

Southcentral Regional Office CLEAN WATER PROGRAM

Application Type Renewal
Facility Type Industrial
Major / Minor Minor

NPDES PERMIT FACT SHEET INDIVIDUAL INDUSTRIAL WASTE (IW) AND IW STORMWATER

 Application No.
 PA0083364

 APS ID
 41411

 Authorization ID
 1348230

		Applicant and	d Facility Information		
Applicant Name	Boro	ugh of Chambersburg	Facility Name	Chambersburg Borough Water System	
Applicant Address	100 \$	South 2 nd Street	Facility Address	7659 Lincoln Way East	
	Chan	nbersburg, PA 17201-2515		Fayetteville, PA 17222-9582	
Applicant Contact	Lance	e Anderson	Facility Contact	Scott Melego	
Applicant Phone	717-2	251-2405	Facility Phone	717-352-7450	
Client ID	5300	2	Site ID	248131	
SIC Code	4941		Municipality	Greene Township	
SIC Description	Trans	s. & Utilities - Water Supply	County	Franklin	
Date Application Rec	eived	March 30, 2021	EPA Waived?	Yes	
Date Application Accepted		April 13, 2021	If No, Reason		
Purpose of Application		NPDES Permit Renewal.			

Summary of Review

Borough of Chambersburg (Chambersburg) has applied to the Pennsylvania Department of Environmental Protection (DEP) for reissuance of its NPDES permit for the Chambersburg Borough Water System. The permit was last reissued on September 27, 2016 and became effective on October 1, /2016. The permit will expire on September 30, 2021.

Based on the review, it is recommended that the permit be drafted.

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
Х		Jinsu Kim	
		Jinsu Kim / Environmental Engineering Specialist	August 10, 2021
X		Daniel W. Martin Daniel W. Martin, P.E. / Environmental Engineer Manager	August 23, 2021

Discharge, Receiving Waters and Water Supply Inform	mation	
Outfall No. 001 Latitude 39° 54' 26.28" Quad Name Scotland Wastewater Description: IW Process Effluent without	Design Flow (MGD) Longitude Quad Code ut ELG	.171 -77° 30' 27.63" 1925
Receiving Waters NHD Com ID 49469606 Drainage Area Q ₇₋₁₀ Flow (cfs) Elevation (ft) Watershed No. Existing Use Exceptions to Use Assessment Status Conococheague Creek (CWF) 49469606 4.61 E.60 4.61 B.60 Watershed No. 13-C Existing Use None Attaining Use(s)	Stream Code RMI Yield (cfs/mi²) Q ₇₋₁₀ Basis Slope (ft/ft) Chapter 93 Class. Existing Use Qualifier Exceptions to Criteria	59346 48.98 USGS StreamStats CWF None None
Cause(s) of Impairment Source(s) of Impairment TMDL Status Nearest Downstream Public Water Supply Intake PWS Waters Potomac River PWS RMI	Name Hagerstown MD Flow at Intake (cfs) Distance from Outfall (mi)	> 50

Drainage Area

The discharge is to Conococheague Creek at RM 48.98. A drainage area upstream of the discharge point is estimated to be 38.6 sq.mi., according to USGS StreamStats available at https://streamstats.usgs.gov/ss/.

Streamflow

USGS StreamStats produced a Q7-10 flow of 4.61 cfs at the discharge point.

Conococheague Creek

Under 25 Pa Code §93.9z, Conococheague Creek from source to LR 28017 (SR 4014) is designated as cold water fishes and supports migratory fishes. No special protection water is impacted by this discharge. Conococheague Creek nearby the discharge point is identified as a trout natural reproduction stream as well as trout stocked stream; however, it is not classified as a Class A Wild Trout stream. DEP's latest integrated water quality report finalized in 2020 indicates that Conococheague Creek at the discharge point is not impaired.

Public Water Supply Intake

The fact sheet developed for the last permit renewal indicates that the nearest downstream water supply intake is for the City of Hagerstown on the Potomac River, more than 50 miles downstream from the discharge point. Given the distance, the discharge is not expected to impact the water supply.

	Tre	eatment Facility Summa	ry	
Treatment Facility Na	ne: Chambersburg WTP			
	Degree of			Avg Annual
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)
71		Clarifier/Settling		, ,
Industrial	Primary	Lagoon	No Disinfection	0.171
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal
0.171	N/A_	Not Overloaded	N/A	N/A

Chambersburg operates a water treatment plant providing potable water to the areas of the Borough of Chambersburg. According to the application, water from Conococheague Creek is withdrawn at a rate of 3.925 MGD, treated through clarifiers, filters and chemical applications including chlorine, sodium bicarbonate, fluoride, etc. During this process, water blowdown from clarifiers (0.013 MGD), backwash from filters (0.1 MGD) and other miscellaneous wastewater including sample sinks and analyzer drains (0.008 MGD) and basin drain from clarifiers (intermittent) are generated as industrial wastewater which is sent to a washwater/sludge holding basin and wastewater lagoon for wastewater treatment prior to stream discharges.

The last permit renewal was developed based on the flow of 0.171 MGD. The application states that the average flow during production is 0.116 MGD with the maximum flow of 0.509 MGD. Past 12-month DMR data reveals that the facility has not discharged more than 0.2 MGD in average monthly and no more than 0.3 MGD in daily maximum. Based on this, it is reasonable to maintain 0.171 MGD as the design flow for permit requirements.

Compliance History					
Summary of DMRs:	A summary of past 12-month DMR datasets is presented on the next page.				
Summary of Inspections:	12/8/2017: Patrick Bowen, former DEP Water Quality Specialist, conducted a routine inspection and noted that effluent appeared clear and the receiving stream appeared clear and free of abnormal conditions upstream and downstream of Outfall 001. No violation was noted at the time of inspection.				

Other Comments: DEP's database shows there are multiple open violations associated with this permittee identified by Storage Tanks Program for "Mem Park" facility (see below). A draft permit cover letter will indicate that the permit may not be finalized until all open violations are resolved and closed.

CLIENT	FACILITY	INSP PROGRAM	VIOLATION	VIOLATION DATE	VIOLATION CODE	VIOLATION
CHAMBERSBURG BORO FRANKLIN CNTY	MEM PARK	Storage Tanks	891539	08/12/2020	245.438(A)	Failure to comply with UST system monthly operation and maintenance walkthrough inspections
CHAMBERSBURG BORO FRANKLIN CNTY	MEM PARK	Storage Tanks	891540	08/12/2020	245.435	Failure to comply with underground storage tank system reporting and record keeping requirements
CHAMBERSBURG BORO FRANKLIN CNTY	MEM PARK	Storage Tanks	891542	08/12/2020	245.436(E)	Failure to maintain documentation of designated operators
CHAMBERSBURG BORO FRANKLIN CNTY	MEM PARK	Storage Tanks	891543	08/12/2020	245.441	Failure to comply with underground storage tank system release detection requirements
CHAMBERSBURG BORO FRANKLIN CNTY	MEM PARK	Storage Tanks	915984	08/12/2020	245.438(A)	Failure to comply with UST system monthly operation and maintenance walkthrough inspections
CHAMBERSBURG BORO FRANKLIN CNTY	MEM PARK	Storage Tanks	915985	08/12/2020	245.435	Failure to comply with underground storage tank system reporting and record keeping requirements
CHAMBERSBURG BORO FRANKLIN CNTY	MEM PARK	Storage Tanks	915986	08/12/2020	245.436(E)	Failure to maintain documentation of designated operators
CHAMBERSBURG BORO FRANKLIN CNTY	MEM PARK	Storage Tanks	915987	08/12/2020	245.441	Failure to comply with underground storage tank system release detection requirements

Effluent Data

DMR Data for Outfall 001 (from July 1, 2020 to June 30, 2021)

Parameter	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20	AUG-20	JUL-20
Flow (MGD)												
Average Monthly	0.114	0.115	0.112	0.115	0.110	0.109	0.125	0.123	0.125	0.116	0.109	0.113
Flow (MGD)												
Daily Maximum	0.206	0.215	0.117	0.211	0.117	0.113	0.302	0.212	0.213	0.209	0.113	0.201
pH (S.U.)												
Minimum	7.2	7.1	6.6	6.5	6.9	6.7	7.5	7.3	7.3	7.3	7.4	7.8
pH (S.U.)												
Maximum	7.2	7.5	6.8	6.7	7.1	7.6	7.5	7.5	7.6	7.8	7.5	7.8
TSS (mg/L)												
Average Monthly	< 1.8	2.3	1.8	2.7	2.1	4.6	< 1.0	< 0.9	2.0	2.7	2.2	3.8
TSS (mg/L)												
Daily Maximum	2.0	3.0	2.8	4.0	2.8	< 8.0	1.2	1.0	2.4	3.0	2.4	6.0
Total Aluminum												
(mg/L)												
Average Monthly	0.27	0.275	0.23	0.26	0.20	< 0.12	0.17	0.25	0.26	0.75	0.396	0.78
Total Aluminum												
(mg/L)												
Daily Maximum	0.27	0.28	0.23	0.27	0.29	0.14	0.20	0.30	0.32	0.82	0.520	0.84
Total Iron (mg/L)	0.00	0.000	0.000	0.00	0.000	0.000	0.00	0.000	0.04	0.000	0.0	0.000
Average Monthly	< 0.20	< 0.200	< 0.200	< 0.20	< 0.200	< 0.200	< 0.20	< 0.200	< 0.34	< 0.200	< 0.2	< 0.200
Total Iron (mg/L)	0.00	0.000	0.000	0.00	0.000	0.000	0.00	0.000	0.47	0.000	0.0	0.000
Daily Maximum	< 0.20	< 0.200	< 0.200	< 0.20	< 0.200	< 0.200	< 0.20	< 0.200	0.47	< 0.200	< 0.2	< 0.200
Total Manganese												
(mg/L)	. 0.00	. 0.00	. 0. 00	. 0.00	. 0.00	. 0.00	. 0.00	. 0.00	. 0.00	. 0 000	. 0.00	0.020
Average Monthly	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.020	< 0.02	0.030
Total Manganese (mg/L)												
Daily Maximum	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.020	< 0.02	0.037
Daily Maxilliulli	₹ 0.02	₹ 0.02	₹ 0.02	₹ 0.02	₹ 0.02	₹ 0.02	₹ 0.02	₹ 0.02	₹ 0.02	< 0.020	< 0.02	0.037

Existing Effluent Limits and Monitoring Requirements

A table below summarizes effluent limits and monitoring requirements specified in the existing permit.

		Effluent Limitations						
Parameter	Mass Units (lbs/day) (1)			Concentra	Minimum ⁽²⁾	Required		
rarameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	1/week	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	9.0 Max	XXX	2/month	Grab
Total Suspended Solids	XXX	XXX	XXX	30.0	60.0	75	2/month	8-Hr Composite
Aluminum, Total	XXX	XXX	XXX	0.9	1.8	2.25	2/month	8-Hr Composite
Iron, Total	XXX	XXX	XXX	2.0	4.0	5	2/month	8-Hr Composite
Manganese, Total	XXX	XXX	XXX	1.0	2.0	2.5	2/month	8-Hr Composite

Development of Effluent Limitations and Monitoring Requirements Outfall No. 001 Design Flow (MGD) 0.171 39° 54' 26.29" Longitude -77° 30' 27.63" Wastewater Description: IW Process Effluent without ELG

Technology-Based Limitations

Latitude

DEP's technical guidance no. 362-2183-003 addresses technology-based control requirements along with the following recommended Best Practicable Control Technology Currently Available (BPT) effluent requirements for WTP sludge and filter backwash:

Parameter	Limit (mg/l)	SBC
Suspended Solids	30	Average Monthly
Suspended Solids	60	Daily Maximum
Iron Total	2.0	Average Monthly
Iron, Total	4.0	Daily Maximum
Aluminum Total	4.0	Average Monthly
Aluminum, Total	8.0	Daily Maximum
Manganasa Tatal	1.0	Average Monthly
Manganese, Total	2.0	Daily Maximum
Flow	Monitor	Average Monthly
nU	6.0	Minimum
pH	9.0	Maximum

These requirements apply, subject to water quality analysis and/or BPJ. 25 Pa Code §92a.48(b)(2) requires a TRC BAT effluent limitation of 0.5 mg/L (average monthly) if the facility or activities use chlorination. The application indicates that chlorine is added to raw water prior to filtration and also finished water is used to backwash the filters; therefore, a BAT effluent limit of 0.5 mg/L will be written in the permit.

Water Quality-Based Limitations

WQM 7.0

CBOD5 and NH3-N are not pollutants of concern for the water treatment waste as the discharge of these pollutants is not resulting from the water treatment process. Therefore, WQM 7.0 modeling is not necessary and permit requirements for these pollutants are not recommended.

Total Residual Chlorine

In general, when chlorine is added to raw water prior to filtration or when finished water is used to backwash the filters, effluent TRC should be monitored as effluent would likely contain detectable levels of TRC. The effluent sampling results provided in the application however indicate that TRC was not detected in all three (3) samples at 0.02 mg/L which is the current DEP's method detection level for TRC. No water quality analysis is needed as there is no reasonable potential for TRC to exceed the water quality standards. However, TRC_CALC worksheet is utilized to obtain an instantaneous maximum limit. The worksheet produced an IMAX limit of 1.6 mg/L.

Toxics

DEP's Toxics Management Spreadsheet is utilized for toxics pollutants. This spreadsheet indicates no reasonable potential has been determined for toxic pollutants based on effluent concentrations.

Additional Considerations

Flow Monitoring

Flow monitoring will remain in the permit and is required by 40 CFR § 122.44(i)(1)(ii).

Chesapeake Bay TMDL

DEP's Supplement to Phase II Watershed Implementation Plan (WIP) indicates that monitoring and reporting of TN and TP are necessary for non-significant IW facilities throughout the permit term anytime the facility has the potential to introduce

a net TN or TP increase to the load contained within the intake water used in processing. In general, the discharge from a water treatment plant does not contain nutrients and even if it does contain nutrients, it is most likely coming from the source (reservoir water). No nutrient monitoring is therefore recommended.

Sample Types & Monitoring Frequencies.

All sample types and monitoring frequencies specified in the current permit will remain unchanged for the upcoming permit renewal.

For new TRC permit requirements, a weekly sampling is recommended although a daily sampling requirement is a typical approach. Given that TRC has been consistently not detected, it is reasonable to assign a weekly requirement. This monitoring frequency is subject to change based on ample data expected to be collected following this permit renewal.

Sampling Protocol

The application as well as the recent email from a consultant indicates that the existing outfall receives not only treated industrial wastewater but also receives stormwater drained from the site. Samples would not be therefore representative of the monitored activity unless these samples do not contain stormwater. As a result, the following condition is recommended in Part A footnote: "Samples shall be collected at times when commingling with stormwater discharges is not occurring or at locations prior to the commingling of stormwater discharges."

Anti-Backsliding Requirements

All permit requirements proposed in this fact sheet are at least as stringent as existing permit requirements.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

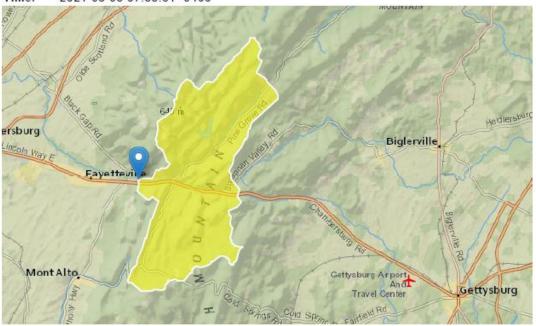
		Effluent Limitations						
Parameter	Mass Units	(lbs/day) ⁽¹⁾	Concentrations (mg/L)				Minimum (2)	Required
i arameter	Average Monthly	Average Weekly	Instant. Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	1/week	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	2/month	Grab
Total Residual Chlorine	xxx	XXX	XXX	0.5	XXX	1.6	1/week	Grab
TSS	XXX	XXX	XXX	30.0	60.0	75	2/month	8-Hr Composite
Total Aluminum	XXX	XXX	XXX	0.9	1.8	2.25	2/month	8-Hr Composite
Total Iron	XXX	XXX	XXX	2.0	4.0	5	2/month	8-Hr Composite
Total Manganese	XXX	XXX	XXX	1.0	2.0	2.5	2/month	8-Hr Composite

Attachments

1. StreamStats

8/3/2021

StreamStats


StreamStats Report

Region ID: PA

Workspace ID: PA20210803113315852000

Clicked Point (Latitude, Longitude): 39.90791, -77.50764

Time: 2021-08-03 07:33:31 -0400

Parameter			
Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	38.6	square miles
PRECIP	Mean Annual Precipitation	45	inches
STRDEN	Stream Density total length of streams divided by	1.79	miles per
	drainage area		square mile
ROCKDEP	Depth to rock	5	feet
CARBON	Percentage of area of carbonate rock	1.84	percent

https://streamstats.usgs.gov/ss/

2/3

8/3/2021 StreamStats

Low-Flow Statistics Parameters [100.0 Percent (38.6 square mile	s) Low Flow Region 2
----------------------------------	---------------------------------	----------------------

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	38.6	square miles	4.93	1280
PRECIP	Mean Annual Precipitation	45	inches	35	50.4
STRDEN	Stream Density	1.79	miles per square mile	0.51	3.1
ROCKDEP	Depth to Rock	5	feet	3.32	5.65
CARBON	Percent Carbonate	1.84	percent	0	99

Low-Flow Statistics Flow Report [100.0 Percent (38.6 square miles) Low Flow Region 2]

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	ASEp
7 Day 2 Year Low Flow	7.97	ft^3/s	38	38
30 Day 2 Year Low Flow	9.98	ft^3/s	33	33
7 Day 10 Year Low Flow	4.61	ft^3/s	51	51
30 Day 10 Year Low Flow	5.59	ft^3/s	46	46
90 Day 10 Year Low Flow	7.57	ft^3/s	36	36

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the

8/3/2021 StreamStats

StreamStats Report

Region ID: PA

Workspace ID: PA20210803140202831000

Clicked Point (Latitude, Longitude): 39.90990, -77.51876

Time: 2021-08-03 10:02:18 -0400

Parameter			
Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	42.5	square miles
PRECIP	Mean Annual Precipitation	44	inches
STRDEN	Stream Density total length of streams divided by	1.74	miles per
	drainage area		square mile
ROCKDEP	Depth to rock	5	feet
CARBON	Percentage of area of carbonate rock	4.18	percent

https://streamstats.usgs.gov/ss/

8/3/2021 StreamStats

Low-Flow Statistics Parameters	100.0 Percent	(42.5 square miles)) Low Flow Region 2	2]
--------------------------------	---------------	---------------------	---------------------	----

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	42.5	square miles	4.93	1280
PRECIP	Mean Annual Precipitation	44	inches	35	50.4
STRDEN	Stream Density	1.74	miles per square mile	0.51	3.1
ROCKDEP	Depth to Rock	5	feet	3.32	5.65
CARBON	Percent Carbonate	4.18	percent	0	99

Low-Flow Statistics Flow Report [100.0 Percent (42.5 square miles) Low Flow Region 2]

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	ASEp
7 Day 2 Year Low Flow	8.64	ft^3/s	38	38
30 Day 2 Year Low Flow	10.8	ft^3/s	33	33
7 Day 10 Year Low Flow	5.05	ft^3/s	51	51
30 Day 10 Year Low Flow	6.12	ft^3/s	46	46
90 Day 10 Year Low Flow	8.27	ft^3/s	36	36

Low-Flow Statistics Citations

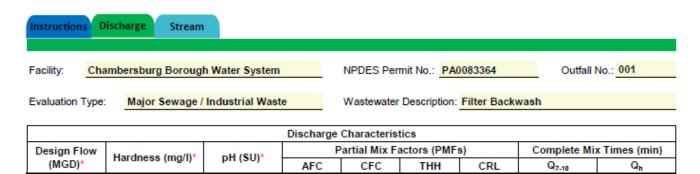
Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the

https://streamstats.usgs.gov/ss/ 2/3

0.171


2. Toxics Management Spreadsheet

Toxics Management Spreadsheet Version 1.3, March 2021

Discharge Information

8.19

			0 if lef	blank	0.5 if le	ft blank	0 if left blank			1 if left blank				
	Discharge Pollutant	Units Max Discharge Conc		ie Pollutant Unite		Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L		132										
1	Chloride (PWS)	mg/L		14.3										
Group	Bromide	mg/L	<	0.023										
ອົ	Sulfate (PWS)	mg/L		5.63										
	Fluoride (PWS)	mg/L		0.322										
	Total Aluminum	μg/L		840										
	Total Antimony	μg/L	<	0.695										
	Total Arsenic	μg/L	<	1.7										
	Total Barium	μg/L		25.6										
	Total Beryllium	μg/L	<	1.35										
	Total Boron	μg/L	<	56.5										
	Total Cadmium	μg/L	<	0.123										
	Total Chromium (III)	μg/L	<	1.99										
	Hexavalent Chromium	μg/L	<	0.25										
	Total Cobalt	μg/L	<	0.119										
	Total Copper	μg/L	<	2.21										
2	Free Cyanide	μg/L												
Group	Total Cyanide	μg/L		7										
5	Dissolved Iron	μg/L	<	60										
	Total Iron	μg/L		470										
	Total Lead	μg/L	<	0.172										
	Total Manganese	μg/L	<	200										
	Total Mercury	μg/L	<	0.104										
	Total Nickel	μg/L	<	1.44										
	Total Phenols (Phenolics) (PWS)	μg/L	<	5										
	Total Selenium	μg/L	<	2.2										
	Total Silver	μg/L	<	0.4										
	Total Thallium	μg/L	<	0.068										
	Total Zinc	μg/L		9.08										
	Total Molybdenum	μg/L		0.377										
	Acrolein	μg/L	<											
	Acrylamide	μg/L	<											
	Acrylonitrile	μg/L	<											
	Benzene	μg/L	<											
	Bromoform	μg/L	<											

ı	Carbon Tabandanida		-	+	4				
	Carbon Tetrachloride	μg/L	<						
	Chlorobenzene	μg/L			1				
	Chlorodibromomethane	μg/L	<						
	Chloroethane	μg/L	<						
	2-Chloroethyl Vinyl Ether	μg/L	<						
	Chloroform	μg/L	<						
	Dichlorobromomethane	μg/L	<						
	1,1-Dichloroethane	μg/L	<						
က	1,2-Dichloroethane	μg/L	<						
Group	1,1-Dichloroethylene	μg/L	<						
2	1,2-Dichloropropane	μg/L	<						
ဖ	1,3-Dichloropropylene	μg/L	<		:				
	1,4-Dioxane	μg/L	<						
	Ethylbenzene	μg/L	<						
	Methyl Bromide	μg/L	<						
	Methyl Chloride	μg/L	<						
	Methylene Chloride	μg/L	<						
	1.1.2.2-Tetrachloroethane	μg/L	<						
	Tetrachloroethylene	μg/L	<						
	Toluene	μg/L	<						
	1,2-trans-Dichloroethylene	µg/L	<						
	1,1,1-Trichloroethane	μg/L	<						
	1.1.2-Trichloroethane	μg/L	<		1				
			-						
	Trichloroethylene	μg/L	<						
\vdash	Vinyl Chloride	μg/L	<						
	2-Chlorophenol	μg/L	_						
	2,4-Dichlorophenol	μg/L	<						
	2,4-Dimethylphenol	μg/L	<						
4	4,6-Dinitro-o-Cresol	μg/L	<						
₫.	2,4-Dinitrophenol	μg/L	<						
Group	2-Nitrophenol	μg/L	<						
Ō	4-Nitrophenol	μg/L	<						
	p-Chloro-m-Cresol	μg/L	<						
	Pentachlorophenol	μg/L	<						
	Phenol	μg/L	<						
\vdash	2,4,6-Trichlorophenol	μg/L	<						
	Acenaphthene	μg/L	<						
	Acenaphthylene	μg/L	<						
	Anthracene	μg/L	<		:				
	Benzidine	μg/L	<		1				
	Benzo(a)Anthracene	μg/L	٧						
	Benzo(a)Pyrene	μg/L	٧						
	3,4-Benzofluoranthene	μg/L	٧						
	Benzo(ghi)Perylene	μg/L	٧						
	Benzo(k)Fluoranthene	μg/L	<						
	Bis(2-Chloroethoxy)Methane	μg/L	<						
	Bis(2-Chloroethyl)Ether	μg/L	<						
	Bis(2-Chloroisopropyl)Ether	μg/L	<						
	Bis(2-Ethylhexyl)Phthalate	μg/L	<						
	4-Bromophenyl Phenyl Ether	μg/L	<						
	Butyl Benzyl Phthalate	μg/L	<						
	2-Chloronaphthalene	μg/L	<						
	4-Chlorophenyl Phenyl Ether	μg/L	<						
	Chrysene	μg/L	<						
	Dibenzo(a,h)Anthrancene	µg/L	<						
1	1,2-Dichlorobenzene	μg/L	<						
	1,3-Dichlorobenzene	μg/L	<						
	1,4-Dichlorobenzene	μg/L	<						
p 5	3,3-Dichlorobenzidine	μg/L	<						
Group	Diethyl Phthalate	μg/L μg/L	<						
Ġ	Dimethyl Phthalate		<						
	Di-n-Butyl Phthalate	µg/L	<						
1		μg/L	-						
1	2,4-Dinitrotoluene	μg/L	<		1				

	0.0 Di-1-1-1		-		$\overline{}$				1					
ı	2,6-Dinitrotoluene	μg/L	<	H	\Rightarrow	1						H	+	+
I	Di-n-Octyl Phthalate	μg/L	<		\Rightarrow									\pm
	1,2-Diphenylhydrazine	μg/L	<		立	<u> </u>								\pm
	Fluoranthene	μg/L	<	Н	7	1						H		T
	Fluorene	μg/L	<	Ħ	寸	1						Ħ	T	Ť
	Hexachlorobenzene	μg/L	<	\vdash	\rightarrow							<u> </u>		$^{+}$
	Hexachlorobutadiene	μg/L	<	Н	+			_				Н	+	+
			<	\vdash	+	-		+				₩	+	÷
	Hexachlorocyclopentadiene	μg/L	_	H	\Rightarrow	4—						H	÷	+
	Hexachloroethane	μg/L	<	\Rightarrow	\Rightarrow	1						H	÷	$\dot{+}$
	Indeno(1,2,3-cd)Pyrene	μg/L	<	\Rightarrow	\Rightarrow									\pm
	Isophorone	μg/L	<		\pm								\pm	\pm
	Naphthalene	μg/L	<	H	7							H	T	T
	Nitrobenzene	μg/L	<	Ħ	寸	7						Ħ	Ŧ	丰
	n-Nitrosodimethylamine	μg/L	<	Ħ	7	1						₩	t	t
	n-Nitrosodi-n-Propylamine	μg/L	<	H	+	-		+				₩	+	÷
			<	\vdash	-	-	_	+			_	₩	+	+
	n-Nitrosodiphenylamine	μg/L	_	H	+	4-	_					₩	÷	+
	Phenanthrene	μg/L	<	\Rightarrow	\Rightarrow	4						⊭	÷	+
	Pyrene	μg/L	<	\rightarrow	_	-						H	\pm	\pm
	1,2,4-Trichlorobenzene	μg/L	<	\vdash	_							⊬	\pm	\pm
	Aldrin	μg/L	<	H	T								F	F
	alpha-BHC	μg/L	<		7	-						H	F	Ŧ
	beta-BHC	μg/L	<		+	-						+	+	+
	gamma-BHC	μg/L	<	H	+	+	_	+				₩	+	÷
	delta BHC		<		+			+					+	+
		μg/L	-	\vdash	-	4-						₩	+	+
	Chlordane	μg/L	<	\vdash	4	-						₩	+	\pm
	4,4-DDT	μg/L	<	\dashv	4	-						H	\pm	\pm
	4,4-DDE	μg/L	<	\vdash	_	-{						⊬	+	\pm
	4,4-DDD	μg/L	<	\Box	7	-{						H	Ŧ	Ŧ
	Dieldrin	μg/L	<	\exists	\rightarrow							H	Ŧ	Ŧ
	alpha-Endosulfan	μg/L	<	H	+	4		1				H	÷	÷
	beta-Endosulfan	μg/L	<	H	+	-		+			_	₩	÷	+
9			_	H	+	-						₩	┿	+
Group	Endosulfan Sulfate	μg/L	<	Н	+	_		+				Н	+	+
ĕ	Endrin	μg/L	<	H	4	4—						4	+	+
ō	Endrin Aldehyde	μg/L	<	\dashv	4	-						⊬	\pm	\pm
	Heptachlor	μg/L	<	\vdash	-	-{						⊬	+	+
	Heptachlor Epoxide	μg/L	<	\Box	7	-{						H	Ŧ	Ŧ
	PCB-1016	μg/L	<	\Box	7	-						H	Ŧ	Ŧ
	PCB-1221	μg/L	<	H	-	-						H	÷	Ŧ
	PCB-1232	μg/L	<	H	+	4		+				₩	÷	+
	PCB-1242		<	H	+	-							÷	+
		μg/L	_	\vdash	_	+-			1	ı		\vdash		
	PCB-1248	LIO/I						+					+	+
l		μg/L	<	H	4	_							t	ļ
I	PCB-1254	μg/L	<		\downarrow									
	PCB-1260		_											
		μg/L	<											
	PCB-1260 PCBs, Total	µg/L µg/L µg/L	<											
	PCB-1260 PCBs, Total Toxaphene	µg/L µg/L µg/L µg/L	< <											
	PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD	μg/L μg/L μg/L μg/L ng/L	< < <											
	PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha	µg/L µg/L µg/L µg/L ng/L pCi/L	< < < <											
_	PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta	µg/L µg/L µg/L µg/L ng/L pCi/L	< < < < < < < < < < < < < < < < < < <											
_	PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta Radium 226/228	µg/L µg/L µg/L µg/L ng/L pCi/L pCi/L	< < < < < < < < < < < < < < < < < < <											
_	PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta Radium 226/228 Total Strontium	µg/L µg/L µg/L µg/L ng/L pCi/L pCi/L pCi/L	< < < < < < < < < < < < < < < < < < <											
2 dn	PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta Radium 226/228 Total Strontium Total Uranium	µg/L µg/L µg/L µg/L pCi/L pCi/L pCi/L µg/L µg/L	< < < < < < < < < < < < < < < < < < <											
_	PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta Radium 226/228 Total Strontium	µg/L µg/L µg/L µg/L ng/L pCi/L pCi/L pCi/L	< < < < < < < < < < < < < < < < < < <											
_	PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta Radium 226/228 Total Strontium Total Uranium	µg/L µg/L µg/L µg/L pCi/L pCi/L pCi/L µg/L µg/L	< < < < < < < < < < < < < < < < < < <											
	PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta Radium 226/228 Total Strontium Total Uranium	µg/L µg/L µg/L µg/L pCi/L pCi/L pCi/L µg/L µg/L	< < < < < < < < < < < < < < < < < < <											
	PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta Radium 226/228 Total Strontium Total Uranium	µg/L µg/L µg/L µg/L pCi/L pCi/L pCi/L µg/L µg/L	< < < < < < < < < < < < < < < < < < <											
	PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta Radium 226/228 Total Strontium Total Uranium	µg/L µg/L µg/L µg/L pCi/L pCi/L pCi/L µg/L µg/L	< < < < < < < < < < < < < < < < < < <											
	PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta Radium 226/228 Total Strontium Total Uranium	µg/L µg/L µg/L µg/L pCi/L pCi/L pCi/L µg/L µg/L	< < < < < < < < < < < < < < < < < < <											
	PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta Radium 226/228 Total Strontium Total Uranium	µg/L µg/L µg/L µg/L pCi/L pCi/L pCi/L µg/L µg/L	< < < < < < < < < < < < < < < < < < <											
	PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta Radium 226/228 Total Strontium Total Uranium	µg/L µg/L µg/L µg/L pCi/L pCi/L pCi/L µg/L µg/L	< < < < < < < < < < < < < < < < < < <											
	PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta Radium 226/228 Total Strontium Total Uranium	µg/L µg/L µg/L µg/L pCi/L pCi/L pCi/L µg/L µg/L	< < < < < < < < < < < < < < < < < < <											
_	PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta Radium 226/228 Total Strontium Total Uranium	µg/L µg/L µg/L µg/L pCi/L pCi/L pCi/L µg/L µg/L	< < < < < < < < < < < < < < < < < < <											
_	PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta Radium 226/228 Total Strontium Total Uranium	µg/L µg/L µg/L µg/L pCi/L pCi/L pCi/L µg/L µg/L	< < < < < < < < < < < < < < < < < < <											
_	PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta Radium 226/228 Total Strontium Total Uranium	µg/L µg/L µg/L µg/L pCi/L pCi/L pCi/L µg/L µg/L	< < < < < < < < < < < < < < < < < < <											
	PCB-1260 PCBs, Total Toxaphene 2,3,7,8-TCDD Gross Alpha Total Beta Radium 226/228 Total Strontium Total Uranium	µg/L µg/L µg/L µg/L pCi/L pCi/L pCi/L µg/L µg/L	< < < < < < < < < < < < < < < < < < <											

Toxics Management Spreadsheet Version 1.3, March 2021

Stream / Surface Water Information

Chambersburg Borough Water System , NPDES Permit No. PA0083364, Outfall 001

Instructions Disch	arge Str	eam														
Receiving Surface W	/ater Name:	Conocoche	ague Creek				No. Rea	iches to I	Model:	1		_	tewide Criteri			
Location	Stream Co	de* RMI	Elevation DA (mi²)*		²)* Sl	ope (ft/ft)	PWS Withdrawal (MGD)			ply Fish ORSANCO C			SANCO Crite	ria		
Point of Discharge	059346	48.9	8 860	38.6					Y	es						
End of Reach 1	059346	48.3	4 833	42.5					Y	es						
Q ₇₋₁₀	RMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time		Tributa	iry	Strea	m	Analys	sis
Location	KWII	(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hard	iness	pН	Hardness*	pH*	Hardness	pН
Point of Discharge	48.98	0.1	4.61										6.6	6.4		
End of Reach 1	48.34	0.1	5.05													
Qh																
Landina	RMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time		Tributa	ry	Strea	m	Analys	is
Location	KMI	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hard	iness	pН	Hardness	pН	Hardness	pН
Point of Discharge	48.98															
End of Reach 1	48.34										-					

Toxics Management Spreadsheet Version 1.3, March 2021

Model Results

Chambersburg Borough Water System , NPDES Permit No. PA0083364, Outfall 001

Instructions Results	RETURN	TO INPU	тѕ [SAVE AS	PDF	PRINT	r	NI () Inputs () Results () Limits
Hydrodynamics								
✓ Wasteload Allocations								
✓ AFC CC	T (min): 1	15	PMF:	0.804	Ana	lysis Hardne	ss (mg/l):	6.708 Analysis pH: 6.42
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		. 0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	750	750	11,255	
Total Antimony	0	0		0	1,100	1,100	16,507	
Total Arsenic	0	0		0	340	340	5,102	Chem Translator of 1 applied
Total Barium	0	0		0	21,000	21,000	315,133	
Total Boron	0	0		0	8,100	8,100	121,551	
Total Cadmium	0	0		0	0.145	0.14	2.05	Chem Translator of 1.057 applied
Total Chromium (III)	0	0		0	62.311	197	2,959	Chem Translator of 0.316 applied
Hexavalent Chromium	0	0		0	16	16.3	245	Chem Translator of 0.982 applied
Total Cobalt	0	0		0	95	95.0	1,426	
Total Copper	0	0		0	1.054	1.1	16.5	Chem Translator of 0.96 applied
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	3.102	2.62	39.3	Chem Translator of 1.185 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	1.400	1.65	24.7	Chem Translator of 0.85 applied
Total Nickel	0	0		0	47.605	47.7	716	Chem Translator of 0.998 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	Chem Translator of 0.922 applied
Total Silver	0	0		0	0.031	0.036	0.54	Chem Translator of 0.85 applied
Total Thallium	0	0		0	65	65.0	975	
Total Zinc	0	0		0	11.872	12.1	182	Chem Translator of 0.978 applied

Model Results 8/3/2021 Page 5

☑ CFC cc	T (min): 23.	220		PM	F:	1	Ana	alysis Hardne	ess (mg/l):	6.6863 Analysis pH: 6.42
Pollutants	Conc (ug/L)	Stream CV		b Co μg/L		Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0				0	N/A	N/A	N/A	
Chloride (PWS)	0	0				0	N/A	N/A	N/A	
Sulfate (PWS)	0	0			\Box	0	N/A	N/A	N/A	
Fluoride (PWS)	0	0	\Box	+	H	0	N/A	N/A	N/A	
Total Aluminum	0	0			Ħ	0	N/A	N/A	N/A	
Total Antimony	0	0		\top	Ħ	0	220	220	4,054	
Total Arsenic	0	0				0	150	150	2,764	Chem Translator of 1 applied
Total Barium	0	0			П	0	4,100	4,100	75,549	
Total Boron	0	0		_	П	. 0	1,600	1,600	29,483	
Total Cadmium	0	0		-	H	0	0.037	0.036	0.67	Chem Translator of 1.022 applied
Total Chromium (III)	0	0		7	Ħ	0	8.086	9.4	173	Chem Translator of 0.86 applied
Hexavalent Chromium	0	0			Ħ	0	10	10.4	192	Chem Translator of 0.982 applied
Total Cobalt	0	0			П	0	19	19.0	350	
Total Copper	0	0				0	0.888	0.92	17.0	Chem Translator of 0.96 applied
Dissolved Iron	0	0			\Box	. 0	N/A	N/A	N/A	
Total Iron	0	0		-	H	0	1,500	1,500	27,640	WQC = 30 day average; PMF = 1
Total Lead	0	0		+	H	0	0.120	0.1	1.87	Chem Translator of 1.185 applied
Total Manganese	0	0		7	Ħ	0	N/A	N/A	N/A	
Total Mercury	0	0			\Box	0	0.770	0.91	16.7	Chem Translator of 0.85 applied
Total Nickel	0	0				0	5.274	5.29	97.5	Chem Translator of 0.997 applied
Total Phenols (Phenolics) (PWS)	0	0		1	\Box	. 0	N/A	N/A	N/A	
Total Selenium	0	0		7	H	0	4.600	4.99	91.9	Chem Translator of 0.922 applied
Total Silver	0	0			H	0	N/A	N/A	N/A	Chem Translator of 1 applied
Total Thallium	0	0			Ħ	0	13	13.0	240	
Total Zinc	0	0			\Box	0	11.939	12.1	223	Chem Translator of 0.988 applied
⊘ тнн сст	T (min): 23.	220		PMI		1	'	alysis Hardne	ess (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc	Stream CV		b Co μg/L		Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0				0	500,000	500,000	N/A	
Chloride (PWS)	0	0				0	250,000	250,000	N/A	
Sulfate (PWS)	0	0	\square	4	\square	. 0	250,000	250,000	N/A	
Fluoride (PWS)	0	0	\Box	\mp	H	. 0	2,000	2,000	N/A	
Total Aluminum	0	0				0	N/A	N/A	N/A	
Total Antimony	0	0				0	5.6	5.6	103	
Total Arsenic	0	0				0	10	10.0	184	
Total Barium	0	0				0	2,400	2,400	44,224	
Total Boron	0	0	ĮĮ.		П	0	3,100	3,100	57,123	
Total Cadmium	0	0				0	N/A	N/A	N/A	
Total Chromium (III)	0	0				0	N/A	N/A	N/A	

Model Results 8/3/2021 Page 6

Hexavalent Chromium	0	0	0	N/A	N/A	N/A	
Total Cobalt	0	0	0	N/A	N/A	N/A	
Total Copper	0	0	0	N/A	N/A	N/A	
Dissolved Iron	0	0	0	300	300	5,528	
Total Iron	0	0	0	N/A	N/A	N/A	
Total Lead	0	0	. 0	N/A	N/A	N/A	
Total Manganese	0	0	0	1,000	1,000	18,427	
Total Mercury	0	0	0	0.050	0.05	0.92	
Total Nickel	0	0	0	610	610	11,240	
Total Phenols (Phenolics) (PWS)	0	0	0	5	5.0	N/A	
Total Selenium	0	0	0	N/A	N/A	N/A	
Total Silver	0	0	0	N/A	N/A	N/A	
Total Thallium	0	0	0	0.24	0.24	4.42	
Total Zinc	0	0	0	N/A	N/A	N/A	

✓ CRL	CCT (min): 7.	942	PMF:	1	Ana	alysis Hardne	ess (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc	Stream	Trib Conc	Fate	WQC	WQ Obj	WLA (µg/L)	Comments
	(ug/L)	CV	(µg/L)	Coef	(µg/L)	(µg/L)		
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	N/A	N/A	N/A	
Total Arsenic	0	0		0	N/A	N/A	N/A	
Total Barium	0	0		0	N/A	N/A	N/A	
Total Boron	0	0		0	N/A	N/A	N/A	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		. 0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	N/A	N/A	N/A	
Total Nickel	0	0		0	N/A	N/A	N/A	
Total Phenols (Phenolics) (PWS) 0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	

Model Results 8/3/2021 Page 7

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits	Concentration Limits						
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Aluminum	Report	Report	Report	Report	Report	μg/L	7,214	AFC	Discharge Conc > 10% WQBEL (no RP)

☑ Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Fluoride (PWS)	N/A	N/A	PWS Not Applicable
Total Antimony	N/A	N/A	Discharge Conc < TQL
Total Arsenic	N/A	N/A	Discharge Conc < TQL
Total Barium	44,224	μg/L	Discharge Conc ≤ 10% WQBEL
Total Beryllium	N/A	N/A	No WQS
Total Boron	29,483	μg/L	Discharge Conc < TQL
Total Cadmium	0.67	μg/L	Discharge Conc < TQL
Total Chromium (III)	173	μg/L	Discharge Conc < TQL
Hexavalent Chromium	157	μg/L	Discharge Conc < TQL
Total Cobalt	350	μg/L	Discharge Conc < TQL
Total Copper	10.6	μg/L	Discharge Conc < TQL
Total Cyanide	N/A	N/A	No WQS
Dissolved Iron	5,528	μg/L	Discharge Conc ≤ 10% WQBEL
Total Iron	27,640	μg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	1.87	μg/L	Discharge Conc < TQL
Total Manganese	18,427	μg/L	Discharge Conc ≤ 10% WQBEL
Total Mercury	0.92	μg/L	Discharge Conc < TQL
Total Nickel	97.5	μg/L	Discharge Conc < TQL
Total Phenols (Phenolics) (PWS)		μg/L	Discharge Conc < TQL
Total Selenium	91.9	μg/L	Discharge Conc < TQL
Total Silver	0.35	μg/L	Discharge Conc < TQL
Total Thallium	4.42	μg/L	Discharge Conc < TQL
Total Zinc	117	μg/L	Discharge Conc ≤ 10% WQBEL
Total Molybdenum	N/A	N/A	No WQS

Model Results 8/3/2021 Page 8

3. TRC_CALC Worksheet

TRC_CALC

1A	В	С	D	E	F	G				
2	TRC EVALU	ATION								
3	Input appropri	nput appropriate values in B4:B8 and E4:E7								
4		= Q stream (0.5	= CV Daily					
5		= Q discharg			= CV Hourly					
6		= no. sample			= AFC_Partial M					
7			emand of Stream		= CFC_Partial Mix Factor					
8		4	emand of Discharge		= AFC_Criteria Compliance Time (min)					
9		= BAT/BPJ V			= CFC_Criteria Compliance Time (min)					
		•	of Safety (FOS)		=Decay Coefficie	. ,				
10	Source	Reference	AFC Calculations		Reference	CFC Calculations				
11	TRC	1.3.2.iii	WLA afc =		1.3.2.iii	WLA cfc = 5.431				
	PENTOXSD TRG PENTOXSD TRG		LTAMULT afc =		5.1c	LTAMULT cfc = 0.581				
14	PENTOASD ING	5.1b	LTA_afc=	2.079	5.1d	LTA_cfc = 3.157				
15	Source		Effluent	Limit Cald	ulations					
	PENTOXSD TRG	5.1f		L MULT =						
17	PENTOXSD TRG	5.1g	AVG MON LIMI	Γ (mg/l) = 0.500 BAT/BPJ						
18			INST MAX LIMI							
	WLA afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc))									
		+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) AMULT afc EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5)								
	LTAMULT afc									
	LTA_afc	wla_afc*LTA	MULI_ATC							
	WLA_cfc	(011/e(-k*CF	C_tc) + [(CFC_Yc*Qs	* 011/Qd*	e(-k*CFC_tc))					
			C Yc*Qs*Xs/Qd)]*(1-F		-(x 0, 0_10,)					
	LTAMULT_cfc		_))-2.326*LN(cvd^2/no_samples+1)^0.5)						
	LTA_cfc	wla_cfc*LTAMULT_cfc								
	_	_	_							
	AML MULT	EXP(2.326*L	N((cvd^2/no_samples	+1)^0.5)-	0.5*LN(cvd^2/no	_samples+1))				
	AVG MON LIMIT MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)									
	INST MAX LIMIT	1.5*((av_mor	n_limit/AML_MULT)/L1	FAMULT_	afc)					

	Tools and References Used to Develop Permit
 1	
 	WQM for Windows Model (see Attachment)
 1	Toxics Management Spreadsheet (see Attachment)
 1	TRC Model Spreadsheet (see Attachment)
_	Temperature Model Spreadsheet (see Attachment)
 	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
]	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
]	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
]	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
]	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
]	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP:
	Other