

Application Type	Renewal
	Non-
Facility Type	Municipal
Major / Minor	Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No.	PA0082996
APS ID	823646
Authorization ID	1234834

Applicant and Facility Information

Applicant Name	Summit International School Of Ministry	Facility Name	Summit Int School Of Ministry		
Applicant Address	74 Harrison School Road	Facility Address	74 Harrison School Road		
	Grantville, PA 17028-8222		Grantville, PA 17028-8222		
Applicant Contact	Pavel Maftey	Facility Contact	Pavel Maftey		
Applicant Phone	(717) 865-2000	Facility Phone	717) 865-2000		
Client ID	307514	Site ID	452168		
Ch 94 Load Status	Not Overloaded	Municipality	East Hanover Township		
Connection Status	No Limitations	County	Lebanon		
Date Application Receiv	vedJune 25, 2018	EPA Waived?	Yes		
Date Application Accep	ted July 10, 2018	If No, Reason			
Purpose of ApplicationPermit Renewal for discharge of treated sewage					

Summary of Review

1.0 General Discussion

This factsheet supports the renewal of an existing NPDES permit for a discharge of treated domestic sewage from an existing wastewater treatment plant that serves a bible school located in Grantville, Lebanon County. The facility is own and operated by Summit International School of Ministry. The plant has a design capacity of 0.015 mgd, and discharge to an unnamed tributary of Indiantown Run which is classified for Warm Water Fishes (WWF) and Migratory Fishes (MF). The existing NPDES permit was issued on December 18, 2013 with an effective date of January 1, 2014 and expiration date of December 31, 2018. The applicant submitted a timely renewal application to the Department and is currently operating under the terms and conditions in the existing permit pending Department action on the renewal application. A topographic map showing the discharge location (attachment A)

1.1 Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
Х		J. Pascal Kwedza, P.E. / Environmental Engineer	November 8, 2019
		Daniel W. Martin, P.E. / Environmental Engineer Manager	
		Maria D. Bebenek, P.E./ Program Manager	

Summary of Review

1.2 Changes to the existing Permit

• Semi-annual monitoring of Total Phosphorus, Total Nitrogen, TKN and Nitrate-Nitrite have been added

1.3 Existing Permit Limits and Monitoring Requirements

DISCHARGE LIMITATIONS							MONITORING REQUIREMENTS	
	Mass Un	its (lbs/day)		Concentra	tions (mg/l)			
Discharge Parameter	Average Monthly	Maximum Daily	Inst. Minimum	Average Monthly	Maximum Daily	Inst. Maximum	Monitoring Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	ххх	xxx	XXX	ххх	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0	xxx	XXX	9.0	1/day	Grab
Dissolved Oxygen	XXX	XXX	5.0	xxx	xxx	xxx	1/day	Grab
Total Residual Chlorine	XXX	XXX	xxx	0.08	xxx	0.26	1/day	Grab
CBOD5	xxx	xxx	xxx	25	xxx	50	2/month	8-Hr Composite
Total Suspended Solids	xxx	xxx	xxx	30	XXX	60	2/month	8-Hr Composite
Fecal Coliform (CFU/100 ml) May 1 - Sep 30	xxx	xxx	xxx	200 Geo Mean	XXX	1,000	2/month	Grab
Fecal Coliform (CFU/100 ml) Oct 1 - Apr 30	xxx	xxx	xxx	2,000 Geo Mean	xxx	10,000	2/month	Grab
Ammonia- Nitrogen May 1 - Oct 31	xxx	xxx	xxx	2.5	XXX	5.0	2/month	8-Hr Composite
Ammonia- Nitrogen Nov 1 - Apr 30	xxx	xxx	xxx	7.5	xxx	15.0	2/month	8-Hr Composite
Total Phosphorus	xxx	Report	xxx	Report Annl Avg	XXX	xxx	1/year	8-Hr Composite
Total Nitrogen	xxx	Report	xxx	Report Annl Avg	xxx	xxx	1/year	Calculatio

1.4.0 Discharge, Receiving Waters and Water Supply Information						
Outfall No. 002 Latitude <u>40º 24' 33.07"</u> Quad Name Wastewater Description: <u>Sewage Effluent</u>	Design Flow (MGD) .015 Longitude -76º 35' 55.05" Quad Code					
Unnamed Tributary to Indiantov Run (WWF, MF)NHD Com ID56396795Drainage Area0.16 sq. miQ7-10 Flow (cfs)0.011Elevation (ft)475Watershed No.7-DExisting Use	Stream Code 09807 RMI 0.6800 Yield (cfs/mi²) 0.0656 Q7-10 Basis USGS Gage Station Slope (ft/ft)					
TMDL Status	Name					
Background/Ambient Data pH (SU) Temperature (°F) Hardness (mg/L) Other:	Data Source					
Other:	PA American Water Flow at Intake (cfs) Distance from Outfall (mi) 17					

Changes Since Last Permit Issuance:

Other Comments:

1.4.1 Water Supply Intake

The nearest downstream water supply intake is approximately 17 miles downstream for PA American Water on Swatara Creek in South Hanover Township, Dauphin County. No impact is expected from this discharge on the intake

0 Treatment Facility	Summary			
reatment Facility Na	me: Summit Int School Of N	Ainistry		
WQM Permit No.	Issuance Date			
3886404 A-2	5/26/2015			
	Degree of			Avg Annual
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)
Sewage	Secondary With Ammonia Reduction	Extended Aeration	Hypochlorite	0.015
lydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposa
0.045		Not Overlage de d	Associa Dissocias	Combination of
0.015		Not Overloaded	Aerobic Digestion	methods

Changes Since Last Permit Issuance: Amendment submitted to remove tertiary filter from the permit

Other Comments:

2.1 Treatment Facility

The treatment plant consists of bar screen, aerated EQ tank with pumps, splitter box (splits flow to aeration tank and back to EQ tank), 2 aeration tanks in series, a clarifier, chlorine disinfection/de-chlorination tank, sludge holding tank, flow meter and tertiary filter (not in use and will be removed from the WQM permit via a permit amendment submitted on 10/9/2019)

2.2 Chemicals

- Sodium Hypochlorite for disinfection
- Sodium Bisulfite for de-chlorination

3.0 Compliance History

3.1 DMR Data for Outfall 002 (from October 1, 2018 to September 30, 2019)

Parameter	SEP-19	AUG-19	JUL-19	JUN-19	MAY-19	APR-19	MAR-19	FEB-19	JAN-19	DEC-18	NOV-18	OCT-18
Flow (MGD)												
Average Monthly	0.017	0.017	0.015	0.0120	0.011	0.019	0.015	0.019	0.014	0.027	0.026	0.0269
Flow (MGD)												
Daily Maximum	0.029	0.036	0.024	0.019	0.035	0.040	0.040	0.036	0.037	0.050	0.064	0.053
pH (S.U.)												
Minimum	7.27	7.04	7.32	7.48	7.17	7.43	6.65	7.45	6.47	6.74	7.12	7.42
pH (S.U.)												
Maximum	8.16	8.16	8.33	7.92	7.97	7.95	7.98	8.26	8.32	7.44	7.89	7.94
DO (mg/L)												
Minimum	6.15	4.90	5.26	7.48	6.31	8.27	8.94	9.49	9.11	8.15	7.72	7.3
TRC (mg/L)												
Average Monthly	0.02	0.02	0.02	0.01	0.01	0.01	0.03	0.02	0.01	0.01	0.01	0.01
TRC (mg/L)												
Instant. Maximum	0.04	0.06	0.04	0.04	0.10	0.16	0.25	0.11	0.09	0.07	0.07	0.04
CBOD5 (mg/L)												
Average Monthly	< 2.0	< 2.0	< 2.0	< 2.0	< 6.35	4.00	< 2.9	< 3.55	< 2.0	< 3.4	< 2.0	< 2.0
TSS (mg/L)												
Average Monthly	< 5.0	6.0	< 7.0	< 8.5	< 20.0	< 5.0	< 8.5	< 5.0	< 5.0	< 5.0	7.0	< 5.5
Fecal Coliform												
(CFU/100 ml)	4 = 0		17.00	1000	10			100.00		10.00		
Geometric Mean	4.58	77.46	17.89	1200	7.746	135.94	< 7.55	133.08	< 3.16	< 46.90	15.49	21.21
Fecal Coliform												
(CFU/100 ml)	01.0	000	000.0	0000	45	0.40	57.0	000.0	40.0	0000	0.40	450
Instant. Maximum	21.0	200	320.0	3200	15	240	57.0	230.0	10.0	2200	240	450
Total Nitrogen (mg/L)										25.40		
Annual Average										25.10		
Total Nitrogen (lbs) Total Annual										1832.30		
Ammonia (mg/L)										1832.30		
	15.83	0.825	3.41	1.76	< 2.41	3.44	1.946	29.35	10.10	7.694	3.54	5.0175
Average Monthly Total Phosphorus	10.00	0.625	3.41	1.70	< 2.41	3.44	1.940	29.55	10.10	1.094	3.04	3.0175
(mg/L) Annual Ave.										3.30		
Total Phosphorus (lbs)										3.30		
Total Annual										240.90		
i otai Annuai										240.50		

Compliance History

3.2 Effluent Violations for Outfall 002, from: November 1, 2018 To: September 30, 2019

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
DO	08/31/19	Min	4.90	mg/L	5.0	mg/L
Fecal Coliform	06/30/19	Geo Mean	1200	CFU/100 ml	200	CFU/100 ml
Fecal Coliform	06/30/19	IMAX	3200	CFU/100 ml	1000	CFU/100 ml
Ammonia	12/31/18	Avg Mo	7.694	mg/L	7.5	mg/L
Ammonia	07/31/19	Avg Mo	3.41	mg/L	2.5	mg/L
Ammonia	02/28/19	Avg Mo	29.35	mg/L	7.5	mg/L
Ammonia	01/31/19	Avg Mo	10.10	mg/L	7.5	mg/L
Ammonia	09/30/19	Avg Mo	15.83	mg/L	2.5	mg/L

3.2 Compliance History	
Summary of DMRs:	Discharge Monitoring Reports (DMRs) review for the facility for the last 12 months of operation presented on the table above indicate 5 instances of Ammonia violations, 2 Fecal Coliform violations and a DO violation. The violations appear to be operation related. It is recommended the operator check the aeration system to ensure adequate oxygen transfer in the aeration tank, ensure adequate disinfection and provide adequate reaeration after dichlorination.
Summary of Inspections:	The facility was inspected 7 times during the past permit cycle. Inspection reports review for the facility during the period indicate permit limits have been met consistently. No violations noted during plant inspections.

4.0 Develop	ment of Effluent Limitations		
Outfall No.	002	Design Flow (MGD)	.015
Latitude	40° 24' 33.00"	Longitude	-76º 35' 55.00"
Wastewater I	Description: Sewage Effluent		

4.1 Basis for Effluent Limitations

In general, the Clean Water Act (AWA) requires that the effluent limits for a particular pollutant be the more stringent of either technology-based limits or water quality-based limits. Technology-based limits are set according to the level of treatment that is achievable using available technology. A water quality-based effluent limit is designed to ensure that the water quality standards applicable to a waterbody are being met and may be more stringent than technology-based effluent limits.

4.1.1 Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Comments: Weekly averages are not applicable to this discharge

4.2 Water Quality-Based Limitations

4.2.1 Streamflows

Streamflows for the water quality analysis were determined by correlating with the yield of USGS gauging station No 01573000 on Swatara Creek at Harper Tavern. The Q_{7-10} and drainage area at the gage is 22.1ft3/s and 337 mi² respectively. The resulting yields are as follows:

- Q₇₋₁₀ = (22.1ft³/s)/337 mi² = 0.0656ft³/s/ mi²
- $Q_{30-10} / Q_{7-10} = 1.40$
- $Q_{1-10} / Q_{7-10} = 0.80$

The drainage area at the proposed discharge point was found from streamstats calculation to be 0.16 mi² The design streamflow (Q_{7-10}) is calculated as: $Q_{7-10} = (0.0656)x(0.16) = 0.011cfs$

4.2.2 NH₃N Calculations

 NH_3N calculations will be based on the Department's Implementation Guidance of Section 93.7 Ammonia Criteria, dated 11/4/97 (ID No. 391-2000-013). The following data is necessary to determine the instream NH_3N criteria used in the attached computer model of the stream:

- STP pH = 7.0 (DMR median Jul Sept)
 STP Temperature = 25 ° C (Default)
 Stream pH = 7.0 (Default)
- Stream Temperature = 20 ° C (Default)
- Background NH_3 -N = 0.0 (Default)

4.2.3 CBOD₅

The attached results of WQM 7.0 stream model (attachment B) indicates a monthly average limit of 25mg/l CBOD5 is adequate to protect the water quality of the stream at outfall 002. This limit is consistent with the existing permit and the facility has been complying with the limit.

4.2.4 NH₃-N

The attached results of the WQM 7.0 stream model (attachment B) also indicates that a summer limit of 2.5 mg/l NH_3 -N as a monthly average is adequate to protect the aquatic life from toxicity effects at the outfall 002. Winter months limit is 3 times the summer limit. These limits are consistent with the existing limits which the permit has been complying with but not consistently. There is need for some operational adjustments to consistently meet the limits.

4.2.5 Dissolved Oxygen

The existing permit contains a limit of 5 mg/l for Dissolved Oxygen (DO). DEP's Technical Guidance for the Development and Specification of Effluent Limitations (362-0400-001, 10/97) suggests that either the adopted minimum stream D.O. criteria for the receiving stream or the effluent level determined through water quality modeling be used for the limit. Since the WQM 7.0 model was run using a minimum D.O. of 5.0 mg/l, this limit will be continued in the renewed permit with a daily monitoring requirement per DEP guidance.

4.2.6 Toxics

No parameter of concern is associated with this discharge.

4.2.7 Chesapeake Bay Strategy:

The Department formulated a strategy in April 2007, to comply with the EPA and Chesapeake Bay Foundation requirements to reduce point source loadings of Total Nitrogen (TN) and Total Phosphorus (TP) to the Bay. In the Strategy, sewage dischargers have been prioritized by Central Office based on their delivered TN loadings to the Bay. The highest priority (Phases 1, 2, and 3) dischargers will receive annual loading caps based on their design flow on August 29, 2005 and concentrations of 6 mg/l TN and 0.8 mg/l TP. Phase 4 (0.2 -0.4mgd) and Phase 5(below 0.2mdg) will be required to monitor and report TN and TP during permit renewal at a monitoring frequency following Table 6-3 of DEP's Technical Guidance for Development and Specification of effluent Limitations (No. 362-0400-001). Any facility in Phases 4 and 5 that undergoes expansion is subjected to cap load right away.

EPA published the Chesapeake Bay Total Maximum Daily Load (TMDL) in December of 2010. Despite extensive restoration efforts during the past 25 years, the TMDL was prompted by insufficient progress and continued poor water quality in the Chesapeake Bay and its tidal tributaries.

In order to address the TMDL, Pennsylvania developed in addition to the Bay Strategy, a Chesapeake Watershed Implementation Plan (WIP) Phase 1 in January 2011 and Phase 2 in March 2012. In accordance with the Phase 2 WIP and its supplement, re-issuing permits for significant dischargers follow the same phased approach formulated in the original Bay strategy, whilst Phase 4 and Phase 5 will be required to monitor and report TN and TP during permit renewal. This facility is, classified as a phase 5, and has been monitoring Total Nitrogen and Total Phosphorus annually will and be required to continue monitoring Nitrate-Nitrite as N, Total Kjeldahl Nitrogen, Total Nitrogen and Total Phosphorus semi-annually during this permit cycle to collect adequate data.

4.2.8 Total Residual Chlorine

The attached TRC results utilizes the equations and calculations as presented in the Department's May 1, 2003 Implementation Guidance for Total Residual Chlorine (TRC) (ID No. 391-2000-015) for developing chlorine limitations. The Guidance references Chapter 92a, Section 92a.48 (b) which establishes a standard BAT limit of 0.5 mg/l unless a facility-

NPDES Permit Fact Sheet Summit Int School Of Ministry

specific BAT has been developed. The attached results (attachment C) indicates that a water quality limit of 0.08 mg/l and 0.26mg/l IMAX would be needed to prevent toxicity concerns at outfall 002. This limit is consistent with the existing limit in the permit. The facility installed a de-chlorination system during the previous permit cycle and has been complying with the limitation.

5.0 Other Requirements

5.1 Anti-backsliding

Not applicable to this permit

5.2 Stormwater:

No storm water outfall is associated with this facility

5.3 Special Permit Conditions

The permit will contain the following special conditions:

Stormwater Prohibition, Approval Contingencies, Proper Waste/solids Management, and Chlorine minimization.

5.4 Biosolids Management

Digested sludge is hauled out periodically by a license hauler.

5.5 Anti-Degradation (93.4)

The effluent limits for this discharge have been developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High-Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

5.6 Class A Wild Trout Fisheries

No Class A Wild Trout Fisheries are impacted by this discharge.

5.7 303d Listed Streams:

The discharge is not located on a 303d listed stream segment.

5.8 Basis for Effluent and Surface Water Monitoring

Section 308 of the CWA and federal regulation 40 CFR 122.44(i) require monitoring in permits to determine compliance with effluent limitations. Monitoring may also be required to gather effluent and surface water data to determine if additional effluent limitations are required and/or to monitor effluent impacts on receiving water quality. The permittee is responsible for conducting the monitoring and for reporting results on Discharge Monitoring Reports (DMRs).

5.9 Effluent Monitoring

Monitoring frequencies are based on the nature and effect of the pollutant, as well as a determination of the minimum sampling necessary to adequately monitor the facility's performance. Permittees have the option of taking more frequent samples than are required under the permit. These samples can be used for averaging if they are conducted using EPA-approved test methods (generally found in 40 CFR 136) and if the Method Detection Limits are less than the effluent limits. The sampling location must be after the last treatment unit and prior to discharge to the receiving water. If no discharge occurs during the reporting period, "no discharge" shall be reported on the DMR.

6.0 Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 002, Effective Period: Permit Effective Date through Permit Expiration Date

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	; (lbs/day) ⁽¹⁾		Concentrat	tions (mg/L)		Minimum ⁽²⁾	Required
Parameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
		Report						
Flow (MGD)	Report	Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
			6.0					
pH (S.U.)	XXX	XXX	Inst Min	XXX	XXX	9.0	1/day	Grab
DO	XXX	xxx	5.0	xxx	xxx	xxx	1/dov	Crob
	~~~		Daily Min		~~~		1/day	Grab
TRC	XXX	xxx	xxx	0.08	xxx	0.26	1/day	Grab
								8-Hr
CBOD5	XXX	XXX	XXX	25	XXX	50	2/month	Composite
								8-Hr
TSS	XXX	XXX	XXX	30	XXX	60	2/month	Composite
Fecal Coliform (No./100 ml)				2000				
Oct 1 - Apr 30	XXX	XXX	XXX	Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml)				200				
May 1 - Sep 30	XXX	XXX	XXX	Geo Mean	XXX	1000	2/month	Grab
					Report			8-Hr
Nitrate-Nitrite	XXX	XXX	XXX	XXX	Daily Max	XXX	1/6 months	Composite
					Report			
Total Nitrogen	XXX	XXX	XXX	XXX	Daily Max	XXX	1/6 months	Calculation
Ammonia								8-Hr
Nov 1 - Apr 30	XXX	XXX	XXX	7.5	XXX	15	2/month	Composite
Ammonia						_		8-Hr
May 1 - Oct 31	XXX	XXX	XXX	2.5	XXX	5	2/month	Composite
					Report			8-Hr
TKN	XXX	XXX	XXX	XXX	Daily Max	XXX	1/6 months	Composite
					Report		1/0	8-Hr
Total Phosphorus	XXX	XXX	XXX	XXX	Daily Max	XXX	1/6 months	Composite

Compliance Sampling Location: At Outfall 002

7.0 Tool	s and References Used to Develop Permit
5-7	
	WQM for Windows Model (see Attachment B)
	PENTOXSD for Windows Model (see Attachment)
$\bowtie$	TRC Model Spreadsheet (see Attachment C)
	Temperature Model Spreadsheet (see Attachment)
	Toxics Screening Analysis Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
$\square$	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
$\square$	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
$\boxtimes$	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
$\boxtimes$	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
$\boxtimes$	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP:
	Other:

#### NPDES Permit Fact Sheet Summit Int School Of Ministry

#### 8. Attachments

A. Topographical Map



B. WQM Model Results

	<u>SWP Basin</u> <u>Stream</u> 07D 98		-	<u>Stream Nam</u> Frib 09807 to Indiant	-		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
0.680	Summit Sch OM	PA008996	0.015	CBOD5	25		
				NH3-N	2.51	5.02	
				Dissolved Oxygen			5

# WQM 7.0 Effluent Limits

Friday, November 8, 2019

Version 1.0b

	SWP Basir	Strea Coc		Stre	eam Name		RMI	Elevatio (ft)	on Drair Ar (sq	ea	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	07D	9	807 Trib 09	9807 to In	diantown R	un	0.680	<b>)</b> 479	5.00	0.16	0.00000	0.00	✓
					St	ream Dat	a					·	
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	<u>Tribu</u> Temp	tary pH	Tem	<u>Stream</u> o pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft).	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.066	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	20.00	7.00	) 0	.00 0.00	1
					Di	ischarge [	Data						
			Name	Per	mit Numbe	Disc	Permitted Disc Flow (mgd)	I Design Disc Flow (mgd)	Reserve Factor	Disc Tem (ºC)			
		Sumr	nit Sch ON	I PAG	008996	0.0150	0.0000	0.0000	0.000	25	.00	7.00	

(mg/L)

25.00

5.00

25.00

(mg/L)

2.00

8.24

0.00

(mg/L) (1/days)

1.50

0.00

0.70

0.00

0.00

0.00

Parameter Name

CBOD5

NH3-N

Dissolved Oxygen

Friday, November 8, 2019

Version 1.0b

Page 1 of 2

14

#### Input Data WQM 7.0

	SWF Basi			Stre	am Name		RMI	Elevatio (ft)	on Drain An (sq	ea	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	07D	90	807 Trib 09	9807 to Inc	diantown Ru	n	0.350	465	i.00	0.19 0	0.00000	0.00	
			- ANDAY		St	ream Data	1						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio		Rch Depth	<u>Tribu</u> Temp	<u>tary</u> pH	Tem	<u>Stream</u> p pH	
oona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(ºC)		(°C)		
Q7-10	0.066	0.00	0.00	0.000	0.000	0.0	0.00	0.00	20.00	7.00	0	0.00 0.00	
Q1-10		0.00	0.00	0.000	0.000								
Q30-10		0.00	0.00	0.000	0.000								
					Di	scharge D	)ata						
			Name	Per	mit Number	Disc Flow	Permitted Disc Flow	Disc Flow	Reserve Factor	Disc Temp	Dis pl		
						(mgd)	(mgd)	(mgd)		(°C)			
						0.0000	0.0000	0.0000	0.000	25.	.00	7.00	

Trib

Conc

(mg/L)

2.00

8.24

0.00

Fate

Coef

1.50

0.00

0.70

(mg/L) (1/days)

0.00

0.00

0.00

Stream

Conc

Parameter Data

Parameter Name

CBOD5

NH3-N

Dissolved Oxygen

Disc

Conc

(mg/L)

25.00

5.00

25.00

Friday, November 8,	2019
---------------------	------

Version 1.0b

Page 2 of 2

	<u>sw</u>	P Basin	Strea	am Code				Stream	Name			
		07D	9	9807			Trib 098	107 to In	diantown	Run		
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
0.680	0.01	0.00	0.01	.0232	0.00574	.312	2.27	7.27	0.05	0.423	23.44	7.00
Q1-1	0 Flow											
0.680	0.01	0.00	0.01	.0232	0.00574	NA	NA	NA	0.05	0.439	23.67	7.00
Q30-	10 Flow	,										
0.680	0.01	0.00	0.01	.0232	0.00574	NA	NA	NA	0.05	0.396	23.06	7.00

# WQM 7.0 Hydrodynamic Outputs

Friday, November 8, 2019

Version 1.0b

# WQM 7.0 Modeling Specifications

F	Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	$\checkmark$
١	WLA Method	EMPR	Use Inputted W/D Ratio	
(	Q1-10/Q7-10 Ratio	0.8	Use Inputted Reach Travel Times	
C	Q30-10/Q7-10 Ratio	1.4	Temperature Adjust Kr	$\checkmark$
I	D.O. Saturation	90.00%	Use Balanced Technology	····
I	D.O. Goal	5		

Friday, November 8, 2019

Version 1.0b

17

	<u>SWP Basin</u> 07D	<u>Stream (</u> 980)				<u>ream Name</u> to Indiantow	m Run		
NH3-N	Acute Alloc	ations	•)			¢		-	_
RMI	Discharge	Name C	aseline Criterion (mg/L.)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	
0.68	80 Summit Sch	ОМ	7.43	10.12	7.43	10.12	0	0	
NH3-N	Chronic All	ocations	S						
RMI	Discharge N	ame Cri	seline terion 1g/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	
0.68	80 Summit Sch	ОМ	1.54	2.51	1.54	, 2.51	0	0	

#### WQM 7.0 Wasteload Allocations

#### **Dissolved Oxygen Allocations**

		CBC	DD5	NH	<u>3-N</u>	Dissolve	<u>d Oxygen</u>	Critical	Percent
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction
0.68	Summit Sch OM	25	25	2.51	2.51	5	5	0	0

Friday, November 8, 2019

Version 1.0b

<u>SWP Basin</u> <u>St</u> 07D	ream Code 9807		Trib 09	<u>Stream Name</u> 1807 to Indiantown	Run	
RMI	Total Discharge		) <u>Ana</u>	lysis Temperature (	<u>°C) Analysis pH</u> 7.000	-
0.680	0.015 Deach Dea			23.443	Reach Velocity (fps)	
Reach Width (ft)	Reach Dep			Reach WDRatio	0.048	
2.267	0.312			7.267		
Reach CBOD5 (mg/L)	Reach Kc (1		<u>r</u>	leach NH3-N (mg/L) 1.73	0.912	
17.84	1.424 Reach Kr (1			Kr Equation	Reach DO Goal (mg/L)	
Reach DO (mg/L)	26.42			Owens	5	
. 6.010	20.42	1		Owens	5	
Reach Travel Time (days)		Subreach	n Results			
0.423	TravTime (days)	CBOD5 (mg/L)	NH3-N (mg/L)	D.O. (mg/L)		
	0.042	16.62	1.66	6.49		
	0.085	15.49	1.60	6.72		
	0.127	14.43	1.54	6.88		
	0.169	13.45	1.48	7.00		
	0.212	12.53	1.43	7.10		
	0.254	11.68	1.37	7.20		
	0,296	10.88	1.32	7.29		
	0.339	10.14	1.27	7.37		
	0.381	9.45	1,22	7.45		
	0.423	8.80	1.18	7.52		
	01140			•		

# WQM 7.0 D.O.Simulation

Friday, November 8, 2019

Version 1.0b

# C. TRC Calculations

1A	В	С	D	E	F	G					
2	TRC EVAL	UATION		Enter I	Facility Nam	ie in E3					
3	Input appropr	iate values i	n B4:B8 and E4:E7								
-4	0.011	= Q stream	ı (cfs)	0.5	= CV Daily						
-5	0.015	= Q discha	rge (MGD)	0.5	= CV Hourly						
6	30	= no. samp	les	1	= AFC_Partia	I Mix Factor					
7			Demand of Stream		= CFC_Partia						
8			Demand of Dischar			ia Compliance Time (min)					
9	0.5	= BAT/BPJ		720	_	ia Compliance Time (min)					
			r of Safety (FOS)		=Decay Coef						
#	Source	Reference	AFC Calculations		Reference	CFC Calculations					
#	TRC	1.3.2.iii	WLA afc =		1.3.2.iii	WLA cfc = 0.158					
# #	PENTOXSD TRO PENTOXSD TRO		LTAMULT afc =		5.1c 5.1d	LTAMULT cfc = 0.581					
# #	PENTOX5D ING	5 <b>0.1D</b>	LTA_afc=	0.003	5.10	LTA_cfc = 0.092					
#	Source		Effluent	Limit Cal	oulations						
#											
#											
#	TENTOX5D INC	5 J.19	INST MAX LIMI			Alto					
"				(ingi) -	0.200						
	WLAafc	(.019/e(-k*/	AFC_tc)) + [(AFC_Y	'c*Qs*.0	19/Qd*e(-k*A	FC_tc))					
		+ Xd + (A	FC_Yc*Qs*Xs/Qd)]'	'(1-FOS/	100)						
	LTAMULT afc	EXP((0.5*LN	(cvh^2+1))-2.326*LN(	(cvh^2+1)	)^0.5)						
	LTA_afc	wla_afc*LTA	MULT_afc								
	WLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc))										
	+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5)										
	LTA_cfc wla_cfc*LTAMULT_cfc										
	LIA_CTC WIa_CTC^LIAMULI_CTC										
	AMLMULT	EXP(2.326*L	.N((cvd^2/no_samples	s+1)^0.5)-	-0.5*LN(cvd^2/r	no_samples+1))					
	AVG MON LIMIT		J,MIN(LTA_afc,LTA_								
	INST MAX LIMIT	· · · -	on_limit/AML_MUL1								