

Southcentral Regional Office CLEAN WATER PROGRAM

Application Type Renewal
Facility Type Municipal
Major / Minor Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. PA0084182

APS ID 731005

Authorization ID 1398257

		Applicant and F	acility Information			
Applicant Name	Peter	s Township Municipal Authority	Facility Name	Peters Township Fort Loudon STP		
Applicant Address	РО В	ox 19 5000 Steele Avenue	Facility Address	1660 Fort Loudon Road		
	Lema	sters, PA 17231-0019		Mercersburg, PA 17236		
Applicant Contact	Forsy	rth Derek	Facility Contact	Forsyth Derek		
Applicant Phone	(717)	977-1007	Facility Phone	(717) 977-1007		
Client ID	27310	66	Site ID	451949		
Ch 94 Load Status	Existi	ng Organic Overload	Municipality	Peters Township		
Connection Status	No Li	mitations	County	Franklin		
Date Application Rece	ived	June 1, 2022	EPA Waived?	Yes		
Date Application Accepted June 3, 2022		June 3, 2022	If No, Reason			
Purpose of Application NPDES Permit Renewal.		NPDES Permit Renewal.				

Summary of Review

Peters Township Municipal Authority (PTMA) has applied to the Pennsylvania Department of Environmental Protection (DEP) for reissuance of its NPDES permit. The permit was last reissued on April 20, 2018 and became effective on May 1, 2018. The permit will expire on April 30, 2023.

Based on the review, it is recommended that the permit be drafted.

Sludge use and disposal description and location(s): Sludge is stored on site prior to being sent to another WWTP for further treatment.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
Х		ງ່ານວນ Kim Jinsu Kim / Environmental Engineering Specialist	October 21, 2022
Х		Daniel W. Martin Daniel W. Martin, P.E. / Environmental Engineer Manager	November 15, 2022

NPDES Permit Fact Sheet Peters Township Fort Loudon STP

Discharge, Receiving Waters ar	nd Water Supply Informatio	n
Outfall No. 001	Design Flow (MGD)	0.1
Latitude 39° 53′ 44″	Longitude	-77º 53' 31 "
Quad Name McConnellsburg	Quad Code	1922
Wastewater Description: Sewage Effluent		
Receiving Waters West Branch Conococheague Creek	Stream Code	59398
NHD Com ID 49482558	RMI	19.6
Drainage Area 100 sq.mi.	Yield (cfs/mi²)	0.0598
Q ₇₋₁₀ Flow (cfs) 5.98	Q ₇₋₁₀ Basis	USGS StreamStats
Elevation (ft) 568	Slope (ft/ft)	
Watershed No. 13-C	Chapter 93 Class.	TSF, MF
Existing Use None	Existing Use Qualifier	None
Exceptions to Use None	Exceptions to Criteria	None
Assessment Status Attaining Use(s)		
Cause(s) of Impairment		
Source(s) of Impairment		
TMDL Status	Name	
Nearest Downstream Public Water Supply Intake Hag	gerstown	
PWS Waters Potomac River	Flow at Intake (cfs)	
PWS RMI	Distance from Outfall (mi)	49

Drainage Area

The discharge is to West Branch Conococheague Creek at RMI 19.6. A drainage area upstream of the discharge is determined to be 100 sq.mi. according to USGS StreamStats available at https://streamstats.usgs.gov/ss/.

Stream Flow

There is no USGS gauging station in the vicinity of the point of discharge. A Q7-10 flow value of 5.98 cfs generated from USGS Stream Stats will be used in water quality modeling. This results in a low flow yield of 5.98 cfs / 100 sq.mi. = 0.0598cfs/sq.mi.

West Branch Conococheague Creek

25 Pa Code §93.9z classifies the West Branch Conococheague Creek (main stem, US 30 Bridge to PA-MD State Border) as trout stocking surface water. No special protection waters are impacted by this discharge. The discharge is located in a stream segment listed as attaining uses. No local TMDL has been taken into consideration during this review.

Public Water Supply Intake

The nearest downstream public water supply intake is the Hagerstown intake located on the Potomac River approximately 49 miles from the discharge. Considering the distance and nature, the discharge is not expected to significantly affect the water supply.

Class A Wild Trout Streams

The receiving stream is not a Class A Wild Trout stream; therefore no Class A Wild Trout Fishery is impacted by this discharge.

	Tre	atment Facility Summa	ry	
Treatment Facility Na	ıme: Peters Township Fort I	Loudon STP		
WQM Permit No.	Issuance Date			
2890401	January 28, 1991			
	Degree of			Avg Annual
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)
Sewage	Secondary	Extended Aeration	Hypochlorite	0.1
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal
0.1	208	Not Overloaded	Sludge Holding	Other WWTP

PTMA owns and operates the sanitary wastewater treatment facility located in Peters Township, Franklin County. PTMA, in fact, operates two (2) treatment facilities in its municipality; the Mercersburg Junction STP in Mercersburg, PA and the Fort Loudon STP in Fort Loudon, PA. This NPDES permit covers discharges of sewage treated by the Fort Loudon STP. The facility only serves the Fort Loudon area of Peters Township and all sewer systems are 100% separated. With having both annual average design flow and hydraulic design capacity of 0.10 MGD, this facility utilizes an extended aeration activated sludge treatment process consisting of an aeration tank, clarifier, chlorine contact tank, and outfall structure to the West branch Conococheague Creek. The facility utilizes a sludge holding tank. Sludge from this tank is then sent to the Mercersburg Junction STP for further treatment prior to hauled off-site for landfill. Sodium hypochlorite is used for disinfection and lime is used for pH control. There is no industrial/commercial user contributing industrial wastewater to the sewer system.

	Compliance History							
Commence of DMD as	A common of a set DNAD data is a second and the second set							
Summary of DMRs:	A summary of past DMR data is presented on the next page.							
Summary of Inspections:	05/28/2020: Brandon Bettinger, DEP Water Quality Specialist, conducted an administrative inspection. No issues were noted at the time of inspection.							
Other Comments	A file review revealed that there is no open violation associated with this facility.							

Effluent Data

DMR Data for Outfall 001 (from May 1, 2021 to April 30, 2022)

Parameter	APR-22	MAR-22	FEB-22	JAN-22	DEC-21	NOV-21	OCT-21	SEP-21	AUG-21	JUL-21	JUN-21	MAY-21
Flow (MGD)												
Average Monthly	0.034	0.034	0.035	0.034	0.035	0.04	0.043	0.05	0.046	0.042	0.041	0.038
Flow (MGD)												
Daily Maximum	0.045	0.049	0.058	0.043	0.042	0.049	0.051	0.136	0.08	0.06	0.054	0.046
pH (S.U.)												
Daily Minimum	7.0	6.9	6.8	6.9	6.7	7.0	6.9	6.9	7.0	7.0	7.0	6.9
pH (S.U.)												
Daily Maximum	7.2	7.2	7.0	7.1	7.0	7.1	7.1	7.3	7.2	7.3	7.2	7.2
DO (mg/L)												
Daily Minimum	6.3	6.7	6.9	7.0	6.3	6.2	5.7	5.4	5.4	5.2	5.1	5.4
TRC (mg/L)												
Average Monthly	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.3	0.3	0.4
TRC (mg/L)												
Instantaneous												
Maximum	0.5	0.5	0.5	0.8	0.5	0.5	0.5	0.5	0.5	0.5	0.6	0.5
CBOD5 (lbs/day)												
Average Monthly	0.7	0.9	< 0.8	< 0.6	< 0.6	< 0.7	< 1.0	1.0	1.0	1.0	0.9	< 0.6
CBOD5 (lbs/day)												
Raw Sewage Influent												
Average Monthly	112	59	98	72	96	115	62	90	84	88	92	93
CBOD5 (lbs/day)												
Raw Sewage Influent												
Daily Maximum	131	66	123	75	100	159	71	94	84	96	93	96
CBOD5 (lbs/day)			4.0									
Weekly Average	0.8	1.0	< 1.0	0.7	< 0.7	< 0.7	1.0	1.0	2.0	2.0	1.0	0.7
CBOD5 (mg/L)	0.0	0.0	0.0	0.4	0.0	0.0	0.0	0.0	0.0	0.5	0.0	0.4
Average Monthly	2.0	3.6	< 2.0	< 2.1	< 2.0	< 2.0	< 2.8	2.6	3.6	3.5	2.2	< 2.1
CBOD5 (mg/L)												
Raw Sewage Influent	200	005	057	007	200	220	450	200	004	054	222	240
Average Monthly	362	235	257	237	306	339	159	209	221	251	229	318
CBOD5 (mg/L)	2.1	5.0	< 2.0	2.2	< 2.0	< 2.0	3.5	2.6	4.1	4.4	2.3	2.3
Weekly Average	2.1	5.0	< 2.0	2.2	< 2.0	< 2.0	3.5	2.0	4.1	4.4	2.3	2.3
TSS (lbs/day)	1.0	1.0	2.0	- 20	0.8	1.0	-10	2.0	1.0	2.0	2.0	2.0
Average Monthly	1.0	1.0	2.0	< 2.0	υ.δ	1.0	< 1.0	2.0	1.0	2.0	2.0	2.0
TSS (lbs/day)												
Raw Sewage Influent	10	17	18	20	40	40	24	101	20	20	22	21
Average Monthly	19	17	Ίδ	20	40	49	24	101	30	28	33	21

NPDES Permit Fact Sheet Peters Township Fort Loudon STP

NPDES Permit No. PA0084182

Parameter	APR-22	MAR-22	FEB-22	JAN-22	DEC-21	NOV-21	OCT-21	SEP-21	AUG-21	JUL-21	JUN-21	MAY-21
TSS (lbs/day)												
Raw Sewage Influent												
 br/> Daily Maximum	19	23	19	25	57	68	25	164	33	32	35	24
TSS (lbs/day)												
Weekly Average	2.0	1.0	3.0	4.0	0.9	1.0	2.0	2.0	2.0	2.0	2.0	2.0
TSS (mg/L)												
Average Monthly	3.5	4.0	5.5	< 7.5	2.5	3.5	< 2.5	4.8	3.5	4.8	5.3	5.5
TSS (mg/L)												
Raw Sewage Influent												
 br/> Average												
Monthly	59	65	52	66	130	154	61	273	78	79	80	72
TSS (mg/L)												
Weekly Average	4.5	5.5	6.5	14.0	3.0	4.0	4.0	6.5	4.0	5.5	5.5	6.0
Fecal Coliform												
(No./100 ml)												
Geometric Mean	5.0	8.0	2.0	2.0	< 1.0	2.0	10	8.0	44	13	< 3.0	< 2.0
Fecal Coliform												
(No./100 ml)												
Instantaneous												
Maximum	7.0	9.0	2.0	4.0	< 1.0	4.0	17	34	159	174	9.0	3.0
Total Nitrogen												
(lbs/day)												
Daily Maximum		< 18			< 19			< 21			< 20	
Total Nitrogen (mg/L)												
Daily Maximum		< 59.74			< 53.1			< 57.3			< 68.06	
Ammonia (lbs/day)												
Average Monthly	< 0.2	< 0.1	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.1
Ammonia (mg/L)												
Average Monthly	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Total Phosphorus												
(lbs/day)												
Daily Maximum		2.0			2.0			2.0			2.0	
Total Phosphorus												
(mg/L)												
Daily Maximum		5.65			6.05			6.45			7.1	

Existing Effluent Limitations and Monitoring Requirements

The table below summarizes effluent limitations and monitoring requirements specified in the current NPDES permit renewal.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum (2)	Required
Parameter	Average Weekly			Average	Weekly Instant		Measurement	Sample
	Monthly	Average	Minimum	Monthly	Average	Maximum	Frequency	Type
		Report						
Flow (MGD)	Report	Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
			6.0		9.0			
pH (S.U.)	XXX	XXX	Daily Min	XXX	Daily Max	XXX	1/day	Grab
			5.0					
Dissolved Oxygen	XXX	XXX	Daily Min	XXX	XXX	XXX	1/day	Grab
Total Residual Chlorine (TRC)	XXX	xxx	XXX	0.5	xxx	1.6	1/day	Grab
Carbonaceous Biochemical	7001	7001	7000	0.0	7001		.,,	8-Hr
Oxygen Demand (CBOD5)	21	33	XXX	25.0	40.0	50	2/month	Composite
Carbonaceous Biochemical								
Oxygen Demand (CBOD5)		Report						8-Hr
Raw Sewage Influent	Report	Daily Max	XXX	Report	XXX	XXX	2/month	Composite
								8-Hr
Total Suspended Solids	25	38	XXX	30.0	45.0	60	2/month	Composite
Total Suspended Solids		Report						8-Hr
Raw Sewage Influent	Report	Daily Max	XXX	Report	XXX	XXX	2/month	Composite
Fecal Coliform (No./100 ml)				2000			_,	
Oct 1 - Apr 30	XXX	XXX	XXX	Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml)	1001	2007	2007	200	2007	4000		
May 1 - Sep 30	XXX	XXX	XXX	Geo Mean	XXX	1000	2/month	Grab
Total Nitro and	VVV	Report	VVV	VVV	Report	VVV	4/	Coloulation
Total Nitrogen	XXX	Daily Max	XXX	XXX	Daily Max	XXX	1/quarter	Calculation
Ammonio Nitrogon	Donort	VVV	VVV	Donort	VVV	VVV	2/manth	8-Hr
Ammonia-Nitrogen	Report	XXX	XXX	Report	XXX	XXX	2/month	Composite 8-Hr
Total Phosphorus	XXX	Report Daily Max	xxx	XXX	Report Daily Max	xxx	1/quarter	8-Hr Composite
τοιαι εποδρποιάδ	$\wedge \wedge \wedge$	Daily Wax	^^^	^^^	Dally Iviax	^^^	i/quarter	Composite

	Development of Effluent L	imitations and Monitoring Req	uirements
Outfall No.	001	Design Flow (MGD)	0.1
Latitude	39º 53' 44.13"	Longitude	-77º 53' 31.10"
Wastewater [Description: Sewage Effluent		

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations

CBOD5, NH3-N and Dissolved Oxygen (DO)

WQM 7.0 version 1.0b is a water quality model designed to assist DEP to determine appropriate permit requirements for CBOD5, NH3-N and DO. DEP's technical guidance no. 391-2000-007 describes the technical methods contained in the model for conducting wasteload allocation analyses and for determining recommended limits for point source discharges. DEP recently updated this model (ver. 1.1) to include new ammonia criteria that has been approved by US EPA as part of the 2017 Triennial Review. The model was utilized, and the model output indicated that all existing requirements are still appropriate. Therefore, no changes are recommended.

Total Residual Chlorine

Since sodium hypochlorite is used for disinfection, Total Residual Chlorine (TRC) effluent levels must be regulated in accordance with 25 Pa Code §92a.48(b). DEP's TRC_CALC worksheet is utilized to determine if the existing BAT TBEL of 0.5 mg/L is still appropriate. The worksheet indicates that existing limits of 0.5 mg/L (average monthly) and 1.6 mg/L (IMAX) are still protective of water quality.

Toxics

DEP's NPDES permit application for minor sewages (less than 1.0 MGD) requires samples of heavy metals including Total Copper, Total Lead, and Total Zinc when the facility receives industrial or commercial contributions. The application shows no sample results. The sample results for TDS and its constituents showed effluent levels of these pollutants are not of concern. Therefore, no toxic pollutants are determined to be pollutants of concern for this facility.

Best Professional Judgment (BPJ) Limitations

Dissolved Oxvaen

A minimum of 5.0 mg/L for DO is an existing effluent limit and will remain unchanged in the draft permit as recommended by DEP's SOP. This requirement has also been assigned to other major sewage facilities in the region. 5.0 mg/L is taken directly from 25 Pa. Code § 93.7(a) and it is also determined to be appropriate according to water quality modeling.

NPDES Permit Fact Sheet Peters Township Fort Loudon STP

Total Phosphorus & Total Nitrogen

DEP's SOP no. BPNPSM-PMT-033 recommends monitoring requirements for Total Phosphorus and Total Nitrogen for all sewage facilities. Therefore, a routine monitoring for Total Phosphorus and Total Nitrogen is recommended. Since the receiving stream, West Branch Conococheague Creek is not impaired for nutrients, quarterly sampling of Total Phosphorus and Total Nitrogen will provide ample data for the subsequent permit renewal.

Additional Considerations

Flow Monitoring

The requirement to monitor the volume of effluent will remain in the draft permit per 40 CFR § 122.44(i)(1)(ii).

Influent BOD & TSS Monitoring

As a result of negotiation with EPA, the existing influent monitoring reporting requirement for TSS and BOD5 will be maintained in the draft permit. This requirement has been consistently assigned to all municipal wastewater treatment facilities.

Chesapeake Bay TMDL

DEP's Phase II Watershed Implementation Plan (WIP) categorizes this facility as a phase 5 non-significant sewage facility that has a design flow less than 0.2 MGD but greater than 0.002 MGD. The WIP recommends monitoring and reporting for Total Nitrogen and Total Phosphorus throughout the permit term at a frequency no less than annual. As mentioned above, quarterly monitoring of these pollutants will continue to be written in the permit as recommended by DEP's SOP.

Total Dissolved Solids (TDS)

TDS and its associated solids including Bromide, Chloride, and Sulfate have become statewide pollutants of concern. The requirement to monitor these pollutants must be considered under the criteria specified in 25 Pa. Code § 95.10 and the following January 23, 2014 DEP Central Office Directive:

For point source discharges and upon issuance or reissuance of an individual NPDES permit:

-Where the concentration of TDS in the discharge exceeds 1,000 mg/L, or the net TDS load from a discharge exceeds 20,000 lbs/day, and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for TDS, sulfate, chloride, and bromide. Discharges of 0.1 MGD or less should monitor and report for TDS, sulfate, chloride, and bromide if the concentration of TDS in the discharge exceeds 5,000 mg/L.

The sample result shows that effluent contains a TDS concentration level of 766 mg/L and Bromide was non-detected. Accordingly, the requirement to monitor these pollutants is not necessary.

E. Coli Monitoring

DEP's SOP No. BCW-PMT-033 recommends under 25 Pa Code §92a.61 a routine monitoring for E. Coli in all new and reissued permits. Since the facility has now the annual average design flow of 0.10 MGD, a quarterly monitoring will be included in the permit.

Monitoring Frequency and Sample Type

Unless otherwise specified throughout this fact sheet, existing monitoring frequencies and sample types will remain unchanged in the permit.

Mass Loading Limitations

All effluent mass loading limits will be based on the formula: design flow x concentration limit x conversion factor of 8.34.

Antidegradation Requirements

All effluent limitations and monitoring requirements have been developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing uses are maintained and protected.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

		Effluent Limitations							
Parameter	Mass Units	s (lbs/day) ⁽¹⁾		Concentra	Minimum (2)	Required			
i arameter	Average	Weekly		Average	Weekly	Instant.	Measurement	Sample	
	Monthly	Average	Minimum	Monthly	Average	Maximum	Frequency	Type	
		Report							
Flow (MGD)	Report	Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured	
			6.0		9.0				
pH (S.U.)	XXX	XXX	Daily Min	XXX	Daily Max	XXX	1/day	Grab	
			5.0						
DO	XXX	XXX	Daily Min	XXX	XXX	XXX	1/day	Grab	
TD 0	2007	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2007		2007	4.0	4/1		
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab	
ODODE	04	00	VVV	05.0	40.0	50	0/	8-Hr	
CBOD5	21	33	XXX	25.0	40.0	50	2/month	Composite	
CBOD5	Donort	Report Daily Max	xxx	Donort	xxx	xxx	2/manth	8-Hr	
Raw Sewage Influent TSS	Report	1	^^^	Report	^^^	^^^	2/month	Composite 8-Hr	
Raw Sewage Influent	Report	Report Daily Max	xxx	Report	XXX	xxx	2/month	8-Hr Composite	
Naw Sewage Illilderit	Report	Daily Max	^^^	Кероп	^^^	^^^	2/111011111	8-Hr	
TSS	25	38	xxx	30.0	45.0	60	2/month	Composite	
Fecal Coliform (No./100 ml)			7001	2000	.0.0		_,		
Oct 1 - Apr 30	XXX	XXX	XXX	Geo Mean	XXX	10000	2/month	Grab	
Fecal Coliform (No./100 ml)				200					
May 1 - Sep 30`	XXX	XXX	XXX	Geo Mean	XXX	1000	2/month	Grab	
		Report			Report				
Total Nitrogen	XXX	Daily Max	XXX	XXX	Daily Max	XXX	1/quarter	Calculation	
		Report			Report			8-Hr	
Nitrate-Nitrite as N	XXX	Daily Max	XXX	XXX	Daily Max	XXX	1/quarter	Composite	
		Report			Report			8-Hr	
TKN	XXX	Daily Max	XXX	XXX	Daily Max	XXX	1/quarter	Composite	
	_			_				8-Hr	
Ammonia	Report	XXX	XXX	Report	XXX	XXX	2/month	Composite	
		Report			Report			8-Hr	
Total Phosphorus	XXX	Daily Max	XXX	XXX	Daily Max	XXX	1/quarter	Composite	
F Coli (No. /100 ml.)	VVV	VVV	VVV	VVV	VVV	Donort	1/guartar	Crob	
E. Coli (No./100 mL)	XXX	XXX	XXX	XXX	XXX	Report	1/quarter	Grab	

	Tools and References Used to Develop Permit
	MOM for Windows Model (occ Attachment
	WQM for Windows Model (see Attachment) Taying Management Spreadchest (see Attachment)
	Toxics Management Spreadsheet (see Attachment)
	TRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
$ \vdash$	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
<u> </u>	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP:
一同	Other:

Attachments

1. StreamStats


StreamStats Report

Region ID:

Workspace ID: PA20220616155301857000

39.89558, -77.89174 Clicked Point (Latitude, Longitude):

2022-06-16 11:53:21 -0400

■ Collapse All

> Basin Characteristics

Code	Parameter Description	Value	Unit
CARBON	Percentage of area of carbonate rock	21.58	percent
DRNAREA	Area that drains to a point on a stream	100	square miles
PRECIP	Mean Annual Precipitation	40	inches
ROCKDEP	Depth to rock	4.4	feet
STRDEN	Stream Density total length of streams divided by drainage area	2.39	miles per square mile

Low-Flow Statistics

Low-Flow Statistics Parameters [Low Flow Region 2]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	100	square miles	4.93	1280
PRECIP	Mean Annual Precipitation	40	inches	35	50.4
STRDEN	Stream Density	2.39	miles per square mile	0.51	3.1
ROCKDEP	Depth to Rock	4.4	feet	3.32	5.65
CARBON	Percent Carbonate	21.58	percent	0	99

Low-Flow Statistics Flow Report [Low Flow Region 2]

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	ASEp	
7 Day 2 Year Low Flow	11.4	ft^3/s	38	38	
30 Day 2 Year Low Flow	14.7	ft^3/s	33	33	
7 Day 10 Year Low Flow	5.98	ft^3/s	51	51	
30 Day 10 Year Low Flow	7.78	ft^3/s	46	46	
90 Day 10 Year Low Flow	10.9	ft^3/s	36	36	

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

2. TRC_Calc Spreadsheet

TRC_CALC

1A	В	С	D	Е	F	G
2	TRC EVALU					
3			B4:B8 and E4:E7			
4	5.89	= Qstream (cfs)	0.5	=CV Daily	
5		= Qdischarg			=CV Hourly	
6	30	= no. sample	8		= AFC_Partial N	
- 7			emand of Stream		=CFC_Partial N	
8		4	emand of Discharge		_	Compliance Time (min)
9		= BAT/BPJ V		720	_	Compliance Time (min)
			of Safety (FOS)		=Decay Coeffici	_ ` '
10	Source	Reference	AFC Calculations		Reference	CFC Calculations
11	TRC	1.3.2.iii	WLA afc =		1.3.2.iii	WLA cfc = 11.852
	PENTOXSD TRG		LTAMULT afc =		5.1c	LTAMULT cfc = 0.581
14	PENTOXSD TRG	5.1b	LTA_afc=	4.533	5.1d	LTA_cfc = 6.890
15			I Effluent	Limit Calc	culations	
	PENTOXSD TRG	5.1f		L MULT =		
	PENTOXSD TRG		AVG MON LIMI			BAT/BPJ
18			INST MAX LIMI			

	WLA afc		FC_tc)) + [(AFC_Yc*Qs		*e(-k*AFC_1c))	
	LTAMULT afc	•	C_Yc*Qs*Xs/Qd)]*(1-F ((cvh^2+1))-2.326*LN(c		0.5\	
	LTA_afc	wla_afc*LTA		VII 2+1)"	0.01	
	217010	ma_are ETA	oc r_aro			l
	WLA_cfc	(.011/e(-k*Cl	FC_tc) + [(CFC_Yc*Qs	*.011/Qd*	e(-k*CFC_tc))	
		+Xd+(CF	C_Yc*Qs*Xs/Qd)]*(1-F	OS/100)		
	LTAMULT_cfc	EXP((0.5*LN)	(cvd^2/no_samples+1))-2.326*L	N(cvd^2/no_sam	ples+1)^0.5)
	LTA_cfc	wla_cfc*LTA	MULT_cfc			
	AML MULT	EXD/2 226*I	N((cvd^2/no samples	L1\A0 5\ 0	5*I N/ovdA2/no	s amples ±1\)
	AVG MON LIMIT	•	N((CVd···2/IIO_samples VJ,MIN(LTA_afc,LTA_c			oampieo · 1//
	INST MAX LIMIT		n_limit/AML_MULT)/LT			
		(les-moi	moc1/c1		,	l

3. WQM 7.0 ver. 1.1

Input Data WQM 7.0 SWP Stream Elevation Drainage Slope PWS Apply Basin Code Stream Name Area Withdrawal (ft) (sq mi) (ft/ft) (mgd) 59398 WEST BRANCH CONOCOCHEAGUE 19.600 • 13C 568.00 100.00 0.00000 0.00 Stream Data LFY Trib Stream Rch Rch WD Rch Rch Tributary Stream Design Flow Flow Trav Velocity Ratio Width Depth Temp Temp Time Cond. (cfsm) (cfs) (cfs) (ft) (ft) (°C) (°C) (days) (fps) Q7-10 0.100 0.00 5.98 0.000 0.000 0.0 0.00 0.00 25.00 7.00 0.00 0.00 Q1-10 0.00 0.00 0.000 0.000 Q30-10 0.00 0.00 0.000 0.000 Discharge Data Existing Permitted Design Disc Disc Disc Disc Disc Reserve Temp Name Permit Number Flow (°C) (mgd) (mgd) (mgd) Fort Loudon PA0084182 0.1000 0.1000 0.1000 0.000 25.00 7.00 Parameter Data Trib Disc Stream Fate Parameter Name (mg/L) (mg/L) (mg/L) (1/days) CBOD5 25.00 2.00 0.00 1.50 Dissolved Oxygen 5.00 8.24 0.00 0.00 NH3-N 25.00 0.00 0.70 0.00

Thursday, June 16, 2022 Version 1.1 Page 1 of 3

Input Data WQM 7.0

	SWP Basir			Stre	eam Name		RMI	Eleva (ft)		Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdra (mgs	awal	Apply FC
	13C	593	398 WEST	BRANCH	н солосо	CHEAGU	E 14.80	0 5	21.00	124.00	0.00000		0.00	•
					St	ream Dat	а							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	Tributary p pH	Tem	<u>Stream</u> np	рН	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	+	(°C	;)		
Q7-10 Q1-10 Q30-10	0.100	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	25	5.00 7.0	0	0.00	0.00	
					Di	ischarge [Data							
			Name	Per	mit Number	Disc	Permitte Disc Flow (mgd)	d Design Disc Flow (mgd)	Rese Fac		p p	isc bH		
		Merc	. Junction	PAG	0084191	0.2500	0.250	0.250	0 0	0.000 2	5.00	7.00		
					Pa	arameter [Data							
				Paramete	r Name	Di: Co			ream Conc	Fate Coef				
						(m	g/L) (m	g/L) (n	ng/L)	(1/days)				
			CBOD5			2	25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			5.00	8.24	0.00	0.00				
			NH3-N			2	25.00	0.00	0.00	0.70				

Input Data WQM 7.0

	SWP Basin			Stre	eam Name		RMI	Eleva (fl		Drainage Area (sq mi)	Slope (ft/ft)		Irawal	Apply FC
	13C	593	398 WEST	BRANCH	H CONOCO	CHEAGUE	10.04	0 4	95.00	141.00	0.0000	00	0.00	•
					St	ream Dat	a.							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p pH	T	<u>Strean</u> emp	n pH	
cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°C)		
Q7-10 Q1-10 Q30-10	0.100	0.00 0.00 0.00	10.80 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	2	5.00 7.	00	0.00	0.00	
					Di	scharge D	Data						1	
			Name	Per	mit Number	Disc	Permitte Disc Flow (mgd)	d Desigr Disc Flow (mgd)	Res Fa	Dis erve Ter ctor (%	mp	Disc pH		
						0.0000	0.0000	0.00	00	0.000	0.00	7.00		
					Pa	arameter [Data							
				Paramete	r Name	Di: Co			tream Conc	Fate Coef				
						(m	g/L) (m	g/L) (mg/L)	(1/days)				
			CBOD5			2	25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N			2	25.00	0.00	0.00	0.70				

WQM 7.0 D.O.Simulation

SWP Basin St 13C	ream Code 59398	WES	ET RDANC	Stream Name H CONOCOCHEAG	IIE CREEK
150	33330	WES	, DIVANC	II CONOCOCILAG	OL CALLA
RMI 19.600 Reach Width (ft) 42.736 Reach CBOD5 (mg/L) 2.58 Reach DO (mg/L) 8.161	Total Discharge 0.10 Reach De 0.74 Reach Kc (0.13 Reach Kr (3.84	0 pth (ft) 0 1/days) 4 1/days)	-	lysis Temperature (°0 25.000 Reach WDRatio 57.759 each NH3-N (mg/L) 0.63 Kr Equation Tsivoglou	C) Analysis pH 7.000 Reach Velocity (fps) 0.194 Reach Kn (1/days) 1.029 Reach DO Goal (mg/L) 5
Reach Travel Time (days) 1.512	TravTime (days)	Subreach CBOD5 (mg/L)	Results NH3-N (mg/L)	D.O. (mg/L)	
	0.151 0.302 0.454 0.605 0.756 0.907 1.058 1.210 1.361	2.52 2.45 2.39 2.33 2.27 2.21 2.16 2.10 2.05 2.00	0.54 0.46 0.40 0.34 0.29 0.25 0.21 0.18 0.16 0.13	7.54 7.54 7.54 7.54 7.54 7.54 7.54 7.54	
RMI 14.800 Reach Width (ft) 51.686 Reach CBOD5 (mg/L) 3.00 Reach DO (mg/L) 7.617	Total Discharge 0.35 Reach De 0.79 Reach Kc (0.24 Reach Kr (2.40	0 pth (ft) 3 1/days) 0 1/days)		lysis Temperature (% 25.000 Reach WDRatio 65.139 each NH3-N (mg/L) 1.18 Kr Equation Tsivoglou	C) Analysis pH 7.000 Reach Velocity (fps) 0.217 Reach Kn (1/days) 1.029 Reach DO Goal (mg/L) 5
Reach Travel Time (days) 1.339	TravTime (days)	Subreach CBOD5 (mg/L)	Results NH3-N (mg/L)	D.O. (mg/L)	
	0.134 0.268 0.402 0.535 0.669 0.803 0.937 1.071 1.205 1.339	2.88 2.76 2.66 2.55 2.45 2.35 2.26 2.17 2.08 2.00	1.03 0.89 0.78 0.68 0.59 0.52 0.45 0.39 0.34	7.08 6.78 6.63 6.59 6.61 6.68 6.77 6.87 6.98 7.09	

Thursday, June 16, 2022 Version 1.1 Page 1 of 1

WQM 7.0 Hydrodynamic Outputs

	SW	P Basin	Strea	m Code				Stream	<u>Name</u>			
		13C	59	9398		WEST	BRANCH	CONO	COCHEA	GUE CRE	EK	
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
19.600	5.98	0.00	5.98	.1547	0.00185	.74	42.74	57.76	0.19	1.512	25.00	7.00
14.800	8.37	0.00	8.37	.5415	0.00103	.793	51.69	65.14	0.22	1.339	25.00	7.00
Q1-1	0 Flow											
19.600	3.83	0.00	3.83	.1547	0.00185	NA	NA	NA	0.15	1.926	25.00	7.00
14.800	5.36	0.00	5.36	.5415	0.00103	NA	NA	NA	0.17	1.687	25.00	7.00
Q30-	10 Flow	,										
19.600	8.13	0.00	8.13	.1547	0.00185	NA	NA	NA	0.23	1.278	25.00	7.00
14.800	11.38	0.00	11.38	.5415	0.00103	NA	NA	NA	0.26	1.137	25.00	7.00

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	5		

Thursday, June 16, 2022 Version 1.1 Page 1 of 1

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name
13C	59398	WEST BRANCH CONOCOCHEAGUE CREEK

NH3-N Acute Allocations Multiple Multiple Critical Baseline Baseline Percent RMI WĽA Discharge Name Criterion WLA Criterion Reach Reduction (mg/L) (mg/L) (mg/L) (mg/L) 19.600 Fort Loudon 11.07 50 11.07 50 0 0 14.800 Merc. Junction 11.07 50 11.07 50 0 0 NH3-N Chronic Allocations Baseline Baseline Multiple Multiple Critical Percent Criterion RMI Discharge Name WLA WĽA Reduction Criterion Reach (mg/L) (mg/L) (mg/L) (mg/L)

25

25

1.37

1.37

25

25

0

0

0

0

1.37

1.37

Dissolved Oxygen Allocations

19.600 Fort Loudon

14.800 Merc. Junction

		CBC	<u>DD5</u>	NH	3-N	Dissolved	l Oxygen	Critical	Percent
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)		Multiple (mg/L)	Reach	Reduction
19.60 F	ort Loudon	25	25	25	25	5	5	0	0
14.80 N	Merc. Junction	25	25	25	25	5	5	0	0

WQM 7.0 Effluent Limits

	SWP Basin S	tream Code 59398	WESTE	Stream Name RANCH CONOCOCH	_	•	
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
19.600	Fort Loudon	PA0084182	0.100	CBOD5	25		
				NH3-N	25	50	
				Dissolved Oxygen			5
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
14.800	Merc. Junction	PA0084191	0.250	CBOD5	25		
				NH3-N	25	50	
				Dissolved Oxygen			5