

 Application Type
 Renewal

 Facility Type
 Industrial

 Major / Minor
 Minor

NPDES PERMIT FACT SHEET INDIVIDUAL INDUSTRIAL WASTE (IW) AND IW STORMWATER

 Application No.
 PA0083046

 APS ID
 4663

 Authorization ID
 1173340

Applicant and Facility Information

Applicant Name	Easco Hand Tools Inc.	Facility Name	Cenveo Worldwide Ltd dba Cenveo Publishing Services
Applicant Address	100 Sterling Parkway, Suite 205	Facility Address	3575 Hempland Road
	Mechanicsburg, PA 17050-2903		Lancaster, PA 17601-6912
Applicant Contact	Laura Cohen	Facility Contact	
Applicant Phone	(717) 790-3443	Facility Phone	
Client ID	94265	Site ID	449368
SIC Code	3423,4959	Municipality	West Hempfield Township
SIC Description	Manufacturing - Hand And Edge Tools, Nec,Trans. & Utilities - Sanitary Servics, Nec	County	Lancaster
Date Application Recei	ved February 22, 2017	EPA Waived?	Yes
Date Application Accept		If No, Reason	
Purpose of Application NPDES Renewal for discharge fro		m a groundwater remed	liation system.

Summary of Review

This is a renewal for a groundwater remediation system. The purpose of this project is to pump and treat groundwater that has been impacted by volatile organic compounds. Groundwater is pumped from five on-site recovery wells (RW-1, RW-2, RW-3, RW-4, and RW-6) to a treatment system, which consists of passing the water through granular activated carbon (GAC) units to adsorb the contaminants prior to discharging to Outfall 001 to the unnamed tributary of the West Branch of the Little Conestoga Creek (see Figure 1. Site Location Map and Figure 2. Site Map).

In an effort to address site groundwater, Tighe & Bond Inc was retained to design and install a groundwater pump and treat system. The system was designed to use up to 6 recovery wells (RW-1, RW-2, RW-3, RW-4, RW-5, and RW-6) to extract a maximum of 200 GPM of groundwater (Figure 3. Process Schematic). The extracted groundwater was treated using GAC units to adsorb the VOCs. The objectives of the system were to prevent the offsite migration of VOCs in groundwater and reduce the VOC mass in the aquifer. The groundwater treatment system was constructed in 1985-1986 and began operations in 1986. It will continue to operate until site remediation is complete.

The main VOC present in site groundwater is trichloroethylene (TCE), a common chemical that has been used since the 1940s. In industrial use, it is typically employed as a degreaser, dry cleaning fluid or an all-purpose solvent.

In 1992, EASCO sold the property to Lancaster Press Inc. (now Cenveo Worldwide Limited dba Cenveo Publisher Services). However, EASCO continued to assume responsibility for remediating site groundwater. The system operates under an NPDES permit for the groundwater discharge.

Easco Hand Tools Inc. performs no business at the site. They retain liability for remediating volatile organic compound impacted groundwater. Easco Hand Tools, Inc. maintains an active groundwater treatment system at the site. This permit

Approve	Deny	Signatures	Date
x		/s/ Brenda J. Fruchtl, P.G. / Licensed Professional Geologist	October 29, 2019
x		/s/ Scott M. Arwood, P.E. / Environmental Engineer Manager	10/29/19

Summary of Review

application does not cover any uses of the site by the current site owner, Cenveo Worldwide Ltd dba Cenveo Publishing Services (formerly Cadmus Journal Systems, formerly Lancaster Press).

In late 2018, AECOM Technical Services Inc took over the site as both the Site Contact and Consultant from Hydro-Terra Group (BAE Systems). The client contact information also changed.

Background

The main constituents of concern at the former EASCO site are volatile organic compounds (VOCs) – primarily trichloroethylene (TCE). Site assessment activities, conducted by Tighe & Bond, Inc., of Westfield, MA, in the autumn of 1985, identified two separate VOC plumes at 3575 Hempland Road, West Hempfield Township, Lancaster, PA. One VOC plume resulted from the release of TCE from a degreaser formerly located at the southwest corner of the building. Initial groundwater concentrations within this "western" plume were in excess of 7,000 ug/L. The second VOC plume came from a separate release by a degreaser installed approximately 100 feet east of the first degreaser. Initial groundwater TCE concentrations within the "eastern" plume were in excess of 30,000 ug/L.

Additional VOCs detected in the site monitoring / recovery wells include 1,1 dichloroethylene (1,1 DCE), 1,1 dichloroethane (1,1-DCA), vinyl chloride, 1,4-dioxane, chloroform, methylene chloride, and tetrachloroethylene (PCE). Breakdown of TCE and PCE commonly forms 1,1-DCE and 1,1-DCA. Concentrations of TCE, PCE, and 1,1-DCE have historically exceeded the PADEP medium specific concentrations (MSCs) in the site monitoring and recovery wells. MSCs for these VOCs are as follows: TCE is 5 ug/L, PCE is 5 ug/L and 1,1-DCE is 7 ug/L. The treatment of TCE simultaneously addressed the other VOCs at the site. None of the other VOCs detected in site monitoring / recovery wells exceeded their applicable regulatory standards.

According to Module 2 Sample Results, the only VOCs detected in the untreated groundwater / influent to the remediation system were TCE, PCE, and 1,1-DCE.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Discharge, Receiving	Waters and Water Supply Informat	ion	
Outfall No. 001		Design Flow (MGD)	0.05
Latitude 40° 2'	50"	Longitude	-76º 24' 20"
Wastewater Descrip	tion: Groundwater Cleanup Discha	rge	
Receiving Waters	Unnamed Tributary to West Branch Little Conestoga Creek (TSF, MF)	Stream Code	10557
NHD Com ID	57464377	RMI	0.85
Drainage Area	0.31*	Yield (cfs/mi ²)	
Q ₇₋₁₀ Flow (cfs)	0.04*	Q ₇₋₁₀ Basis	USGS StreamStats
Elevation (ft)		Slope (ft/ft)	0
Watershed No.	7-J	Chapter 93 Class.	TSF, MF
Existing Use		Existing Use Qualifier	
Exceptions to Use		Exceptions to Criteria	
Assessment Status	Attaining Use(s)	-	
Cause(s) of Impairm	nent		
Source(s) of Impairn	nent		
TMDL Status		Name	
Nearest Downstrean	n Public Water Supply Intake	PL Holtwood Filter Plant	
PWS Waters S	usquehanna River	Location	Martic Twp, Lancaster Co
PWS RMI ~	9	Distance from Outfall (mi)	~20

*USGS StreamStats: Pennsylvania. (Basin Delineation from September 22, 2019, see Figure 4)

Changes Since Last Permit Issuance: None

Treatment Facility Summary

Treatment Facility Name: Easco Hand Tools Inc. (Cadmus Journal Systems)

Groundwater is pumped from five on-site recovery wells (RW-1, RW-2, RW-3, RW-4, and RW-6) to a treatment system. Treatment consists of passing the water through granular activated carbon (GAC) units, which adsorb the contaminants. Treated water is conveyed to Outfall 001 that discharges to the unnamed tributary of the West Branch of the Little Conestoga Creek.

Changes Since Last Permit Issuance: none

	Compliance History
Summary of DMRs:	Monthly eDMRs have been submitted since October 2016. Flow, pH, and Trichloroethylene
	eDMR results from September 2016-August 2019
	Flow ranged from 0.01 to 0.046 MGD
	Trichloroethylene was reported as non-detect for Avg Mo, Daily Max, and IMAX <i>(detection limit ranged from 0.001 to 0.0008 mg/L)</i> No permit limits were exceeded in the past 5 years.
	pH was reported consistently between 6.0 and 9.0 SU, except for one exceedance in January 2019, when the pH was reported as 10.96 SU*.
	*A notification letter of the pH exceedance was submitted to PADEP on January 4, 2019. The conclusion was that the pH spike was a short-term response resulting from the carbon change-out earlier that day. The pH had dropped to 8 SU by the following morning.
Summary of Inspections:	DEP conducted a compliance evaluation on 08/25/2015. No violations were noted.

Other Comments: There have been no violations reported for this facility. There are not any open violations for the facility

Summary of Influent data to GWTS and data collected at Outfall 001 for May 2017 through June 2019:

- See Table 2: Groundwater Field Parameters and Analytical Data, Former EASCO Hand Tools Inc. Facility, Lancaster, Pennsylvania from the 2018-2019 Annual Operations and Maintenance Summary Report & Fourth Quarter Groundwater Monitoring Report (Figure 5)
- See Table 3: Treatment System Field Parameters and Analytical Data, Former EASCO Hand Tools Inc. Facility, Lancaster, Pennsylvania from the 2018-2019 Annual Operations and Maintenance Summary Report & Fourth Quarter Groundwater Monitoring Report (Figure 6)

Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	0.05
Latitude	40° 2' 50.00"		Longitude	-76º 24' 20.00"
Wastewater De	escription:	Groundwater Cleanup Discharge		

Chemical Additives. None reported

Water Quality-Based Limitations

A "Toxics Screening Analysis" (Attachment A) determined the following parameters were candidates for PENTOXSD Modeling: Tetrachloroethylene (PCE) and Trichloroethylene (TCE).

The maximum concentration for the parameters was taken from the Module 2 untreated groundwater sample results received September 26, 2019 (*and revised October 11, 2019 to correct the discrepancy with the units*) via email from AECOM, which took into account the additional data since the original renewal application received February 22, 2017.

Development of Effluent Limitations

Since the purpose of the groundwater treatment system is to treat for contaminated groundwater, limitations were established based on the maximum concentrations of pollutants in the untreated groundwater to evaluate the effectiveness of the treatment system. Limits were established based on Q_{7-10} streamflow of 0.0382 cfs at RMI 0.85 on Trib 07567 To West Branch Little Conestoga Creek with the point of first use as the outfall.

PENTOXSD was run on the pollutants of concern as determined from the Toxics Screening Analysis. The PENTOXSD Analysis Results and Modeling Input Data are attached (Attachment B).

The Effluent Limit from PENTOXSD will be the average monthly limit in the permit. The Max Daily Limit from PENTOXSD will be the Daily Maximum limit in the permit. The IMAX limit in the permit is 2.5 times the Average Monthly limit.

Basis for Limits (for parameters detected in the influent to the groundwater remediation system)

1,1-Dichloroethylene:	Aquatic Criteria	=	1500 ug/L
(1,1 -DCE)	Human Health Criteria	=	33.0 ug/L (H)

1,1-DCE was detected at very low levels in the untreated groundwater samples per Module 2 (received September 26, 2019; *and revised October 11, 2019 to correct the discrepancy with the units*) at a maximum of 1.4 ug/L and an average of 0.41 ug/L. These results are well below the Health Criteria of 33.0 ug/L. Per the Toxics Screening Analysis (Attachment A), there is no reasonable potential for this parameter to be present in the effluent and was not a candidate for PENTOXSD Modeling. It is recommended to not add this parameter to the permit.

Trichloroethylene*:	Aquatic Criteria	=	450 ug/L
(TCE)	Human Health Criteria	=	2.5 ug/L (CRL)
	WQBEL	=	16.025 ug/L (CRL)

The most stringent criteria is the Human Health Criteria. TCE was detected in the untreated groundwater per Module 2 (received September 26, 2019; *and revised October 11, 2019 to correct the discrepancy with the units*) at a maximum of 118 ug/L and an average of 77.94 ug/L. It was indicated as a parameter of concern according to the Toxics Screening Analysis. And indicated to establish limits based on PENTOXSD Most Stringent WQBEL. It is recommended to amend the limit for this parameter per the most recent PENTOXSD model.

*The previous limit of 10 ug/L was based on the 1986 Toxic Strategy using Appendix H. The Toxic Strategy was revised in 2006 (Document No. 361-0100-003 dated April 29, 2006) and has deleted Appendix H for "short-term" discharges. Antibacksliding is not a factor since the previous limit was based on a now obsolete guidance. Limits are now based on the PENTOXSD model.

Tetrachloroethylene:	Aquatic Criteria =	140 ug/L
(PCE)	Health Criteria =	0.69 ug/L (CRL)
	WQBEL =	4.423 ug/L (CRL)

The most stringent criteria is the Human Health Criteria. PCE was detected in the untreated groundwater per Module 2 (received September 26, 2019; *and revised October 11, 2019 to correct the discrepancy with the units*) at a maximum of 11 ug/L and an average of 6.24 ug/L. It was indicated as a parameter of concern according to the Toxics Screening Analysis. And indicated to establish limits based on PENTOXSD Most Stringent WQBEL. It is recommended to add this parameter and limit to the permit.

Comparison of Effluent Limitations and Parameters from 2012 NPDES Permit and Draft NPDES Permit:

	2012	2012 NPDES Permit Limits Renewal			Proposed 2019 NPDES Permit Limits Renewal			
Parameter	Ave Monthly	Max Daily	Inst. Maximum	Ave Monthly	Max Daily	Inst. Maximum	Max Concentration Untreated GW*	Pollutant of Concern**
Flow (MGD)	xxx	ххх	ххх	xxx	xxx	xxx	n/a	n/a
pH (SU)	Fro	From 6.0 to 9.0 inclusive		From 6.0 to 9.0 inclusive		n/a	n/a	
Trichloroethylene (mg/L)	n/a	0.01	0.013	0.016	0.025	0.040	0.118	Yes
Tetrachloroethylene	T 4 ·		0040 "					

(mg/L) This parameter not in the 2012 permit 0.0044 0.0069 0.011 0.011 Yes * from Module 2 (received September 26, 2019 with updated data; and revised October 11, 2019 to correct the discrepancy with the units).

** According to Toxics Screening Analysis (Attachment A)

Part C Special Conditions

I. Other Requirements (standard)

II. Groundwater Cleanup – Volatile Organic Compounds

Note: Copied from Part C of the 2012 NPDES Permit with minor edits.

- A. If the applicable standard or effluent guideline limitation relating to the application for Best Available Technology Economically Achievable (BAT) or to Best Conventional Technology (BCT) is developed by the Department, or by EPA for this type of industry, and if such standard or limitation is more stringent than the corresponding conditions of this permit (or if it controls pollutants not covered by this permit), then the Department reserves the right to modify, or to revoke and reissue the permit to conform with that standard or limitation.
- B. Sludges and other solids shall be handled and disposed of in compliance with 25 Pa. Code, Chapters 262, 263, and 264 (related to permits and requirements for landfilling and storage of hazardous sludge) and applicable federal regulations, the Federal Clean Water Act, RCRA and their amendments. The permittee is responsible to obtain or assure that contracted agents have all necessary permits and approvals for the handling, storage, transport and disposal of solid waste materials generated as a result of wastewater treatment.
- C. Summary reports providing groundwater quality data from quarterly events, semiannual water table elevation maps, and a narrative discussion including tables and maps shall be submitted annually to the Environmental Cleanup Program, on the anniversary date of this permit. The narrative report shall evaluate the overall operation of the system demonstrating its effectiveness in containing and remediating the contaminant plume. If modification to the operation is proposed, details must be submitted in the report.
- D. The permittee shall operate the treatment facilities approved herein on a continual basis. If accidental breakdown or normal periodic maintenance should cause cessation of operation, the permittee shall take satisfactory measures to ensure the treatment works are placed back in operation at the earliest possible time. The permittee shall orally report to the Department within 24 hours of an unanticipated temporary shutdown of the treatment facility that is longer than 24 hours in duration or at least 24 hours prior to an anticipated maintenance shutdown.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

	Effluent Limitations					Monitoring Requirements		
Baramotor	Mass Units	(lbs/day) ⁽¹⁾	Concentrations (mg/L)				Minimum ⁽²⁾	Required
Parameter	Average Monthly	Average Weekly	Average Monthly	Daily Maximum	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	XXX	xxx	xxx	xxx	xxx	Continuous	Measured
pH (S.U.)	ХХХ	XXX	6.0 Daily Min	xxx	9.0	xxx	1/month	Grab
Tetrachloroethylene	XXX	XXX	0.0044	0.0069	XXX	0.011	1/month	Grab
Trichloroethylene	ХХХ	XXX	0.016	0.025	XXX	0.040	1/month	Grab

Compliance Sampling Location: Outfall 001

	Tools and References Used to Develop Permit
	WQM for Windows Model
	PENTOXSD for Windows Model (see Attachment B)
	TRC Model Spreadsheet
	Temperature Model Spreadsheet
\boxtimes	Toxics Screening Analysis Spreadsheet (see Attachment A)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP:
	Other:

Figure 1. Site Location Map

Figure 2. Site Map

Figure 3. Process Schematic.

StreamStats Report. EASCO Hand Tools Inc. NPDES Permit No PA0083046

 Region ID:
 PA

 Workspace ID:
 PA20190922173321167000

 Clicked Point (Latitude, Longitude):
 40.04684, -76.40612

 Time:
 2019-09-22 13:33:38 -0400

Low-Flow Statistics Parameters[Low Flow Region 1]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.31	square miles	4.78	1150
BSLOPD	Mean Basin Slope degrees	3.7	degrees	1.7	6.4
ROCKDEP	Depth to Rock	5.1	feet	4.13	5.21
URBAN	Percent Urban	21	percent	0	89

Low-Flow Statistics Disclaimers[Low Flow Region 1]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Low-Flow Statistics Flow Report[Low Flow Region 1]

Statistic	Value	Unit
7 Day 2 Year Low Flow	0.089	ft^3/s
30 Day 2 Year Low Flow	0.119	ft^3/s
7 Day 10 Year Low Flow	0.0382	ft^3/s
30 Day 10 Year Low Flow	0.0536	ft^3/s
90 Day 10 Year Low Flow	0.0915	ft^3/s

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

Table 2

Groundwater Field Parameters and Analytical Data Former EASCO Hand Tools, Inc. Facility, Lancaster, Pennsylvania

Well Number	Date of Sample Collection	pH (SU)	Specific conductance (uS/cm)	Temperature (°C)	1,1-DCA (ug/L)	1,1,-DCE (ug/L)	PCE (ug/l)	TCE (ug/L)	Vinyl Chloride (ug/L)	1,4- Dioxane (ug/L)
				Treatment System						
	5/16/17	8.25	0.949	16.2	<1	1	8.7	62.5	NA	NA
	8/8/17	7.08	0.806	18.0	<1	<1	6.4	63.1	NA	NA
	11/1/17	5.97	0.876	16.2	<1	1.3	9	62.1	<1	NA
	2/6/18	NA	NA	NA	<1	1	8	81	NA	NA
System Influent (SP-A)	5/1/18	NA	NA	NA	<1	<1	(11)	76	NA	NA
	8/2/18	NA	NA	NA	<1	<1	×4	70	<1	NA
	11/2/18	NA	NA	NA	<1	<1	5	69	<1	NA
	2/5/19	NA	NA	NA	<1	<1	ા ગ	81	<1	NA
	6/5/19	NA	NA	NA	<1	<1	3.73	91.1	<1	NA
	5/16/17	8.40	0.945	19.5	<1	<1	<1	<1	NA	NA
	8/8/17	7.47	0.861	18.4	<1	<1	<1	<0.8	NA	NA
	11/1/17	6.54	0.891	15.7	<1	<1	<1	<0.8	<1	NA
	2/6/18	8.18	NA	NA	<1	<1	<1	<1	NA	NA
Outfall	5/1/18	7.57	NA	NA	<1	<1	<1	<1	NA	NA
	8/2/18	5.69	NA	NA	<1	<1	<1	<1	<1	NA
-	11/2/18	7.76	NA	NA	<1	<1	<1	<1	<1	NA
	2/5/19	7.55	NA	NA	<1	<1	<1	<1	<1	NA
	6/5/19	7.87	NA	NA	<1	<1	<1	<1	<1	NA

*- RW-4 Sampled on May 23, 2017.

**-Insufficient water to sample.

***-Pump not working.

NSC = Residential Medium Specific Concentrations NA = Not Available NM = No Measurement NS = Not sampled (*C) = Degrees Celsius ug/l = micrograms/liter (uS/cm) = Microsiemens per centimeter SU = Standard Units <= Indicates a constituent vas not detected Bold indicates a constituent detection Bold and gray indicates a concentration above the MSC Constituents 1,1-DCA = 1,1-Dicholoethane 1,1-DCE = 1,1-Dicholoethane TCE = Trichloroethylene PCE = Tetrachloroethylene

Figure 5: Groundwater Field Parameters and Analytical Data, Former EASCO Hand Tools Inc. (2018-2019 Annual Operations and Maintenance Summary Report & Fourth Quarter Groundwater Monitoring Report)

4

NPDES Permit Fact Sheet EASCO Hand Tools Inc.

Sample Location	Date of Sample	pН	Specific conductance	Temperature	1,1-0CA	1,1, DCE	PCE	TCE
	Collection	נטכן	(uS/cm)	19	(UB/ U	(nR\r)	(nRtil	14671-)
	5/16/17	8.25	0.949	16.2	<1.0	1.0	8.7	62.5
[6/7/17	NA	NA	NA	NA	NA	NA	68.0
[7/19/18	NA	NA	NA	NA	NA	NA	72.4
	8/8/17	7.08	0.806	1.8.0	<1.0	<1.0	6.4	63.1
stem influent (SP A)	9/25/17	NA	NA	NA	NA	NA	NA	92,7
	10/1/17	NA	NA	NA	NA	NA	NA	NA
	11/1/17	5.97	0.876	16.2	<1.0	1.3	9.0	62.1
	12/5/17	NA	NA	NA	<1	1	11	77
	1/4/18	NA	· NA	NA	<1	1	10	79
	2/6/18	NA	NA	NA	<1	1	8	81
	3/1/18	NA	NA	NA	<1	<1	6	71
	4/4/18	NA	NA	NA	<1	1	9	66
iystem Influent (SP	5/1/18	NA	NA	NA	<1	<1	11	76
A}	6/7/18	NA	NA	NA	<1	<1	<1	65
	7/5/18	NA	NA	NA	<1	<1	<1	65
	8/2/18	NA	NA	NA	<1	<1	4	70
	9/6/18	NA	NA	NA	<1	<1	4	78
	10/3/18	NA	NA	NA	ব	<1	4	66
1	11/2/18	NA	NA	NA	<1	<1	5	69
	12/5/18	NA	NA	NA	<1	<1	5	62
	1/2/19	NA	NA	NA	<1	4	1	60
	2/5/19	NA	NA	NA	<1	<1	3	81
	3/5/19	NA	NA	NA	<1	<1	3	70
	4/10/19	NA	NA	NA	<1.00	<1.00	4.08	74.6
	5/9/19	NA	0.949 16.2 <1.0 1.0 8.7 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 0.806 18.0 <1.0	80,9				
	6/5/19	NA	NA	NA	<1.00	<1.00	3.73	91.1
	1/2/19	NA	NA	NA	<1.0	<1.0	<1.0	<1.0
	5/16/17	6,99	NA	NA	NA	NA	NA	<0.80
	7/19/18	6.61	NA	NA	NA	NA	NA	<0.80
	8/8/17	7.47	0.861	18.4	<1.0	<1.0	<1.0	<0.80
	9/25/17	6.95	NA	NA	NA	NA	NA	<0.80
	October	NP	NP	NP	NP	NP	NP	NP
	11/1/17	6.54	0.891	15.7	<1.0	<1.0	<1.0	<0.80
	12/5/17	8.28	NA	NA	<1	<1	<1	4
	1/4/18	8.08	NA	NA	<1	<1	<1	<1
	2/6/18	8.18	NA	NA	<1	4	<1	<1
	3/1/18	7.64	NA	NA	<1	<1	<1	4
	4/4/18	7.70	NA	NA	4	<1	<1	<1
	5/1/18	7.57	NA	NA	<1	<1	<1	<1
Outras	6/7/18	7.41	NA	NA	<1	<1	<1	4
	7/5/18	8.81	NA	NA	<1	<1	<1	<1
	8/2/18	7.69	NA	NA	<1	<1	<1	<1
	9/6/18	7.80	NA	NA	<1	<1	<1	<1
	10/3/18	7.64	NA	NA	<1	<1	<1	<1
	11/2/18	7.76	NA	NA	<1	<1	<1	<1
	12/5/18	8.74	NA	NA	<1	<1	4	<1
	1/2/19	10.96	NA	NA	<1	<1	<1	<1
	2/5/19	7.55	NA	NA	<1	<1	<1	<1
	3/5/19	7.05	NA	NA	<1	<1	<1	<1
	4/10/19	7.6	NA	NA	<1.00	<1.00	<1.00	<1.00
	5/9/19	8.41	NA	NA	<1.00	<1.00	<1.00	<1.00
	6/6/19	7.84	NA	NA	<1.00	<1.00	<1.00	<1.00

Table 3 Treatment System Field Parameters and Analytical Data Former EASCO Hand Tools, Inc. Facility, Lancaster, Pennsylvania

*- Results include A & B sampling locations.

MSC = Residential Medium Specific Concentrations NA = Not Available GAC = Granular Activated Carbon NS = Not Sampled (*C) = Degrees Colsius ug/l = micrograms/liter (uS/cm) = Microsiemens per centimeter SU = Standard Units Bold Indicates a constituent detection Bold and ray indicates a concentration above the MSC

Constituents 1,1-DCA = 1,1-Dicholoethane 1,1-DCE = 1,1-Dicholoethene TCE = Trichloroethylene PCE = Tetrachlorethlene

600

Figure 6. Treatment System Field Parameters and Analytical Data, Former EASCO Hand Tools Inc. (2018-2019 Annual Operations and Maintenance Summary Report & Fourth Quarter Groundwater Monitoring Report)

2

ATTACHMENT A

TOXICS SCREENING ANALYSIS WATER QUALITY POLLUTANTS OF CONCERN VERSION 2.7											
Facility: EASCO Hand Tools Inc			NPDES Permit No	.: PA0083	046	Outfall: 001					
Analysis Hardness (mg/L): 100			Discharge Flow (N	IGD): 0.05	Ana	lysis pH (SU): 7					
Stream Flow, Q ₇₋₁₀ (cfs): 0.0382											
Parameter	Max Appl	imum Concentration in lication or DMRs (µg/L)	Most Stringent Criterion (µg/L)	Candidate for PENTOX8D Modeling?	Most Stringent WQBEL (µg/L)	Soreening Recommendation					
Total Dissolved Solids			500000								
Chloride			250000								
Bromide			N/A								
Sulfate			250000								
1,4-Dioxane			N/A								
Trichloroethylene		118	2.5	Yes	16.025	Establish Limits					
Tetrachloroethylene		11	0.69	Yes	4,423	Establish Limits					
1,1-Dichloroethylene		1.4	33	No							
	\vdash										
	++										
	++										

Toxics Screening Analysis Spreadsheet (v 2.7)_Oct2019, 10/10/2019

ATTACHMENT B

PENTOXSD Analysis Results

Recommended Effluent Limitations												
SWP Basin	Stream Code	<u>:</u>		<u>Stream</u>	Name:							
07J	7567	Ltl Conesto	ga Cr									
RMI	Name	Permit Number		Disc Flow (mgd)								
0.85	Easco Hand Tool	PAOC	83046	0.0500								
		Effluent Limit			Max. Daily	Most S	tringent					
Р	arameter	(µg/L)	Gover Crite	rning rion	Limit (µg/L)	WQBEL (µg/L)	WQBEL Criterion					
TETRACHLOROETHYLENE		4.423	CR	L	6.9	4.423	CRL					
TRICHLOROE	TRICHLOROETHYLENE		CR	L.	25.001	16.025	CRL					

Thursday, October 10, 2019

Version 2.0d

Page 1 of 1

PENTOXSD

						Moc	leling In	put Data	ì					
Stream Code	I RMI	Elevati (ft)	ion Dra A (s	linage Area q mi)	Slope	PWS (mg	With gd)		A	oply FC	-			
756	7 0.85	44	0.00	0.31	0.00000		0.00			\checkmark		-		
							Stream D	ata						
	LFY (cfsm)	Trib Flow (cfs)	Stream Flow (cfs)	WD Ratio	Rch Width (ft)	Rch Depth (ft)	Rch Velocity (fps)	Rch Trav Time (davs)	<u>Tributa</u> Hard (mg/L)	r⊻ pH	<u>Strear</u> Hard (mg/L)	n pH (<u>Analysi</u> Hard mg/L)	<u>s</u> pH
07-10	0.12	0		. () 0	0	0	0	100	7	0	0	0	0
Qh		0	0) 0	0	0	0	100	7	0	0	0	0
						D	ischarge [Data						
	Name	Pern Num	nit Exi ber D F	sting P lisc low	ermitted Disc Flow	Design Disc Flow	Reserve Factor	AFC PMF	CFC PMF	thh PMF	CRL PMF	Disc Hard	Disc pH	
			(n	ngd)	(mgd)	(mgd)						(mg/L)		
Easco	Hand Tool	PA008	3046	0	0	0.05	0	0	0	0	0	100	7	-
						Pa	arameter D	Data						
	Parameter N	lame		Disc Conc	Trib Conc	Disc Daily CV	c Disc / Hourl / CV	y Stear	n Stream c CV	Fate Coef	FOS	Crit Mod	Max Disc Conc	
				(µg/L)	(µg/L)	5 05	(µgµ)	<u>-)</u>	0	0	1	(µg/L) 0	
TRICHLO	OROETHYLE	INE		10000	0 0	0.	5 0.5	; 0 ; 0	0	0	0	1	0	

Thursday, October 10, 2019

Version 2.0d

Page 1 of 2

Strea Cod	m RMI e	Elevati (ft)	on Drai A (so	inage Irea 1 mi)	Slope	PWS (m	With gd)		A	pply FC	_			
75	67 0.40	40	0.00	0.63	0.0000	D	0.00				-			
							Stream D	ata						
		Trib	Stream	WD	Rch	Rch	Rch	Rch	<u>Tributa</u>	ary	Stream	<u>n</u>	<u>Analys</u>	is
	LFY	Flow	Flow	Ratio	Width	Depth	Velocity	Trav Time	Hard	рН	Hard	pН	Hard	рН
	(cfsm)	(cfs)	(cfs)		(ft)	(ft)	(fps)	(days)	(mg/L)		(mg/L)		(mg/L)	
Q7-10	0.12	0	0	C) 0	0	0	0	100	7	0	0	0	0
Qh		0	0	c) 0	0	0	0	100	7	0	0	0	0
						D)ischarge l	Data						
	Name	Pern Numi	hit Exis ber Di Fl	sting P isc low	ermitted Disc Flow	Design Disc Flow	Reserve Factor	PMF	CFC PMF	THH PMF	CRL PMF	Disc Hard	Disc pH	
			(m	gd)	(mgd)	(mgd)						(mg/L)		
_				0	0	0	0	0	0	0	0	100	7	
						Р	arameter I	Data						
	Parameter N	lame		Disc Conc	Trib Conc	Dis Daily C\	c Disc y Hour / CV	c Stea ly Con	m Stream IC CV	n Fate Coe	FOS f	Crit Mod	Max Disc Conc	
				(µg/L)	(µg/l	_)		(µg/	/L)				(µg/L)	
TETRA	CHLOROETH	IYLENE		0	0	0.	.5 0.9	50	0	0	0	1	0	
TRICH	LOROETHYLE	ENE		0	0	· 0.	.5 0.9	50	0	0	0	1	0	

Thursday, October 10, 2019

Version 2.0d

Page 2 of 2

PENTOXSD Analysis Results

Hydrodynamics

<u>s</u>	WP Basiı	נ	<u>Strear</u>	n Code:			Stream Name:				
	07J		7	567		Trib 07	567 to W	Br Ltl Co	nestoga (Cr	
RMI	Stream Flow (cfs)	PWS With (cfs)	Net Stream Flow (cfs)	Disc Analysis Flow (cfs)	Reach Slope	Depth (ft)	Width (ft)	WD Ratio	Velocity (fps)	Reach Trav Time (days)	CMT (min)
			Q7-10 Hydrodynamics								
0.850	0.0372	C	0.0372	0.07734	0.0168	0.3676	3.4878	9.489	0.0894	0.3078	.06
0.400	0.0756	C	0.0756	NA	0	0	Ò	0	0	0	NA
			Qh Hydrodynamics								
0.850	0.4184	C	0.4184	0.07734	0.0168	0.7003	3.4878	4.9801	0.203	0.1355	.156
0.400	0.7777	C	0.7777	NA	0	0	0	0	0	0	NA

Thursday, October 10, 2019

Version 2.0d

Page 1 of 1

PENTOXSD Analysis Results

Wasteload Allocations

RMI	Name	Permit Number

0.85 Easco Hand Tool PA0083046

AFC

Q7-10:	Q7-10: CCT (min)		PMF	1	Analysis	pH 7	Analysis	Hardness	100
Pa	arameter		Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)
TETRACHI	OROETHYLEN	Ē	0	0	0	0	700	700	1036.652
TRICHLC	ROETHYLENE		0	0	0	0	2300	2300	3406.141

CFC

Q7-10:	CCT (min)	0.06	PMF 1		Analysis pH 7		Analysis	100	
	Parameter		Stream Conc. (µg/L)	Stream CV	Trib Conc. (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)
TETF	RACHLOROETHYLENE		0	0	0	0	140	140	207.33
TR	CHLOROETHYLENE		0	0	0	0	450	450	666.419

тнн

Q7-10:	CCT (min)	0.06	PMF	NA	Analysis	spH NA	Analysis	Hardness	NA
	Parameter		Stream Conc	Stream CV	Trib Conc	Fate Coef	WQC	WQ Obj	WLA
			(µg/L)		(µg/L)		(µg/L)	(µg/L)	(µg/L)
TETRA	CHLOROETHYLENE	:	0	0	0	0	NA	NA	NA
TRIC	HLOROETHYLENE		0	0	0	0	NA	NA	NA

CRL

Qh:	CCT (min)	0.156	PMF	1					
	Parameter	Parameter (Stream CV	Trib Conc (µg/L)	Fate Çoef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)
	TETRACHLOROETHYLENE		0	0	0	0	0.69	0.69	4.423
	TRICHLOROETHYLENE		0	0	0	0	2.5	2.5	16.025

Thursday, October 10, 2019

Version 2.0d

Page 1 of 1