

 Application Type
 Renewal

 Facility Type
 Municipal

 Major / Minor
 Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No.	PA0083470
APS ID	1012328
Authorization ID	1308273

Applicant and Facility Information

Applicant Name	Paradise Township Sewer Authority	Facility Name	Paradise Township Sewer Authority WWTP
Applicant Address	2 Township Drive, PO Box 40	Facility Address	33 Singer Avenue
	Paradise, PA 17562	_	Paradise, PA 17562
Applicant Contact	Dennis Groff	Facility Contact	Brian Norris
Applicant Phone	(717) 768-8222	Facility Phone	(610) 593-5710
Client ID	161642	Site ID	450340
Ch 94 Load Status	Not Overloaded	Municipality	Paradise Township
Connection Status	No Limitations	County	Lancaster
Date Application Rece	ived August 4, 2017	EPA Waived?	No
Date Application Acce	pted March 11, 2020	If No, Reason	Pequea Creek TMDL, Expanding WWTP with new Cap Loads
Purpose of Application	NPDES permit renewal and amen	dment	

Summary of Review

Paradise Township Sewer Authority (PTSA) has applied to the Pennsylvania Department of Environmental Protection (DEP) for reissuance of its National Pollutant Discharge Elimination System (NPDES) permit. The permit was issued January 28, 2013 and became effective on February 1, 2013, authorizing discharge of treated sewage from the existing wastewater treatment plant (WWTP) located in Paradise Township, Lancaster County into Pequea Creek. The existing permit expiration date was January 31, 2018, and the permit has been administratively extended since that time. An NPDES Renewal Application was submitted to DEP on August 4, 2017.

An Act 537 Plan Update for PTSA was approved on December 12, 2019. The 537 Plan included a proposal for an upgrade to PTSA's WWTP, consisting of membrane bioreactor treatment, with a new annual average design flow of 0.22 million gallons per day (mgd). PTSA is anticipating growth in the service area with increased wastewater flows. The 537 Approval required an NPDES permit for the proposed effluent discharge, and a Water Quality Management (WQM) permit for the construction and operation of the propose sewage facilities. On January 24, 2020, DEP received an NPDES permit amendment application for the WWTP upgrade. It was anticipated that the WQM permit application would be submitted in March 2020. An overview of the WWTP expansion based on the information in the permit amendment is provided below.

Existing WWTP Description

The existing extended aeration WWTP was constructed in 1989, and was designed for an annual average daily flow of 0.12 mgd, and a BOD_5 loading of 240 lbs/day. The existing WWTP consists of influent pumping, manual screening, equalization, extended aeration, ferric chloride dosing for phosphorus removal, final clarification, sodium hypochlorite disinfection, sludge storage and disposal, and discharge of treated effluent to Pequea Creek. The WWTP finished grade elevation was at 350',

Approve	Deny	Signatures	Date
		Benjamin R. Lockwood / Environmental Engineering Specialist	April 17, 2019
		Daniel W. Martin, P.E. / Environmental Engineer Manager	
		Maria D. Bebenek, P.E. / Program Manager	

Summary of Review

which is above the 100-yr floodplain elevation of 348'. The influent pump station was designed for a peak flow of 0.3 mgd, and contains two submersible pumps. The headworks structure contains two manual bar screens. Equalization consists of six 15'-8" x 6'-10" equalization tanks. Air is provided to these tanks to prevent settling. Three air lift pumps distribute the flow to the three aeration treatment trains. Each treatment train consists of six 15'-8" x 6'-10" aeration tanks for a total of 18 aeration tanks. Air is provided to the tanks using a coarse bubble diffuser system and three blowers. Ferric chloride is added to the fifth tank in each train. The effluent flows from the aeration tanks to six 15'-8" x 6'-10" final clarifiers, which discharge to the chlorine contact tank. One tank is used for disinfection with liquid sodium hypochlorite. Five sludge holding tanks are used to store sludge before it is hauled off site for final treatment. Air is provided to these tanks to prevent septic conditions.

WWTP Upgrade Description

PTSA is proposing construction of a WWTP with the following design criteria:

Annual Average Daily Flow: 0.22 mgd Maximum Monthly Average Flow: 0.2433 mgd Peak Flow: 0.55 mgd Organic Loading: 513 lbs/day

PTSA evaluated several alternatives for the WWTP upgrade, and determined to pursue a membrane bioreactor (MBR) system using existing tankage due to the lowest 20-year present worth, lower operations costs, use of existing tankage, and elimination of final clarifiers.

The MBR system will consist of nine or twelve 6,800 gallon EQ tanks, three 7,000 gallon pre-anoxic tanks, nine 7,000 gallon aeration tanks, three 7,000 gallon post anoxic tanks, and three 3,700 gallon membrane tanks. These will all use existing tankage. Three or six new EQ tanks would need to be installed. Three of the existing aeration tanks would be retrofitted as pre-anoxic tanks, three as post-anoxic tanks, and three as membrane tanks. The existing final clarifiers may be demolished. The MBR system will use positive displacement pumps for permeate withdrawal, which are also capable of backwashing the membranes. Sodium hypochlorite and citric acid will be used to remove biofilm and inorganic scaling from the membrane. The membrane system will be aerated. The new WWTP is designed for two of the three treatment trains to be capable of treating the AADF of 0.22 mgd, allowing for cleaning without disruption.

The upgrade will replace the influent pump station pumps with new pumps capable of a higher flow. The manual screen will be replaced with a weatherproof mechanical screen in the existing headworks structure. Equalization volume will be increased. The air lift system in the EQ tanks will be removed. One sludge holding tank will be converted to a second chlorine contact tank. The chlorine dosing system and chemical phosphorus removal system will be upgraded.

Changes in this Renewal

All parameters with an 8-Hr Composite sample type were changed to 24-Hr Composite. Mass load limits were revised using the new annual average design flow of 0.22 mgd. A more stringent Total Phosphorus limit was added to the permit. An ammonia limit was added to the permit. Monitoring requirements for Total Dissolved Solids, Sulfate, Chloride, and Bromide were added to the permit. Cap Loads for Total Nitrogen and Total Phosphorus were added to the permit.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Supplemental information for this fact sheet is attached.

Discharge, Receiving Waters and Water Supply Information					
Outfall No. 001		Design Flow (MGD)	0.22		
Latitude 40° 0' 45.6"		Longitude	76º 7' 55.6"		
Quad Name Leola		Quad Code	1836		
Wastewater Description:	Sewage Effluent				
_					
Receiving Waters Pequea	a Creek (WWF, MF)	Stream Code	7450		
NHD Com ID _574640	003	RMI	30.01		
Drainage Area65.7 mi	j ²	Yield (cfs/mi ²)	0.125		
Q ₇₋₁₀ Flow (cfs) 8.22		Q7-10 Basis	USGS PA StreamStats		
Elevation (ft) <u>334</u>		Slope (ft/ft)			
Watershed No. 7-K		Chapter 93 Class.	WWF, MF		
Existing Use N/A		Existing Use Qualifier	N/A		
Exceptions to Use <u>N/A</u>		Exceptions to Criteria	N/A		
Assessment Status	Impaired				
Cause(s) of Impairment	Pathogens, Siltation, Nutrie	nts, Organic Enrichment, Habit	tat Alterations, Siltation		
	Source Unknown, Habitat M	Iodification – Other than Hydro	modification, Agriculture,		
Source(s) of Impairment	Agriculture, Habitat Modifica	ation – Other Than Hydromodif	ication, Agriculture		
TMDL Status	Final, 04/09/2001	Name Pequea Cree	ek TMDL		
Nearest Downstream Public	Water Supply Intake	Chester Water Authority			
PWS Waters Susqueha	anna River	Flow at Intake (cfs)			
PWS RMI		Distance from Outfall (mi)	43		

Changes Since Last Permit Issuance: USGS PA StreamStats is showing a drainage area of 65.7 mi² and a Q_{7-10} flow of 8.22 cfs.

Other Comments: None

Treatment Facility Summary						
	Degree of			Avg Annual		
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)		
	Secondary With					
	Ammonia And					
Sewage	Phosphorus	Membrane Bioreactor	Sodium Hypochlorite	0.22		
Hydraulic Capacity	Organic Capacity			Biosolids		
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal		
0.243	513	Not Overloaded	Aerobic Digestion	Other WWTP		

Other Comments: None

	Compliance History					
Summary of DMRs:	A summary of past DMR effluent data is presented on the next page of this fact sheet.					
Summary of Inspections:	 5/17/2016: A routine inspection was conducted by Sheena Ripple, DEP Water Quality Specialist. All treatment units were online. The outfall was observed, and the effluent was clear. All field readings were within permit limits. 1/17/2019: A routine inspection was conducted by Tracy Tomtishen, DEP Water Quality Specialist. A walkthrough of the facility was performed. There was very little rag and grit accumulation present on the bar screens. The clarifiers had varying degrees of surface scum and solids in the effluent troughs. The chlorine contact tank weir was free of solids. The tank had a minimal amount of surface scum. Field results were within permit limits. The outfall was observed. Pequea Creek was turbid due to recent rainfall. The stream bed was not visible. 					

Other Comments: There are currently no open violations associated with the permittee or facility.

Compliance History

DMR Data for Outfall 001 (from March 1, 2019 to February 29, 2020)

Parameter	FEB-20	JAN-20	DEC-19	NOV-19	OCT-19	SEP-19	AUG-19	JUL-19	JUN-19	MAY-19	APR-19	MAR-19
Flow (MGD)												
Average Monthly	0.101440	0.105170	0.103710	0.103630	0.100450	0.09981	0.101040	0.10330	0.101330	0.10084	0.100380	0.108940
Flow (MGD)												
Daily Maximum	0.13030	0.12390	0.11580	0.12080	0.11850	0.11510	0.11950	0.11990	0.11420	0.11580	0.11480	0.13830
pH (S.U.)												
Minimum	7.17	7.24	7.27	7.24	7.25	7.30	7.29	7.34	7.30	7.19	7.21	7.10
pH (S.U.)												
Maximum	7.56	7.51	7.45	7.55	7.77	7.60	7.54	7.52	7.48	7.49	7.84	7.42
DO (mg/L)												
Minimum	7.1	7.2	7.0	7.3	7.2	7.2	7.0	7.0	7.0	7.1	7.2	7.0
TRC (mg/L)												
Average Monthly	0.358	0.410	0.423	0.407	0.414	0.438	0.381	0.480	0.432	0.438	0.453	0.445
TRC (mg/L)												
Instantaneous												
Maximum	0.50	0.54	0.51	0.53	0.54	0.55	0.63	0.66	0.60	0.56	0.59	0.52
CBOD5 (lbs/day)												
Average Monthly	< 1.782	< 1.763	< 2.774	< 1.769	< 1.727	< 2.345	< 2.019	< 1.742	< 1.888	< 2.25	< 2.094	< 3.617
CBOD5 (lbs/day)												
Weekly Average	1.89	< 1.78	4.72	2.07	< 1.86	2.98	2.33	< 1.95	2.4	2.9	2.58	4.58
CBOD5 (mg/L)												
Average Monthly	< 2.13	< 2	< 3.1	< 2.08	< 2	< 2.75	< 2.38	< 2	< 2.25	< 2.5	< 2.6	< 4
CBOD5 (mg/L)												
Weekly Average	2.5	< 2	5.4	2.3	< 2	3.5	2.7	< 2	3	3	3	5
BOD5 (lbs/day)												
Raw Sewage Influent												
 Average Monthly	176.8	181.8	289.9	253.9	232.1	193.0	146.9	175.1	247	276.9	213.0	256.2
BOD5 (lbs/day)												
Raw Sewage Influent												
<pre> </pre>	189.8	199.0	370.1	298.9	304.8	226.3	202.3	210.0	298.6	306.7	273.2	329.3
BOD5 (mg/L)												
Raw Sewage Influent												
<pre> Average Monthly</pre>	210	206.0	321.0	297.3	270.4	223.0	172.0	201.8	295.8	309.8	263.4	281.3
TSS (lbs/day)												
Average Monthly	4.41	< 2.66	5.25	2.55	2.74	8.32	2.96	2.29	< 3.24	2.98	< 2.81	4.35
TSS (lbs/day)												
Raw Sewage Influent			·						• • • -			
<pre> Average Monthly</pre>	93.1	100.0	177.5	208.8	245.3	194.2	167.3	194.7	248.7	267.6	212.1	233.7
TSS (lbs/day)												
Raw Sewage Influent												
 br/> Daily Maximum	150.5	163.4	257.9	267.6	324.9	211.2	206.0	234.2	312.6	306.6	287.5	276.7

NPDES Permit No. PA0083470

TSS (lbs/day)												
Weekly Average	10.57	4.45	8.41	2.7	5.02	14.46	5.02	3.9	7.21	5.52	9.3	7.33
TSS (mg/L)												
Average Monthly	5.5	< 3	5.8	3	3.2	10	3.5	2.6	< 4	3.3	< 3.4	4.8
TSS (mg/L)												
Raw Sewage Influent												
 Average Monthly	109.5	113.3	194.4	244.0	283.0	225.5	196.8	223.2	297.5	296.5	263.4	257.5
TSS (mg/L)												
Weekly Average	14	5	9	3	6	18	6	4	9	6	11	8
Fecal Coliform												
(CFU/100 ml)												
Geometric Mean	< 7	< 6.3	< 31.6	< 6.2	< 2.8	< 2.2	< 3.6	< 4.9	< 2.8	7.1	< 9.4	< 7.1
Fecal Coliform												
(CFU/100 ml)												
Instantaneous												
Maximum	33	20	200	18	10	3	21	18	5	8	42	300
Total Phosphorus												
(lbs/day)												
Average Monthly	0.321	0.244	0.266	0.326	0.29	0.713	0.368	0.318	0.236	0.252	0.263	0.267
Total Phosphorus												
(mg/L)												
Average Monthly	0.375	0.275	0.292	0.375	0.336	0.843	0.43	0.366	0.28	0.28	0.328	0.295
Total Phosphorus (lbs)												
Total Annual			< 113.91									

Existing Effluent Limitations and Monitoring Requirements

The tables below summarize the effluent limits and monitoring requirements implemented in the existing NPDES permit.

			Effluent L	imitations.			Monitoring Re	quirements
Paramotor	Mass Uni	ts (lbs/day)		Concentrati	ons (mg/L)		Minimum	Required
Farameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	Continuous	Measured
рН (S.U.)	xxx	xxx	6.0	xxx	XXX	9.0	1/day	Grab
DO	XXX	XXX	5.0	XXX	XXX	ХХХ	1/day	Grab
TRC	xxx	XXX	XXX	0.50	XXX	1.6	1/day	Grab
CBOD5	25	40 Wkly Avg	XXX	25	40	50	1/week	8-Hr Composite
BOD5 Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	1/week	8-Hr Composite
TSS Raw Sewage Influent	Report	Report	XXX	Report	XXX	xxx	1/week	8-Hr Composite
TSS	30	45 Wkly Avg	XXX	30	45	60	1/week	8-Hr Composite
Fecal Coliform (No./100 ml) May 1 - Sep 30	ххх	XXX	XXX	200 Geo Mean	XXX	1,000	1/week	Grab
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	xxx	XXX	XXX	2,000 Geo Mean	XXX	10,000	1/week	Grab
Total Phosphorus	2.0	xxx	XXX	2.0	XXX	XXX	1/week	8-Hr Composite
Total Phosphorus	xxx	731 Total Annual	XXX	XXX	XXX	XXX	1/year	Calculation

Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	.22
Latitude	40° 0' 45.6"		Longitude	76º 7' 55.6"
Wastewater De	escription:	Effluent		

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 - 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations

CBOD5, NH3-N

Pursuant to 40 CFR § 122.44(d)(1)(i), more stringent requirements should be considered when pollutants are discharged at the levels which have the reasonable potential to cause or contribute to excursions above water quality standards.

WQM 7.0 ver. 1.0b is a water quality model designed to assist DEP in determining appropriate water quality based effluent limits (WQBELs) for carbonaceous biochemical oxygen demand (CBOD₅), NH₃-N and dissolved oxygen (D.O.). DEP's Technical Guidance No. 391-2000-007 provides the technical methods contained in WQM 7.0 for determining wasteload allocations and for determining recommended NPDES effluent limits for point source discharges. The model was utilized for this permit renewal, and the output indicated a CBOD₅ average monthly limit of 25 mg/l, an NH₃-N average monthly limit of 15.06 mg/l, and a D.O. minimum limit of 5.0 mg/l were protective of water quality for the expanded WWTP. For the existing WWTP before the new limits take effect, the output indicated a CBOD₅ average monthly limit of 25 mg/l, an NH₃-N average monthly limit of 23.17 mg/l, and a D.O. minimum limit of 5.0 mg/l were protective of water quality.

The flow data used to run the model was acquired from USGS PA StreamStats and is included in the attachment. Stream pH and temperature inputs for this model run were based on data acquired from the National Water Quality Monitoring Council website. Data was analyzed from the Water Quality Network (WQN) Station ID 284 on Pequea Creek from November 2012 to December 2017. DEP's Standard Operating Procedure (SOP) No. BPNPSM-PMT-033 (Establishing Effluent Limitations for Individual Sewage Permits) recommends using the 90th percentile of long-term data for background and discharge characteristics when using WQM 7.0. A 90th percentile analysis was performed on the data and resulted in a Stream pH of 8.3 and a Stream Temperature of 22.1°C. Based on the round-off guidelines from Chapter 5 of the Technical Guidance for the Development and Specification of Effluent Limitations (Guidance No. 362-0400-001), a CBOD₅ limit of 25 mg/l and a NH₃-N limit of 23 mg/l are necessary to protect water quality for the existing WWTP before the new limits take effect. The CBOD₅ limit is the same as the existing limit and will remain in the permit. There is no NH₃-N limit in the existing permit, so the NH₃-N limit of 23 mg/l are necessary to protect water quality. For the expanded WWTP, a CBOD₅ limit of 25 mg/l and a NH₃-N limit of 15 mg/l are necessary to protect water quality. Mass loading limits for CBOD5 and NH₃-N were based off of these limits and the new design flow of 0.22 mgd.

Toxics

Effluent sample results for toxic pollutants reported on the renewal application were entered into DEP's Toxics Screening Analysis worksheet and PENTOXSD to develop appropriate permit requirements for toxic pollutants of concern. A default analysis hardness value of 100 mg/l was used in the Toxics Screening Analysis. Based on effluent sample results reported on the application, there are no pollutants which are candidates for PENTOXSD modeling.

Best Professional Judgement (BPJ) Limitations

Dissolved Oxygen

A minimum D.O. limit of 5.0 mg/L is a D.O. water quality criterion found in 25 Pa. Code § 93.7(a). This limit is included in the existing NPDES permit based BPJ. It is still recommended to include this limit in the draft permit to ensure that the facility continues to achieve compliance with DEP water quality standards.

Total Residual Chlorine

The attached computer printout utilizes the equations and calculations as presented in the Department's May 1, 2003 Implementation Guidance for Total Residual Chlorine (TRC) (ID No. 391-2000-015) for developing chlorine limitations. The Guidance references Chapter 92, Section 92.2d (3) which establishes a standard BAT limit of 0.5 mg/l unless a facility-specific BAT has been developed. The attached printout indicates that a water quality limit of 0.5 mg/l would be needed to prevent toxicity concerns. It is recommended that a TRC limit of 0.5 mg/l monthly average and 1.6 mg/l instantaneous maximum be applied this permit cycle, the same as the existing limit.

Total Phosphorus

For Total Phosphorus (TP), the current NPDES permit requires the permittee to comply with average monthly limit of 2.0 mg/L, and were established due to the Pequea Creek TMDL. The TMDL allocated 731 lbs/yr TP to this facility, which corresponds to a monthly average limit of 2.0 mg/l. For the existing WWTP before the new limits take effect, the TP limit of 2.0 mg/l will remain. As discussed below, due to the requirements of the Chesapeake Bay TMDL, a more stringent TP Cap Load of 368 lbs/yr will be added to the permit for the expanded WWTP. This corresponds to a monthly average limit of 0.5 mg/l, which will be added to the permit, which will take effect once the new WWTP is constructed.

Additional Considerations

Chesapeake Bay Total Maximum Daily Load (TMDL)

DEP developed a strategy to comply with the EPA and Chesapeake Bay Foundation requirements by reducing point source loadings of Total Nitrogen (TN) and Total Phosphorus (TP). This strategy can be located in the Pennsylvania Chesapeake Watershed Implementation Plan (WIP), dated January 11, 2011. Subsequently, an update to the WIP was published as the Phase 2 WIP. As part of the Phase 2 WIP, a Phase 2 Watershed Implementation Plan Wastewater Supplement (Phase 2 Supplement) was developed, providing an update on TMDL implementation for point sources and DEP's current implementation strategy for wastewater. A new update to the WIP was published as the Phase 3 WIP in August 2019. As part of the Phase 3 WIP, a Phase 3 Watershed Implementation Plan Wastewater Supplement (Phase 3 Supplement) was developed, and was most recently revised on December 17, 2019, and is the basis for the development of any Chesapeake Bay related permit parameters. Sewage discharges have been prioritized based on their design flow to the Bay. The highest priority (Phases 1, 2, and 3) dischargers will receive annual Cap Loads based on their design flow on August 29, 2005 and concentrations of 6 mg/I TN and 0.8 mg/I TP. These limits may be achieved through a combination of treatment technology, credits, or offsets. For Phase 4 and 5 facilities, Cap Loads are not currently being implemented for renewed or amended permits for facilities that do not increase design flow. For renewed or amended permits that do include an increase in design flow, Cap Loads will be based on the lesser of: existing TN and TP concentrations at current design average annual flow or 7,306 lbs/yr TN and 974 lbs/yr TP. A zero nutrient load for the Chesapeake Bay will be assigned for new sewage discharges from industrial and/or domestic sources. Point source growth may be addressed by the purchase of nutrient credits or by the use of offsets.

The existing Paradise Township Sewer Authority is considered a Phase 5 facility. According to DEP's latest-revised Phase 3 Supplement, issuance of permits with monitoring and reporting for TN and TP is recommended for any Phase 5 non-significant sewage facilities (i.e., facilities with average annual design flows on August 29, 2005 less than 0.2 MGD but greater than 0.002 MGD). Furthermore, DEP's SOP No. BCW-PMT-033 states that in general, at a minimum, monitoring

for TN and TP should be included in new and reissued permits for sewage discharges with design flows > 2,000 gpd. Therefore, TN and TP monitoring will be included in the renewed permit.

As the facility is expanding to a design flow of 0.22 mgd, it will be considered a Phase 4 facility upon completion of construction. (flow \ge 0.2 MGD and < 0.4 MGD). The Phase 3 Supplement was used to determine the new WWTP Cap Loads as follows:

Cap Loads using existing TN and TP conc. at current design annual average flow:

TN Cap Load: 0.12 mgd x 37.8 mg/l x 8.34 x 365 days/yr = 13,808 lbs/day TP Cap Load: 0.12 mgd x 1.01 mg/l x 8.34 x 365 days/yr = 368 lbs/day

The TN Cap Load of 7,306 lbs/yr is more stringent, and will be used in the permit. The calculated TP Cap Load of 368 lbs/day using existing data is more stringent than the TP Cap Load of 974 lbs/yr, and will be used in the permit. A monitoring frequency of 1/week as 24-Hr Composites will be used. These Cap Loads will take effect once the new WWTP is constructed.

Total Dissolved Solids (TDS)

Total Dissolved Solids and its major constituents including Bromide, Chloride, and Sulfate have become statewide pollutants of concern and threats to DEP's mission to prevent violations of water quality standards. The requirement to monitor these pollutants must be considered under the criteria specified in 25 Pa. Code § 95.10 and the following January 23, 2014 DEP Central Office Directive:

For point source discharges and upon issuance or reissuance of an individual NPDES permit:

- Where the concentration of TDS in the discharge exceeds 1,000 mg/L, or the net TDS load from a discharge exceeds 20,000 lbs/day, and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for TDS, sulfate, chloride, and bromide. Discharges of 0.1 MGD or less should monitor and report for TDS, sulfate, chloride, and bromide if the concentration of TDS in the discharge exceeds 5,000 mg/L.
- Where the concentration of bromide in a discharge exceeds 1 mg/L and the discharge flow exceeds 0.1 MGD, Part
 A of the permit should include monitor and report for bromide. Discharges of 0.1 MGD or less should monitor and
 report for bromide if the concentration of bromide in the discharge exceeds 10 mg/L.
- Where the concentration of 1,4-dioxane (CAS 123-91-1) in a discharge exceeds 10 µg/l and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for 1,4-dioxane. Discharges of 0.1 MGD or less should monitor and report for 1,4-dioxane if the concentration of 1,4-dioxane in the discharge exceeds 100 µg/l.

Paradise Township Sewer Authority reported a maximum effluent TDS concentration of 1,372 mg/l and Bromide concentration of <2.0 mg/l. Based upon the data provided in the application, monitoring will be necessary for TDS, sulfate, chloride, and bromide. A monitoring frequency of 1/week will be used for these parameters.

Fecal Coliform

PA Code § 92a.47.(a)(4) requires a monthly average limit of 200/100 mL as a geometric mean and an instantaneous maximum limit not greater than 1,000/100 mL from May through September for fecal coliform. PA Code § 92a.47.(a)(5) requires a monthly average limit of 2,000/100 mL as a geometric mean and an instantaneous maximum limit not greater than 10,000/100 mL from October through April for fecal coliform. These limits were included in the existing permit and will remain in the renewal.

Compliance Schedule

A compliance schedule is necessary for the construction of the WWTP. The following conditions will be incorporated into Part C of the NPDES permit:

A. The permittee shall achieve compliance with Cap Loads in accordance with the following schedule:

1.	Award Construction Contract	April 2021
2.	Progress report(s)	Quarterly
3.	Construction Final Completion	August 2022
4.	Compliance with effluent limitations	Permit Effective Date
5.	Compliance with Cap Loads	10/1/2022

- B. No later than 14 calendar days following a date identified in the above schedule of compliance, the permittee shall submit to DEP a written notice of compliance or non-compliance with the specific schedule requirement. Each notice of non-compliance shall include the following information:
 - 1. A short description of the non-compliance.
 - 2. A description of any actions taken or proposed by the permittee to comply with the elapsed schedule requirement.
 - 3. A description of any factors which tend to explain or mitigate the non-compliance.
 - 4. An estimate of the date that compliance with the elapsed schedule requirement will be achieved and an assessment of the probability that the next scheduled requirement will be met on time.

PTSA will be required to comply with all other effluent limitations on the permit effective date.

Sampling Frequency & Sample Type

The monitoring requirements were established based on BPJ and/or Table 6-3 of DEP's Technical Guidance No. 362-0400-001. DEP's SOP No. BCW-PMT-002 states that for new or expanding facilities with a design flow \geq 0.1 mgd, 24-Hr composite sampling will be used for conventional and toxic pollutants, except where grab sampling is appropriate.

Flow Monitoring

Flow monitoring is recommended by DEP's technical guidance and is also required by 25 PA Code §§ 92a.27 and 92a.61.

Influent BOD5 and Total Suspended Solids (TSS) Monitoring

As a result of negotiation with US EPA, influent monitoring of TSS and BOD₅ are required for any publicly owned treatment works (POTWs); therefore, influent sampling of BOD₅ and TSS will remain in the permit.

Mass Loading Limitation

All mass loading effluent limitations recommended in the draft permit are concentration-based, calculated using a formula: design flow (MGD) x concentration limit (mg/l) x conversion factor of 8.34.

Anti-Degradation

The effluent limits for this discharge have been developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

303(d) Listed Streams

The discharge is located on a stream segment that is designated on the 303(d) list as impaired. There is a recreational impairment due to pathogens from an unknown source. There is an aquatic life impairment due to siltation and habitat alterations from habitat modification – other than hydromodification; nutrients, siltation, and organic enrichment from agriculture. The permit has limits for fecal coliform and nutrients, and will not contribute to the other impairments. A TMDL existing for Pequea Creek for phosphorus and sediment. The TMDL was completed and approved on April 9, 2001 and was revised in 2006. The TMDL established a TP mass loading of 731 lbs/year for this facility.

Class A Wild Trout Fisheries

No Class A Wild Trout Fisheries are impacted by this discharge.

Anti-Backsliding

Pursuant to 40 CFR § 122.44(I)(1), all proposed permit requirements addressed in this fact sheet are at least as stringent as the requirements implemented in the existing NPDES permit unless any exceptions addressed by DEP in this fact sheet.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through September 30, 2022.

Outfall 001, Continued (from Permit Effective Date through September 30, 2022)

			Effluent L	imitations	Monitoring Requirements			
Parameter	Mass Unit	s (lbs/day)		Concentrat	ions (mg/L)		Minimum	Required
Falameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	xxx	xxx	xxx	xxx	Continuous	Measured
pH (S.U.)	xxx	xxx	6.0 Inst Min	xxx	xxx	9.0	1/day	Grab
DO	ххх	xxx	5.0 Inst Min	xxx	xxx	xxx	1/day	Grab
TRC	XXX	XXX	XXX	0.50	XXX	1.6	1/day	Grab
CBOD5	25	40	xxx	25	40	50	1/week	8-Hr Composite
BOD5 Raw Sewage Influent	Report	Report Daily Max	xxx	Report	XXX	XXX	1/week	8-Hr Composite
TSS Raw Sewage Influent	Report	Report Daily Max	XXX	Report	xxx	xxx	1/week	8-Hr Composite
TSS	30	45	XXX	30	45	60	1/week	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	ххх	xxx	xxx	2,000 Geo Mean	XXX	10,000	1/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	ххх	xxx	xxx	200 Geo Mean	XXX	1,000	1/week	Grab
TDS	xxx	xxx	xxx	Report	Report Daily Max	xxx	1/week	8-Hr Composite
Sulfate	ххх	xxx	xxx	Report	Report Daily Max	XXX	1/week	8-Hr Composite
Chloride	XXX	xxx	xxx	Report	Report Daily Max	xxx	1/week	8-Hr Composite
Bromide	xxx	xxx	XXX	Report	Report Daily Max	XXX	1/week	8-Hr Composite

Outfall 001, Continued (from Permit Effective Date through September 30, 2022)

		Monitoring Requirements						
Baramotor	Mass Unit	s (lbs/day)	Concentrations (mg/L)				Minimum	Required
Faialletei	Parameter Average Weekly Average Weekly Instan				Instant.	Measurement	Sample	
	Monthly	Monthly Average Minimum Monthly Average Maximu		Maximum	Frequency	туре		
Ammonia								8-Hr
Nov 1 - Apr 30	Report	XXX	XXX	Report	XXX	XXX	1/week	Composite
Ammonia								8-Hr
May 1 - Oct 31	23	XXX	XXX	23	XXX	46	1/week	Composite

Compliance Sampling Location: Outfall 001

Other Comments: None

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, to comply with Pennsylvania's Chesapeake Bay Tributary Strategy.

Outfall 001, Effective Period: Permit Effective Date through September 30, 2022.

	Effluent Limitations						Monitoring Re	quirements
Parameter	Mass Uni	ts (lbs/day)		Concentrat	Minimum	Required		
Farameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Average Weekly Instant. Monthly Average Maximum		Measurement Frequency	Sample Type
								8-Hr
TKN	XXX	XXX	XXX	Report	XXX	XXX	1/week	Composite
								8-Hr
Nitrate-Nitrite	XXX	XXX	XXX	Report	XXX	XXX	1/week	Composite
Total Nitrogen	ххх	XXX	XXX	Report	XXX	XXX	1/month	Calculation
								8-Hr
Total Phosphorus	2.0	XXX	XXX	2.0	XXX	XXX	1/week	Composite
		731						
Total Phosphorus	XXX	Total Annual	XXX	XXX	XXX	XXX	1/year	Calculation

Other Comments: None

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: October 1, 2022 through Permit Expiration Date.

Outfall 001, Continued (from October 1, 2022 through Permit Expiration Date)

Effluent Limitations							Monitoring Re	quirements
Parameter	Mass Unit	ts (Ibs/day)		Concentrations (mg/L)				Required
Parameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	xxx	xxx	xxx	xxx	Continuous	Measured
pH (S.U.)	ххх	xxx	6.0 Inst Min	xxx	xxx	9.0	1/day	Grab
DO	ххх	xxx	5.0 Inst Min	xxx	xxx	ххх	1/day	Grab
TRC	xxx	xxx	XXX	0.50	xxx	1.6	1/day	Grab
CBOD5	45	73	xxx	25	40	50	1/week	24-Hr Composite
BOD5 Raw Sewage Influent	Report	Report Daily Max	XXX	Report	xxx	XXX	1/week	24-Hr Composite
TSS Raw Sewage Influent	Report	Report Daily Max	xxx	Report	XXX	xxx	1/week	24-Hr Composite
TSS	55	82	xxx	30	45	60	1/week	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2,000 Geo Mean	XXX	10,000	1/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	ХХХ	xxx	xxx	200 Geo Mean	xxx	1,000	1/week	Grab
Ammonia Nov 1 - Apr 30	82	xxx	xxx	45	xxx	90	1/week	24-Hr Composite
Ammonia May 1 - Oct 31	27	XXX	XXX	15	xxx	30	1/week	24-Hr Composite
Total Phosphorus	0.9	xxx	xxx	0.5	XXX	1.0	1/week	24-Hr Composite
TDS	ххх	xxx	xxx	Report	Report Daily Max	xxx	1/week	24-Hr Composite

Outfall 001, Continued (from October 1, 2022 through Permit Expiration Date)

		Monitoring Requirements						
Baramotor	Mass Units	s (lbs/day)	Concentrations (mg/L)				Minimum	Required
Parameter Average		Weekly		Average	Weekly	Instant.	Measurement	Sample
	Monthly	Average	Minimum	Monthly	Average	Maximum	Frequency	l ype
					Report			24-Hr
Sulfate	XXX	XXX	XXX	Report	Daily Max	XXX	1/week	Composite
					Report			24-Hr
Chloride	XXX	XXX	XXX	Report	Daily Max	XXX	1/week	Composite
					Report			24-Hr
Bromide	XXX	XXX	XXX	Report	Daily Max	XXX	1/week	Composite

Compliance Sampling Location: Outfall 001

Other Comments: None

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, to comply with Pennsylvania's Chesapeake Bay Tributary Strategy.

Outfall 001, Effective Period: October 1, 2022 through Permit Expiration Date.

		Monitoring Requirements					
Parameter	Mass Units (Ibs)		C	oncentrations (mg	Minimum	Required	
Farameter	Monthly	Annual	Minimum	Monthly Average	Instant. Maximum	Measurement Frequency	Sample Type
Ammonia	Report	Report	xxx	Report	XXX	1/week	24-Hr Composite
ТКИ	Peport	xxx	XXX	Poport	XXX	1/wook	24-Hr
	Report			Кероп		1/WEEK	24-Hr
Nitrate-Nitrite	Report	XXX	XXX	Report	XXX	1/week	Composite
Total Nitrogen	Report	Report	XXX	Report	XXX	1/month	Calculation
Total Phosphorus	Report	Report	XXX	Report	XXX	1/week	24-Hr Composite
Net Total Nitrogen	XXX	7,306	XXX	XXX	XXX	1/year	Calculation
Net Total Phosphorus	XXX	368	xxx	XXX	xxx	1/year	Calculation

Compliance Sampling Location: - Outfall 001

Other Comments: None

	Tools and References Used to Develop Permit
	WON for Windows Model (and Attachment
	PENTOXSD for Windows Model (see Attachment)
	TRC Medel Spreadsheet (see Attachment
	Temperature Medel Spreadsheet (see Attachment
	Victor Quality Taylor Management Strategy 204 0400 002 4/00
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Lechnical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Lechnology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391- 2000-002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
\boxtimes	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018. 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP:
	Other:

- 24	A	В	С	D	E	F	G
1	TRC EVALU	JATION					
2	Input appropri	ate values i	n A3:A9 and D3:D9				
3	8.22	= Q strea	m (cfs)	0.5	= CV Daily		
4	0.22	= Q disch	arge (MGD)	0.5	= CV Hourly	,	
5	30	= no. sam	ples	1	= AFC_Parti	ial Mix Factor	
6	0.3	= Chlorine	e Demand of Stream	1	= CFC_Parti	ial Mix Factor	
7	0	= Chlorine	e Demand of Discharg	15	= AFC_Crite	ria Complian	ce Time (min)
8	0.5	= BAT/BP.	J Value	720	= CFC_Crite	ria Complian	ce Time (mi <mark>n</mark>)
9	0	= % Facto	or of Safety (FOS)		=Decay Coe	efficient (K)	
10	Source	Reference	AFC Calculations		Reference	CFC Calculation	ons
11	TRC	1.3.2.iii	WLA afc =	7.724	1.3.2.iii	WLA cf	c = 7.522
12	PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT of	c = 0.581
13	PENTOXSD TRG	5.1b	LTA_afc=	2.878	5.1d	LTA_cf	c = 4.373
14							
15	Source	5.45	Effluen	t Limit Calcu	lations		
15	PENTOXSD TRG	5.1T	AVC MONT		1.231	DAT/DD I	
17	PENTUASD ING	5.1g		.IMIT (mg/l) =	1.635	DAT/DPJ	
19					1.000		
20							
21							
22	WLA afo	(.019/e(-k	*AFC tc)) + [(AFC Yc*	'Qs*.019/Q	d*e(-k*AFC	tc))	
23		+ Xd + (/	AFC_Yc*Qs*Xs/Qd)]*(1	-FOS/100)			
24	LTAMULT afc	EXP((0.5*L)	N(cvh^2+1))-2.326*LN(cvh	^2+1)^0.5)			
25	LTA_afc	wla_afc*LT	AMULT_afc				
26							
27	WLA_cfc	(.011/e(-k	*CFC_tc) + [(CFC_Yc*	Qs*.011/Qd	i*e(-k*CFC_t	c))	
28		+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1	-FOS/100)			
29	LTAMULT_cfc	EXP((0.5*L)	N(cvd^2/no_samples+1))-2	2.326*LN(cvd	1^2/no_sample	s+1)^0.5)	
30	LTA_cfc	wla_cfc*LT	AMULT_cfc				
31	OME MULT	EVD/2 326*	I N//oud42/no_somplost1	AO 5) O 5% N		mplos (1)	
32		MIN(BAT B	PIMIN/ITA afe ITA efe)	(*0.5)-0.5*LN (AMI MULT)	i(cvu~z/no_sai	npies+1))	
34	INST MAX LIMIT	1 5*((av)	mon limit/AMI MULT)		afc)		
35							
36							
37							
38							
39							
40							
41	(0.011/EXP(-K	*CFC_tc/1	440))+(((CFC_Yc*Qs*0).011)/(1.54	47*Qd)		
42	*EXP(-K*CF	C_tc/1440)))+Xd+(CFC_Yc*Qs*X	s/1.547*Qd))*(1-FOS/10	00)	
43							
44							
40							
47							
40							
		Instruction	s TRC_CALC	÷			

Copyright: © 2013 National Geographic Society, i-cubed

StreamStats

Page 2 of 4

Paradise Township Sewer Authority PA0083470 Outfall 001

busin characteri.	5005		
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	65.7	square miles
BSLOPD	Mean basin slope measured in degrees	3.4	degrees
ROCKDEP	Depth to rock	5.4	feet

https://streamstats.usgs.gov/ss/

4/6/2020

StreamStats

Parameter Code	Parameter Description	Value	Unit
URBAN	Percentage of basin with urban development	2	percent

Low-Flow Statistics Parameters(Low Flow Region 1)						
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit	
DRNAREA	Drainage Area	65.7	square miles	4.78	1150	
BSLOPD	Mean Basin Slope degrees	3.4	degrees	1.7	6.4	
ROCKDEP	Depth to Rock	5.4	feet	4.13	5.21	
URBAN	Percent Urban	2	percent	0	89	

Low-Flow Statistics Disclaimers[Low Flow Region 1]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Low-Flow Statistics Flow Report[Low Flow Region 1]

Statistic	Value	Unit
7 Day 2 Year Low Flow	16	ft^3/s
30 Day 2 Year Low Flow	20.3	ft^3/s
7 Day 10 Year Low Flow	8.22	ft^3/s
30 Day 10 Year Low Flow	10.4	ft^3/s
90 Day 10 Year Low Flow	16.5	ft^3/s

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

StreamStats

Page 4 of 4

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.3.11

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0083470

StreamStats

Paradise Township Sewer Authority WWTP PA0083470 Downstream Pt.

boom on a dotter			
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	70.7	square miles
BSLOPD	Mean basin slope measured in degrees	3.4	degrees
ROCKDEP	Depth to rock	5.4	feet

StreamStats Page 3 of 4

Parameter Code	Parameter Description	Value	Unit
URBAN	Percentage of basin with urban development	3	percent

Low-Flow Statistic	s Parameters(Low Flow Region 1)				
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	70.7	square miles	4.78	1150
BSLOPD	Mean Basin Slope degrees	3.4	degrees	1.7	6.4
ROCKDEP	Depth to Rock	5.4	feet	4.13	5.21
URBAN	Percent Urban	3	percent	0	89
Low-Flow Statistic	s Disclaimers(Low Flow Region 1)		danan Fatima		
with unknown e	rrors	suggeste	d range. Estima	ites were	extrapolated
Low-Flow Statistic	S Flow Report[Low Flow Region 1]				
Statistic			Value		Unit
7 Day 2 Year Lo	ow Flow		17.5		ft^3/s
30 Day 2 Year I	ow Flow		22.2		ft^3/s
7 Day 10 Year I	ow Flow		9.1		ft^3/s
30 Day 10 Year	Low Flow		11.5		ft^3/s
90 Day 10 Year	Low Flow		18.2		ft^3/s

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

StreamStats

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.3.11

	SWP Basir	Strea Cod	m ie	Stre	am Name		RMI	Ek	evation (ft)	Draina Are (sq r	age a ni)	Slope (ft/ft)	PW Withd (mg	/S irawai gd)	Apply FC
	07K	74	50 PEQU	EA CREE	ĸ		30.0	10	334.00		55.70	0.00000		0.00	\checkmark
					St	ream Dat	a								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Deptr	n Ter	<u>Tribut</u> a np	алу рн	Tem	<u>Strean</u> P	п рн	
	(crsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	;)		(°C)		
Q7-10 Q1-10 Q30-10	0.100	0.00 0.00 0.00	8.22 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.1	00 2	0.00	7.00) 2	2.10	8.30	
					DI	lscharge l	Data							1	
			Name	Per	mit Number	Existing Disc Flow	Permitt Disc Flow	ed Des Di Fi	lgn sc Ree ow Fa	serve	Disc Temp (PC)	p p	sc H		
		Parad	lse WWTF	PAG	083470	0.120	0 0.120	, (10 0.	1200	0.000	25	.00	7.00		
					Pa	arameter I	Data								
				Darameter	Name	Di	isc 1 onc C	Trib Conc	Stream Conc	Fate Coe	e ef				
				arameter	maine	(m	19/L) (r	ng/L)	(mg/L)	(1/da	ys)				
			CBOD5			:	25.00	2.00	0.00	1	.50				
			Dissolved	Oxygen			5.00	8.24	0.00	0	.00				

25.00

0.00

0.00

0.70

Input Data WQM 7.0

NH3-N

	SWP Basir	o Strea n Cod	im le	Stre	am Name		RMI	Eleva (f	ation t)	Drainage Area (sq mi)	Slope (ft/ft)	PW Withd (mg	/S Irawal gd)	Apply FC
	07K	74	150 PEQU	EA CREE	к		26.19	90 3	320.00	70.70	0.0000	0	0.00	¥
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	T <u>ributary</u> p pH	Т	<u>Strear</u> emp	п рн	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ff)	(°C)		C	°C)		
27-10 21-10 230-10	0.100	0.00 0.00 0.00	9.10 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	20	0.00 7.0	0	22.10	8.30	
					D	lscharge (Data						1	
			Name	Per	mit Numbe	Existing Disc r Flow (mgd)	Permitte Disc Flow (mgd)	ed Design Disc Flow (mgd	n Rese Fac	Dis erve Tem tor (°C	с ір)	Disc pH		
						0.000	0.000	0.00	00 0	.000.	0.00	7.00		
					P	arameter I	Data							
				Paramete	r Name	DI	sc T onc C	frib S conc	tream Conc	Fate Coef				
	-					(m	g/L) (n	ng/L) (mg/L)	(1/days)				

3.00

25.00

0.00

0.00

8.24

0.00

0.00

0.70

Dissolved Oxygen

NH3-N

Input Data WQM 7.0

Version 1.0b

Page 2 of 2

			WQI	/ 7.0	Hydr	odyn	amic	Out	outs			
	SW	P Basin	Strea	m Code				Stream	Name			
		07K	7	450			P	EQUEA	CREEK			
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
30.010	8.22	0.00	8.22	.1856	0.00069	.768	46.76	60.87	0.23	0.998	22.16	8.15
Q1-1	0 Flow											
30.010	5.26	0.00	5.26	.1856	0.00069	NA	NA	NA	0.18	1.272	22.20	8.08
Q30-'	10 Flow											
30.010	11.18	0.00	11.18	.1856	0.00069	NA	NA	NA	0.28	0.843	22.15	8.18

Thursday, April 16, 2020

Version 1.0b

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0083470

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	\checkmark
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	\checkmark
D.O. Saturation	90.00%	Use Balanced Technology	~
D.O. Goal	5		

Thursday, April 16, 2020

Version 1.0b

		W	QM 7.	0 Wast	teload A	llocatio	ns		
	SWP Basin	Stream (Code		St	ream Name			
	07K	7450)		PEC	UEA CREEK			
NH3-N	Acute Alloca	ations							
RMI	Discharge N	Bame C (aseline riterion mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	ı
30.0	10 Paradise WW	TP	1.93	50	1.93	50	0	0	-
NH3-N	Chronic Allo	cations	6						-
RMI	Discharge Na	Bas ime Crit (m	eline terion ig/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	
30.0	10 Paradise WW	TP	.38	23.17	.38	23.17	0	0	-
Dissolv	ed Oxygen A	Vlocatio	ons						-
RMI	Discharg	e Name	<u>C</u> Baselin (mg/L)	BOD5 e Multiple) (mg/L)	<u>NH3-N</u> Baseline Mu (mg/L) (m	Dissolv ultiple Baselin or/L) (mo/L)	ved Oxygen ne Multiple) (ma/L)	Critical Reach	Percent Reductio

25

25

23.17

23.17

5

5

0

0

Thursday, April 16, 2020

30.01 Paradise WWTP

Version 1.0b

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0083470

WQM 7.0 D.O.Simulation

SWP Basin	Stream Code			Stream Name	<u>e</u>	
07K	7450		F	PEQUEA CREI	EK	
RMI	Total Discharge	Flow (mgd) Anal	ysis Temperat	ure (°C)	Analysis pH
30.010	0.12	0		22.164		8.148
Reach Width (ft)	Reach De	pth (ft)		Reach WDRa	tio	Reach Velocity (fps)
46.764	0.76	8		60.867		0.234
Reach CBOD5 (mg/L)	Reach Ko	(1/days)	R	each NH3-N (n	ng/L)	Reach Kn (1/days)
2.51	0.17	8		0.51		0.827
Reach DO (mg/L)	Reach Kr	1/days)		Kr Equation	1	Reach DO Goal (mg/L)
8.171	1.62	4		Tsivoglou		5
Reach Travel Time (day	<u>s)</u>	Subreact	Results			
0.998	TravTime	CBOD5	NH3-N	D.O.		
	(days)	(mg/L)	(mg/L)	(mg/L)		
	0.100	2.46	0.47	7.92		
	0.200	2.41	0.43	7.92		
	0.299	2.36	0.40	7.84		
	0.399	2.32	0.37	7.79		
	0.499	2.27	0.34	7.76		
	0.599	2.23	0.31	7.74		
	0.698	2.19	0.29	7.73		
	0.798	2.14	0.26	7.74		
	0.898	2.10	0.24	7.75		
	0.998	2.06	0.22	7.77		

Thursday, April 16, 2020

Version 1.0b

		WQM :	7.0 Ef	fluent Limits	5		
	SWP Basin S	stream Code		Stream Name	2		
	07K	7450		PEQUEA CREE	ΕK		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
30.010	Paradise WWT	P PA0083470	0.120	CBOD5	25		
				NH3-N	23.17	46.34	
				Dissolved Oxygen			5

Thursday, April 16, 2020

Version 1.0b

	SWP Basi	n Strea	am Je	Stre	am Name		RMI	Ele	vation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	07K	74	450 PEQU	EA CREE	к		30.01	10	334.00	65.70	0.00000	0.00	\checkmark
					S	tream Da	ta						
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ten	<u>Tributary</u> np pH	Tem	<u>Stream</u> np pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	;)	(°C)	
7-10	0.100	0.00	8.22	0.000	0.000	0.0	0.00	0.0	0 2	0.00 7.0	00 2	2.10 8.30)
1-10		0.00	0.00	0.000	0.000								
30-10		0.00	0.00	0.000	0.000								

Input Data WQM 7.0

	Dis	scharge D	ata					
Name	Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	d Design Disc Flow (mgd)	Rese Fac	erve T stor	Disc `emp (°C)	Disc pH
Paradise WWTP	PA0083470	0.2200	0.2200	0.220	0 0	000.	25.00	7.00
	Par	rameter D	ata					
P		Dis Co	c Tr nc Co	ib St inc (ream Conc	Fate Coef		
Para	meter Name	(mg	/L) (m	g/L) (r	ng/L)	(1/days)		
CBOD5		2	5.00	2.00	0.00	1.50)	
Dissolved Oxy	gen		5.00	8.24	0.00	0.00)	
NH3-N		2	5.00	0.00	0.00	0.70)	

Version 1.0b

	SWF Basi	o Strea n Coo	am de	Stre	eam Name		RMI	E	Elevation (ft)	Drai A (sc	inage rea q mi)	Slope (ft/ft)	PWS Withdraw (mgd)	val	Apply FC
	07K	74	450 PEQU	EA CREE	к		26.19	90	320.0	00	70.70	0.00000	C	0.00	\checkmark
	Stream Data														
Design	LFY	Trib Flow	Stream Flow	Rch Trav	Rch Velocity	WD Ratio	Rch Width	Rcł Dep	n th T	<u>Trib</u> emp	utary pH	Tem	<u>Stream</u> p p	н	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft) ((°C)		(°C)		
Q7-10	0.100	0.00	9.10	0.000	0.000	0.0	0.00	(0.00	20.00	7.0	0 2	2.10 8	8.30	
Q1-10		0.00	0.00	0.000	0.000										
Q30-10		0.00	0.00	0.000	0.000										

Input Data WQM 7.0

	Dis	scharge D	ata					
Name	Permit Number	Existing Disc Flow (mgd)	Permitter Disc Flow (mgd)	d Desi Dis Flo (mg	gn c Res w Fa d)	serve	Disc Temp (°C)	Disc pH
		0.0000	0.000	0.0	000	0.000	25.00	7.00
	Pa	rameter D	ata					
		Dis Co	c Ti nc Co	rib : onc	Stream Conc	Fate Coef		
Pa	rameter Name	(mg	/L) (m	g/L)	(mg/L)	(1/days)	
CBOD5		2	5.00	2.00	0.00) 1.5	0	
Dissolved O	xygen		3.00	8.24	0.00	0.0	0	
NH3-N		2	5.00	0.00	0.00	0.7	0	

	WQM 7.0 Hydrodynamic Outputs											
	SWP Basin Stream Code							Stream	Name			
		07K	7	450			P	EQUEA	CREEK			
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
30.010	8.22	0.00	8.22	.3403	0.00069	.77	47.05	61.13	0.24	0.988	22.22	8.06
Q1-1	0 Flow											
30.010	5.26	0.00	5.26	.3403	0.00069	NA	NA	NA	0.19	1.252	22.28	7.97
Q30-	10 Flow											
30.010	11.18	0.00	11.18	.3403	0.00069	NA	NA	NA	0.28	0.836	22.19	8.11

Monday, April 6, 2020

Version 1.0b

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0083470

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	V
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	~
D.O. Saturation	90.00%	Use Balanced Technology	~
D.O. Goal	5		

Monday, April 6, 2020

Version 1.0b

	SWP Basin 07K	Strea	<u>am Code</u> 7450		<u>St</u> PEG	ream Name UEA CREEK		
NH3-N	Acute Alloc	ation	s					
RMI	Discharge I	Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
30.0	10 Paradica WW		0.07	20.02	0.07			
50.0	TU Farause ww	VIP	2.37	39.03	2.37	39.03	1	0
NH3-N	Chronic Alle	ocati	ons	38.03	2.37	39.03	1	0
NH3-N RMI	Chronic Alle Discharge Na	ocati ame	ONS Baseline Criterion (mg/L)	Baseline WLA (mg/L)	2.37 Multiple Criterion (mg/L)	Multiple WLA (mg/L)	1 Critical Reach	Percent Reduction

		UDU	505		S-IN	DISSOIVE	a Oxygen	Critical	Percent
RMI	Discharge Name	Baseline (mg/L)	aline Multiple Baseline Multiple Baseline Multip g/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)		Multiple (mg/L)	Reach	Reduction		
30.01	Paradise WWTP	25	25	15.06	15.06	5	5	0	0

Version 1.0b

WQM 7.0 D.O.Simulation

SWP Basin	Stream Code			Stream Name	
07K	7450			PEQUEA CREEK	
RMI	Total Discharg	e Flow (mgd	i) <u>Ana</u>	lysis Temperature	(°C) Analysis pH
30.010	0.2	20		22.215	8.056
Reach Width (ft)	Reach D	epth (ft)		Reach WDRatio	Reach Velocity (fps)
47.052	0.7	70		61.127	0.236
Reach CBOD5 (mg/L)	Reach Ko	(1/days)	R	each NH3-N (mg/l	L) Reach Kn (1/days)
2.91	0.2	94		0.60	0.830
Reach DO (mg/L)	Reach Kr	(1/days)		Kr Equation	Reach DO Goal (mg/L)
8.114	1.6	43		Tsivoglou	5
Reach Travel Time (day:	5)	Subreach	h Results		
0.988	TravTime	e CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.09	9 2.82	0.55	7.89	
	0.19	8 2.73	0.51	7.72	
	0.29	8 2.65	0.47	7.59	
	0.39	5 2.56	0.43	7.50	
	0.49	4 2.48	0.40	7.44	
	0.59	3 2.40	0.37	7.40	
	0.69	1 2.33	0.34	7.38	
	0.79	0 2.25	0.31	7.38	
	0.88	9 2.18	0.29	7.39	
	0.98	B 2.11	0.26	7.41	

Version 1.0b

		WQM :	7.0 Ef	fluent Limits	3			
	SWP Basin S	tream Code		Stream Name	2			
	07K	7450		PEQUEA CREE				
RMI	Name	Name Permit Number		Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)	
30.010	Paradise WWT	P PA0083470	0.220	CBOD5	25			
				NH3-N	15.06	30.12		
				Dissolved Oxygen			5	

Monday, April 6, 2020

Version 1.0b

	A B C D E F G H I J K L M N O P Q R S T U V W X Y Z AA AB AC AD AE AF AG AH AI AJ AK A AM												
1 2 3 4 5				TOXICS SCRE WATER QUALITY POI VER	ENING ANALY LUTANTS OF SION 2.7	SIS CONCE	RN						
6		Facility: Paradise Township Sewer A	utho	rity	NPDES Permit N	0.:	PA0083	470	Outfall: 001				
7		Analysis Hardness (mg/L): 100			Discharge Flow (MGD):	0.22	/	Analysis pH (SU): 7				
8		Stream Flow, Q ₇₋₁₀ (cfs): 8.22							······				
9													
10			M	aximum Concentration in	Most Stringent	Can	didate for	Most Stringe	ent Screening				
11		Parameter	A	pplication or DMRs (µg/L)	Criterion (µg/L)	PENTOX	SD Modeling?	WQBEL (µg)	(L) Recommendation				
12		Total Discolved Polida		1272000	500000		Vac		Monitor	-			
12	1	Chlorida		520000	250000		Yee		Monitor				
13	onlo	Dramida		530000	250000		res		Monitor				
14	5	Biofflide	<u>`</u>	2000	250000		No		Monitor				
10		Sullate		70000	250000		INO		Mornitor				
10		Total Antimony			750				I				
10					0.0								
10		Total Arsenic			10								
19		Total Bandium			2400								
20		Total Beryllium			N/A								
21		Total Boron			1600								
22					0.271								
23		Total Chromium			N/A								
24		Hexavalent Chromium			10.4								
20		Total Coppor		2	19		No						
20	2	Free Available Cvanide		3	9.5		INO						
28	1 d	Total Cyanida			5.2 N/A								
29	5	Dissolved Iron			300								
30		Total Iron			1500								
31		Total Lead	<	0.3	3.2	No (V	alue < QL)						
32		Total Manganese			1000								
33		Total Mercury			0.05								
34		Total Nickel			52.2								
35		Total Phenols (Phenolics)			5								
36		Total Selenium			5.0								
37		Total Silver			3.8								
38		Total Thallium			0.24								
39		Total Zinc		25	119.8		No						
40		Total Molybdenum			N/A								
41		Acrolein	<		3								
	Major Sewage Industrial Other Discharges Reference				+								