

 Application Type
 Renewal

 Facility Type
 Industrial

 Major / Minor
 Minor

NPDES PERMIT FACT SHEET INDIVIDUAL INDUSTRIAL WASTE (IW) AND IW STORMWATER

 Application No.
 PA0083003

 APS ID
 815028

 Authorization ID
 1307968

Applicant and Facility Information

Applicant Name	Dudley Municij	Carbon Coalmont Joint bal Authority	Facility Name	Dudley Carbon Coalmont JMA Water System
Applicant Address	PO Box	276	Facility Address	3204 Green Garden Road
	Dudley,	PA 16634-0276		Dudley, PA 16634
Applicant Contact	Christop	oher Hamilton	Facility Contact	Christopher Hamilton
Applicant Phone	(814) 63	35-2384	Facility Phone	(814) 635-2384
Client ID	242720		Site ID	250677
SIC Code	4941		Municipality	Carbon Township
SIC Description	Trans. 8	Utilities - Water Supply	County	Huntingdon
Date Application Recei	ved	February 28, 2020	EPA Waived?	Yes
Date Application Accepted		March 10, 2020	If No, Reason	
Purpose of Application		Renewal of NPDES permit for d	ischarge of treated water t	reatment filter backwash.

Summary of Review

Dudley-Carbon-Coalmont Joint Municipal Authority has applied to the Pennsylvania Department of Environmental Protection (DEP) for reissuance of its NPDES permit. The permit was last reissued on February 25, 2015 and became effective on March 1, 2015. The permit expired on February 29, 2020.

The facility owns and operates the water filtration plant which discharges filter backwash and blowdown which has a discharge flow design of 0.024 MGD to Shoup Run, and is affected by Acid Mine Drainage (AMD). Alum (Al₂SO₄), Caustic Soda (NaOH), Soda Ash (Na₂CO₃), and Potassium Permanganate (KM_nO₄) are used at the Water Plant. Sludge is periodically pumped from the settling tanks and hauled to the Dudley-Carbon-Coalmont Joint Municipal Authority's sewage treatment plant for further treatment and disposal. This facility is not covered under Effluent Limitation Guideline (ELG).

Since Shoup Run is listed as an AMD stream, limits in the existing permit are evaluated based upon Chapter 95.5, "Treatment requirements for discharges to waters affected by acid mine drainage" which only require technology considerations. Shoup Run is still considered an AMD stream therefore the existing limits in the permit are still valid and will be continued.

Based on the review outline in this fact sheet, it is recommended that the permit be drafted and published in the Pennsylvania Bulletin for public comments for 30 days.

Approve	Deny	Signatures	Date
х		<i>Hilaryle</i> Hilary H. Le / Environmental Engineering Specialist	May 28, 2020
		Daniel W. Martin, P.E. / Environmental Engineer Manager	
		Maria D. Bebenek, P.E. / Clean Water Program Manager	

Discharge, Receiving	Discharge, Receiving Waters and Water Supply Information					
Outfall No. 001 Latitude 40º 12' Quad Name <u>Saxt</u> Wastewater Descript	' <u>19.43</u> :on ion:	" IW Process Effluent without	Design Flow (MGD) Longitude Quad Code ELG (Water treatment filter ba	0.024 -78º 10' 3.34" ackwash and blow down)		
Receiving Waters	Shoup	Run (WWF)	Stream Code	13717		
NHD Com ID	65842	489		6.2 miles		
Drainage Area	2.3 mi	.2	Yield (cfs/mi ²)	See comments below		
Q ₇₋₁₀ Flow (cfs)	See co	omments below	Q ₇₋₁₀ Basis	USGS StreamStats		
Elevation (ft)	1545.	93	Slope (ft/ft)			
Watershed No.	11-D		Chapter 93 Class.	WWF		
Existing Use			Existing Use Qualifier			
Exceptions to Use	_		Exceptions to Criteria			
Assessment Status		Impaired				
Cause(s) of Impairme	ent	METALS, PH				
Source(s) of Impairm	nent .	ACID MINE DRAINAGE				
TMDL Status		Final, 04/09/2001	Name Shoup Run	Watershed		
Nearest Downstream PWS Waters <u>Ra</u>	n Public aystow	c Water Supply Intake n Branch Juniata River	Lake Raystown Resort, Huntir Flow at Intake (cfs)	ngdon County		
PWS RMI _2.0	0 miles	<u>; </u>	Distance from Outfall (mi)	Approximate 43 miles		

Changes Since Last Permit Issuance: None

Drainage Area

The discharge is to Shoup Run at RMI 6.2 mile. A drainage area upstream of the discharge is estimated to be 2.33 mi.², according to USGS PA StreamStats available at <u>https://streamstats.usgs.gov/ss/</u>.

Stream Flow

Stream flows for the water quality were determined by correlating with the yield of USGS gauging station No.01562000 on Raystown Branch Juniata River at Saxton, PA. The Q_{7-10} is 44.9 cfs and the drainage area is 755 mi.² (according to USGS PA StreamStats available at <u>https://streamstats.usgs.gov/ss/)</u> which results in a Q_{7-10} low flow yield of 0.06 cfs/mi.². This information is used to obtain a chronic or 30-day (Q_{30-10}), and an acute or 1-day (Q_{1-10}) exposure stream flow for the discharge point as follows (Guidance No. 391-2000-023):

 $\begin{array}{l} \mbox{Low Flow Yield} = 44.9 \mbox{ cfs} \, / \, 755 \mbox{ mi.}^2 \approx 0.06 \mbox{ cfs/mi.}^2 \\ \mbox{Q}_{7\text{-}10} \mbox{ discharge} = 0.06 \mbox{ cfs/mi.}^2 \ x \ D.4 \mbox{ discharge} = 0.06 \mbox{ cfs/mi.}^2 \ x \ 2.33 \mbox{ mi.}^2 = 0.14 \mbox{ cfs} \\ \mbox{ } \mbox{ } \mbox{ } \mbox{ } \mbox{ } \mbox{ } \mbox{ discharge} = 0.06 \mbox{ cfs/mi.}^2 \ x \ 2.33 \mbox{ mi.}^2 = 0.14 \mbox{ cfs} \\ \mbox{ } \mbox{ } \mbox{ } \mbox{ } \mbox{ discharge} = 0.06 \mbox{ cfs/mi.}^2 \ x \ 2.33 \mbox{ mi.}^2 = 0.14 \mbox{ cfs} \\ \mbox{ } \mbox{ } \mbox{ } \mbox{ } \mbox{ discharge} = 0.06 \mbox{ cfs/mi.}^2 \ x \ 2.33 \mbox{ mi.}^2 = 0.14 \mbox{ cfs} \\ \mbox{ } \mbox{ } \mbox{ } \mbox{ } \mbox{ discharge} = 0.06 \mbox{ cfs/mi.}^2 \ x \ 2.33 \mbox{ mi.}^2 = 0.14 \mbox{ cfs} \\ \mbox{ } \mbox{ } \mbox{ } \mbox{ } \mbox{ discharge} = 0.06 \mbox{ cfs/mi.}^2 \ x \ 2.33 \mbox{ mi.}^2 = 0.14 \mbox{ cfs} \\ \mbox{ } \mbox{ } \mbox{ } \mbox{ discharge} = 0.06 \mbox{ cfs/mi.}^2 \ x \ 2.33 \mbox{ mi.}^2 = 0.14 \mbox{ cfs} \\ \mbox{ } \mbox{ } \mbox{ discharge} = 0.09 \mbox{ cfs} \end{array}$

Public Water Supply

The closest water supply intake is located downstream from the discharge in the Lake Raystown Resort, Huntingdon County approximately 43.0 miles from the point of discharge. Given the nature and dilution, the discharge is not expected to significantly impact the water supply.

Treatment Facility Summary					
Treatment Facility Na	me: Dudley-Barnettstown	ws			
WQM Permit No.	Issuance Date				
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)	
Industrial	Primary	Sedimentation Tanks	No Disinfection		
Hydraulic Capacity	Organic Capacity			Biosolids	
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal	
0.024		Not Overloaded	Concentration	Other WWTP	

Changes Since Last Permit Issuance:

Other Comments:

The treatment system consists of two, three compartment settling tanks.

	Compliance History
Summary of DMRs:	DMRs reported last 12 months from April 1, 2019 to March 31, 2020 are summarized in the Table below (Pages # 4 & 5).
Summary of Inspections:	4/15/2019: Mr. Clark, DEP WQS, conducted compliance evaluation inspection. Their settling tanks were cleaned out last month. There were no violations noted during inspection.
	4/12/2018: Mr. Clark, DEP WQS, conducted compliance evaluation inspection. The treatment tank receives water from filter backwashes. No discharge today and no sample taken. There were no violations noted during inspection.
	4/6/2017: Mr. Clark, DEP WQS, conducted compliance evaluation inspection. Effluent looked clear, field test results were within permit limits. There were no violations noted during inspection. Sludge is hauled to the Dudley-Carbon-Coalmont STP for further processing.
Other Comments:	There are no open violations associated with this facility or permittee.

Other Comments:

Compliance History

DMR Data for Outfall 001 (from April 1, 2019 to March 31, 2020)

Parameter	MAR-20	FEB-20	JAN-20	DEC-19	NOV-19	OCT-19	SEP-19	AUG-19	JUL-19	JUN-19	MAY-19	APR-19
Flow (MGD)												
Average Monthly	0.0024	0.0024	0.0023	0.0024	0.0039	0.0026	0.0054	0.0056	0.0042	0.0029	0.0021	0.0022
Flow (MGD)												
Daily Maximum	0.0085	0.0091	0.0086	0.007	0.076	0.0080	0.0133	0.0102	0.009	0.0104	0.0065	0.0085
pH (S.U.)												
Instantaneous												
Minimum	7.3	7.1	7.2	7.2	7.2	7.2	6.3	7.1	7.1	7.0	7.09	7.1
pH (S.U.)												
Instantaneous												
Maximum	7.6	7.5	7.7	7.6	7.7	7.8	7.6	7.5	7.5	7.5	7.52	7.7
TSS (lbs/day)												
Average Monthly	0.2	< 0.1	< 0.07	0.06	< 0.05	< 0.06	< 0.1	< 0.1	< 0.08	< 0.2	< 0.1	< 0.1
TSS (lbs/day)												
Daily Maximum	0.3	0.2	0.1	0.1	< 0.06	0.09	< 0.2	< 0.2	< 0.1	< 0.2	< 0.1	< 0.2
TSS (mg/L)												
Average Monthly	5	< 3	< 2	4	< 1.2	< 2	< 2	< 3	< 2.5	< 3	< 2.5	< 3
TSS (mg/L)												
Daily Maximum	7	5	3	4	< 1.6	2	< 3	< 3	< 2.5	< 3	< 2.5	< 3
Nitrate-Nitrite (mg/L)												
Annual Average				< 2.400								
Total Nitrogen (mg/L)												
Annual Average				< 3.4								
TKN (mg/L)												
Annual Average				< 1.0								
Total Phosphorus												
(mg/L)												
Annual Average				< 0.01								
Total Aluminum												
(lbs/day)												
Average Monthly	< 0.004	< 0.004	< 0.004	< 0.002	< 0.004	< 0.004	< 0.006	< 0.006	< 0.003	< 0.006	< 0.004	< 0.006
Total Aluminum												
(lbs/day)												
Daily Maximum	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.009	< 0.006	< 0.006	< 0.009	< 0.005	< 0.007
Total Aluminum												
(mg/L)												
Average Monthly	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.100	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Aluminum												
(mg/L)												0.40
Daily Maximum	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.100	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Iron (lbs/day)												
Average Monthly	0.05	0.04	< 0.01	< 0.02	< 0.02	< 0.02	< 0.03	0.02	0.002	< 0.002	0.003	0.2

NPDES Permit No. PA0083003

Total Iron (lbs/day)												
Daily Maximum	0.06	0.05	0.02	0.04	0.04	0.03	0.04	0.03	0.003	0.002	0.003	0.03
Total Iron (mg/L)												
Average Monthly	1.3	1.0	< 0.4	< 0.6	< 0.6	< 0.5	< 0.3	0.3	0.1	< 0.03	0.07	0.3
Total Iron (mg/L)												
Daily Maximum	1.7	1.3	0.5	1.0	1.0	0.9	0.5	0.5	0.2	0.05	0.09	0.4
Total Manganese												
(lbs/day)												
Average Monthly	0.02	0.02	0.006	0.009	0.009	0.009	0.03	0.01	0.003	0.003	0.003	0.01
Total Manganese												
(lbs/day)												
Daily Maximum	0.03	0.02	0.01	0.02	0.01	0.01	0.04	0.01	0.006	0.004	0.003	0.02
Total Manganese												
(mg/L)												
Average Monthly	0.6	0.5	0.2	0.3	0.2	0.2	0.5	0.2	0.1	0.04	0.07	0.3
Total Manganese												
(mg/L)												
Daily Maximum	0.7	0.6	0.3	0.5	0.4	0.4	0.6	0.2	0.1	0.05	0.08	0.3

Outfall No.	001	Design Flow (MGD)	0.024
Latitude	40º 12' 19.07'	Longitude	-78º 10' 3.20"
Wastewater	Description:	W Process Effluent without ELG (Water treatment filter backv	vash and blowdown)

Development of Effluent Limitations

Technology-Based Limitations

Best Available Technology-based (BAT) effluent limits for water treatment plant wastewater discharges are presented in the Department's June 1989 Guidance document entitled, "Technology Based Controls for Discharges from Water Treatment Plants" as follows:

Parameter	Monthly Avg mg/l	Daily Max. mg/l
Total Suspended Solids	30	60
Total Aluminum	4	8
Total Iron	2	4
Total Manganese	1	2
Flow	Ν	lonitor
рН	6 - 9	S.U at all times

<u>Comments</u>: when Green Garden Spring is used as a raw surface water source that influences effluent pH, note that standard limits of 6 to 9 from 25 Pa. Code § 93 might be violated if resulting effluent pH is less than 6. According to 25 Pa. Code § 95.2(6), the quality of the effluent need not exceed the quality of the raw water supply if the source or supply would normally drain to the point of effluent discharge, when surface waters are used in an industrial plant. The permit allows a minimum pH to be equal to the pH of the spring, only when the spring is being used as a raw water source. Otherwise the existing pH limit range of 6 thru 9 will remain for the facility when wells are the source of water.

Water Quality-Based Limitations

Toxics

Maximum concentrations of toxic pollutants reported in the application were entered into DEP's Toxics Screening Analysis (TSA). TSA then determined that Cadmium, Copper, Phenols, and Selenium were candidates for PENTOXSD. PENTOXSD is a water quality model for toxic pollutants. Once PENTOXSD's most stringent WQBELs were entered into TSA, TSA does not recommend any requirements for these pollutants. No toxic pollutants have therefore been taken into consideration at this time.

Chesapeake Bay Strategy

According to the SOP for Clean Water Program, Establishing Effluent Limitations for Individual Industrial Permits (SOP No. BPNPSM-PMT-032), industrial facilities that discharge phosphorus in quantities that may exceed 25 lbs/day should at minimum receive a monitoring requirement for Total Phosphorus, and industrial facilities that discharge nitrogen in quantities that may exceed 75 lbs/day should at minimum receive a monitoring requirement for Total Phosphorus, and industrial facilities that discharge nitrogen. In addition, facilities within the Chesapeake Bay watershed will generally receive monitoring for any discharge in which there is the possibility of a net increase in Total Nitrogen in comparison to influent (source) waters, in accordance with the Chesapeake Bay Phase 2 WIP Supplement.

According to Chesapeake Bay Phase 2 WIP Supplement, for non-significant IW facilities, monitoring and reporting of TN and TP will be required throughout the permit term in renewed or amended permits anytime the facility has the potential to introduce a net TN or TP increase to the load contained within the intake water used in processing. This facility is not expected to introduce a net TN or TP increase to the load however for verification purposes monitoring TP and TN, Nitrate-Nitrite as N and Total Kjeldahl Nitrogen once a year will be required. This monitoring will remain in the proposed permit.

Class A Wild Trout Fisheries

No Class A Wild Trout Fisheries are impacted by this discharge.

Anti-Degradation (93.4)

The effluent limits for this discharge have been developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High-Quality Waters are impacted by this discharge. No High-Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

303d Listed Streams

Due to Abandoned Mine Drainage of metals and pH, Shoup Run is listed as a 303(d) stream. A TMDL for the acid mine drainage from deep coal mine portals was developed for the Shoup Run watershed on February 21, 2001. Allocations for the mine drainage sources were given for Aluminum and Manganese. Manganese loadings in the Shoup Run TMDL were calculated to be 129.2 lbs/day and Aluminum loadings in the Shoup Run TMDL were calculated to be 230.6 lbs/day. Although the discharge from this facility predates TMDL development, it was not considered a significant source of these metals. Whereas the Water Treatment Plant is considered an insignificant source of Aluminum and Manganese the technology limits of 4.0 mg/l (0.8 lbs/day) for Aluminum and 1.0 mg/l (0.2 lbs/day) for Manganese in the permit is enough to control loading of Total Aluminum and Total Manganese to the watershed. Actual discharge from the facility is well below permit limit for Total Aluminum and Total Manganese and nowhere near an allowable discharge flow of 0.024 MGD. Refer to DMR reported data summary table. pH will be controlled so that it is better than or meets TMDL requirements for the acid mine drainage sources. Iron allocations were not necessary in the Shoup Run TMDL. No further action is warranted at this time. Historically, although EPA did not approve of issuing the permit with TBELS, they recommended either revising the TMDL to allocate loads to all point sources or permitting the facility at criteria. Since the facility meets limits at criteria, therefore the limits for Total Aluminum (0.75 mg/l AML, DML & IMAX the same), Total Manganese (1.0 mg/l AML) and Total Iron (1.5 mg/l AML) will remain in the proposed permit.

PENTOXSD input

Node 1: Outfall 001	on Shoup	Run ((13717))
	•••••••••			Ζ.

Elevation:	1545.93 ft (USGS National Map Viewer)
Drainage Area:	2.3 mi. ² (USGS PA StreamStats)
River Mile Index:	6.2 (PA DEP eMapPA)
Low Flow Yield:	0.06 cfs/mi. ²
Discharge Flow:	0.024 MGD (NPDES Application)
-	· · · ·

Node 2: Just before junction	with Trib. 13733
Elevation:	1455.79 ft (USGS National Map Viewer)
Drainage Area:	3.16 mi. ² (USGS PA StreamStats)
River Mile Index:	5.58 (PA DEP eMapPA)
Low Flow Yield:	0.06 cfs/mi. ²
Discharge Flow:	0.000 MGD

NPDES Permit No. PA0083003

TOXICS SCREENING ANALYSIS WATER QUALITY POLLUTANTS OF CONCERN VERSION 2.7

CLEAR FORM

	Facility: Dudley Carbon Coalmont JM	NPDES Permit No.: PA0		PA0083	PA0083003 Outfall: 001				
	Analysis Hardness (mg/L): 220			Discharge Flow (MGD): 0.024		Analysis pH (SU): 7			
	Stream Flow, Q ₇₋₁₀ (cfs): 0.14								
	[1	1				
	Parameter Maximum C		aximum Concentration in oplication or DMRs (ug/L)	Most Stringent Candidate for Criterion (ug/L) PENTOX SD Modeling?		Most Stringent WQBEL (ug/L)		Screening Recommendation	
Т	Total Dissolved Solids		351000	500000		No			
-	Chloride		18.8	250000		No			
1	Bromide	<	0.4	N/A		No			
18	Sulfate		201	250000		No			
ľ	Eluoride	<	201	2000	No (V	alue $\leq O(1)$			
	Total Aluminum	Ż	100	750	140 (1	No.			
	Total Antimony		100	56	No (V				
	Total Areanic		16	10	140 (4	No.			
	Total Parium	-	25	2400		No			
	Total Bandlium	È	25	2400	No				
	Total Beron	È	2.5	1600	No (V				
	Total Codesium	\rightarrow	100	1000	No (value < QL)		10	47	Establish Limita
	Total Chamium	<u> </u>	2.5	0.271	res		1.94	47	Establish Limits
	Levenelent Chromium	-	2.5	10.4	No (V				
	Tetel Cabelt	\rightarrow	0.25	10.4	110 (V	alue < QL)			
	Total Coppor	\geq	10.5	19		NO CAEE		50	Monitor
2	Total Copper	È	12.5	9.5 N/A		No	04.0	50	Mornitor
1	Total Iron	<u> </u>	1 200	1500		No			
G	Dissolved Iron		1,200	300		No			
	Total Lead	<	1	32	No (V	alue < QL)			
	Total Manganese		600	1000		No			
	Total Mercury	<	0.2	0.05	No (V	alue < QL)			
	Total Molybdenum	<	0.5	N/A		No			
	Total Nickel		3.36	52.2		No			
	Total Phenols (Phenolics)		7	5		Yes	7482	5.77	No Limits/Monitoring
	Total Selenium	<	12.5	5.0		Yes	35.8	396	Monitor
	Total Silver	<	2.5	3.8		No			
	Total Thallium	<	1	0.24	No (V	alue < QL)			
	Total Zinc	<	12.5	119.8		No			
	Acrolein	<		3					
1	Acrylamide	<		0.07					

		Analysis	Results					×
	Effluent Limits							E
Hydrodynamics	Wasteload Allocation	s	Effluent Limit	s				-
RMI Na	me Permit Numb	ber Disc Flow (mgd)	1					
6.2 Dudley Carbon	V PA008300	3 0.024	40					
Paramete	Effluent Limit er (μg/L)	Governing Criterion	Max. Daily Limit (µg/L)	Most : WQBEL (µg/L)	Stringent WQBEL Criterion			
► CADMIUM	1.947	CFC	3.038	1.947	CFC			
COPPER	64.558	AFC	100.72	64.558	AFC			
PHENOL	74825.77	THH	116740.2	74825.77				Ш
Record: I4 4 1 of 4	► ► ► ► T& No Filter	Search						
Print	< Back	<u>N</u> ext >		Archive	_	<u>C</u> ancel		

7 Day 10 Year Low Flow

30 Day 10 Year Low Flow

90 Day 10 Year Low Flow

Pennsylvania 🕚 🗸 🍙	Contraction of the local division of the loc
IDENTIFY A STUDY AREA Basin Delineated ↓	
SELECT SCENARIOS 🗸	
BUILD A REPORT Report Built >	ib
Step 1: You can modify computed basin characteristics here, then select the types of reports you wish to generate. Then click the "Build Report" button	
✓ Show Basin Characteristics	
Select available reports to display:	No. of Street,
Basin Characteristics Report	
Scenario Flow Reports	dien's s
Continue	
POWERED BY WIM	Run Luist

. arameter ooae	Parameter Description			Valu	ie Unit	
DRNAREA	Area that drains to a point on a stre	eam		755	square n	niles
PRECIP	Mean Annual Precipitation			38	inches	
STRDEN	Stream Density total length of str	reams divide	d by drainage area	2.34	n miles pe	r square mile
ROCKDEP	Depth to rock			4.3	feet	
CARBON	Percentage of area of carbonate ro	ck		16	percent	
Parameter Code	Parameter Name Drainage Area	Value 755	Units square miles		Min Limit 4.93	Max Limit
DRNAREA	Drainage Area	755	square miles		4.93	1280
PRECIP	Mean Annual Precipitation	38	inches		35	50.4
STRDEN	Stream Density	2.34	miles per square mile		0.51	3.1
	Depth to Rock	4.3	feet		3.32	5.65
ROCKDEP	and the second second					
ROCKDEP CARBON	Percent Carbonate	16	percent		0	99
ROCKDEP CARBON Low-Flow Statistics Fl	Percent Carbonate	16	percent		0	99
ROCKDEP CARBON .ow-Flow Statistics Fl II: Prediction Interva	Percent Carbonate OW Report(100 Percent (754 square miles) Low Flow Region 2] I-Lower, Plu: Prediction Interval-Upper, SEp	16 p: Standard Err	percent or of Prediction, SE: Standar	d Error (0 other see rep	99 port)

44.9

58.4

82.3

ft^3/s

ft^3/s

ft^3/s

51

46

36

51

46

36

Huntingdon Base Maps MountUnior

NPDES Permit No. PA0083003

~

	Parameter Code	Parameter Description			Value Unit			
	DRNAREA	Area that drains to a point on a str	eam		2.33 square n	niles		🛢 Report 🚯 At
	PRECIP	Mean Annual Precipitation			41 inches		1	
Pennsylvania 😈 🗸 🥎 🚔	STRDEN	Stream Density total length of st	reams divide	l by drainage area	1.47 miles pe	r square mile		Layers
+	ROCKDEP	Depth to rock			4.8 feet			3017
Basin Delineated V	CARBON	Percentage of area of carbonate ro	ock		0 percent			Base M
							-619 R0	Application
	Low-Flow Statistics P	arameters(Low Flow Region 2)					and the second s	✓ National
BUILD A REPORT Report Built >	Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit		V PA Map
	DRNAREA	Drainage Area	2.33	square miles	4.93	1280		-
Step 1: You can modify computed basin characteristics here then select the	PRECIP	Mean Annual Precipitation	41	inches	35	50.4		
types of reports you wish to generate.	STRDEN	Stream Density	1.47	miles per square mile	0.51	3.1	S la	
men cick the Build Report Buildin	ROCKDEP	Depth to Rock	4.8	feet	3.32	5.65		
✓ Show Basin Characteristics	CARBON	Percent Carbonate	0	percent	0	99		
	Low-Flow Statistics D	isclaimers(Low Flow Region 2)					913	
Select available reports to display:	One or more of the	parameters is outside the suggested range	. Estimates we	e extrapolated with unknown er	rors		4- 5	
✓ Basin Characteristics Report	Low-Flow Statistics Fl	low Report [Low Flow Region 2]					X	
✓ Scenario Flow Reports	Statistic			Value	Unit		10000	
Continue	7 Day 2 Year Low	Flow		0.275	ft^3/s	1		
Continue	30 Day 2 Year Lov	v Flow		0.372	ft^3/s			Robertsdale
	7 Day 10 Year Lov	v Flow		0.128	ft^3/s			3006
POWERED BY WIM	30 Day 10 Year Lo	ow Flow		0.169	ft^3/s		5	
Zoc	90 Day 10 Year Lo	ow Flow		0.272	ft^3/s			

	C StreamState								eport 🚯 About	? Help
2030	Olieanistats	Low-Flow Statisti	cs Parameters[Low Flow Region 2]						apore Q About	- morp
SE	LECT SCENARIOS 🗸	Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit		Layers	;
BUILD A REPORT	Report Built	DRNAREA	Drainage Area	3.16	square miles	4.93	1280		Base Maps	~
	_	PRECIP	Mean Annual Precipitation	41	inches	35	50.4	1	Application Layers	~
Step 1: You ca characteristics types of report	an modify computed basin s here, then select the ts you wish to generate	STRDEN	Stream Density	1.67	miles per square mile	0.51	3.1	3	 National Layers 	~
Then click the	"Build Report" button	ROCKDEP	Depth to Rock	4.8	feet	3.32	5.65	land		
		CARBON	Percent Carbonate	0	percent	0	99	and the second	 PA Map Layers 	~
✓ Show Bas	in Characteristics	Low-Flow Statisti	CS Disclaimers[Low Flow Region 2]					Eagle F.O.		
Select available re	ports to display:	One or more o unknown error	f the parameters is outside tl 's	ne suggeste	d range. Estimates wer	e extrapolat	ted with			
✓ Basin Charact	teristics Report	Low-Flow Statisti	CS Flow Report [Low Flow Region 2]					1 Ma		
✓ Scenario Flow	v Reports	Statistic			Value	Uni	it			
•	Continue	7 Day 2 Year L	ow Flow		0.343	ft^:	3/s	LA.		
		30 Day 2 Year	Low Flow		0.464	ft^:	3/s	m St	913	
		7 Day 10 Year	Low Flow		0.16	ft^:	3/s	-		
	RED BY WIM	30 Day 10 Yea	r Low Flow		0.212	ft^:	3/s	Contraction of the		
		90 Day 10 Yea	r Low Flow		0.338	ft^:	3/s			
USGS Home Conta Accessibility FC	act USGS Search USG: DIA Privacy Policy & otices	Low-Flow Statisti	cs Citations							Leaflet

NPDES Permit No. PA0083003

Existing Effluent Limitations and Monitoring Requirements

		Monitoring Re	quirements					
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required		
Farameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	ххх	xxx	xxx	xxx	1/day	Measured
pH (S.U.)	XXX	xxx	6.0	xxx	XXX	9.0	1/day	Grab
TSS	Report	Report	xxx	30	60	75	2/month	8-Hr Composite
Total Aluminum	Report	Report	xxx	0.75	0.75	0.75	2/month	8-Hr Composite
Total Iron	Report	Report	xxx	1.5	3.0	3.75	2/month	8-Hr Composite
Total Manganese	Report	Report	xxx	1.0	2.0	2.5	2/month	8-Hr Composite
Nitrate-Nitrite	xxx	xxx	xxx	Report Annl Avg	XXX	xxx	1/year	8-Hr Composite
Total Nitrogen	ххх	xxx	ххх	Report Annl Avg	XXX	XXX	1/year	Calculation
ТКИ	ххх	xxx	xxx	Report Annl Avg	XXX	xxx	1/year	8-Hr Composite
Total Phosphorus	ххх	xxx	XXX	Report Annl Avg	XXX	XXX	1/year	8-Hr Composite

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

		Monitoring Re	quirements					
Paramotor	Mass Units	; (lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required		
Faiameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	xxx	XXX	xxx	xxx	1/day	Measured
pH (S.U.)	ххх	xxx	6.0	xxx	xxx	9.0	1/day	Grab
TSS	Report	Report	xxx	30	60	75	2/month	8-Hr Composite
Total Aluminum	Report	Report	xxx	0.75	0.75	0.75	2/month	8-Hr Composite
Total Iron	Report	Report	xxx	1.5	3.0	3.75	2/month	8-Hr Composite
Total Manganese	Report	Report	xxx	1.0	2.0	2.5	2/month	8-Hr Composite
Nitrate-Nitrite	ххх	xxx	xxx	Report Annl Avg	xxx	xxx	1/year	8-Hr Composite
Total Nitrogen	ххх	xxx	xxx	Report Annl Avg	xxx	xxx	1/year	Calculation
ТКИ	XXX	xxx	xxx	Report Annl Avg	xxx	xxx	1/year	8-Hr Composite
Total Phosphorus	XXX	xxx	xxx	Report Annl Avg	XXX	XXX	1/year	8-Hr Composite

Compliance Sampling Location:

Other Comments:

Tools and References Used to Develop Permit

	WQM for Windows Model (see Attachment
\boxtimes	PENTOXSD for Windows Model (see Attachment
	TRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment
\boxtimes	Toxics Screening Analysis Spreadsheet (see Attachment
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391- 2000-002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
\boxtimes	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
\boxtimes	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
\boxtimes	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP:
	Other: