

Southcentral Regional Office CLEAN WATER PROGRAM

Application Type Renewal Non-Municipal Facility Type Major / Minor Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

PA0083909 Application No.

APS ID 277964

1269242 Authorization ID

Applicant and Facility Information								
Applicant Name	Conestoga Wood Specialties Corporation	Facility Name	Conestoga Wood Specialties					
Applicant Address	245 Reading Road, PO Box 158	Facility Address	245 Reading Road, PO Box 158					
	East Earl, PA 17519-9549	<u></u>	East Earl, PA 17519-9549					
Applicant Contact	Richard Baldauf	Facility Contact	Richard Baldauf					
Applicant Phone	(717) 445-6701	Facility Phone	(717) 445-6701					
Client ID	37225	Site ID	508472					
Ch 94 Load Status	Not Overloaded	Municipality	East Earl Township					
Connection Status	No Limitations	County	Lancaster					
Date Application Rece	eived April 15, 2019	EPA Waived?	Yes					
Date Application Acce	epted April 17, 2019	If No, Reason						

Summary of Review

Conestoga Wood Specialties Corporation has applied to the Pennsylvania Department of Environmental Protection (DEP) for reissuance of its National Pollutant Discharge Elimination System (NPDES) permit. The permit was issued on October 20, 2014 and became effective on November 1, 2014. The permit authorized discharge of treated sewage from the existing wastewater treatment plant (WWTP) located in East Earl Township, Lancaster County into Conestoga River. The existing permit expiration date was October 31, 2019, and the permit has been administratively extended since that time. A regional WWTP, the Weaverland Valley Authority (WVA) WWTP will ultimately be constructed, and will be located adjacent to Conestoga Wood Specialties. Once the WWTP is constructed, Conestoga Wood Specialties will discharge directly to WVA and will cease discharge from their onsite WWTP. Supplemental information is located at the end of this fact sheet.

Changes to renewal: No changes were made in the renewal permit.

Sludge use and disposal description and location(s): Offsite location

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the Pennsylvania Bulletin in accordance with 25 Pa. Code § 92a.82. Upon publication in the Pennsylvania Bulletin, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the Pennsylvania Bulletin at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
Х		Benjamin Lockwood Benjamin R. Lockwood / Environmental Engineering Specialist	February 12, 2021
		Daniel W. Martin, P.E. / Environmental Engineer Manager	
		Maria D. Bebenek, P.E. / Program Manager	

scharge, Receiving	Water	s and Water Supply Infor	mation	
Outfall No. 001			Design Flow (MGD)	.019
Latitude 40° 8'	24"		Longitude	76º 2' 7"
Quad Name Ter	re Hill		Quad Code	1737
Wastewater Descrip	tion:	Sewage Effluent		
Receiving Waters	Cones	stoga River (WWF, MF)	Stream Code	07548
NHD Com ID	57462	2165	RMI	48.7
Drainage Area	43.6 r	ni ²	Yield (cfs/mi²)	0.12
Q ₇₋₁₀ Flow (cfs)	5.23		Q ₇₋₁₀ Basis	USGS Gage # 01576500
Elevation (ft)	367		Slope (ft/ft)	
Watershed No.	7-J		Chapter 93 Class.	WWF, MF
Existing Use	N/A		Existing Use Qualifier	N/A
Exceptions to Use	N/A		Exceptions to Criteria	N/A
Assessment Status		Impaired		
Cause(s) of Impairm	nent	Pathogens, Pathogens, N	lutrients, Nutrients, Siltation	
Source(s) of Impairr	nent		/Storm Sewers, Crop Productior oreline Zones, Grazing in Riparia	
TMDL Status		N/A	Name N/A	
Noarost Downstroor	n Dubli	a Water Supply Intaks	Lancactor City Water Purcey	
		c Water Supply Intake	Lancaster City Water Bureau	
PWS WatersC	onesto	ga River	_ Flow at Intake (cfs)	26
FWO KIVII			Distance from Outfall (mi)	26

Changes Since Last Permit Issuance: None

Other Comments: A drainage area of 43.6 mi² and a Q_{7-10} flow of 5.23 cubic feet per second (cfs) were determined by establishing a correlation to the yield of USGS Gage Station #01576500 on the Conestoga River. The Q_{7-10} and drainage area at the gage are 38.6 cfs and 324 mi², respectively. These values are taken from the USGS document "Selected Streamflow Statistics for Streamgage Locations in and near Pennsylvania". The Q_{7-10} runoff rate at the gage station was calculated as follows:

Yield = $(38.6 \text{ cfs})/324 \text{ mi}^2 = 0.12 \text{ cfs/mi}^2$

The drainage area at the discharge point, taken from USGS PA StreamStats = 43.6 mi²

The Q_{7-10} at the discharge point = 43.6 mi² x 0.12 cfs/mi² = 5.23 cfs

NPDES Permit Fact Sheet Conestoga Wood Specialties

	Tre	eatment Facility Summa	ıry	
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
Sewage	Secondary	Extended Aeration	Sodium Hypochlorite	0.019
Hydraulic Capacity (MGD)	Organic Capacity (Ibs/day)	Load Status	Biosolids Treatment	Biosolids Use/Disposal
0.019	50	Not Overloaded	Sludge Holding	Other WWTP

Changes Since Last Permit Issuance: None

Other Comments: The treatment process is as follows: Comminutor – Bar Screen – 2 Equalization Tanks – 3 Aeration Tanks – Clarifier – Chlorine Contact Tank – Sludge Holding Tank – Outfall 001 to Conestoga River.

	Compliance History
Summary of DMRs:	A summary of the past 12-month DMR effluent data is presented on the next page of this fact sheet
Summary of Inspections:	6/7/2016: A routine inspection was conducted. All units were offline at the time of inspection. The outfall effluent was clear, and the Conestoga River was turbid. All field readings were within permitted limits. No other issues were noted.
	1/24/2019: A routine inspection was conducted. An accumulation of grease and solids was covering approximately 60% of EQ#1, and one side was not well aerated. The RAS return line in aeration tank #1 was not functioning. A PVC pipe placed over top of the tanks is currently used as a RAS return, which freezes during cold weather. The clarifier supernatant appeared slightly cloudy, and the skimmer was not functioning at the time of inspection. The operator stated this may be due to freezing temperatures. The clarifier trough contents had a light brown tint. The chlorine contact tank appeared mostly clear. The TRC value read 0.00 mg/l after two samples. Effluent had fine suspended solids with a yellow/brown tint. The lab sample for fecal coliform had a result of 200,000/100 ml, which exceeded the permit IMAX limit of 10,000/100 ml. It was noted that the operator should maintain the clarifier skimmer and RAS line function, and closely monitor TRC levels to prevent future fecal coliform violations. A Notice of Violation (NOV) was issued on 2/11/2019 due to failure to properly operate and maintain all facilities, including pumps and blowers, as well as NPDES permit limit violations from June 2014 through October 2018. 2/24/2020: A routine inspection was conducted. It was noted that the clarifier had 80% coverage of foam, and the skimmer was not functional. The chlorine contact tank had a light brown appearance. No other issues were noted. 6/9/2020: An administrative inspection was conducted. All units were operable and online at the time of inspection. No issues were noted in the inspection report.

Other Comments: There are currently no open violations associated with the permittee or the facility.

Compliance History

DMR Data for Outfall 001 (from January 1, 2020 to December 31, 2020)

Parameter	DEC-20	NOV-20	OCT-20	SEP-20	AUG-20	JUL-20	JUN-20	MAY-20	APR-20	MAR-20	FEB-20	JAN-20
Flow (MGD)												
Average Monthly	0.00329	0.00302	0.0043	0.00335	0.00303	0.00238	0.00206	0.00228	0.00491	0.00694	0.00654	0.00991
Flow (MGD)												
Daily Maximum	0.00863	0.00701	0.01037	0.00661	0.00673	0.00489	0.01134	0.00658	0.01767	0.02706	0.02891	0.02872
pH (S.U.)												
Minimum	6.02	6.07	7.03	7.21	7.36	6.99	8.13	7.65	7.9	7.25	6.56	6.55
pH (S.U.)												
Maximum	6.76	7.00	8.25	8.8	8.74	8.45	8.6	8.51	8.21	8.25	7.97	7.58
DO (mg/L)												
Minimum	6.14	6.54	5.4	5.5	5.4	5.63	6.59	5.7	5.6	5.22	5.15	5.21
TRC (mg/L)												
Average Monthly	0.32	0.16	0.50	0.50	0.50	0.49	0.32	0.33	0.20	0.29	0.08	0.06
TRC (mg/L)												
Instantaneous												
Maximum	1.42	0.64	1.20	1.1	1.22	1.15	0.93	0.8	0.71	1.01	0.39	0.13
CBOD5 (mg/L)			40	00	0.4	0.4	4.0	4.5	4.5	00	0.4	0
Average Monthly	9	14	12	29	21	21	16	15	15	26	31	9
TSS (mg/L)	40	4.5	7	0.4	47	47	20	20	7	04	50	0.4
Average Monthly	16	15	7	24	17	17	20	20	7	21	56	24
Fecal Coliform (CFU/100 ml)												
Geometric Mean	< 8	< 21	< 6	< 131	13	36	4	203	3	< 6	< 4	2
Fecal Coliform	< 0	< 21	< 0	< 131	13	30	4	203	3	< 0	< 4	
(CFU/100 ml)												
Instantaneous												
Maximum	66	461	32	2420	41	1300	20	2420	4	33	< 10	6
Nitrate-Nitrite (mg/L)	- 00	101	02	2 120		1000	20	2120	•	- 00	10	
Average Monthly	98	90.47	61.98	73.2	2.4	61.6	52.89	41.2	33	8.94	54	70
Total Nitrogen (mg/L)						0.110				0.0		
Average Monthly	107.5	90.47	67.28	73.2	54.4	69.6	54.09	42.9	33	8.94	90	70
Ammonia (mg/L)												
Average Monthly	11	1.2	7.5	3.2	49	5.2	0.51	0.59	1.2	< 0.1	23	3.8
TKN (mg/L)												
Average Monthly	9.5	< 0.50	5.3	< 0.5	52	8	1.2	1.7	< 0.5	1.87	36	< 2.5
Total Phosphorus												
(mg/L)												
Average Monthly	18	15	13	13	13	20	16.0	11.0	4.2	0.36	16.8	14

Compliance History

Effluent Violations for Outfall 001, from: February 1, 2020 To: December 31, 2020

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
CBOD5	03/31/20	Avg Mo	26	mg/L	25	mg/L
CBOD5	02/29/20	Avg Mo	31	mg/L	25	mg/L
CBOD5	09/30/20	Avg Mo	29	mg/L	25	mg/L
TSS	02/29/20	Avg Mo	56	mg/L	30	mg/L
Fecal Coliform	05/31/20	Geo Mean	203	CFU/100 ml	200	CFU/100 ml
Fecal Coliform	09/30/20	IMAX	2420	CFU/100 ml	1000	CFU/100 ml
Fecal Coliform	05/31/20	IMAX	2420	CFU/100 ml	1000	CFU/100 ml
Fecal Coliform	07/31/20	IMAX	1300	CFU/100 ml	1000	CFU/100 ml

Existing Effluent Limitations and Monitoring Requirements

The table below summarizes the effluent limits and monitoring requirements implemented in the existing NPDES permit.

Outfall 001

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units (lbs/day)			Concentrations (mg/L)			Minimum	Required
Farameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	1/week	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
CBOD5	XXX	XXX	XXX	25	XXX	50	2/month	8-Hr Composite
TSS	XXX	XXX	XXX	30	XXX	60	2/month	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2,000 Geo Mean	XXX	10,000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1,000	2/month	Grab
Nitrate-Nitrite	XXX	XXX	XXX	Report	XXX	XXX	1/month	8-Hr Composite
Total Nitrogen	XXX	XXX	XXX	Report	XXX	XXX	1/month	Calculation
Ammonia	XXX	XXX	XXX	Report	XXX	XXX	1/month	8-Hr Composite
TKN	XXX	XXX	XXX	Report	XXX	XXX	1/month	8-Hr Composite
Total Phosphorus	XXX	XXX	XXX	Report	XXX	XXX	1/month	8-Hr Composite

Compliance Sampling Location: Outfall 001

	Development of Effluent Limitations									
Outfall No.	001		Design Flow (MGD)	.019						
Latitude	40° 8' 24"		Longitude	76° 2' 7"						
Wastewater D	escription:	Sewage Effluent								

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 - 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 - 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 - 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations

CBOD₅, NH₃-N

Pursuant to 40 CFR § 122.44(d)(1)(i), more stringent requirements should be considered when pollutants are discharged at the levels which have the reasonable potential to cause or contribute to excursions above water quality standards.

WQM 7.0 ver. 1.0b is a water quality model designed to assist DEP in determining appropriate water quality based effluent limits (WQBELs) for carbonaceous biochemical oxygen demand (CBOD₅), NH₃-N and dissolved oxygen (D.O.). DEP's Technical Guidance No. 391-2000-007 provides the technical methods contained in WQM 7.0 for determining wasteload allocations and for determining recommended NPDES effluent limits for point source discharges. The model was utilized for this permit renewal, and the model output indicated a CBOD₅ average monthly limit of 25 mg/l, an NH₃-N average monthly limit of 25 mg/l, and a D.O. minimum limit of 5.0 mg/l were protective of water quality.

The flow data used to run the model was acquired from USGS PA StreamStats, and is included at the end of this fact sheet. The existing CBOD₅ limit is the same as the existing limit, which will remain in the permit. DEP's SOP No. BCW-PMT-033 recommends that for existing dischargers, if WQM modeling results for summer indicates that an average monthly limit of 25 mg/l is acceptable, the application manager will generally establish a year round monitoring requirement for ammonianitrogen, at a minimum. This is consistent with the existing monitoring requirement for NH₃-N, which will remain in the permit.

Toxics

Effluent sample results for toxic pollutants reported on the renewal application were entered into DEP's Toxics Management Spreadsheet Ver. 1.1 to develop appropriate permit requirements for toxic pollutants of concern. Based on effluent sample results reported on the application, there are no necessary effluent limits or monitoring required for these parameters based on water quality. Reasonable potential to exceed water quality criteria was not determined, and the discharge concentrations were less than 10% of the calculated WQBELs. A copy of the Spreadsheet is attached.

NPDES Permit Fact Sheet Conestoga Wood Specialties

Additional Considerations

Dissolved Oxygen

A minimum D.O. limit of 5.0 mg/L is a D.O. water quality criterion found in 25 Pa. Code § 93.7(a). This limit is included in the existing NPDES permit based BPJ. It is still recommended to include this limit in the draft permit to ensure that the facility continues to achieve compliance with DEP water quality standards.

Chesapeake Bay Total Maximum Daily Load (TMDL)

DEP developed a strategy to comply with the EPA and Chesapeake Bay Foundation requirements by reducing point source loadings of Total Nitrogen (TN) and Total Phosphorus (TP). This strategy can be located in the *Pennsylvania Chesapeake Watershed Implementation Plan* (WIP), dated January 11, 2011. Subsequently, an update to the WIP was published as the Phase 2 WIP. As part of the Phase 2 WIP, a *Phase 2 Watershed Implementation Plan Wastewater Supplement* (Phase 2 Supplement) was developed, providing an update on TMDL implementation for point sources and DEP's current implementation strategy for wastewater. A new update to the WIP was published as the Phase 3 WIP in August 2019. As part of the Phase 3 WIP, a *Phase 3 Watershed Implementation Plan Wastewater Supplement* (Phase 3 Supplement) was developed, and was most recently revised on December 17, 2019, and is the basis for the development of any Chesapeake Bay related permit parameters. Sewage discharges have been prioritized based on their design flow to the Bay. The highest priority (Phases 1, 2, and 3) dischargers will receive annual Cap Loads based on their design flow on August 29, 2005 and concentrations of 6 mg/l TN and 0.8 mg/l TP. These limits may be achieved through a combination of treatment technology, credits, or offsets. For Phase 4 and 5 facilities, Cap Loads are not currently being implemented for renewed or amended permits for facilities that do not increase design flow.

This facility is considered a Phase 5 non-significant discharger with a design flow less than 0.2 MGD but greater than 0.002 MGD. According to DEP's latest-revised Phase 3 Supplement, issuance of permits with monitoring and reporting for TN and TP is recommended for any Phase 5 non-significant sewage facilities. Furthermore, DEP's SOP No. BCW-PMT-033 states that in general, at a minimum, monitoring for TN and TP should be included in new and reissued permits for sewage discharges with design flows > 2,000 gpd. The existing contains TN and TP monitoring, which will remain in the permit.

Fecal Coliform

PA Code § 92a.47.(a)(4) requires a monthly average limit of 200/100 mL as a geometric mean and an instantaneous maximum limit not greater than 1,000/100 mL from May through September for fecal coliform. PA Code § 92a.47.(a)(5) requires a monthly average limit of 2,000/100 mL as a geometric mean and an instantaneous maximum limit not greater than 10,000/100 mL from October through April for fecal coliform. These limits will remain in the permit.

Stormwater

The SIC Codes for this facility are 4225 (general warehousing and storage) and 2434 (wood kitchen cabinets). All raw, intermediate, and final products and materials are stored under a roof; therefore, stormwater outfall sampling requirements do not apply. The identification of the following stormwater outfalls will be done for informational purposes only:

<u>Outfall</u>	<u>Drainage</u> <u>Area (acres)</u>	<u>Name</u>	<u>Latitude</u>	<u>Longitude</u>	Receiving Stream
S02	3.8	Retention Pond (Southeast Corner)	40° 08' 15"	76° 01' 44"	Conestoga River
S03	11	Retention Pond (Southwest Corner)	40° 08' 08"	76° 01' 54"	Conestoga River
S04	0.4	Building Nos. 2 & 3 Roof Drains	40° 08' 19"	76° 01' 46"	Conestoga River
S05	5.1	Retention Pond (Northeast Corner)	40° 08' 23"	76° 01' 48"	Conestoga River
S06	2.5	Retention Pond (Northwest Corner)	40° 08' 17"	76° 02' 00"	Conestoga River

NPDES Permit Fact Sheet Conestoga Wood Specialties

Total Residual Chlorine

The attached computer printout utilizes the equations and calculations as presented in the Department's May 1, 2003 Implementation Guidance for Total Residual Chlorine (TRC) (ID No. 391-2000-015) for developing chlorine limitations. The Guidance references Chapter 92, Section 92.2d (3) which establishes a standard BAT limit of 0.5 mg/l unless a facility-specific BAT has been developed. The attached printout indicates that a water quality limit of 0.5 mg/l would be needed to prevent toxicity concerns. This is consistent with the existing limits; therefore, a TRC limit of 0.5 mg/l monthly average and 1.6 mg/l instantaneous maximum will be included in the permit.

Sampling Frequency & Sample Type

The monitoring requirements were established based on BPJ and/or Table 6-3 of DEP's Technical Guidance No. 362-0400-001.

Flow Monitoring

Flow monitoring is recommended by DEP's technical guidance and is also required by 25 PA Code §§ 92a.61.

Anti-Degradation

The effluent limits for this discharge have been developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

303(d) Listed Streams

The discharge is located on a stream segment that is designated on the 303(d) list as impaired. There is a recreational impairment due to pathogens from agriculture and urban runoff/storm sewers. There is an aquatic life impairment due to nutrients from crop production (crop land or dry land) and grazing in riparian or shoreline zones; and due to siltation from grazing in riparian or shoreline zones.

Class A Wild Trout Fisheries

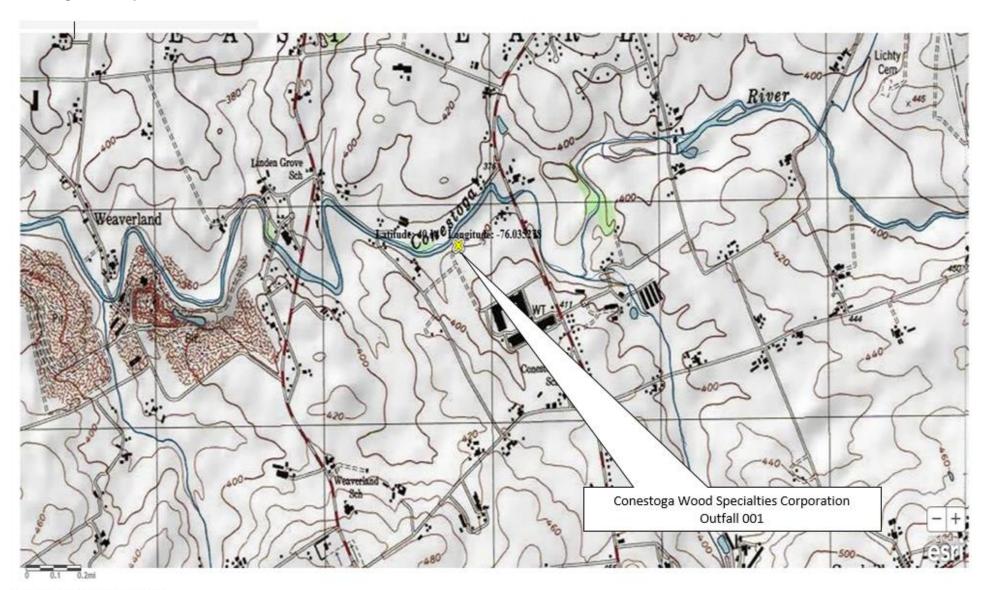
No Class A Wild Trout Fisheries are impacted by this discharge.

Anti-Backsliding

Pursuant to 40 CFR § 122.44(I)(1), all proposed permit requirements addressed in this fact sheet are at least as stringent as the requirements implemented in the existing NPDES permit unless any exceptions

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.


Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent Limitations							
Parameter	Mass Units (lbs/day) (1)			Concentrations (mg/L)				quirements Required		
r ai ailletei	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type		
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	1/week	Measured		
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab		
DO	XXX	XXX	5.0 Inst Min	XXX	XXX	XXX	1/day	Grab		
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab		
CBOD5	XXX	XXX	XXX	25	XXX	50	2/month	8-Hr Composite		
TSS	XXX	XXX	XXX	30	XXX	60	2/month	8-Hr Composite		
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2,000 Geo Mean	XXX	10,000	2/month	Grab		
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1,000	2/month	Grab		
Nitrate-Nitrite	XXX	XXX	XXX	Report	XXX	XXX	1/month	8-Hr Composite		
Total Nitrogen	XXX	XXX	XXX	Report	XXX	XXX	1/month	Calculation		
Ammonia	XXX	XXX	XXX	Report	XXX	XXX	1/month	8-Hr Composite		
TKN	XXX	XXX	XXX	Report	XXX	XXX	1/month	8-Hr Composite		
Total Phosphorus	XXX	XXX	XXX	Report	XXX	XXX	1/month	8-Hr Composite		

Compliance Sampling Location: Outfall 001

Other Comments: None

	Tools and References Used to Develop Permit
	WQM for Windows Model (see Attachment)
	Toxics Management Spreadsheet (see Attachment)
	TRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
\boxtimes	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
\boxtimes	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP: No. BCW-PMT-002, No. BCW-PMT-033
	Other:

Copyright: 0 2013 National Geographic Society, i-cubed

iter report title:	
Conestoga Wood Specialties Corporation PA0083909 Outfall 001	
nter comments:	
Some comments here	

Conestoga Wood Specialties Corporation PA0083909 Outfall 001

Region ID: PA Workspace ID: PA20210212122711275000 Clicked Point (Latitude, Longitude): 40.14020, -76.03582 Time: 2021-02-12 07:27:30 -0500 + Denver' Kenilworth Reamstown, FRENCH CREEK 222 Ephrata Spring 23 Elverson itz Terre Hill Lancaster GREAT Airport New Holland .Honey Brook Herseshoe Pika THE BARON HILLS Old Philadelphia Pike Leaflet | Esti

Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	43.6	square miles
BSLOPD	Mean basin slope measured in degrees	4.1345	degrees
ROCKDEP	Depth to rock	5.2	feet
URBAN	Percentage of basin with urban development	3.1963	percent

Low-Flow Statistics Parameters _[Low Plow Region 1]									
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit				
DRNAREA	Drainage Area	43.6	square miles	4.78	1150				
BSLOPD	Mean Basin Slope degrees	4.1345	degrees	1.7	6.4				
ROCKDEP	Depth to Rock	5.2	feet	4.13	5.21				
URBAN	Percent Urban	3.1963	percent	0	89				

Low-Flow Statistics Flow Report[Low Row Region 1]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	SEp
7 Day 2 Year Low Flow	11.8	ft^3/s	46	46
30 Day 2 Year Low Flow	14.7	ft^3/s	38	38
7 Day 10 Year Low Flow	6.2	ft^3/s	51	51
30 Day 10 Year Low Flow	7.73	ft^3/s	46	46
90 Day 10 Year Low Flow	11.6	ft^3/s	41	41

Low-Flow Statistics Citations

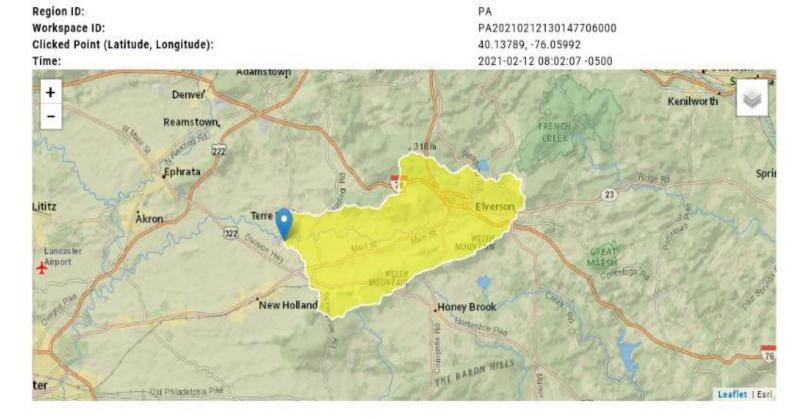
Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p.

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.4.0


Enter report title:

Conestoga Wood Specialties Corporation PA0083909 RMI = 46.7

Enter comments:

Some comments here

Conestoga Wood Specialties Corporation PA0083909 RMI = 46.7

Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	46.3	square miles
BSLOPD	Mean basin slope measured in degrees	4.0155	degrees
ROCKDEP	Depth to rock	5.2	feet
URBAN	Percentage of basin with urban development	3.3031	percent

	46.3	square miles	4.70	5151515
		adams imica	4.78	1150
ope degrees	4.0155	degrees	1.7	6.4
	5.2	feet	4.13	5.21
	3.3031	percent	0	89
	12.1	Tt^3/8		46
	15.2	ft*3/s	38	38
	6.31	ft^3/s	51	51
	7.92	ft*3/s	46	46
	12	ft*3/s	41	41
-	t n SEp: Standard Error of Prediction, SE: Sta	SEp: Standard Error of Prediction, SE: Standard Error (other see report) Value 12.1 15.2 6.31 7.92	3.3031 percent SEp: Standard Error of Prediction, SE: Standard Error (other see report) Value 12.1 ft^3/s 15.2 ft^3/s 6.31 ft^3/s 7.92 ft^3/s	SEp: Standard Error of Prediction, SE: Standard Error (other see report) Value Unit SE

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.4.0

4	Α	В	С	D	Е	F	G	н
1	1Α	В	С	D	Е	F	G	
2	2	TRC EVAL	UATION					
3	3	Input appropri	ate values i	n B4:B8 and E4:E7				
4	4		= Q stream			= CV Daily		
5	5	0.019	= Q discha	arge (MGD)	0.5	= CV Hourly		
6	6	30	= no. sam	ples	1	= AFC_Partia	al Mix Factor	
7	7	0.3	= Chlorine	Demand of Stream	1	= CFC_Partia	al Mix Factor	
8	8	0	= Chlorine	Demand of Disch	15	= AFC_Crite	ria Complianc	e Time (min)
9	9	0.5	= BAT/BP.	J Value	720	= CFC_Crite	ria Complianc	e Time (min)
10		0	= % Facto	r of Safety (FOS)		=Decay Coef	fficient (K)	
11	10	Source	Reference	AFC Calculations		Reference	CFC Calculati	ons
12	11	TRC	1.3.2.iii	WLA afc =	56.780	1.3.2.iii	WLA c	fc = 55.348
13		PENTOXSD TRO		LTAMULT afc =		5.1c	LTAMULT o	
14		PENTOXSD TRO	5.1b	LTA_afc=	21.158	5.1d	LTA_c	fc = 32.177
15	14							
16	15				Limit Cal			
17	16	PENTOXSD TRO			L MULT =		DATIDO	
18	17	PENTOXSD TRO	5.1g	AVG MON LIMI			BAT/BPJ	
19 20	18			INST MAX LIMI	i (mg/i) =	1.035		
21								
22								
23		WLA afc	(.019/e(-k ⁴	AFC_tc)) + [(AFC_	Yc*Qs*	.019/Qd*e(-k	'AFC tc))	
24				AFC_Yc*Qs*Xs/Qd				
25		LTAMULT afc		(cvh^2+1))-2.326*LN				
26		LTA_afc	wla_afc*LTA	AMULT_afc				
27								
28		WLA_cfc		'CFC_tc) + [(CFC_			CFC_tc))	
29				CFC_Yc*Qs*Xs/Qd				
30		LTAMULT_cfc	***	l(cvd^2/no_samples	F1))-2.326	"LN(cvd^2/no_	samples+1)^0.5)
31 32		LTA_cfc	wla_cfc*LTA	AMULI_ctc				
33		AML MULT	EVP(2 326*I	N((cvd^2/no_sample	e+1)^0 5)-0.5*I N(cvd^2	Ino samples+1))
34				PJ,MIN(LTA_afc,LTA	100		mo_samples+1)	,
35				on_limit/AML_MU				
36			,(av	mo	,,,			
37								

Input Data WQM 7.0

	SWP Basin			Stre	eam Name		RMI		vation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PW Withd (mg	rawal	Apply FC
	07J	7	548 CONE	STOGA F	RIVER (form	nerly CREE	48.70	00	367.00	43.60	0.00000)	0.00	~
					St	ream Data	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p pH	Ter	<u>Strean</u> np	n pH	
Cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°(C)		
Q7-10 Q1-10 Q30-10	0.100	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.0	0 20	0.00 7.	00	0.00	0.00	
					D	ischarge [)ata]	
			Name	Per	rmit Numbe	Existing Disc r Flow (mgd)	Permitto Disc Flow (mgd)	Disc Flor	c Res w Fa	Dis erve Ter ctor (°C	np	isc pH		
		Cone	stoga Woo	d PA	0083909	0.0190	0.019	0.0	190 (0.000	25.00	7.00		
					Pa	arameter [)ata							
				Paramete	r Name	Di: Co		Trib :	Stream Conc	Fate Coef				
						(m	g/L) (n	ng/L)	(mg/L)	(1/days)				
			CBOD5			-	25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			5.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

Input Data WQM 7.0

							VVQIV						
	SWP Basin			Stre	eam Name		RMI	Eleva (ft		Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Appl FC
	07J	75	48 CONE	STOGA F	RIVER (form	erly CREE	46.70	0 3	53.00	46.30	0.00000	0.00	~
					St	ream Data	1						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Temp	Tributary D pH	Temp	Stream pH	
conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.100	0.00 0.00 0.00	6.31 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	20	.00 7.0	0 0	.00 0.0)
					Di	scharge D	ata						
			Name	Per	mit Number	Disc	Permitte Disc Flow (mgd)	Disc Flow	Rese Fac		p pł		
						0.0000	0.000	0.000	00 0	.000 2	5.00	7.00	
					Pa	rameter D)ata						
				Paramete	r Name		nc C	onc (ream Conc	Fate Coef			
	_									(1/days)			
			CBOD5			2	25.00	2.00	0.00	1.50			
			Dissolved	Oxygen			3.00	8.24	0.00	0.00		- 1	

WQM 7.0 Hydrodynamic Outputs

	SW	P Basin	Strea	m Code				Stream	Name				
		07J	7	548		CON	NESTOG/	A RIVER	(formerly	y CREEK	3)		
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH	
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)		
Q7-10 Flow										-			
48.700	5.23	0.00	5.23	.0294	0.00133	.698	36.24	51.88	0.21	0.588	20.03	7.00	
Q1-1	0 Flow												
48.700	3.35	0.00	3.35	.0294	0.00133	NA	NA	NA	0.16	0.754	20.04	7.00	
Q30-	10 Flow												
48.700	7.11	0.00	7.11	.0294	0.00133	NA	NA	NA	0.25	0.496	20.02	7.00	

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	~
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	~
D.O. Saturation	90.00%	Use Balanced Technology	v
D.O. Goal	5		

WQM 7.0 Wasteload Allocations

3	SWP Basin	Stream (Code		St	ream Name			
	07J	7548	3	C)				
NH3-N /	Acute Alloca	tions							
RMI	Discharge Na	ame C	aseline riterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	1
48.70	O Conestoga Wo	od	9.64	50	9.64	50	0	0	_
	Chronic Allo	Bas	eline	Baseline	Multiple	Multiple WLA	Critical Reach	Percent Reduction	
RMI	Discharge Nan		terion ng/L)	WLA (mg/L)	Criterion (mg/L)	(mg/L)	Reacti	Reduction	_
	Discharge Nan D Conestoga Wo	(m			(mg/L)		0	0	-
48.700		ood llocatio	1.91 Ons	(mg/L) 25 BOD5 ne Multiple	(mg/L) 1.91 NH3-N Baseline Mu	(mg/L) 25	0 ved Oxygen	0 L Critical	Percent Reduction

WQM 7.0 D.O.Simulation

SWP Basin Str	ream Code		Stream Name							
07J	7548	С	ONESTO	ONESTOGA RIVER (formerly CREEK)						
RMI	Total Discharge	Flow (mgd) Anal	ysis Tempera	ture (°C)	Analysis pH				
48.700	0.019	9		20.028		7.000				
Reach Width (ft)	Reach De	oth (ft)		Reach WDRa	atio	Reach Velocity (fps)				
36.238	0.698	3		51.880		0.208				
Reach CBOD5 (mg/L)	Reach Kc (1/days)	R	each NH3-N (mg/L)	Reach Kn (1/days)				
2.13	0.067			0.14		0.702				
Reach DO (mg/L)	Reach Kr (Kr Equation	_	Reach DO Goal (mg/L)				
8.225	2.619	9		Tsivoglou		5				
Reach Travel Time (days)		Subreach	Results							
0.588	TravTime		NH3-N	D.O.						
	(days)	(mg/L)	(mg/L)	(mg/L)						
	0.059	2.12	0.13	8.24						
	0.118	2.11	0.13	8.24						
	0.176	2.10	0.12	8.24						
	0.235	2.10	0.12	8.24						
	0.294	2.09	0.11	8.24						
	0.353	2.08	0.11	8.24						
	0.412	2.07	0.10	8.24						
	0.471	2.06	0.10	8.24						
	0.529	2.05	0.10	8.24						
	0.588	2.05	0.09	8.24						

WQM 7.0 Effluent Limits

SWP Basin Stream	Code					
07J 75	48	CON	ESTOGA RIVER (form	nerly CREEK)		
Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
Conestoga Wood	PA0083909	0.019	CBOD5	25		
			NH3-N	25	50	
			Dissolved Oxygen			5
	Name	Name Permit Number	Name Permit Flow Number (mgd)	Name Permit Flow (mgd) Parameter Conestoga Wood PA0083909 0.019 CBOD5 NH3-N	Name Permit Number Disc Flow (mgd) Parameter Effl. Limit 30-day Ave. (mg/L) Conestoga Wood PA0083909 0.019 CBOD5 25 NH3-N 25	Name Permit Number Disc Flow (mgd) Parameter Effl. Limit 30-day Ave. (mg/L) Effl. Limit Maximum (mg/L) Conestoga Wood PA0083909 0.019 CBOD5 25 NH3-N 25 50

0.019

Toxics Management Spreadsheet Version 1.1, October 2020

Discharge Information

100

Instructions	Discharge Stream							
Facility: Cor	nestoga Wood Speci	alties Corporati	on	NPDES Perr	nit No.: PA	0083909	Outfall	No.: 001
Evaluation Type:				Wastewater	Description:	Sewage Eff	luent	
			Discharge	Characterist	ics			
Design Flow	Handanan (mar/l)t	-U (CID+	P	artial Mix Fa	ctors (PMF	s)	Complete Mix	x Times (min)
(MGD)*	Hardness (mg/l)*	pH (SU)*	AFC	CFC	THH	CRL	Q ₇₋₁₀	Qh

					011	left	t blank	0.5 If le	eft blank	0	If left blan	k	1 If lef	t blank
	Discharge Pollutant	Units	Ма	x Discharge Conc	Trib Cond		Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L			\rightarrow	H								
7	Chloride (PWS)	mg/L				Н								
Group	Bromide	mg/L												
5	Sulfate (PWS)	mg/L				F								
	Fluoride (PWS)	mg/L				Н								
	Total Aluminum	μg/L				Ħ								
	Total Antimony	μg/L				Ţ								
	Total Arsenic	μg/L				H								
	Total Barium	μg/L				Ħ								
	Total Beryllium	µg/L				Ţ								
1	Total Boron	μg/L				F								
	Total Cadmium	µg/L				H								
	Total Chromium (III)	μg/L												
1	Hexavalent Chromium	μg/L				P								
	Total Cobalt	µg/L				H								
	Total Copper	mg/L		0.01		Ħ								
2	Free Cyanide	μg/L				Į								
l 💆	Total Cyanide	μg/L				H								
Group	Dissolved Iron	μg/L				П								
-	Total Iron	μg/L												
1	Total Lead	mg/L		0.036		F								
	Total Manganese	μg/L				Н								
1	Total Mercury	μg/L				Ī								
	Total Nickel	µg/L				Ļ								
	Total Phenols (Phenolics) (PWS)	μg/L				H								
	Total Selenium	μg/L				Т								
	Total Silver	μg/L				Į								
1	Total Thallium	μg/L				H								
	Total Zinc	mg/L	<	0.05										
	Total Molybdenum	µg/L												
	Acrolein	μg/L	<											
	Acrylamide	μg/L	<											
	Acrylonitrile	µg/L	<											
	Benzene	µg/L	<											
	Bromoform	μg/L	<		+	H								

			-							
	Carbon Tetrachloride	μg/L	<	\Box	Ţ	Ţ				
	Chlorobenzene	μg/L		H	+	Ļ				
	Chlorodibromomethane	μg/L	<	\dashv	\pm	÷				
	Chloroethane	μg/L	<	H	$^{+}$	T				
	2-Chloroethyl Vinyl Ether	μg/L	<	Ħ	T	T				
	Chloroform	μg/L	<			Τ				
	Dichlorobromomethane	μg/L	<	\Box		ļ				
	1,1-Dichloroethane	µg/L	<	Ħ	+	÷				
	1,2-Dichloroethane		<	H	+	┿				
3	•	μg/L	_	Ħ	÷	÷				
Ĭ	1,1-Dichloroethylene	μg/L	<	Ħ	÷	Ť				
Group	1,2-Dichloropropane	μg/L	<	\Box	Т	Т				
•	1,3-Dichloropropylene	μg/L	<	Щ	_	Ļ				
	1,4-Dioxane	μg/L	<	4	+	Ł				
	Ethylbenzene	μg/L	<	H	╁	Ŧ				
	Methyl Bromide	μg/L	<	Ħ	Ŧ	Ť				
	Methyl Chloride	μg/L	<			t				
	Methylene Chloride	µg/L	<			Т				
	1.1.2.2-Tetrachloroethane		<	H	+	÷				
		µg/L	-	₩	+	÷				
	Tetrachloroethylene	μg/L	<	+	+	+				
	Toluene	μg/L	<							
	1,2-trans-Dichloroethylene	μg/L	<							
	1,1,1-Trichloroethane	μg/L	<							
	1,1,2-Trichloroethane	μg/L	<	Щ	+	Ļ				
	Trichloroethylene	μg/L	<	-		F				
	Vinyl Chloride	μg/L	<	H	+	Ŧ				
	2-Chlorophenol	μg/L	<	\vdash	†	Ť				
	2,4-Dichlorophenol	µg/L	<	Ħ	Ť	Ť				
	2,4-Dimethylphenol	µg/L	<	⇉	+	Ŧ				
	4.6-Dinitro-o-Cresol		<	₩	+	÷				
4	•	μg/L	-	H	+	╄				
à	2,4-Dinitrophenol	μg/L	<	H	+	÷				
_	2-Nitrophenol	μg/L	<	Ħ	$^{\pm}$	Ť				
ō	4-Nitrophenol	μg/L	<		Т	Τ				
	p-Chloro-m-Cresol	μg/L	<	Щ	4	Ļ				
	Pentachlorophenol	μg/L	<	\dashv	Ŧ	Ŧ				
	Phenol	μg/L	<	H	Ŧ	Ŧ				
	2,4,6-Trichlorophenol	μg/L	<	\Box	†	Ť				
	Acenaphthene	μg/L	<		Ť	Ť				
	Acenaphthylene	µg/L	<	Ħ	#	ļ				
	Anthracene	µg/L	<	H	+	÷				
	Benzidine		-	Н	+	+				
		μg/L	<	H	+	÷				
	Benzo(a)Anthracene	μg/L	<	Ħ	÷	Ť				
	Benzo(a)Pyrene	μg/L	<	П	Т	Τ				
	3,4-Benzofluoranthene	μg/L	<	Ц	4	ļ				
	Benzo(ghi)Perylene	μg/L	<	\vdash	\pm	Ł				
	Benzo(k)Fluoranthene	μg/L	<	H	╁	t				
	Bis(2-Chloroethoxy)Methane	μg/L	<	Ħ	T	T				
	Bis(2-Chloroethyl)Ether	μg/L	<			Т				
	Bis(2-Chloroisopropyl)Ether	μg/L	<	H	+	ŧ				
	Bis(2-Ethylhexyl)Phthalate	µg/L	<	Ħ	÷	÷				
	4-Bromophenyl Phenyl Ether	µg/L	<	H	+	┿				
	Butyl Benzyl Phthalate		<	Ħ	÷	÷				
		μg/L	_	Ħ	Ŧ	Ŧ				
	2-Chloronaphthalene	μg/L	<	Ų.	Ţ	Ţ				
	4-Chlorophenyl Phenyl Ether	μg/L	<	Щ	4	L				
	Chrysene	μg/L	<		-	+				
		μg/L	<			F				
	Dibenzo(a,h)Anthrancene					T				
	Dibenzo(a,h)Anthrancene 1,2-Dichlorobenzene	μg/L	<			_				
	1,2-Dichlorobenzene	μg/L	<							
	1,2-Dichlorobenzene 1,3-Dichlorobenzene	μg/L μg/L	<			÷				
p 5	1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene	µg/L µg/L µg/L	<							
g dnc	1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3-Dichlorobenzidine	µg/L µg/L µg/L µg/L	< <							
Group 5	1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3-Dichlorobenzidine Diethyl Phthalate	μg/L μg/L μg/L μg/L μg/L	v v v							
dn	1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3-Dichlorobenzidine Diethyl Phthalate Dimethyl Phthalate	µg/L µg/L µg/L µg/L µg/L	v v v v							
Group 5	1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3-Dichlorobenzidine Diethyl Phthalate	μg/L μg/L μg/L μg/L μg/L	v v v							

		_	_	_	_	_				
	2,6-Dinitrotoluene	μg/L	<			4				
	Di-n-Octyl Phthalate	μg/L	<	4	\perp	4				
	1,2-Diphenylhydrazine	μg/L	<	\vdash	\vdash	4				
	Fluoranthene	μg/L	<							
	Fluorene	μg/L	<							
	Hexachlorobenzene	μg/L	<	\dashv		\perp				
	Hexachlorobutadiene	μg/L	<	+	\blacksquare	H				$H \rightarrow H$
	Hexachlorocyclopentadiene	μg/L	<	Ħ	Ħ	T				
	Hexachloroethane	μg/L	<							
	Indeno(1,2,3-cd)Pyrene	µg/L	<	1						
- 1	Isophorone	μg/L	<	H	\pm	Ħ				
	Naphthalene	μg/L	<	Ħ	\pm	Ħ				
	Nitrobenzene	µg/L	<	+	Н					
	n-Nitrosodimethylamine	µg/L	<	#		7				
	n-Nitrosodi-n-Propylamine	μg/L	<	₩	+	#				₩₩
			<	Н	+	+				++
	n-Nitrosodiphenylamine	μg/L	-	×	+	H				
	Phenanthrene	μg/L	<			4				
	Pyrene	μg/L	<	4		4				
	1,2,4-Trichlorobenzene	µg/L	<			4				
ļ	Aldrin	μg/L	<							
	alpha-BHC	μg/L	<							
	beta-BHC	μg/L	<							
	gamma-BHC	μg/L	<	II.						
	delta BHC	μg/L	<			T				
	Chlordane	μg/L	<			Ħ				
	4.4-DDT	μg/L	<	\Box						
	4.4-DDE	μg/L	<							
	4,4-DDD	μg/L	<	H						
	Dieldrin	µg/L	<	H	+	H				₩₩
	alpha-Endosulfan	µg/L	<	+	+	1				
	beta-Endosulfan		<	Ħ		-				
90	Endosulfan Sulfate	μg/L	<	#	-	4				
۵.		μg/L	-	Н	+	+				 ++
ĕ	Endrin	μg/L	<	H	+	H				
	Endrin Aldehyde	μg/L	<	×	\Box	4				
	Heptachlor	μg/L	<							
	Heptachlor Epoxide	μg/L	<	4	\perp	4				
	PCB-1016	μg/L	<	\perp	\perp	\perp				
	PCB-1221	μg/L	<	+		H				
	PCB-1232	μg/L	<	П	\neg	Т				
	PCB-1242	μg/L	<	II.						
	PCB-1248	μg/L	<	ļ.		Ħ				
	PCB-1254	μg/L	<	Ħ	\pm	Ħ				
	PCB-1260	μg/L	<	Н	+					
	PCBs, Total	μg/L	<	Ħ						
	Toxaphene		<	₩		7				
	2,3,7,8-TCDD	µg/L	<	+		+				
_		ng/L	-	+		+				
	Gross Alpha	pCi/L	_	×	+	H				
	Total Beta	pCi/L	<			1				
_	Radium 226/228	pCi/L	<			4				Į Į
5	Total Strontium	μg/L	<	+		4				
٦	Total Uranium	μg/L	<	\perp		1				
	Osmotic Pressure	mOs/kg		İ						
٦										
				H		I				
						H				
				+		1				
						1				
						1				
						1				
				4		1				
				+		1				
ļ						1				
				+						
				 _	_	\rightarrow	 	 	 	

Toxics Management Spreadsheet Version 1.1, October 2020

Stream / Surface Water Information

Conestoga Wood Specialties Corporation, NPDES Permit No. PA0083909, Outfall 001

Instructions Disch	arge Str	ream													
Receiving Surface W	/ater Name:	Conestoga	River				No. Rea	aches to	Model:	1	_	tewide Criteri at Lakes Crit			
Location	Stream Co	de* RMI	Elevat	DA (mi*)* Slo	pe (ft/ft)		Withdrav MGD)	val Apply F Criteri		OR	SANCO Crite	eria		
Point of Discharge	007548	48.7	367	43.6					Yes						
End of Reach 1	007548	46.7	353	46.3					Yes						
Q ₇₋₁₀		LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Traver	Tributa	arv	Strea	m	Analys	sis
Location	RMI	(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	Time (days)	Hardness	pН	Hardness*	pH*	Hardness	pН
Point of Discharge	48.7	0.1	5.23						(Maye)			100	7		
End of Reach 1	46.7	0.1	6.31									100	7		
Qn															
Location	RMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time	Tributa	ary	Strea	m	Analys	sis
Location	- CIVII	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness	pН	Hardness	pН
Point of Discharge	48.7														
End of Reach 1	46.7														

Toxics Management Spreadsheet Version 1.1, October 2020

Model Results

Conestoga Wood Specialties Corporation, NPDES Permit No. PA0083909, Outfall 001

Instructions Results	RETURN TO INPUTS	SAVE AS	PDF	PRINT	• A	II () Inputs	○ Results) Limits
☐ Hydrodynamics ☑ Wasteload Allocations								
☑ AFC C	CT (min): 15	PMF: 0.423	Analy	ysis Hardnes	ss (mg/l):	100	Analysis pH:	7.00
Pollutants	Conc CV	Trib Conc Fate (μg/L) Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)		Со	mments
Total Copper	0 0	0	13.439	14.0	1,068			ator of 0.96 applied
Total Lead	0 0	0	64.581	81.6	6,230			tor of 0.791 applied
Total Zinc	0 0	0	117.180	120	9,143		Chem Transla	tor of 0.978 applied
☑ CFC C	CT (min): 83.737	PMF: 1		lysis Hardne	ss (mg/l):	100	Analysis pH:	7.00
Pollutants	Conc CV	Trib Conc Fate (μg/L) Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)		Со	mments
Total Copper	0 0	0	8.956	9.33	1,669		Chem Transla	ator of 0.96 applied
Total Lead	0 0	0	2.517	3.18	569		Chem Transla	tor of 0.791 applied
Total Zinc	0 0	0	118.139	120	21,439		Chem Transla	tor of 0.986 applied
☑ THH C	CT (min): 83.737	PMF: 1	Anal	lysis Hardne	ss (mg/l):	N/A	Analysis pH:	N/A
Pollutants	Conc CV	Trib Conc Fate (μg/L) Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)		Со	mments
Total Copper	0 0	0	N/A	N/A	N/A			
Total Lead	0 0	0	N/A	N/A	N/A			
Total Zinc	0 0	0	N/A	N/A	N/A			
✓ CRL C	CT (min): 25.895	PMF: 1	Anal	lysis Hardne:	ss (mg/l):	N/A	Analysis pH:	N/A
Pollutants	Conc CV	Trib Conc Fate (μg/L) Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)		Со	mments
Total Copper	0 0	0	N/A	N/A	N/A		<u> </u>	

Total Lead	0	0	0	N/A	N/A	N/A	
Total Zinc	0		0	N/A	N/A	N/A	

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month:

4

	Mass	Limits		Concentra	tion Limits				
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
				·				·	

☑ Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Copper	0.68	mg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	0.57	mg/L	Discharge Conc ≤ 10% WQBEL
Total Zinc	5.86	mg/L	Discharge Conc ≤ 10% WQBEL