

Application Type Renewal
Facility Type Municipal
Major / Minor Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0083429

 APS ID
 21256

 Authorization ID
 1301173

Applicant and Facility Information

Applicant Name	West C	Cocalico Township Authority	Facility Name	West Cocalico Township Authority WWTP
Applicant Address	156 B \	West Main Street, PO Box 95	Facility Address	Creamery Road
	Reinho	lds, PA 17569-0095	_	West Cocalico, PA 17569
Applicant Contact	Caroly	n Hildebrand	Facility Contact	Brian Norris
Applicant Phone	(717) 3	36-6265	Facility Phone	(717) 336-6265
Client ID	24878		Site ID	449372
Ch 94 Load Status	Not ove	erloaded	Municipality	West Cocalico Township
Connection Status	No Lim	itations	County	Lancaster
Date Application Recei	ved	December 24, 2019	EPA Waived?	Yes
Date Application Accept	oted	January 16, 2020	If No, Reason	
Purpose of Application		NPDES Renewal.		

Summary of Review

West Cocalico Township Authority has applied to the Department of Environmental Protection (DEP) for reissuance of a National Pollutant Discharge Elimination System (NPDES) permit. The permit was issued on June 9, 2015, and became effective on July 1, 2015. The permit authorized discharge of treated sewage from the existing facility located in West Cocalico Township, Lancaster County into Little Cocalico Creek. The existing permit expiration date was June 30, 2020, and the permit has been administratively extended since that time.

Per the previous fact sheet, there are two municipalities which contribute domestic wastewater to this WWTP. 95.4% of flow comes from West Cocalico Township, and 4.6% of flow comes from East Cocalico Township. There are no industrial or commercial wastewater contributors and no hauled-in wastes.

Changes in this renewal: E. Coli monitoring was added to the permit. Total Copper, Total Zinc and Total Lead monitoring were added to the permit.

Sludge use and disposal description and location(s): Other WWTP

Supplemental information for this facility is provided at the end of this fact sheet.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*,

Approve	Deny	Signatures	Date
х		Benjamin R. Lockwood Benjamin R. Lockwood / Environmental Engineering Specialist	December 10, 2021
х		Maria D. Bebenek for Daniel W. Martin, P.E. / Environmental Engineer Manager	December 14, 2021
х		Maria D. Bebenek Maria D. Bebenek, P.E. / Program Manager	December 14, 2021

Summary of Review

DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Discharge, Receiving Waters and Water Supply Inform	nation	
Outfall No.001Latitude40° 15' 46"Quad NameSinking SpringWastewater Description:Sewage Effluent	Design Flow (MGD) Longitude Quad Code	.15 76º 7' 15" 1637
Receiving WatersLittle Cocalico Creek (TSF, MF)NHD Com ID57461187Drainage Area7.35 mi²Q7-10 Flow (cfs)0.88Elevation (ft)432Watershed No.7-JExisting UseN/AExceptions to UseN/AAssessment StatusImpaired	Stream Code RMI Yield (cfs/mi ²) Q ₇₋₁₀ Basis Slope (ft/ft) Chapter 93 Class. Existing Use Qualifier Exceptions to Criteria	7719 2.88 0.12 USGS Gage #01576500 TSF, MF N/A N/A
Assessment Status Impaired Cause(s) of Impairment Pathogens Source(s) of Impairment Unknown TMDL Status N/A Nearest Downstream Public Water Supply Intake PWS Waters Cocalico Creek PWS RMI	Name <u>N/A</u> <u>Ephrata Area Joint Water Auth</u> Flow at Intake (cfs) Distance from Outfall (mi)	nority

Changes Since Last Permit Issuance: A drainage area of 7.35 mi² and a Q_{7-10} flow of 0.88 cubic feet per second (cfs) were determined by establishing a correlation to the yield of USGS Gage Station #01576500 on the Conestoga River. The Q_{7-10} and drainage area at the gage are 38.6 cfs and 324 mi², respectively. These values are taken from the USGS document "Selected Streamflow Statistics for Streamgage Locations in and near Pennsylvania". The Q_{7-10} runoff rate at the gage station was calculated as follows:

Yield = (38.6 cfs)/ 324 mi² = 0.12 cfs/mi²

The drainage area at the discharge point, taken from USGS PA StreamStats = 7.35 mi²

The Q₇₋₁₀ at the discharge point = 7.35 mi² x 0.12 cfs/mi² = 0.88 cfs

	Tr	eatment Facility Summary	y	
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
Sewage	Secondary	Extended Aeration	Hypochlorite	0.15
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal
0.15	275	Existing Organic Overload	Sludge Holding	Other WWTP

Changes Since Last Permit Issuance: None

Other Comments: The WWTP process consists of two trains, with each train having: 1 Bar Screen, 3 Equalization Tanks, 10 Aeration Tanks, 4 Clarifiers. The two trains then merge into 1 Chlorine Contact Tank with Sodium Hypochlorite disinfection, 1 De-Chlorination/Post Settling Tank, 8 Sludge Holding Tanks, and Outfall 001 to Little Cocalico Creek.

	Compliance History
Summary of DMRs:	A summary of the past 12-month DMR effluent data is presented on the next page of this fact sheet.
Summary of Inspections:	 3/30/2017: A routine inspection was conducted. All treatment units were online. The effluent was mostly clear with some suspended solids. No issues were noted. 1/9/2020: A routine inspection was conducted. Field samples were collected during the inspection. The effluent had a slight brown tint with coarse suspended solids. A 0.0 mg/l TRC result was collected from the chlorine contact tank. The operator indicated that there had been a crack within the sodium hypochlorite line which had been repaired. 8/11/2020: An administrative inspection was conducted. The facility was operating normally, and all treatment units were online and operable. There had not been any emergency conditions, and there were no outstanding issues or needs.

Other Comments: There are currently no open violations associated with the permittee or facility.

Compliance History

DMR Data for Outfall 001 (from October 1, 2020 to September 30, 2021)

Parameter	SEP-21	AUG-21	JUL-21	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20
Flow (MGD)		700-21		0011-21	MAT-41		1117111-121	1 60-61	VAI1-21		110 #-20	001-20
Average Monthly	0.13297	0.09151	0.08042	0.07920	0.07150	0.08630	0.11770	0.09900	0.09310	0.11010	0.07730	0.06880
Flow (MGD)												
Daily Maximum	0.40310	0.13960	0.1336	0.10480	0.09370	0.16120	0.37430	0.1920	0.16690	0.38400	0.11320	0.09460
pH (S.U.)												
Minimum	7.15	7.10	7.10	7.09	7.10	6.73	6.86	6.91	6.92	6.98	7.00	6.91
pH (S.U.)												
Maximum	7.51	7.41	7.35	7.34	7.45	7.31	7.44	7.37	7.28	7.23	7.26	7.30
DO (mg/L)												
Minimum	5.6	5.9	5.6	6.0	5.8	5.8	5.8	5.9	5.9	5.9	6.0	6.0
TRC (mg/L)												
Average Monthly	0.230	0.235	0.257	0.242	0.245	0.286	0.264	0.271	0.273	0.255	0.262	0.255
TRC (mg/L)												
Instantaneous												
Maximum	0.33	0.33	0.32	0.30	0.35	0.37	0.33	0.36	0.36	0.34	0.33	0.35
CBOD5 (lbs/day)												
Average Monthly	< 1.76	< 1.6	< 1.51	< 1.61	1.59	2.28	3.51	< 1.88	< 2.09	< 2.04	< 1.63	< 1.26
CBOD5 (lbs/day)				<u> </u>								
Weekly Average	< 2.2	2.1	< 2.2	2.4	2.0	3	6.5	2.8	3.3	2.8	2	1.5
CBOD5 (mg/L)		0.00	0	0.5		0	0.40		0.00	0.40	0.00	0.40
Average Monthly	< 2	< 2.02	< 2	< 2.5	2.9	3	3.42	< 2.6	< 2.83	< 2.42	< 2.63	< 2.18
CBOD5 (mg/L)	. 0	2.1	. 0	2.0	2.6	2.0	F 7	4.4	4.0	3.4	2.4	25
Weekly Average BOD5 (lbs/day)	< 2	2.1	< 2	3.2	3.6	3.9	5.7	4.1	4.8	3.4	3.4	2.5
Raw Sewage Influent												
<pre> Average</pre>												
Monthly	165.3	167.5	187.5	154.8	123.4	137.5	192.7	172.3	176.3	256.1	163.7	124.2
BOD5 (lbs/day)	100.0	107.0	107.0	101.0	120.1	107.0	102.1	172.0	170.0	200.1	100.7	12 1.2
Raw Sewage Influent												
 br/> Daily Maximum	218.5	207.1	200.6	245.0	182.6	208.1	350.5	209.3	239.9	407.8	255.3	160.5
BOD5 (mg/L)												
Raw Sewage Influent												
 Average												
Monthly	186.3	220.8	260.8	237.4	224	189.3	187.2	249.3	244.8	308.4	263.5	213.5
TSS (lbs/day)												
Average Monthly	3.41	< 1.94	< 2.45	< 1.44	< 1.39	3.33	< 3.71	< 2.12	1.61	< 1.55	2.24	< 1.72
TSS (lbs/day)												
Raw Sewage Influent												
 Average												
Monthly	163.3	152.2	155.6	108.5	74.3	96.7	132.6	132.5	168.3	222.7	155.6	126.3

NPDES Permit Fact Sheet West Cocalico Township Authority WWTP

NPDES Permit No. PA0083429

TSS (lbs/day)												
Raw Sewage Influent												
 br/> Daily Maximum	239.6	221.1	213.9	224.5	165.1	177.4	179.0	204.7	281.1	437.4	204.5	153.6
TSS (lbs/day)												
Weekly Average	6.3	3.8	5.6	3.1	2.3	4.9	9.3	4.1	4.5	3.0	4.5	3.3
TSS (mg/L)												
Average Monthly	4.25	< 2.8	< 3	< 2.2	< 2.5	4.5	< 3.2	< 3.25	1.75	< 1.8	3.75	< 3
TSS (mg/L)												
Raw Sewage Influent												
 Average												
Monthly	182.5	211.4	208.0	166.2	133.5	128.5	142.8	191.8	238.0	271.6	255	217.5
TSS (mg/L)												
Weekly Average	9	6	5	5	4	7	4	7	4	3	8	6
Fecal Coliform												
(CFU/100 ml)												
Geometric Mean	16	40	< 4	9	47	< 8	< 20	23	< 6	56	37	43
Fecal Coliform												
(CFU/100 ml)												
Instantaneous												
Maximum	280	200	50	64	108	23	66	84	52	350	46	60
Nitrate-Nitrite (lbs/day)												
Average Monthly	8.73	11.15	3.72	10.48	2.14	3.79	34.82	3.62	8.05	11.12	8.34	7.26
Nitrate-Nitrite (mg/L)												
Average Monthly	7.87	17.5	5.46	14.2	4.03	5.56	14.9	5.31	7.19	9.56	11.8	14
Total Nitrogen												
(lbs/day)												
Average Monthly	9.53	11.84	5.38	12.3	5.44	7.18	37.53	8.62	12.44	17.93	12.7	9.97
Total Nitrogen (mg/L)												
Average Monthly	8.59	18.58	7.9	16.67	10.25	10.52	16.06	12.63	11.11	15.41	17.98	19.22
Ammonia (lbs/day)												
Average Monthly	< 0.2	< 1.41	1.38	0.72	1.19	1.49	< 1.46	2.95	3.62	3.91	3.15	2.94
Ammonia (mg/L)												
Average Monthly	< 0.2	< 1.854	1.685	1.156	2.183	2.068	< 1.972	4.578	4.675	4.508	5.083	5.013
TKN (lbs/day)												
Average Monthly	0.8	0.69	1.66	1.82	3.3	3.38	2.71	4.99	4.39	6.81	4.37	2.71
TKN (mg/L)												
Average Monthly	0.72	1.08	2.44	2.47	6.22	4.96	1.16	7.32	3.92	5.85	6.18	5.22
Total Phosphorus												
(lbs/day)												
Average Monthly	3.67	3.8	2.04	4.47	0.64	2.01	2.78	1.3	1.77	1.72	2.07	1.52
Total Phosphorus												
(mg/L)												
Average Monthly	3.31	5.96	3.0	6.05	1.21	2.95	1.19	1.9	1.58	1.48	2.93	2.93

Existing Effluent Limitations and Monitoring Requirements

The table below summarizes the effluent limits and monitoring requirements implemented in the existing NPDES Permit.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	; (Ibs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
BOD ₅ , Raw Sewage Influent	Report	Report Daily Max	xxx	Report	XXX	ххх	1/week	Grab
TSS, Raw Sewage Influent	Report	Report Daily Max	xxx	Report	XXX	xxx	1/week	Grab
pH (S.U.)	ххх	xxx	6.0	XXX	XXX	9.0	1/day	Grab
DO	ххх	xxx	5.0	XXX	XXX	ххх	1/day	Grab
TRC	XXX	xxx	ххх	0.5	XXX	1.6	1/day	Grab
CBOD₅	31	50	ххх	25	40	50	1/week	8-Hr Composite
TSS	38	56	xxx	30	45	60	1/week	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	xxx	xxx	2,000 Geo Mean	XXX	10,000	1/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	xxx	xxx	200 Geo Mean	XXX	1,000	1/week	Grab
Ammonia Nov 1 - Apr 30	24	xxx	xxx	28.5	XXX	57	1/week	8-Hr Composite
Ammonia May 1 - Oct 31	12	xxx	xxx	9.5	XXX	19	1/week	8-Hr Composite
Total Phosphorus	Report	xxx	xxx	Report	XXX	ххх	1/month	8-Hr Composite
TKN	Report	xxx	xxx	Report	XXX	ххх	1/month	8-Hr Composite
Nitrate-Nitrite	Report	xxx	xxx	Report	XXX	ххх	1/month	8-Hr Composite
Total Nitrogen	Report	xxx	xxx	Report	XXX	ххх	1/month	Calculation

Compliance Sampling Location: At discharge from facility

Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	.15
Latitude	40º 15' 46"		Longitude	76º 7' 15"
Wastewater De	escription:	Sewage Effluent		

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 - 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations

CBOD₅ and NH₃-N

Pursuant to 40 CFR § 122.44(d)(1)(i), more stringent requirements should be considered when pollutants are discharged at the levels which have the reasonable potential to cause or contribute to excursions above water quality standards.

WQM 7.0 ver. 1.1b is a water quality model designed to assist DEP in determining appropriate water quality based effluent limits (WQBELs) for carbonaceous biochemical oxygen demand (CBOD₅), ammonia (NH₃-N) and dissolved oxygen (D.O.). DEP's Technical Guidance No. 391-2000-007 provides the technical methods contained in WQM 7.0 for determining wasteload allocations and for determining recommended NPDES effluent limits for point source discharges. The model was utilized for this permit renewal. The model output indicated a CBOD₅ average monthly limit of 25 mg/l, an NH₃-N average monthly limit of 11.03 mg/l, and a D.O. minimum limit of 5.0 mg/l were protective of water quality. The flow data used to run the model was acquired from USGS PA StreamStats and USGS Gage #01576500, and is included as an attachment. The CBOD₅ limit is the same as the limit in the existing permit, which will remain. The existing NH₃-N permit limit of 9.5 mg/l is more stringent and will remain in the permit.

<u>Toxics</u>

Effluent sample results for toxic pollutants reported on the renewal application were entered into DEP's Toxics Management Spreadsheet Version 1.3 to develop appropriate permit requirements for toxic pollutants of concern. The Toxics Management Spreadsheet combines the functions of PENTOXSD and DEP's Toxics Screening Analysis. A stream hardness value of 270 mg/l and pH of 8.4 were used in modeling, taken from WQN Station ID 273. The results from the TMS are shown below:

Parameter	Max. Concentration in Application or DMRs (µg/l)	Most Stringent WQBEL (µg/l)	Screening Recommendation
Total Copper	30	57.2	Establish Limits
Total Lead	<10	22.4	Monitor
Total Zinc	79	476	Monitor

The toxics data was analyzed based on the guidelines found in DEP's Water Quality Toxics Management Strategy (No. 361-0100-003) and DEP's SOP No. BCW-PMT-033. The TMS results are attached to this fact sheet. The TMS uses the following logic:

- a. Establish average monthly and instantaneous maximum (IMAX) limits in the draft permit where the maximum reported concentration exceeds 50% of the WQBEL.
- b. For non-conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 25% 50% of the WQBEL.
- c. For conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 10%-50% of the WQBEL.

West Cocalico Township Authority is in the process of construction a new WWTP, with an anticipated final construction completion date of June 1, 2024. The permit for the new WWTP contained Total Copper and Total Lead monitoring requirements, as the toxics analysis was based off data from the existing WWTP. To be consistent with the new WWTP NPDES Permit, monitoring requirements for Total Copper, Total Lead, and Total Zinc will be added to the permit. The need for limits for these parameters will be evaluated during the next permit renewal for the new WWTP using data collected during this permit term. To ensure there is sufficient data, a monitoring frequency of 1/month will be used.

Best Professional Judgement (BPJ) Limitations

Dissolved Oxygen

A minimum D.O. limit of 5.0 mg/L is a D.O. water quality criterion found in 25 Pa. Code § 93.7(a). This limit is included in the existing NPDES permit. This limit will remain in the permit to ensure that the facility will achieve compliance with DEP water quality standards.

Additional Considerations

Chesapeake Bay Total Maximum Daily Load (TMDL)

DEP developed a strategy to comply with the EPA and Chesapeake Bay Foundation requirements by reducing point source loadings of Total Nitrogen (TN) and Total Phosphorus (TP). This strategy can be located in the *Pennsylvania Chesapeake Watershed Implementation Plan* (WIP), dated January 11, 2011. Subsequently, an update to the WIP was published as the Phase 2 WIP. As part of the Phase 2 WIP, a *Phase 2 Watershed Implementation Plan Wastewater Supplement* (Phase 2 Supplement) was developed, providing an update on TMDL implementation for point sources and DEP's current implementation strategy for wastewater. A new update to the WIP was published as the Phase 3 WIP in August 2019. As part of the Phase 3 *Watershed Implementation Plan Wastewater Supplement* (Phase 3 Supplement) was developed, and was most recently revised on December 17, 2019, and is the basis for the development of any Chesapeake Bay related permit parameters. Sewage discharges have been prioritized based on their design flow to the Bay. The highest priority (Phases 1, 2, and 3) dischargers will receive annual Cap Loads based on their design flow on August 29, 2005 and concentrations of 6 mg/l TN and 0.8 mg/l TP. These limits may be achieved through a combination of treatment technology, credits, or offsets. For Phase 4 and 5 facilities, Cap Loads are not currently being implemented for renewed or amended permits for facilities that do not increase design flow. For new Phase 4 and 5 sewage dischargers, in general DEP will issue new permits containing Cap Loads of "0" and new facilities will be expected to purchase credits and/or apply offsets to achieve compliance.

This facility is considered a Phase 5 non-significant discharger with a design flow less than 0.2 MGD but greater than 0.002 MGD. According to DEP's latest-revised Phase 3 Supplement, issuance of permits with monitoring and reporting for TN and TP is recommended for any Phase 5 non-significant sewage facilities. Furthermore, DEP's SOP No. BCW-PMT-033 states that in general, at a minimum, monitoring for TN and TP should be included in new and reissued permits for sewage discharges with design flows > 2,000 gpd. Therefore, TN and TP monitoring will be included in the renewed permit, which is consistent with the existing permit.

Fecal Coliform

PA Code § 92a.47.(a)(4) requires a monthly average limit of 200/100 mL as a geometric mean and an instantaneous maximum limit not greater than 1,000/100 mL from May through September for fecal coliform. PA Code § 92a.47.(a)(5) requires a monthly average limit of 2,000/100 mL as a geometric mean and an instantaneous maximum limit not greater

NPDES Permit Fact Sheet West Cocalico Township Authority WWTP

than 10,000/100 mL from October through April for fecal coliform. These limits are included in the existing permit, and will remain in the permit.

<u>E. Coli</u>

PA Code § 92a.61 requires IMAX reporting of E. Coli. Per DEP's SOP No. BCW-PMT-033, sewage dischargers with a design flow of >=0.05 and <1 mgd will include E. Coli monitoring with a frequency of 1/quarter. This parameter has been added to the renewal permit.

Total Residual Chlorine

The attached computer printout utilizes the equations and calculations as presented in the Department's May 1, 2003 Implementation Guidance for Total Residual Chlorine (TRC) (ID No. 391-2000-015) for developing chlorine limitations. The Guidance references Chapter 92, Section 92.2d (3) which establishes a standard BAT limit of 0.5 mg/l unless a facility-specific BAT has been developed. The attached printout indicates that a water quality limit of 0.5 mg/l would be needed to prevent toxicity concerns. It is recommended that a TRC limit of 0.5 mg/l monthly average and 1.6 mg/l instantaneous maximum be applied this permit cycle, which is the same as the existing limit.

Influent BOD5 and Total Suspended Solids (TSS) Monitoring

As a result of negotiation with US EPA, influent monitoring of TSS and BOD₅ are required for any publicly owned treatment works (POTWs); therefore, influent sampling of BOD₅ and TSS will be included in the permit. An 8-hr composite sample type will be required to be consistent with the sampling frequency for effluent TSS and CBOD₅.

Sampling Frequency & Sample Type

The monitoring requirements were established based on the BPJ and/or Table 6-3 of DEP's technical guidance No. 362-0400-001.

Flow Monitoring

Flow monitoring is recommended by DEP's technical guidance and is also required by 25 PA Code §§ 92a.27 and 92a.61.

Anti-Degradation

The effluent limits for this discharge have been developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

303(d) Listed Streams

The discharge is located on a stream segment that has a recreational impairment for pathogens due to an unknown source. The permit contains a limit for fecal coliform.

Class A Wild Trout Fisheries

No Class A Wild Trout Fisheries are impacted by this discharge.

Anti-Backsliding

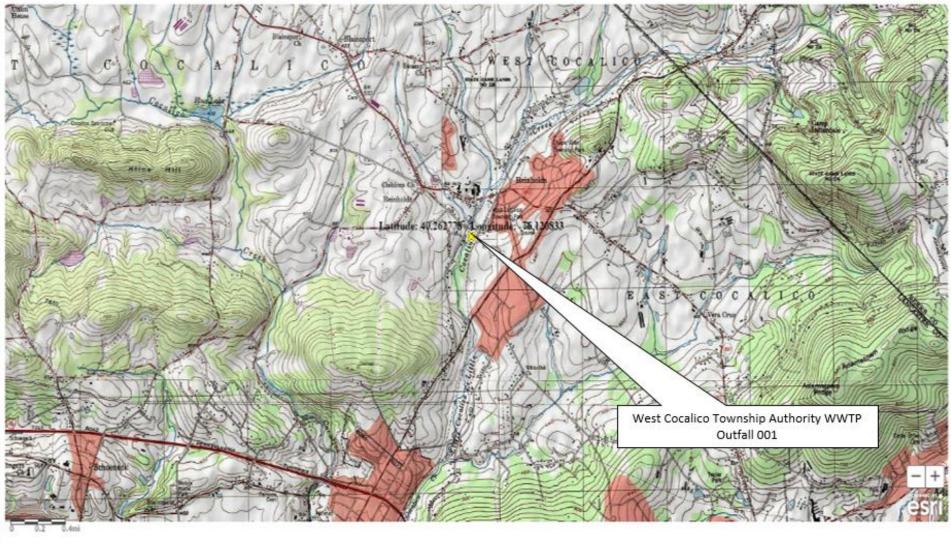
Pursuant to 40 CFR § 122.44(I)(1), all proposed permit requirements addressed in this fact sheet are at least as stringent as the requirements implemented in the existing NPDES permit unless any exceptions addressed by DEP in this fact sheet.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations.			Monitoring Re	quirements
Parameter	Mass Units	; (lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Parameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	xxx	xxx	xxx	xxx	Continuous	Measured
pH (S.U.)	xxx	XXX	6.0 Inst Min	xxx	xxx	9.0	1/day	Grab
DO	ХХХ	xxx	5.0 Inst Min	XXX	XXX	xxx	1/day	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
CBOD5	31	50	XXX	25	40	50	1/week	8-Hr Composite
BOD5 Raw Sewage Influent	Report	Report Daily Max	XXX	Report	xxx	XXX	1/week	8-Hr Composite
TSS	38	56	xxx	30	45	60	1/week	8-Hr Composite
TSS Raw Sewage Influent	Report	Report Daily Max	xxx	Report	XXX	xxx	1/week	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2,000 Geo Mean	XXX	10,000	1/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	ххх	xxx	xxx	200 Geo Mean	XXX	1,000	1/week	Grab
E. Coli (No./100 ml)	ххх	XXX	XXX	XXX	XXX	Report	1/quarter	Grab
Ammonia Nov 1 - Apr 30	24	xxx	xxx	28.5	XXX	57	1/week	8-Hr Composite
Ammonia May 1 - Oct 31	12	XXX	XXX	9.5	XXX	19	1/week	8-Hr Composite
Total Copper	XXX	xxx	XXX	Report	Report Daily Max	xxx	1/month	8-Hr Composite


Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

		Effluent Limitations						
Parameter	Mass Units	(lbs/day) (1)		Concentrat		Minimum ⁽²⁾	Required	
	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
- /					Report			8-Hr
Total Lead	XXX	XXX	XXX	Report	Daily Max	XXX	1/month	Composite
					Report			8-Hr
Total Zinc	XXX	XXX	XXX	Report	Daily Max	XXX	1/month	Composite
								8-Hr
Nitrate-Nitrite	Report	XXX	XXX	Report	XXX	XXX	1/month	Composite
Total Nitrogen	Report	XXX	xxx	Report	XXX	XXX	1/month	Calculation
				•				8-Hr
TKN	Report	XXX	XXX	Report	XXX	XXX	1/month	Composite
								8-Hr
Total Phosphorus	Report	XXX	XXX	Report	XXX	XXX	1/month	Composite

Compliance Sampling Location: At discharge from facility

Other Comments: None

	Tools and References Used to Develop Permit
	WQM for Windows Model (see Attachment)
	Toxics Management Spreadsheet (see Attachment)
	TRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
\square	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
\square	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP: BCW-PMT-002, No. BCW-PMT-033
	Other:

Copyright: 0 2013 National Geographic Society, 1-cubed

West Cocalico Township Authority PA0267082 RMI = 2.88 Outfall 001

basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	7.35	square milles
BSLOPD	Mean basin slope measured in degrees	6.0738	degrees
ROCKDEP	Depth to rock	4,3	feet
URBAN	Percentage of basin with urban development	2.9055	percent

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0083429

Low-Flow Statistics Parameters [9	99.9 Percent (7.34 square miles) Low Flow Region 1]				
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	7.35	square miles	4.78	1150
BSLOPD	Mean Basin Slope degrees	6.0738	degrees	1.7	6.4
ROCKDEP	Depth to Rock	4.3	feet	4.13	5.21
URBAN	Percent Lirban	2 9055	nercent	0	89

Low-Flow Statistics Flow Report [99.9 Percent (7.34 square miles) Low Flow Region 1]

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	ASEp
7 Day 2 Year Low Flow	1.41	ft^3/s	46	46
30 Day 2 Year Low Flow	1.83	ft^3/s	38	38
7 Day 10 Year Low Flow	0.655	ft^3/s	51	51
30 Day 10 Year Low Flow	0.881	ft^3/s	46	46
90 Day 10 Year Low Flow	1.29	ft^3/s	41	41

Low Flow Statistics Citations

Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p.

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.6.2 StreamStats Services Version: 1.2.22 NSS Services Version: 2.1.2

A Download -

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0083429

West Cocalico	Township Authority	PA0083429	Downstream	Point RMI = 1.27

Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
DRNARLA	Area that drains to a point on a atream	0.48	square nules
BSLOPD	Mean basin slope measured in degrees	6.7762	degrees
ROCKDEP	Depth to rack	4.3	feet
URBAN	Percentage of basin with urban development	2.8144	percent

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0083429

Low-Flow Statistics Parameters	[99.9 Percent (8.47 square miles) Low Flow Region 1]				
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	8.48	square miles	4.78	1150
BSLOPD	Mean Basin Slope degrees	5.7762	degrees	1.7	6.4
ROCKDEP	Depth to Rock	4.3	feet	4.13	5.21
URBAN	Percent Urban	2.8144	percent	0	89

Low-Flow Statistics Flow Report [99.9 Percent (8.47 square miles) Low Flow Region 1]

Pil: Prediction Interval-Lower, Piu: Prediction Interval-Upper, ASEp: Average Stands	ard Error of Prediction,	SE: Standard Error (oth	her see rep	ort)
Statistic	Value	Unit	SE	ASEp
7 Day 2 Year Low Flow	1.53	ft*3/s	46	46
30 Day 2 Year Low Flow	2	ft^3/s	38	38
7 Day 10 Year Low Flow	0.7	ft*3/s	51	51
30 Day 10 Year Low Flow	0.951	ft^3/s	46	46
90 Day 10 Year Low Flow	1.42	ft*3/s	41	41

Low-Flow Statistics Citations

Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p.

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no wernerity expressed or implied is made regarding the display or still ty of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such wernanty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of Irade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.6.2 StreamStats Services Version: 1.2.22 NSS Services Version: 2.1.2

📥 Download+

1	A	В	С	D	E	F	G	Н
	A	В	C	D	E	F	G	
	2	TRC EVAL	UATION					
	3	Input appropr	ate values	in 84 88 and E4 8	7			
	4	0.88	= Q stream	(cfs)	0.5	= CV Daily		
	5	.0.15	= Q discha	rge (MGD)	0.5	= CV Hourly		
	6	30	= no. samp	les	1	= AFC_Partia	Mix Factor	
	7			Demand of Stream		= CFC_Partia	Mix Factor	
	8			Demand of Discha			ia Compliance T	
	9		= BAT/BPJ		720	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ia Compliance T	ime (min)
)		0	= % Factor	r of Safety (FOS)		=Decay Coeff	and a set of the local data in the second	
_	#	Source	Reference	AFC Calculations	9	Reference	CFC Calculation	
1	#	TRC	1.3.2.111	WLA afc =		1.3.2.111	WLA cfo	
	1.5	PENTOXSD TRG PENTOXSD TRG	 3.2.2.2.2.2.2.2.2.3. 	LTAMULT afc =		5.1c 5.1d	LTAMULT of	
	#	FENTONSD TRO	5.10	LTA_afc=	0.450	5.10	LTA_cfc	= 0.052
	#	Source		Effluent	Limit Cal	culations		
(all all all all all all all all all all	C 1	PENTOXSD TRG	5.1f		L MULT =			
-	Cons.	PENTOXSD TRG		AVG MON LIMI			BAT/BPJ	
	#	Masses and a more		INST MAX LIMI				
)								
2								
		WLA afc	and the second second second	AFC_tc)) + [(AFC_Y			C_tc))	
		LTAMULT afc	A CONTRACT OF A CONTRACT.	FC_Yc*Qs*Xs/Qd)] (cvh^2+1))-2.326*LN(and the second second			
		LTA_afc	wia_afc*LTA	Construction of the second	cui 211)	0.07		
3		WLA_cfc	(.011/e(-k*	CFC_tc) + [(CFC_Y	*Qs*.01	1/Qd*e(-k*CF(C_tc))	
)		an a	and the second	FC_Yc*Qs*Xs/Qd)]	and the second se	a second se		
)		LTAMULT_cfc	and the second	cvd^2/no_samples+1	1))-2.326*1	LN(cvd^2/no_sa	mples+1)^0.5)	
		LTA_cfc	wla_cfc*LTA	MULT_cfc				
2		AML MULT	EXD/2 22681	N((cvd^2/no_samples	+1140 51	0.511 N/coulA21	a namelon at))	
		AVG MON LIMIT		J,MIN(LTA_afc,LTA_			_samples+())	
5		INST MAX LIMIT		on_limit/AML_MUL	and the second second			
5						1000 (The Color of C		

	SWP Basin	Strea Coo		Stre	am Name		RMI		ation ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	07J	7	719 LITTLE	E COCALI	ICO CREE	к	2.88	30	432.00	7.35	0.00000	0.00	\checkmark
					S	tream Da	ta						
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ten	<u>Tributary</u> 1p pH	Tem	<u>Stream</u> p pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(11)	(ft)	(°C)	(°C)	
27-10	0.100	0.00	0.88	0.000	0.000	0.0	0.00	0.0) 2	0.00 7.	00	0.00 0.00)
21-10		0.00		0.000	0.000								
230-10		0.00	0.00	0.000	0.000								

Input Data WQM 7.0

	Dis	icharge Da	ita				
Name	Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	Design Disc Flow (mgd)	Reserve Factor	Disc Temp (°C)	Disc pH
West Cocalico	PA0083429	0.1500	0.1500	0.1500	0.000	25.00	7.00
	Par	rameter Da	ita				
	Parameter Name	Disc				ite bef	
		(mg/	L) (mg/	'L) (m	g/L) (1/d	lays)	
CBOD5		25	.00 2	2.00	0.00	1.50	
Dissolved	Oxygen	5	.00 8	3.24	0.00	0.00	
NH3-N		25	.00 0	0.00	0.00	0.70	

Version 1.1

Input	Data	WQM	7.0
-------	------	-----	-----

	SWP Basir			Str	eam Name		RMI		vation ft)	Draina Are (sq r	a	Slope (ft/ft)	PV Withd (m	Irawal	Appiy FC
	07J	7	719 LITTL	E COCAL	ICO CREE	ĸ	1.27	70	396.00		8.48	0.00000		0.00	\checkmark
					St	ream Dat	a								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ten	<u>Tributa</u> np	<u>агу</u> рн	Tem	<u>Strear</u> p	<u>n</u> рн	
Cond.	(cfsm)	(CfS)	(cfs)	(days)	(fps)		(ff)	(ft)	(°C	;)		(°C)		
Q7-10 Q1-10 Q30-10	0.100	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.0	0 2	0.00	7.00	0	0.00	0.00	
			Name	Pe	D mit Numbe	Disc	Permitte Disc Flow	Disc	Res N Fa	serve actor	Disc Temp (°C)	o p	sc H		
					_	0.000		0.0	000	0.000	25	.00	7.00		
					P	arameter I		Trib :	Stream	Fate					
			1	Paramete	r Name	0	onc C	Conc	Conc (mg/L)	Coe (1/day	f				
	-		CBOD5			:	25.00	2.00	0.00) 1	.50				

3.00

25.00

0.00

0.00

8.24

0.00

0.00

0.70

Dissolved Oxygen

NH3-N

		P Basin 07J		<u>m Code</u> 719		Stream Name								
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH		
	(cfs)	(cfs)	(cfs)	(CIS)	(11/11)	(ft)	(ff)		(fps)	(days)	(°C)			
Q7-1(0 Flow													
2.880	0.88	0.00	0.88	.2321	0.00423	.519	15.13	29.17	0.14	0.694	21.04	7.00		
Q1-1(0 Flow													
2.880	0.56	0.00	0.56	.2321	0.00423	NA	NA	NA	0.12	0.837	21.46	7.00		
Q30-1	10 Flow													
2.880	1.20	0.00	1.20	.2321	0.00423	NA	NA	NA	0.16	0.603	20.81	7.00		

Thursday, December 2, 2021

Version 1.1

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0083429

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	\checkmark
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	\checkmark
D.O. Saturation	90.00%	Use Balanced Technology	V
D.O. Goal	5		

Thursday, December 2, 2021

Version 1.1

	SWP Basin Str 07J	eam Code 7719			ream Name OCALICO CR	REEK	
NH3-N	Acute Allocatio	ns					
RMI	Discharge Nam	Baseline e Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
2.88	80 West Cocalico	14.85	50	14.85	50	0	0
NH3-N	Chronic Alloca	tions					
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
						-	
2.88	80 West Cocalico	1.79	11.03	1.79	11.03	0	0

2.88 West Cocalico	25	25	11.03	11.03	5	5	0	0
--------------------	----	----	-------	-------	---	---	---	---

Version 1.1

SWP Basin	Stream Code			Stream Name	
07J	7719		LITTL	E COCALICO CRE	EK
RML	Total Discharge	Flow (mgd) Ana	ysis Temperature (°C) Analysis pH
2.880	0.15	0		21.043	7.000
Reach Width (ft)	Reach De	pth (ft)		Reach WDRatio	Reach Velocity (fps)
15.125	0.51	9		29.171	0.142
Reach CBOD5 (mg/L)	Reach Ko	(1/days)	R	each NH3-N (mg/L) Reach Kn (1/days)
6.80	0.97	9		2.30	0.759
Reach DO (mg/L)	Reach Kr (Kr Equation	Reach DO Goal (mg/L)
7.566	5.84	9		Tsivogiou	5
Reach Travel Time (days	1	Subreach	Results		
0.694		CBOD5		D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.069	6.33	2.18	7.02	
	0.139	5.90	2.07	6.72	
	0.208	5.49	1.96	6.58	
	0.278	5.11	1.86	6.54	
	0.347	4.76	1.77	6.56	
	0.416	4.43	1.68	6.63	
	0.486	4.13	1.59	6.72	
	0.555	3.84	1.51	6.82	
	0.624		1.43	6.92	
	0.694		1.36	7.03	
	5.054	0.00			

WQM 7.0 D.O.Simulation

Version 1.1

	SWP Basin S 07J	e CREEK					
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
2.880	West Cocalics	PA0083429	0.150	CBOD5	25		
				NH3-N	11.03	22.06	
				Dissolved Oxygen			5

WQM 7.0 Effluent Limits

Thursday, December 2, 2021

Version 1.1

Discharge Information

Inst	tructions D	lischarge Stream												
Fac	ility: We	st Cocalico Townsh	ip Autho	ority		NP	DES Per	mit No.:	PA0083	429		Outfall	No.: 001	
Eva	luation Type	Major Sewage /	Industr	ial Wast	e	Wa	stewater	Descrip	tion: Sev	vage Eff	luent			
					Discha	rge Cha	racterist	lcs						
De	sign Flow	Hardness (mailt				Parti	al Mix Fa	ictors (F	PMFs)		Com	plete Mi	x Times	(min)
	(MGD)*	Hardness (mg/l)*	рп	SU)*	AFC	;	CFC	THE	1	CRL	Q	7-10	G	h
	0.15	270	8	.4										
													_	
						Offici	t blank	0.5 // 16	n blank	6) if left blan	k	1114	blank
	Disch	arge Pollutant	Units		scharge xnc	Trib Conc	Stream Conc	Dally CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transi

	Discharge Pollutant	Units	Ma	x Discharge Conc	Trib Conc	Stream Conc	Dally CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Chem Transl
	Total Dissolved Solids (PWS)	mg/L										
5	Chloride (PWS)	mg/L										
Group	Bromide	mg/L										
ō	Suifate (PWS)	mg/L										
	Fluoride (PWS)	mg/L										
	Total Aluminum	µg/L										
	Total Antimony	µg/L										
	Total Arsenic	µg/L										
	Total Barlum	µg/L										
	Total Beryllum	µg/L										
	Total Boron	µg/L										
	Total Cadmium	µg/L										
	Total Chromium (III)	µg/L										
	Hexavalent Chromlum	µg/L										
	Total Cobalt	µg/L										
	Total Copper	µg/L		30								
5	Free Cyanide	µg/L										
Group	Total Cyanide	µg/L										
6	Dissolved Iron	µg/L										
	Total Iron	hð/r										
	Total Lead	µg/L	۷	10								
	Total Manganese	µg/L										
	Total Mercury	hð/r										
	Total Nickel	µg/L										
	Total Phenois (Phenolics) (PWS)	µg/L										
	Total Selenium	µg/L										
	Total Silver	hð/r										
	Total Thailium	hð/r										
	Total Zinc	µg/L		79								
	Total Molybdenum	µg/L										
	Acrolein	µg/L	۷									
	Acrylamide	µg/L	۷									
	Acrylonitrile	µg/L	۷									
	Benzene	µg/L	۷									
	Bromoform	µg/L	۷									

Toxics Management Spreadsheet Version 1.3, March 2021

	Contras Talmablanda								
	Carbon Tetrachioride	µg/L	۷						
	Chiorobenzene	µg/L							
	Chiorodibromomethane	µg/L	<						
	Chioroethane	µg/L	۷						
	2-Chloroethyl Vinyl Ether	µg/L	۷						
	Chioroform	µg/L	۷						
	Dichlorobromomethane	µg/L	۷						
	1,1-Dichloroethane	µg/L	۷						
0	1,2-Dichloroethane	µg/L	×						
	1,1-Dichioroethylene	µg/L	<						
Group	1,2-Dichioropropane	µg/L	<						
σ	1,3-Dichloropropylene	µg/L	۷						
	1,4-Dioxane	µg/L	v						
	Ethylbenzene		~			<u> </u>			
		µg/L							
	Methyl Bromide	µg/L	۷	 		<u> </u>			
	Methyl Chloride	µg/L	۷						
	Methylene Chloride	µg/L	<						
	1,1,2,2-Tetrachioroethane	µg/L	۷						
	Tetrachioroethylene	µg/L	<						
	Toluene	µg/L	۷						
	1,2-trans-Dichloroethylene	µg/L	۷						
	1,1,1-Trichloroethane	µg/L	۷						
	1,1,2-Trichloroethane	µg/L	۷						
	Trichloroethylene	µg/L	<						
	Vinyi Chioride	µg/L	<						
	2-Chlorophenol	µg/L	<						
			v			<u> </u>			
	2,4-Dichlorophenol	µg/L						 	
	2,4-Dimethylphenol	µg/L	<			<u> </u>			
-	4,6-Dinitro-o-Cresol	µg/L	۷						
ě.	2,4-Dinitrophenol	µg/L	۷						
Group	2-Nitrophenol	µg/L	۲						
ō	4-Nitrophenol	µg/L	۷						
	p-Chloro-m-Cresol	µg/L	۷						
	Pentachiorophenol	µg/L	۷						
	Phenol	µg/L	۷						
	2,4,6-Trichlorophenol	µg/L	۷						
	Acenaphthene	µg/L	۷						
	Acenaphthylene	µg/L	<						
	Anthracene	µg/L	<						
	Benzidine	µg/L	۷						
			v			<u> </u>			
	Benzo(a)Anthracene	µg/L	×			<u> </u>			
	Benzo(a)Pyrene	µg/L				<u> </u>			
	3,4-Benzofluoranthene	µg/L	۷			<u> </u>			
	Benzo(ghl)Perylene	µg/L	<						
	Benzo(k)Fluoranthene	µg/L	<						
	Bis(2-Chloroethoxy)Methane	µg/L	۷						
	Bis(2-Chloroethyl)Ether	µg/L	۷						
	Bis(2-Chioroisopropyi)Ether	µg/L	۷						
	Bis(2-Ethylhexyl)Phthalate	µg/L	۷						
	4-Bromophenyl Phenyl Ether	µg/L	۷						
	Butyl Benzyl Phthalate	µg/L	۷						
	2-Chioronaphthaiene	µg/L	<						
	4-Chiorophenyl Phenyl Ether	µg/L	<						
	Chrysene	µg/L	۷						
	Dibenzo(a,h)Anthrancene	µg/L	v						
	1,2-Dichiorobenzene	µg/L	~						
	1,3-Dichlorobenzene	µg/L	۷					 	
	1,4-Dichlorobenzene	µg/L	۲				 	 	
Group	3,3-Dichiorobenzidine	µg/L	۲						
Ĕ.	Diethyl Phthalate	µg/L	۷						
-	Dimethyl Phthalate	µg/L	۷						
		1000	٨						
	DI-n-Butyl Phthalate	µg/L							

Discharge Information

12/9/2021

Page 2

C 1 F F	2,6-Dinitrotoluene DI-n-Octyl Phthalate	µg/L µg/L	۷					
1 F F		100/					 	
F		P9-2	•					
F	1,2-Diphenylhydrazine	µg/L	۷					
ł	Fluoranthene	µg/L	۷					
-	Fluorene	µg/L	۷					
	Hexachlorobenzene	hð/r	٨					
	Hexachlorobutadiene	hð/r	۷					
ł	Hexachlorocyclopentadlene	hð/r	۷					
I I	Hexachloroethane	µg/L	۷					
1	Indeno(1,2,3-cd)Pyrene	µg/L	۷					
-	Isophorone	µg/L	۷					
	Naphthalene	µg/L	۷					
_	Ntrobenzene	µg/L	v					
-	n-Nitrosodimethylamine	µg/L	<					
	n-Nitrosodi-n-Propylamine	µg/L	~ V					
_		_	_					
	n-Nitrosodiphenylamine	µg/L	<					
	Phenanthrene	µg/L	۲					
	Pyrene	µg/L	۷					
_	1,2,4-Trichlorobenzene	µg/L	<					
-	Aldrin	µg/L	<					
-	alpha-BHC	µg/L	۷					
_	beta-BHC	µg/L	۷					
	gamma-BHC	µg/L	۷					
¢	delta BHC	µg/L	۷					
•	Chlordane	hð/r	۷					
4	4,4-DDT	µg/L	۷					
4	4,4-DDE	µg/L	۷					
	4,4-DDD	µg/L	۷					
-	Dieldrin	µg/L	<					
_	alpha-Endosulfan	µg/L	۷					
-	beta-Endosulfan	µg/L	<					
οĿ	Endosulfan Sulfate	µg/L	<					
	Endrin		v					
ē H		µg/L	v					
	Endrin Aldehyde	µg/L	۷V	 				
	Heptachior	µg/L						
	Heptachior Epoxide	µg/L	<					
-	PC8-1016	µg/L	۷					
-	PCB-1221	µg/L	۷					
	PCB-1232	µg/L	۷					
-	PCB-1242	µg/L	<					
	PCB-1248	µg/L	•					
	PCB-1254	µg/L	۷					
F	PCB-1260	µg/L	۷					
	PCBs, Total	hð/r	۷					
	Toxaphene	µg/L	۷					
-	2,3,7,8-TCDD	ng/L	۷					
	Gross Alpha	pCI/L						
- 15	Total Beta	pCI/L	۷					
	Radium 226/228	pCI/L	<					
-	Total Strontum	µg/L	v					
5	Total Uranium		v					
_ H	Osmotic Pressure	µg/L mOs/kg	<					
-	Comode Pressure	mooning						
-								
┝								
F								
- H								

Discharge Information

Page 3

Toxics Management Spreadsheet Version 1.3, March 2021

Stream / Surface Water Information

West Cocalico Township Authority, NPDES Permit No. PA0083429, Outfall 001

Instructions Discharge Stream

Receiving Surface Water Name: Little Cocalico Creek

No. Reaches to Model: 1

- Statewide Criteria
- Great Lakes Criteria
- ORSANCO Criteria

Location	Stream Code*	RMI*	Elevation (ft)*	DA (mi²)*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*
Point of Discharge	007719	2.88	432	7.35			Yes
End of Reach 1	007719	1.27	396	8.48			Yes

Q 7-10

Location	RMI	LFY	Flow (cfs)		W/D	W/D Width Depth Velocit Time		Tributary		Stream		Analys	sis		
Location	TSIVII	(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness*	pH*	Hardness	pН
Point of Discharge	2.88	0.1	0.88									100	7		
End of Reach 1	1.27	0.1	1.02												

Qn

Location	RMI	LFY	Flow (cfs)		W/D Width Depth Velocit Time		Tributary		Stream		Analysis				
Location	PSIVII	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness	pН	Hardness	pН
Point of Discharge	2.88														
End of Reach 1	1.27														

DEPARTMENT OF ENVIRON PROTECTION								Τα	oxics Management Spreadsheet Version 1.3, March 2021
Model Results				۷	West Cocalic	o Township /	Authority, NPDE	S Permit No. P.	A0083429, Outfall 001
Instructions Results	RETURN TO	INPUTS	AVE AS P	DF	PRINT	• • •	All 🔿 Inputs	⊖ Results	○ Limits
Hydrodynamics									
Wasteload Allocations									
✓ AFC	CCT (min): 8.082] PMF: [1	Ana	lysis Hardne	ss (mg/l):	135.47	Analysis pH:	7.10
Pollutants	Conc	ream Trib Conc CV (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)		Cor	mments
Total Copper	(uall)	0	0	17.890	18.6	89.3		Chem Transla	tor of 0.96 applied
Total Lead		0	0	89.735	120	576			tor of 0.747 applied
Total Zinc	0	0	0	151.557	155	743		Chem Translat	tor of 0.978 applied
CFC	CCT (min): 8.082	PMF: [1	Ana	lysis Hardne	ss (mg/l):	135.47	Analysis pH:	7.10
Pollutants	Conc	ream Trib Conc CV (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)		Cor	mments
Total Copper		0	0	11.608	12.1	57.9			tor of 0.96 applied
Total Lead		0	0	3.497	4.68	22.4			tor of 0.747 applied
Total Zinc	0	0	0	152.797	155	743		Chem Translat	tor of 0.986 applied
☑ THH	CCT (min): 8.082		1	Ana	lysis Hardne	ss (mg/l):	N/A	Analysis pH:	N/A
Pollutants	Conc	ream Trib Conc CV (μg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)		Cor	mments
Total Copper		0	0	N/A	N/A	N/A			
Total Lead		0	0	N/A	N/A	N/A			
Total Zinc	0	0	0	N/A	N/A	N/A			
CRL	CCT (min): 3.620		1	Ana	lysis Hardne	ss (mg/l):	N/A	Analysis pH:	N/A
Pollutants	Conc	ream Trib Conc CV (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)		Cor	mments
Total Copper	0	0	0	N/A	N/A	N/A			

Model Results

12/9/2021

Page 5

Total Lead	0	0	0	N/A	N/A	N/A	
Total Zinc	0	0	0	N/A	N/A	N/A	

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits		Concentra	tion Limits				
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Copper	0.072	0.11	57.2	89.3	143	µg/L	57.2	AFC	Discharge Conc ≥ 50% WQBEL (RP)
Total Lead	Report	Report	Report	Report	Report	µg/L	22.4	CFC	Discharge Conc > 10% WQBEL (no RP)
Total Zinc	Report	Report	Report	Report	Report	µg/L	476	AFC	Discharge Conc > 10% WQBEL (no RP)

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments