zinc	Report	Report	XXX	0.11	0.20	0.275	2/month	Composite
								24-Hr
Phenol	Report	Report	XXX	0.015	0.026	0.0375	2/year	Composite
								24-Hr
a-Terpineol	Report	Report	XXX	0.016	0.033	0.04	2/year	Composite
								24-Hr
Benzoic Acid	Report	Report	XXX	0.071	0.12	0.178	2/year	Composite
								24-Hr
p-Cresol	Report	Report	XXX	0.014	0.025	0.035	2/year	Composite

Development of Effluent Limitations and Monitoring Requirements

 Outfall No.
 001
 Design Flow (MGD)
 .01

 Latitude
 40° 17′ 16.00″
 Longitude
 -77° 0′ 39.00″

Wastewater Description: IW Process Effluent with ELG

Technology-Based Limitations

DTS is subject to the federal effluent guidelines and standards promulgated under 40 CFR Part 445 Subpart B which addresses the following effluent limitations that represent the application of the best practicable control technology currently available (BPT):

Regulated parameter	Maximum Daily	Maximum monthly avg.				
BOD	140	37				
TSS	88	27				
Ammonia	10	4.9				
a-Terpineol	0.033	0.016				
Benzoic acid	0.12	0.071				
p-Cresol	0.025	0.014				
Phenol	0.026	0.015				
Zinc	0.20	0.11				
рН	Within the range 6 to 9					

It is noteworthy that secondary CBOD5 effluent standard of 25 mg/L set forth in state and federal regulations (i.e., 25 Pa Code §92a.47(a)(1) & 40 CFR 133.102(a)(4)(i)) will be placed in the draft permit as it is more stringent than the abovementioned BPT limit for BOD. In addition to these parameters, effluent limitations for the following parameters may also apply, subject to water quality analysis and BPJ where applicable.

Parameter	Limit (mg/l)	SBC	Federal Regulation	State Regulation
Oil and Grease	15	Average Monthly		Ch 05 2(2)(ii)
Oil and Grease	30	IMAX	-	Ch. 95.2(2)(ii)
Dissolved Iron	7.0	IMAX	-	Ch. 95.2(4)
Total Residual Chlorine	0.5	Average Monthly	-	Ch. 92.48

This facility currently does not use chlorine for disinfection. The existing NPDES permit however contains a BAT TRC average monthly limit of 0.5 mg/L and IMAX of 1.6 mg/L. Past DMRs show non-detected levels at 0.5 mg/L, 0.4 mg/L and 0.2 mg/L. The application showed that TRC was not detected in all three samples at 0.2 mg/L. While all results were non-detected, the current state method detection limit for TRC is 0.02 mg/L. Therefore, it is still unclear if TRC is truly discharged at a non-detected level. It is the permittee's responsibility to demonstrate the presence of pollutants. The existing quarterly sampling requirement with the existing BAT limit remains unchanged.

Water Quality-Based Limitations

WQM 7.0 version 1.0b is a water quality model designed to assist DEP to determine appropriate permit requirements for CBOD5, NH3-N and DO. DEP's technical guidance no. 391-2000-007 describes the technical methods contained in the model for conducting wasteload allocation analyses and for determining recommended limits for point source discharges. Based on the output, existing limits are still protective of water quality and will remain unchanged in the draft permit.

DEP's TRC_CALC spreadsheet was used to determine if WQBELs are needed for TRC. The spreadsheet indicates that the existing BAT limit is still protective of water quality. The spreadsheet recommends IMAX of 1.6 mg/L.

DEP's Toxics Management spreadsheet was utilized to perform a reasonable potential analysis and develop water quality effluent limits for toxic pollutants. The analysis shows that all existing limits for toxic pollutants that are included in the permit are still protective of water quality, except for dissolved iron. The spreadsheet recommends a slightly-more stringent limits for dissolved iron. No water quality analysis was conducted for a-Terpinol, p-Cresol, and Benzoic Acid as there are no water quality criteria for toxic pollutants. The original sample results reported in the application showed non-detected pollutants, but the MDL was too high to generate uncertainty as to whether toxics are truly non-detected in the effluent. Additional sampling provided by the permittee re-demonstrated that those uncertain pollutants are non-detected at levels below the criteria. No new toxic pollutants of concern have been identified for this renewal.

Best Professional Judgment (BPJ) Limitations

Fecal Coliform TBEL limits were previously incorporated in the permit. The rationale was not documented in the previous fact sheet but facilities associated with municipal solid waste generally should control all conventional pollutants. Past DMR data show low bacteria levels; yet it is still present in effluent. Existing limits are still recommended per the federal anti-backsliding regulation set forth in 40 CFR §122.44(I)(1).

A minimum DO limit of 5.0 mg/L will remain unchanged in the draft permit to ensure the facility continues to meet the DO water quality criteria found in 25 Pa Code § 93.7(a).

Additional Considerations

Total Dissolved Solids (TDS)

For TDS and its associated constituents, the following DEP Central Office directive was considered:

For point source discharges and upon issuance or reissuance of an individual NPDES permit:

- Where the concentration of TDS in the discharge exceeds 1,000 mg/L, or the net TDS load from a discharge exceeds 20,000 lbs/day, and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for TDS, sulfate, chloride, and bromide. Discharges of 0.1 MGD or less should monitor and report for TDS, sulfate, chloride, and bromide if the concentration of TDS in the discharge exceeds 5,000 mg/L.
- Where the concentration of bromide in a discharge exceeds 1 mg/L and the discharge flow exceeds 0.1 MGD, Part
 A of the permit should include monitor and report for bromide. Discharges of 0.1 MGD or less should monitor and
 report for bromide if the concentration of bromide in the discharge exceeds 10 mg/L.
- Where the concentration of 1,4-dioxane (CAS 123-91-1) in a discharge exceeds 10 µg/L and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for 1,4-dioxane. Discharges of 0.1 MGD or less should monitor and report for 1,4-dioxane if the concentration of 1,4-dioxane in the discharge exceeds 100 µg/L.

The application shows an effluent TDS concentration level of 793 mg/L with a Bromide concentration level of 0.3 mg/L and a 1,4-dioxane level of 9.4 ug/L. Consequently, no monitoring is recommended.

Chesapeake Bay Tributary Requirement

This facility is currently considered a non-significant industrial wastewater facility, discharging less than 75 lbs/day Total Nitrogen (TN) or 25 lbs/day Total Phosphorus (TP). DEP's Phase II Watershed Implementation Plan (WIP) recommends monitoring of TN and TP on a monthly basis for discharges associated with food processing, paper processing, and residual waste management. Therefore, continuation of TN monitoring and TP effluent limit is still recommended.

Total Maximum Daily Load (TMDL) Consideration

A TMDL has not been developed yet although the 2012 PA Integrated Water Quality Report (formerly known as 303(d)/305(b) report) shows that the anticipated TMDL development was in 2011. Because it is still unknown as to when this TMDL will be developed, it is not recommended to delay the reissuance of the NPDES permit as some proposed permit requirements are more stringent than the existing requirements. The permit requirements proposed for this permit renewal have been developed to ensure that the facility does not significantly contribute to the impairment.

Mass Loading Effluent Limitations

Average monthly mass loading limitations will be included in the draft permit for toxic and some conventional/nonconventional pollutants. These limits are based on the formula: design flow x concentration limit x conversion factor of 8.34.

Anti-Degradation Requirement

The discharge is located within a non-special protection watershed; therefore, no High-Quality or Exceptional Value waters are impacted by this discharge. The effluent limits for this discharge have been developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing uses are maintained and protected.

Class A Wild Trout Streams

No Class A Wild Trout Fishery is impacted by this discharge.

Stormwater Monitoring

DEP previously determined that stormwater permitting is unnecessary since the facility receives municipal garbage and a small amount of building demolition materials. The application indicated that there are no stormwater outfalls and Outfall 001 does not receive stormwater drained from landfills. Module 14 – No exposure certification for discharges of stormwater associated with industrial activities was submitted to DEP during the last permit renewal, indicating that within a total area of 42 acres, all industrial equipment, materials/residuals, products, or waste materials are not exposed to precipitation and will not be exposed to precipitation in the foreseeable future.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent l	_imitations			Monitoring Re	quirements
Parameter	Mass Unit	s (lbs/day)		Concentrat	ions (mg/L)		Minimum	Required
i didilictei	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab
Dissolved Oxygen	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab
Total Residual Chlorine	XXX	XXX	XXX	0.5	XXX	1.6	1/quarter	Grab
CBOD5	2.1	4.1	XXX	25	50	60	2/month	24-Hr Composite
Total Suspended Solids	2.2	4.5	XXX	27	54	68	2/month	24-Hr Composite
Fecal Coliform (CFU/100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	XXX	1/month	Grab
Fecal Coliform (CFU/100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2,000 Geo Mean	XXX	XXX	1/month	Grab
Total Phosphorus	0.17	0.33	XXX	2.0	4.0	5.0	2/month	24-Hr Composite
Ammonia-Nitrogen	0.4	0.8	XXX	4.9	10	12	2/month	24-Hr Composite
Nitrate-Nitrite as N	Report	Report	XXX	Report	XXX	XXX	2/month	24-Hr Composite
Total Kjeldahl Nitrogen	Report	Report	XXX	Report	XXX	XXX	2/month	24-Hr Composite
Total Nitrogen	Report	Report	XXX	Report	XXX	XXX	2/month	Calculation
Total Arsenic	Report	Report	XXX	0.05	0.10	0.125	2/month	24-Hr Composite
Total Copper	Report	Report	XXX	0.05	0.10	0.125	2/month	24-Hr Composite
Dissolved Iron	0.23	0.35	XXX	2.7	4.2	6.8	2/month	24-Hr Composite

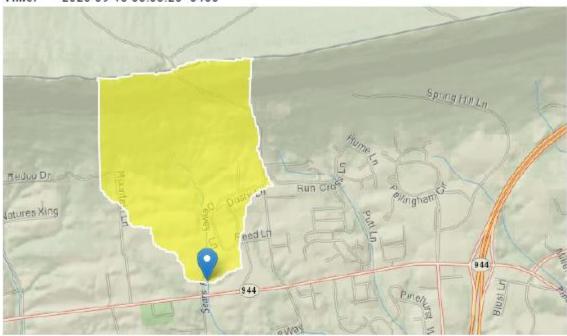
NPDES Permit No. PA0082953

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Unit	s (lbs/day)		Concentra	tions (mg/L)		Minimum	Required
Farameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Total Manganese	Report	Report	XXX	1.0	2.0	2.5	2/month	24-Hr Composite
Total Silver	Report	Report	XXX	0.01	0.02	0.025	2/month	24-Hr Composite
Total Zinc	Report	Report	XXX	0.11	0.20	0.275	2/month	24-Hr Composite
Phenol	Report	Report	XXX	0.015	0.026	0.0375	2/year	24-Hr Composite
a-Terpineol	Report	Report	XXX	0.016	0.033	0.04	2/year	24-Hr Composite
Benzoic Acid	Report	Report	XXX	0.071	0.12	0.178	2/year	24-Hr Composite
p-Cresol	Report	Report	XXX	0.014	0.025	0.035	2/year	24-Hr Composite

Tools and References Used to Develop Permit
WQM for Windows Model (see Attachment)
PENTOXSD for Windows Model (see Attachment)
TRC Model Spreadsheet (see Attachment)
Temperature Model Spreadsheet (see Attachment)
Toxics Screening Analysis Spreadsheet (see Attachment)
Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
Pennsylvania CSO Policy, 385-2000-011, 9/08.
Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
Implementation Guidance Design Conditions, 391-2000-006, 9/97.
Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
Design Stream Flows, 391-2000-023, 9/98.
Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
SOP:
Other:

Attachment

1. StreamStats


StreamStats Report

Region ID: PA

Workspace ID: PA20200915120758311000

Clicked Point (Latitude, Longitude): 40.28778, -77.01105

Time: 2020-09-15 08:08:20 -0400

Basin Characte	iisucs		
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	0.85	square miles
PRECIP	Mean Annual Precipitation	41	inches
STRDEN	Stream Density total length of streams divided by drainage area	0.9	miles per square mile
ROCKDEP	Depth to rock	3.6	feet
CARBON	Percentage of area of carbonate rock	25	percent

Zon i ion otation	oo i arameteropownownogong				
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.85	square miles	4.93	1280
PRECIP	Mean Annual Precipitation	41	inches	35	50.4
STRDEN	Stream Density	0.9	miles per square mile	0.51	3.1
ROCKDEP	Depth to Rock	3.6	feet	3.32	5.65
CARBON	Percent Carbonate	25	percent	0	99

Low-Flow Statistics Disclaimers | Low Flow Region 2|

Low-Flow Statistics Parameters/Low Flow Region 2

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Low-Flow Statistics Flow Report[Low Flow Region 2]

Statistic	Value	Unit
7 Day 2 Year Low Flow	0.115	ft^3/s
30 Day 2 Year Low Flow	0.164	ft^3/s
7 Day 10 Year Low Flow	0.0389	ft^3/s
30 Day 10 Year Low Flow	0.0593	ft^3/s
90 Day 10 Year Low Flow	0.107	ft^3/s

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

2. WQM Model

	SWF Basi			Stre	eam Name		RMI		vation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	Witho	NS drawal igd)	Apply FC
	07B	102	210 SEAR	SRUN			4.13	30	431.00	0.8	5 0.0000	00	0.00	✓
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth		Tributary np pl-	т	<u>Strear</u> emp	m pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°C)		
Q7-10 Q1-10 Q30-10	0.147	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.0	00 2	5.00 7	7.00	0.00	0.00	
					Di	scharge l	Data						7	
			Name	Per	mit Number	Disc	Permitt Disc Flow (mgd)	Dis Flo	ic Res w Fa	erve Te	isc emp °C)	Disc pH		
		Diller	Landfill	PAG	0082953	0.010	0 0.010	0.0	100	0.000	25.00	7.00		
					Pa	arameter	Data							
				Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
						(m	ng/L) (r	ng/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			5.00	8.24	0.00	0.00				
			NH3-N				4.90	0.00	0.00	0.70				

	SWP Basir			Stre	eam Name		RMI		vation (ft)	Drainage Area (sq mi)	Slop (ft/ft	Withd	VS Irawal gd)	Apply FC
	07B	102	10 SEAR	S RUN			2.48	B0	393.00	2.9	99 0.000	000	0.00	✓
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth		Tributary np pi		<u>Strear</u> Temp	n pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	()		(°C)		
Q7-10 Q1-10 Q30-10	0.147	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000		0.0	0.00	0.0	0 2	5.00	7.00	0.00	0.00	
					Di	scharge	Data						1	
			Name	Per	mit Numbe	Disc	Permitte Disc Flow (mgd)	Dis Flo	c Res w Fa	serve T	Oisc emp °C)	Disc pH		
						0.000	0.000	0.0	0000	0.000	0.00	7.00		
					Pa	arameter	Data							
				^o aramete	r Name	_		Trib Conc	Stream Conc	Fate Coef				
				dianete	· · · · · · · · · · · · · · · · · · ·	(m	ng/L) (n	ng/L)	(mg/L)	(1/days)				
		(CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
		1	NH3-N				25.00	0.00	0.00	0.70				

	SWP Basir			Stre	eam Name		RMI		ation ft)	Drainage Area (sq mi)	Slope (ft/ft)	Withd	VS Irawal gd)	Apply FC
	07B	102	210 SEAR	SRUN			1.44	10	371.00	4.20	0.0000	00	0.00	✓
					St	ream Da	ta							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ten	Tributary np pH	Te	<u>Strear</u> emp	n pH	
Conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°C)		
Q7-10 Q1-10 Q30-10	0.147	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.00) 2	5.00 7	.00	0.00	0.00	
					Di	scharge	Data						1	
			Name	Per	mit Number	Disc	Permitte Disc Flow (mgd)	Disc Flow	Res V Fa	erve Te	isc mp C)	Disc pH		
		Hamp	oden STP	PAG	0080314	5.690	0 5.690	0 5.69	900	0.000	20.00	7.50		
					Pa	arameter	Data							
				Paramete	r Name	_		Trib S Conc	Stream Conc	Fate Coef				
	. .					(n	ng/L) (n	ng/L)	(mg/L)	(1/days)		_		
			CBOD5				15.00	2.00	0.00	1.50				
			Dissolved	Oxygen			5.00	8.24	0.00	0.00				
			NH3-N				1.60	0.00	0.00	0.70				

	SWF Basi			Str	eam Name		RMI	Ele	evation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	Withd	VS Irawal gd)	Apply FC
	07B	100	210 SEAR	SRUN			0.0	00	333.00	5.0	1 0.000	00	0.00	✓
					St	ream Dat	ta							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ten	Tributary np pl-	т т	<u>Strean</u> emp	n pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	()		(°C)		
Q7-10 Q1-10 Q30-10	0.147	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.0	00 2	5.00 7	7.00	0.00	0.00	
					Di	ischarge	Data]	
			Name	Per	rmit Numbe	Disc	Permitt Disc Flow (mgd	Dis Flo	sc Res	serve Te	isc emp °C)	Disc pH		
						0.000	0.00	00 0.0	0000	0.000	0.00	7.00		
					Pa	arameter	Data							
				Paramete	r Name	_		Trib Conc	Stream Conc	Fate Coef				
				diamete	. realing	(m	ng/L) (i	mg/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

WQM 7.0 D.O.Simulation

SWP Basin Str	eam Code			Stream Name	
07B	10210			SEARS RUN	
RML 4.130	Total Discharge 0.01) Ana	lysis Temperature (°C) 25.000	Analysis pH 7.000
Reach Width (ft)	Reach De	oth (ft)		Reach WDRatio	Reach Velocity (fps)
5.220	0.37			13.914	0.072
Reach CBOD5 (mg/L)	Reach Kc (B	leach NH3-N (mg/L)	Reach Kn (1/days)
4.53	0.46	_		0.54 Va Farration	1.029
Reach DO (mg/L) 7.886	Reach Kr (25.64	•		Kr Equation Owens	Reach DO Goal (mg/L) 5
Reach Travel Time (days)		Subreach			
1.406	TravTime		NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.141	4.18	0.47	7.54	
	0.281	3.85	0.40	7.54	
	0.422	3.55	0.35	7.54	
	0.582	3.27	0.30	7.54	
	0.703	3.01	0.26	7.54	
	0.844	2.77	0.23	7.54	
	0.984	2.56	0.20	7.54	
	1.125	2.36	0.17	7.54	
	1.266	2.17	0.15	7.54	
	1.406	2.00	0.13	7.54	
<u>RML</u> 2.480	Total Discharge 0.01) Ana	lysis Temperature (°C) 25.000	Analysis pH 7.000
2.480 Reach Width (ft)	0.010 Reach De	oth (ft)). Ana	25.000 Reach WDRatio	7.000 Reach Velocity (fps)
2.480 Reach Width (ft) 9.715	0.01	0 pth (ft) 9		25.000	7.000 Reach Velocity (fps) 0.104
2.480 Reach Width (ft)	0.010 Reach De 0.440	0 pth (ft) 9 1/days)		25.000 Reach WDRatio 21.634	7.000 Reach Velocity (fps)
2.480 Reach Width (ft) 9.715 Reach CBOD5 (mg/L)	0.01(Reach De 0.44(Reach Kc.(0.00(Reach Kr.(0 pth (ft) 9 1/days) 0 1/days)		25,000 <u>Reach WDRatio</u> 21,634 leach NH3-N (mg/L) 0.04 Kr Equation	7.000 Reach Velocity (fps) 0.104 Reach Kn (1/days) 1.029 Reach DO Goal (mg/L)
2.480 <u>Reach Width (ft)</u> 9.715 <u>Reach CBOD5 (mg/L)</u> 2.00	0.01(Reach De 0.44(Reach Kc.(0.00(0 pth (ft) 9 1/days) 0 1/days)		25.000 Reach WDRatio 21.634 leach NH3-N (mg/L) 0.04	7.000 Reach Velocity (fps) 0.104 Reach Kn (1/days) 1.029
2.480 <u>Reach Width (ft)</u> 9.715 <u>Reach CBOD5 (mg/L)</u> 2.00 <u>Reach DO (mg/L)</u> 8.026 <u>Reach Travel Time (days)</u>	0.01(Reach De 0.44(Reach Kc (0.00) Reach Kr (23.62	opth (ft) 9 1/days) 0 1/days) 9 Subreach	En Results	25.000 Reach WDRatio 21.634 leach NH3-N (mg/L) 0.04 Kr Equation Owens	7.000 Reach Velocity (fps) 0.104 Reach Kn (1/days) 1.029 Reach DO Goal (mg/L)
2.480 Reach Width (ft) 9.715 Reach CBOD5 (mg/L) 2.00 Reach DO (mg/L) 8.026	0.01(Reach De 0.44(Reach Kc.(0.00(Reach Kr.(opth (ft) 9 1/days) 0 1/days) 9 Subreach	Е	25,000 <u>Reach WDRatio</u> 21,634 leach NH3-N (mg/L) 0.04 Kr Equation	7.000 Reach Velocity (fps) 0.104 Reach Kn (1/days) 1.029 Reach DO Goal (mg/L)
2.480 <u>Reach Width (ft)</u> 9.715 <u>Reach CBOD5 (mg/L)</u> 2.00 <u>Reach DO (mg/L)</u> 8.026 <u>Reach Travel Time (days)</u>	0.01(Reach De 0.44(Reach Kc.(0.00) Reach Kr.(23.62 TravTime (days)	0 pth (ft) 9 1/days) 0 1/days) 9 Subreach CBOD5 (mg/L)	Results NH3-N (mg/L)	25.000 Reach WDRatio 21.634 leach NH3-N (mg/L) 0.04 Kr Equation Owens D.O. (mg/L)	7.000 Reach Velocity (fps) 0.104 Reach Kn (1/days) 1.029 Reach DO Goal (mg/L)
2.480 <u>Reach Width (ft)</u> 9.715 <u>Reach CBOD5 (mg/L)</u> 2.00 <u>Reach DO (mg/L)</u> 8.026 <u>Reach Travel Time (days)</u>	0.01(Reach De	0 pth (ft) 9 1/days) 0 1/days) 9 Subreach CBOD5 (mg/L)	Results NH3-N (mg/L)	25.000 Reach WDRatio 21.634 leach NH3-N (mg/L) 0.04 Kr Equation Owens D.O. (mg/L) 7.54	7.000 Reach Velocity (fps) 0.104 Reach Kn (1/days) 1.029 Reach DO Goal (mg/L)
2.480 <u>Reach Width (ft)</u> 9.715 <u>Reach CBOD5 (mg/L)</u> 2.00 <u>Reach DO (mg/L)</u> 8.026 <u>Reach Travel Time (days)</u>	0.01(Reach De	0 pth (ft) 9 1/days) 0 1/days) 9 Subreach CBOD5 (mg/L) 2.00 2.00	Results NH3-N (mg/L) 0.04 0.03	25.000 Reach WDRatio 21.634 leach NH3-N (mg/L) 0.04 Kr Equation Owens D.O. (mg/L) 7.54 7.54	7.000 Reach Velocity (fps) 0.104 Reach Kn (1/days) 1.029 Reach DO Goal (mg/L)
2.480 <u>Reach Width (ft)</u> 9.715 <u>Reach CBOD5 (mg/L)</u> 2.00 <u>Reach DO (mg/L)</u> 8.026 <u>Reach Travel Time (days)</u>	0.01(Reach De	0 pth (ft) 9 1/days) 0 1/days) 9 Subreach CBOD5 (mg/L)	Results NH3-N (mg/L) 0.04 0.03 0.03	25.000 Reach WDRatio 21.634 leach NH3-N (mg/L) 0.04 Kr Equation Owens D.O. (mg/L) 7.54 7.54 7.54	7.000 Reach Velocity (fps) 0.104 Reach Kn (1/days) 1.029 Reach DO Goal (mg/L)
2.480 <u>Reach Width (ft)</u> 9.715 <u>Reach CBOD5 (mg/L)</u> 2.00 <u>Reach DO (mg/L)</u> 8.026 <u>Reach Travel Time (days)</u>	0.01(Reach De	0 pth (ft) 9 1/days) 0 1/days) 9 Subreach CBOD5 (mg/L) 2.00 2.00 2.00	Results NH3-N (mg/L) 0.04 0.03	25.000 Reach WDRatio 21.634 leach NH3-N (mg/L) 0.04 Kr Equation Owens D.O. (mg/L) 7.54 7.54	7.000 Reach Velocity (fps) 0.104 Reach Kn (1/days) 1.029 Reach DO Goal (mg/L)
2.480 <u>Reach Width (ft)</u> 9.715 <u>Reach CBOD5 (mg/L)</u> 2.00 <u>Reach DO (mg/L)</u> 8.026 <u>Reach Travel Time (days)</u>	0.01(Reach De	0 pth (ft) 9 1/days) 0 1/days) 9 Subreach CBOD5 (mg/L) 2.00 2.00 2.00 2.00 2.00	Results NH3-N (mg/L) 0.04 0.03 0.03 0.03 0.03	25.000 Reach WDRatio 21.634 leach NH3-N (mg/L) 0.04 Kr Equation Owens D.O. (mg/L) 7.54 7.54 7.54 7.54 7.54 7.54 7.54	7.000 Reach Velocity (fps) 0.104 Reach Kn (1/days) 1.029 Reach DO Goal (mg/L)
2.480 <u>Reach Width (ft)</u> 9.715 <u>Reach CBOD5 (mg/L)</u> 2.00 <u>Reach DO (mg/L)</u> 8.026 <u>Reach Travel Time (days)</u>	0.01(Reach De 0.44(Reach Kc.(0.00) Reach Kr.(23.62 TravTime (days) 0.061 0.122 0.183 0.244 0.305	0 pth (ft) 9 1/days) 0 1/days) 19 Subreach CBOD5 (mg/L) 2.00 2.00 2.00 2.00	Results NH3-N (mg/L) 0.04 0.03 0.03 0.03	25.000 Reach WDRatio 21.634 leach NH3-N (mg/L) 0.04 Kr Equation Owens D.O. (mg/L) 7.54 7.54 7.54 7.54 7.54	7.000 Reach Velocity (fps) 0.104 Reach Kn (1/days) 1.029 Reach DO Goal (mg/L)
2.480 <u>Reach Width (ft)</u> 9.715 <u>Reach CBOD5 (mg/L)</u> 2.00 <u>Reach DO (mg/L)</u> 8.026 <u>Reach Travel Time (days)</u>	0.01(Reach De 0.44(Reach Kc (0.00) Reach Kr (23.62 TravTime (days) 0.061 0.122 0.183 0.244 0.305 0.366	0 pth (ft) 9 1/days) 0 1/days) 9 Subreach (CBOD5 (mg/L) 2.00 2.00 2.00 2.00 2.00 2.00 2.00	Results NH3-N (mg/L) 0.04 0.03 0.03 0.03 0.03 0.03	25.000 Reach WDRatio 21.634 leach NH3-N (mg/L) 0.04 Kr Equation Owens D.O. (mg/L) 7.54 7.54 7.54 7.54 7.54 7.54 7.54 7.5	7.000 Reach Velocity (fps) 0.104 Reach Kn (1/days) 1.029 Reach DO Goal (mg/L)
2.480 <u>Reach Width (ft)</u> 9.715 <u>Reach CBOD5 (mg/L)</u> 2.00 <u>Reach DO (mg/L)</u> 8.026 <u>Reach Travel Time (days)</u>	0.01(Reach De 0.44(Reach Kc (0.00) Reach Kr (23.62 TravTime (days) 0.061 0.122 0.183 0.244 0.305 0.366 0.427	0 pth (ft) 9 1/days) 0 1/days) 9 Subreach (CBOD5 (mg/L) 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.0	Results NH3-N (mg/L) 0.04 0.03 0.03 0.03 0.03 0.03 0.03	25.000 Reach WDRatio 21.634 leach NH3-N (mg/L) 0.04 Kr Equation Owens D.O. (mg/L) 7.54 7.54 7.54 7.54 7.54 7.54 7.54 7.5	7.000 Reach Velocity (fps) 0.104 Reach Kn (1/days) 1.029 Reach DO Goal (mg/L)
2.480 <u>Reach Width (ft)</u> 9.715 <u>Reach CBOD5 (mg/L)</u> 2.00 <u>Reach DO (mg/L)</u> 8.026 <u>Reach Travel Time (days)</u>	0.01(Reach De 0.44(Reach Kc (0.00) Reach Kr (23.62 TravTime (days) 0.061 0.122 0.183 0.244 0.305 0.366 0.427 0.488	0 pth (ft) 9 1/days) 0 1/days) 19 Subreach (CBOD5 (mg/L) 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.0	Results NH3-N (mg/L) 0.04 0.03 0.03 0.03 0.03 0.03 0.03	25.000 Reach WDRatio 21.634 leach NH3-N (mg/L) 0.04 Kr Equation Owens D.O. (mg/L) 7.54 7.54 7.54 7.54 7.54 7.54 7.54 7.5	7.000 Reach Velocity (fps) 0.104 Reach Kn (1/days) 1.029 Reach DO Goal (mg/L)
2.480 <u>Reach Width (ft)</u> 9.715 <u>Reach CBOD5 (mg/L)</u> 2.00 <u>Reach DO (mg/L)</u> 8.026 <u>Reach Travel Time (days)</u>	0.01(Reach De 0.44(Reach Kc (0.00) Reach Kr (23.62 TravTime (days) 0.081 0.122 0.183 0.244 0.305 0.366 0.427 0.488 0.548	0 pth (ft) 9 1/days) 0 1/days) 0 1/days) 0 1/days) 0 2 00 2 00 2 00 2 00 2 00 2 00 2 00	Results NH3-N (mg/L) 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03	25.000 Reach WDRatio 21.634 leach NH3-N (mg/L) 0.04 Kr Equation Owens D.O. (mg/L) 7.54 7.54 7.54 7.54 7.54 7.54 7.54 7.5	7.000 Reach Velocity (fps) 0.104 Reach Kn (1/days) 1.029 Reach DO Goal (mg/L)

WQM 7.0 D.O.Simulation

	ream Code			Stream Name	
07B	10210			SEARS RUN	
RMI 1.440	Total Discharge 5.70) Ana	lysis Temperature (% 20.340	2) Analysis pH 7.440
Reach Width (ft)	Reach De			Reach WDRatio	Reach Velocity (fps)
25.381	0.693		_	36.632	0.537
Reach CBOD5 (mg/L)	Reach Kc (H	each NH3-N (mg/L)	Reach Kn (1/days)
14.12	1.484	-		1.48	0.719 Reach DO Goal (mg/L)
Reach DO (mg/L)	Reach Kr (25.71			Kr Equation	Keach DO Goal (mg/L)
5.186	25.71	1		Tsivoglou	5
Reach Travel Time (days)		Subreach	Results		
0.164	TravTime	CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.016	13.77	1.47	6.05	
	0.033	13.44	1.45	6.62	
	0.049	13.11	1.43	7.01	
	0.066	12.79	1.42	7.28	
	0.082	12.48	1.40	7.46	
	0.098	12.17	1.38	7.59	
	0.115	11.88	1.37	7.69	
	0.131	11.59	1.35	7.76	
	0.147	11.30	1.33	7.82	
	0.164	11.03	1.32	7.86	

WQM 7.0 Hydrodynamic Outputs

	SWP Basin Stream Cod							Stream					
		07B	1	0210				SEARS	RUN				
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH	
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)		
Q7-1	0 Flow												
4.130	0.12	0.00	0.12	.0155	0.00436	.375	5.22	13.91	0.07	1.406	25.00	7.00	
2.480	0.44	0.00	0.44	.0155	0.00401	.449	9.72	21.63	0.10	0.609	25.00	7.00	
1.440	0.63	0.00	0.63	8.8179	0.00500	.693	25.38	36.63	0.54	0.164	20.34	7.44	
Q1-1	0 Flow												
4.130	0.08	0.00	0.08	.0155	0.00436	NA	NA	NA	0.06	1.746	25.00	7.00	
2.480	0.28	0.00	0.28	.0155	0.00401	NA	NA	NA	0.08	0.774	25.00	7.00	
1.440	0.40	0.00	0.40	8.8179	0.00500	NA	NA	NA	0.53	0.166	20.23	7.46	
Q30-	10 Flow	,											
4.130	0.17	0.00	0.17	.0155	0.00436	NA	NA	NA	0.08	1.203	25.00	7.00	
2.480	0.60	0.00	0.60	.0155	0.00401	NA	NA	NA	0.12	0.516	25.00	7.00	
1.440	0.85	0.00	0.85	8.8179	0.00500	NA	NA	NA	0.54	0.162	20.45	7.42	

WQM 7.0 Wasteload Allocations

	SWP Basin Str	10210		_	EARS RUN		
NH3-N	Acute Allocatio	ns					
RMI	Discharge Nam	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
4.13	30 Diller Landfill	6.76	9.8	6.76	9.8	0	0
2.48	30	NA	NA	6.76	NA	NA	NA
1.44	40 Hampden STP	6.07	3.2	6.07	3.2	0	0
RMI	Chronic Allocat Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
	0 Diller Landfill	1.34	4.9	1.34	4.9	0	0
4.13	o Dilici Caralli						
4.13 2.48		NA	NA	1.34	NA	NA	NA
2.48			NA 1.59	1.34 1.45	NA 1.59	NA 0	NA 0
2.48 1.44	30	NA 1.45 cations			1.59		0

25

15

25

15

4.9

NA

1.59

4.9

NA

1.59

5

NA

5

5

NΑ

5

0

NA

0

0

NΑ

0

4.13 Diller Landfill

1.44 Hampden STP

2.48

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	Ш
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	5		

Tuesday, September 15, 2020

Version 1.0b

Page 1 of 1

WQM 7.0 Effluent Limits

	SWP Basin 07B	Stream Code 10210		Stream Name SEARS RUN	-		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)		Effl. Limit Minimum (mg/L)
4.130	Diller Landfil	PA0082953	0.010	CBOD5	25		
				NH3-N	4.9	9.8	
				Dissolved Oxygen			5
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)		Effl. Limit Minimum (mg/L)
1.440	Hampden ST	P PA0080314	5.690	CBOD5	15		
				NH3-N	1.59	3.18	
				Dissolved Oxygen			5

3. TRC_CALC Spreadsheet

В	С	D	Е	F	G
TRC EVA					
		in B4:B8 and E4:E	7		
	7 = Q stream		_	= CV Daily	
	1 = Q discha			= CV Hourly	
	0 = no. sam			= AFC_Partia	al Mix Easter
	_	Demand of Stre		= CFC_Partia	
		Demand of Disc		_	ai mix ractor ria Compliance Time (min
	5 = BAT/BP				ria Compliance Time (min ria Compliance Time (min
		г of Safety (FOS)		=Decay Coef	
	Reference	AFC Calculations		_	
Source TRC	1.3.2.iii	WLA afc		Reference 1.3.2.iii	CFC Calculations WLA cfc = 2.739
PENTOXSD TE		LTAMULT afc		5.1c	LTAMULT cfc = 0.581
PENTOXSD TE			= 1.050	5.1d	LTA_cfc = 1.592
I ENTOXED IT	. 0.10	LIM_aid	- 1.000	5. Tu	ETA_010 - 1.082
Source		Effluer	nt Limit Cal	culations	
PENTOXSD TE	RC 5.1f		ML MULT =		
PENTOXSD TE		AVG MON LIN			BAT/BPJ
I LIVIONOD II	0.19	INST MAX LIN			2
WLA afc		'AFC_tc)) + [(AF(AFC_Yc*Qs*Xs/Q			*AFC_tc))
LTAMULT afc	+ Xd + (/ EXP((0.5*LN	AFC_Yc*Qs*Xs/Q l(cvh^2+1))-2.326*L	(d)]*(1-FO	S/100)	*AFC_tc))
	+ Xd + (AFC_Yc*Qs*Xs/Q l(cvh^2+1))-2.326*L	(d)]*(1-FO	S/100)	*AFC_tc))
LTAMULT afc	+ Xd + (/ EXP((0.5*LN wla_afc*LT/ (.011/e(-k*	AFC_Yc*Qs*Xs/Q l(cvh^2+1))-2.326*L AMULT_afc *CFC_tc) + [(CFC	(d)]*(1-F0 .N(cvh^2+1	9 <mark>8/100)</mark>)^0.5) 011/Qd*e(-k*(
LTAMULT afc LTA_afc WLA_cfc	+ Xd + (/ EXP((0.5*LN wla_afc*LT/ (.011/e(-k* + Xd + (/	AFC_Yc*Qs*Xs/Q l(cvh^2+1))-2.326*L AMULT_afc *CFC_tc) + [(CFC CFC_Yc*Qs*Xs/Q	(d)]*(1-F0 .N(cvh^2+1 Yc*Qs*.(9 <mark>8/100)</mark>)^0.5) 011/Qd*e(-k*(98/100)	CFC_tc))
LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc	+ Xd + (/ EXP((0.5*LN wla_afc*LT// (.011/e(-k* + Xd + (/ EXP((0.5*LN	AFC_Yc*Qs*Xs/Q l(cvh^2+1))-2.326*L AMULT_afc *CFC_tc) + [(CFC CFC_Yc*Qs*Xs/Q l(cvd^2/no_sample	(d)]*(1-F0 .N(cvh^2+1 Yc*Qs*.(9 <mark>8/100)</mark>)^0.5) 011/Qd*e(-k*(98/100)	CFC_tc))
LTAMULT afc LTA_afc WLA_cfc	+ Xd + (/ EXP((0.5*LN wla_afc*LT/ (.011/e(-k* + Xd + (/	AFC_Yc*Qs*Xs/Q l(cvh^2+1))-2.326*L AMULT_afc *CFC_tc) + [(CFC CFC_Yc*Qs*Xs/Q l(cvd^2/no_sample	(d)]*(1-F0 .N(cvh^2+1 Yc*Qs*.(9 <mark>8/100)</mark>)^0.5) 011/Qd*e(-k*(98/100)	CFC_tc))
LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc LTA_cfc	+ Xd + (/ EXP((0.5*LN wla_afc*LT/ (.011/e(-k* + Xd + (/ EXP((0.5*LN wla_cfc*LT/	AFC_Yc*Qs*Xs/Q l(cvh^2+1))-2.326*L AMULT_afc *CFC_tc) + [(CFC CFC_Yc*Qs*Xs/Q l(cvd^2/no_sample AMULT_cfc	.N(cvh^2+1 .N(cvh^2+1 Yc*Qs*.(.d)]*(1-FO s+1))-2.326	9 S/100))^0.5) 011/Qd*e(-k* (9 S/100) i*LN(cvd^2/no_	CFC_tc)) samples+1)^0.5)
LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc LTA_cfc AML MULT	+ Xd + (// EXP((0.5*LN wla_afc*LT// (.011/e(-k*+ Xd + (// EXP((0.5*LN wla_cfc*LT// EXP(2.326*L	AFC_Yc*Qs*Xs/Q l(cvh^2+1))-2.326*L AMULT_afc *CFC_tc) + [(CFC CFC_Yc*Qs*Xs/Q l(cvd^2/no_sample AMULT_cfc	Ad)]*(1-FO .N(cvh^2+1 -Yc*Qs*.(Ad)]*(1-FO s+1))-2.326	S/100))^0.5) 011/Qd*e(-k*(S/100) *LN(cvd^2/no_)-0.5*LN(cvd^2	CFC_tc)) samples+1)^0.5)
LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc LTA_cfc AML MULT AVG MON LIMIT	+ Xd + (/ EXP((0.5*LN wla_afc*LT/ (.011/e(-k* + Xd + (/ EXP((0.5*LN wla_cfc*LT/ EXP(2.326*L MIN(BAT_B	AFC_Yc*Qs*Xs/Q l(cvh^2+1))-2.326*L AMULT_afc *CFC_tc) + [(CFC CFC_Yc*Qs*Xs/Q l(cvd^2/no_sample AMULT_cfc	Ad)]*(1-FO .N(cvh^2+1 -Yc*Qs*.I Ad)]*(1-FO s+1))-2.326 bles+1)^0.5	98/100) ()^0.5) 011/Qd*e(-k* (98/100) (*LN(cvd^2/no_) ()-0.5*LN(cvd^2	CFC_tc)) samples+1)^0.5)
LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc LTA_cfc AML MULT AVG MON LIMIT	+ Xd + (/ EXP((0.5*LN wla_afc*LT/ (.011/e(-k* + Xd + (/ EXP((0.5*LN wla_cfc*LT/ EXP(2.326*L MIN(BAT_B	AFC_Yc*Qs*Xs/Q l(cvh^2+1))-2.326*L AMULT_afc CFC_tc) + [(CFC CFC_Yc*Qs*Xs/Q l(cvd^2/no_sample AMULT_cfc LN((cvd^2/no_sample LN((cvd^2/no_sample),MIN(LTA_afc,LT	Ad)]*(1-FO .N(cvh^2+1 -Yc*Qs*.I Ad)]*(1-FO s+1))-2.326 bles+1)^0.5	98/100) ()^0.5) 011/Qd*e(-k* (98/100) (*LN(cvd^2/no_) ()-0.5*LN(cvd^2	CFC_tc)) samples+1)^0.5)
LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc LTA_cfc AML MULT AVG MON LIMIT	+ Xd + (/ EXP((0.5*LN wla_afc*LT/ (.011/e(-k* + Xd + (/ EXP((0.5*LN wla_cfc*LT/ EXP(2.326*L MIN(BAT_B	AFC_Yc*Qs*Xs/Q l(cvh^2+1))-2.326*L AMULT_afc CFC_tc) + [(CFC CFC_Yc*Qs*Xs/Q l(cvd^2/no_sample AMULT_cfc LN((cvd^2/no_sample LN((cvd^2/no_sample),MIN(LTA_afc,LT	Ad)]*(1-FO .N(cvh^2+1 -Yc*Qs*.I Ad)]*(1-FO s+1))-2.326 bles+1)^0.5	98/100) ()^0.5) 011/Qd*e(-k* (98/100) (*LN(cvd^2/no_) ()-0.5*LN(cvd^2	CFC_tc)) samples+1)^0.5)
LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc LTA_cfc AML MULT AVG MON LIMIT	+ Xd + (/ EXP((0.5*LN wla_afc*LT/ (.011/e(-k* + Xd + (/ EXP((0.5*LN wla_cfc*LT/ EXP(2.326*L MIN(BAT_B	AFC_Yc*Qs*Xs/Q l(cvh^2+1))-2.326*L AMULT_afc CFC_tc) + [(CFC CFC_Yc*Qs*Xs/Q l(cvd^2/no_sample AMULT_cfc LN((cvd^2/no_sample LN((cvd^2/no_sample),MIN(LTA_afc,LT	Ad)]*(1-FO .N(cvh^2+1 -Yc*Qs*.I Ad)]*(1-FO s+1))-2.326 bles+1)^0.5	98/100) ()^0.5) 011/Qd*e(-k* (98/100) (*LN(cvd^2/no_) ()-0.5*LN(cvd^2	CFC_tc)) samples+1)^0.5)
LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc LTA_cfc AML MULT AVG MON LIMIT	+ Xd + (/ EXP((0.5*LN wla_afc*LT/ (.011/e(-k* + Xd + (/ EXP((0.5*LN wla_cfc*LT/ EXP(2.326*L MIN(BAT_B	AFC_Yc*Qs*Xs/Q l(cvh^2+1))-2.326*L AMULT_afc CFC_tc) + [(CFC CFC_Yc*Qs*Xs/Q l(cvd^2/no_sample AMULT_cfc LN((cvd^2/no_sample LN((cvd^2/no_sample),MIN(LTA_afc,LT	Ad)]*(1-FO .N(cvh^2+1 -Yc*Qs*.I Ad)]*(1-FO s+1))-2.326 bles+1)^0.5	98/100) ()^0.5) 011/Qd*e(-k* (98/100) (*LN(cvd^2/no_) ()-0.5*LN(cvd^2	CFC_tc)) samples+1)^0.5)
LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc LTA_cfc AML MULT AVG MON LIMIT	+ Xd + (/ EXP((0.5*LN wla_afc*LT/ (.011/e(-k* + Xd + (/ EXP((0.5*LN wla_cfc*LT/ EXP(2.326*L MIN(BAT_B	AFC_Yc*Qs*Xs/Q l(cvh^2+1))-2.326*L AMULT_afc CFC_tc) + [(CFC CFC_Yc*Qs*Xs/Q l(cvd^2/no_sample AMULT_cfc LN((cvd^2/no_sample LN((cvd^2/no_sample),MIN(LTA_afc,LT	Ad)]*(1-FO .N(cvh^2+1 -Yc*Qs*.I Ad)]*(1-FO s+1))-2.326 bles+1)^0.5	98/100) ()^0.5) 011/Qd*e(-k* (98/100) (*LN(cvd^2/no_) ()-0.5*LN(cvd^2	CFC_tc)) samples+1)^0.5)
LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc LTA_cfc AML MULT AVG MON LIMIT INST MAX LIMIT	+ Xd + (A EXP((0.5*LN wla_afc*LTA (.011/e(-k* + Xd + (A EXP((0.5*LN wla_cfc*LTA EXP(2.326*LTA MIN(BAT_B 1.5*((av_m	AFC_Yc*Qs*Xs/Q l(cvh^2+1))-2.326*L AMULT_afc *CFC_tc) + [(CFC CFC_Yc*Qs*Xs/Q l(cvd^2/no_sample AMULT_cfc LN((cvd^2/no_sample L	Ad)]*(1-FO .N(cvh^2+1 Yc*Qs*.(98/100))^0.5) 011/Qd*e(-k*(98/100) i*LN(cvd^2/no_)-0.5*LN(cvd^2 IL_MULT) MULT_afc)	CFC_tc)) samples+1)^0.5) 2/no_samples+1))
LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc LTA_cfc AML MULT AVG MON LIMIT INST MAX LIMIT	+ Xd + (A EXP((0.5*LN wla_afc*LTA (.011/e(-k* + Xd + (A EXP((0.5*LN wla_cfc*LTA EXP(2.326*LTA EXP(2.326*LTA MIN(BAT_B 1.5*((av_m	AFC_Yc*Qs*Xs/Q l(cvh^2+1))-2.326*L AMULT_afc CFC_tc) + [(CFC CFC_Yc*Qs*Xs/Q l(cvd^2/no_sample AMULT_cfc LN((cvd^2/no_sample LN((cvd^2/no_sample),MIN(LTA_afc,LT	Ad)]*(1-FO .N(cvh^2+1 Yc*Qs*.I Ad)]*(1-FO s+1))-2.326 Dles+1)^0.5 FA_cfc)*AM ULT)/LTA	S/100))^0.5) 011/Qd*e(-k*(S/100) ;*LN(cvd^2/no_)-0.5*LN(cvd^2 IL_MULT) MULT_afc))/(1.547*Qd).	CFC_tc)) samples+1)^0.5) 2/no_samples+1))

4. Toxics Management Spreadsheet

Taxics Management Spreadsheet Version 1.0, July 2020

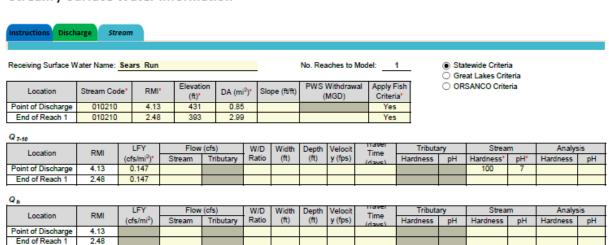
Discharge Information

	Discharge Characteristics											
Design Flow	Hardness (mg/l)*	pH (SU)*	F	artial Mix Fa	actors (PMF	5)	Complete Mix	x Times (min)				
(MGD)*	naruness (mg/l)	pn (30)	AFC	AFC CFC THH CRL Q ₇₋₁₀								
0.01	340	8.3										

	· · · · · · · · · · · · · · · · · · ·			(0 lf lef	t blank	0.5 lf le	0.5 lf left blank		0 if left blank			t blank	
	Discharge Pollutant	Units	Ма	Max Discharge Conc		rib one	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L		657										
2	Chloride (PWS)	mg/L		125										
1 8	Bromide	mg/L		0.6										
Group	Sulfate (PWS)	mg/L		27.4										
	Fluoride (PWS)	mg/L		0.1										
	Total Aluminum	μg/L		15.7										
	Total Antimony	μg/L	<	0.5										
	Total Arsenic	μg/L		50										
	Total Barium	μg/L		442										
	Total Beryllium	μg/L	<	0.5										
	Total Boron	μg/L		280										
	Total Cadmium	μg/L	<	0.1										
	Total Chromium (III)	μg/L		0.9										
	Hexavalent Chromium	μg/L	<	2										
	Total Cobalt	μg/L		1.7										
	Total Copper	µg/L		50										
2	Free Available Cyanide	μg/L												
Group	Total Cyanide	μg/L		10										
Ιĕ	Dissolved Iron	µg/L		2800										
	Total Iron	μg/L		21										
	Total Lead	μg/L	<	0.2										
	Total Manganese	µg/L		1000										
	Total Mercury	µg/L	<	0.1										
	Total Nickel	μg/L		6.4										
	Total Phenols (Phenolics) (PWS)	µg/L		7										
	Total Selenium	µg/L	<	0.5										
	Total Silver	µg/L		10										
	Total Thallium	µg/L	<	0.1										
	Total Zinc	µg/L		110										
	Total Molybdenum	µg/L		1.1										
\vdash	Acrolein	µg/L	<	1										
	Acrylamide	µg/L	<	0.5										
	Acrylonitrile	µg/L	<	0.2										
	Benzene	µg/L	<	0.2										
	Bromoform	µg/L	<	0.2										

1	Carbon Tetrachloride	µg/L	<	0.2								
1	Chlorobenzene		<	0.4	\vdash						Н	-
1		μg/L	$\overline{}$		\vdash	-					Н	-
1	Chlorodibromomethane	µg/L	<	0.2							H	\rightarrow
1	Chloroethane	μg/L	<	0.5								
1	2-Chloroethyl Vinyl Ether	µg/L	<	0.2							H	
1	Chloroform	µg/L	<	0.2							П	
1	Dichlorobromomethane	µg/L	<	0.2	\vdash						Ħ	\rightarrow
1	1,1-Dichloroethane	µg/L	<	0.2	\vdash						H	\rightarrow
1	-		<	0.2	\vdash	-					H	\rightarrow
63	1,2-Dichloroethane	µg/L	-		₩	_					Н	_
Group	1,1-Dichloroethylene	µg/L	<	0.2							\vdash	
2	1,2-Dichloropropane	μg/L	<	0.2								
စ	1,3-Dichloropropylene	µg/L	<	0.2							Ħ	=
1	1,4-Dioxane	µg/L		9.4	\vdash						Н	
1	Ethylbenzene	µg/L	<	0.2	\vdash						Н	\rightarrow
1			-		\vdash	-					Н	-
1	Methyl Bromide	µg/L	<	0.5	\vdash						H	\rightarrow
1	Methyl Chloride	µg/L	<	0.2							Ш	
1	Methylene Chloride	μg/L	<	0.4	\vdash	-	1				H	-
1	1,1,2,2-Tetrachloroethane	µg/L	<	0.2							П	
	Tetrachloroethylene	µg/L	<	0.4							H	
	Toluene	µg/L	<	0.2								
1	1,2-trans-Dichloroethylene		<	0.5								-
		µg/L	-									
	1,1,1-Trichloroethane	µg/L	<	0.2								
1	1,1,2-Trichloroethane	µg/L	<	0.5								
	Trichloroethylene	µg/L	<	0.2							H	\neg
	Vinyl Chloride	µg/L	<	0.2								
\vdash	2-Chlorophenol	µg/L	<	0.2	\vdash	-					Ħ	\rightarrow
1	2,4-Dichlorophenol		<	0.2	\vdash						Н	-
1		µg/L	-		\vdash						H	\rightarrow
1	2,4-Dimethylphenol	µg/L	<	0.2							Ш	
	4,6-Dinitro-o-Cresol	μg/L	٧	1							\vdash	_
4	2,4-Dinitrophenol	µg/L	<	1							П	
Group	2-Nitrophenol	µg/L	<	0.5	\vdash						Ħ	\rightarrow
1,2	4-Nitrophenol	µg/L	<	0.5							Н	
10	p-Chloro-m-Cresol		<	0.5	\vdash						Н	_
1	•	µg/L	-		\vdash	_					Н	\rightarrow
1	Pentachlorophenol	µg/L	<	0.5							H	\rightarrow
1	Phenol	µg/L		0.3							Ш	
1	2,4,6-Trichlorophenol	μg/L	<	0.2	\vdash	-	1				H	
	Acenaphthene	µg/L	<	0.1							П	
1	Acenaphthylene	µg/L	<	0.1	\vdash						Ħ	\rightarrow
1	Anthracene	µg/L	<	5000	\vdash						Н	\rightarrow
1			<	0.1	\vdash	-					H	-
1	Benzidine	µg/L	-		⊢						Н	_
1	Benzo(a)Anthracene	µg/L	<	0.2							\vdash	\rightarrow
1	Benzo(a)Pyrene	µg/L	<	0.1								
1	3,4-Benzofluoranthene	μg/L	<	0.1							H	_
1	Benzo(ghi)Perylene	μg/L	<	0.1							П	
	Benzo(k)Fluoranthene	µg/L	<	0.1								
1	Bis(2-Chloroethoxy)Methane	µg/L	<	0.1								
			<	0.1								
1	Bis(2-Chloroethyl)Ether	μg/L	$\overline{}$									
	Bis(2-Chloroisopropyl)Ether	µg/L	<	0.1								
	Bis(2-Ethylhexyl)Phthalate	µg/L	<	1								
	4-Bromophenyl Phenyl Ether	µg/L	<	0.1								
	Butyl Benzyl Phthalate	µg/L	<	1								
	2-Chloronaphthalene	µg/L	<	0.1								
1	4-Chlorophenyl Phenyl Ether	µg/L	<	0.1								
1			-									
1	Chrysene	µg/L	<	0.1								
		μg/L	<	0.1								
	Dibenzo(a,h)Anthrancene		-	0.1								
	1,2-Dichlorobenzene	µg/L	<				1					
	1,2-Dichlorobenzene	µg/L	<	0.1								
	1,2-Dichlorobenzene 1,3-Dichlorobenzene	μg/L μg/L	-	0.1								
p 5	1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene	μg/L μg/L μg/L	<	0.1 0.1								_
g dno	1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3-Dichlorobenzidine	ha/r ha/r	< <	0.1 0.1 0.2								
3roup 5	1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3-Dichlorobenzidine Diethyl Phthalate	ha/r ha/r ha/r	< < <	0.1 0.1 0.2 1								
유	1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3-Dichlorobenzidine Diethyl Phthalate Dimethyl Phthalate	h8/r h8/r h8/r h8/r	< <	0.1 0.1 0.2 1								
Group 5	1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3-Dichlorobenzidine Diethyl Phthalate	h8/r h8/r h8/r h8/r	< < <	0.1 0.1 0.2 1								
Group 5	1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3-Dichlorobenzidine Diethyl Phthalate Dimethyl Phthalate	ha/r ha/r ha/r	v v v	0.1 0.1 0.2 1								

	0.5 Distinctshape			2.0					
	2,6-Dinitrotoluene	µg/L	<	0.2					
	DI-n-Octyl Phthalate	μg/L	<	1					
	1,2-Diphenyihydrazine	μg/L	<	0.1					
	Fluoranthene	μg/L	<	0.1					
	Fluorene	µg/L	<	0.1					
	Hexachlorobenzene	µg/L	<	0.1					
	Hexachiorobutadiene	µg/L	<	0.1		_		_	
			«	0.5		_		_	
	Hexachlorocyclopentadlene	µg/L	-						
	Hexachioroethane	µg/L	<	0.1					
	Indeno(1,2,3-cd)Pyrene	μg/L	<	0.1					
	Isophorone	μg/L	<	0.2					
	Naphthalene	μg/L	*	0.1					
	Nitrobenzene	µg/L	<	0.1					
	n-Nitrosodimethylamine	µg/L	<	0.1					
	n-Nitrosodi-n-Propylamine	µg/L	<	0.1					
	n-Nitrosodiphenylamine	µg/L	<	0.1					
	Phenanthrene	_	۷.	0.1		_		_	
		µg/L	-						
	Pyrene	µg/L	<	0.1					
	1,2,4-Trichiorobenzene	μg/L	<	0.1					
	Aldrin	μg/L	*	0.002					
	alpha-BHC	μg/L	•	0.002					
	beta-BHC	µg/L	<	0.05					
	gamma-BHC	µg/L	<	0.05					
	delta BHC	µg/L	<	0.1					
	Chlordane		-	0.1					
		µg/L	<						
	4,4-DDT	μg/L	<	0.05					
	4,4-DDE	µg/L	<	0.05					
	4,4-DDD	μg/L	<	0.002					
	Dieldrin	µg/L	<	0.05					
	alpha-Endosulfan	µg/L	*	0.05					
	beta-Endosulfan	µg/L	<	0.05					
φ	Endosulfan Sulfate	µg/L	<	0.05					
•	Endrin	µg/L	<	0.05		_		_	
2			<	0.1					
9	Endrin Aldehyde	µg/L	-					 	
	Heptachior	µg/L	<	0.05					
	Heptachior Epoxide	µg/L	<	0.05					
	PCB-1016	μg/L	<	1					
	PCB-1221	μg/L	<	1					
	PCB-1232	µg/L	٧	1					
	PCB-1242	µg/L	<	1					
	PCB-1248	µg/L	<	1					
	PCB-1254		<	1					
		µg/L	-	1					
	PCB-1260	µg/L	<						
	PCBs, Total	µg/L	<	1					
	Toxaphene	µg/L	<	0.1					
	2,3,7,8-TCDD	ng/L	<						
	Gross Alpha	pCl/L							
	Total Beta	pCl/L	<						
	Radium 226/228	pCl/L	<						
_	Total Strontlum	µg/L	<						
(2)	Total Uranium		٧.						
	Osmotic Pressure	µg/L mOs/kg	-						
\Box	Controllo Piccourc	mosakg							


Discharge Information 2/24/2021 Page 3

Toxics Management Spreadsheet Version 1.0, July 2020

Stream / Surface Water Information

Diller Transfer Station, NPDES Permit No. PA0082953, Outfall 001

tream / Surface Water Information 2/24/2021 Page 4

PRINT

SAVE AS PDF

Results

Model Results

Toxics Management Spreadsheet Version 1.0, July 2020

RETURN TO INPUTS

١	
	☐ Hydrodynamics
	☐ Wasteload Allocations
	☑ Recommended WQBELs & Monitoring Requirements
	No Sampler/Month:

	Mass	Limits	Concentration Limits			Ī			
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Chloride (PWS)	Report	Report	Report	Report	Report	mg/L	N/A	N/A	Discharge Conc > 10% WQBEL (no RP)
Sulfate (PWS)	Report	Report	Report	Report	Report	mg/L	N/A	N/A	Discharge Conc > 10% WQBEL (no RP)
Total Arsenic	0.008	0.012	90.8	142	227	μg/L	90.8	THH	Discharge Conc ≥ 50% WQBEL (RP)
Total Copper	Report	Report	Report	Report	Report	μg/L	102	AFC	Discharge Conc > 10% WQBEL (no RP)
Dissolved Iron	0.23	0.35	2,723	4,248	6,808	μg/L	2,723	THH	Discharge Conc ≥ 50% WQBEL (RP)
Total Manganese	Report	Report	Report	Report	Report	μg/L	9,077	THH	Discharge Conc > 10% WQBEL (no RP)
Total Silver	Report	Report	Report	Report	Report	μg/L	33.0	AFC	Discharge Conc > 10% WQBEL (no RP)
Total Zinc	Report	Report	Report	Report	Report	μg/L	850	AFC	Discharge Conc > 10% WQBEL (no RP)

Other Pollutants without Limits or Monitoring