

Application Type	Renewal
	Non-
Facility Type	Municipal
Major / Minor	Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0084417

 APS ID
 803850

 Authorization ID
 1460209

Applicant and Facility Information

Applicant Name	Quad B Enterprises LLC	Facility Name	Village Square Plaza Mall
Applicant Address	PO Box 487	Facility Address	5282 Spring Road
	Shermans Dale, PA 17090-0487		Shermans Dale, PA 17090
Applicant Contact	Brett Brunner	Facility Contact	Brett Brunner
Applicant Phone	(717) 433-6538	Facility Phone	(717) 433-6538
Client ID	302070	Site ID	451481
Ch 94 Load Status	Not Overloaded	Municipality	Carroll Township
Connection Status		County	Perry
Date Application Recei	ved October 31, 2023	EPA Waived?	Yes
Date Application Accep	ted November 17, 2023	If No, Reason	
Purpose of Application	This is an application for NPE	DES renewal	

Approve	Deny	Signatures	Date
x		Nicholas Hong, P.E. / Environmental Engineer Nick Hong (via electronic signature)	November 28, 2023
x		Daniel W. Martin, P.E. / Environmental Engineer Manager Maria D. Bebenek for Daniel W. Martin	December 7, 2023
x		Maria D. Bebenek, P.E. / Environmental Program Manager Maria D. Bebenek	December 7, 2023

Summary of Review

The application submitted by the applicant requests a NPDES renewal permit for the Village Square Plaza Mall located at 5282 Spring Road, Shermans Dale, PA 17090 in Perry County, municipality of Carroll Township. The existing permit became effective on June 1, 2019 and expires(d) on May 31, 2024. The application for renewal was received by DEP Southcentral Regional Office (SCRO) on October 31, 2023.

The purpose of this Fact Sheet is to present the basis of information used for establishing the proposed NPDES permit effluent limitations. The Fact Sheet includes a description of the facility, a description of the facility's receiving waters, a description of the facility's receiving waters attainment/non-attainment assessment status, and a description of any changes to the proposed monitoring/sampling frequency. Section 6 provides the justification for the proposed NPDES effluent limits derived from technology based effluent limits (TBEL), water quality based effluent limits (WQBEL), total maximum daily loading (TMDL), antidegradation, anti-backsliding, and/or whole effluent toxicity (WET). A brief summary of the outlined descriptions has been included in the Summary of Review section.

The subject facility is a 0.03 MGD treatment facility. The applicant does not anticipate any proposed upgrades to the treatment facility in the next five years. The NPDES application has been processed as a Minor Sewage Facility (Level 1) due to the type of sewage and the design flow rate for the facility. The applicant disclosed the Act 14 requirement to Perry County Planning Commission and Carroll Township Planning Commission and the notice was received by the parties on October 23, 2023 and October 24, 2023. A planning approval letter was not necessary as the facility is neither new or expanding.

Utilizing the DEP's web-based Emap-PA information system, the receiving waters has been determined to be Tributary 11060 to Sherman Creek. The sequence of receiving streams that the Tributary 11060 to Sherman Creek discharges into are Sherman Creek and the Susquehanna River which eventually drains into the Chesapeake Bay. The subject site is subject to the Chesapeake Bay implementation requirements. The receiving water has protected water usage for warm water fishes (WWF) and migratory fishes (MF). No Class A Wild Trout fisheries are impacted by this discharge. The absence of high quality and/or exceptional value surface waters removes the need for an additional evaluation of anti-degradation requirements.

The Tributary 11060 to Sherman Creek is a Category 2 and 5 stream listed in the 2022 Integrated List of All Waters (formerly 303d Listed Streams). This stream is an attaining stream that supports aquatic life. The receiving stream is impaired for recreational uses. The receiving waters is not subject to a total maximum daily load (TMDL) plan to improve water quality in the subject facility's watershed.

The existing permit and proposed permit differ as follows:

• Due to the EPA triennial review, monitoring shall be required for E. Coli.

Sludge use and disposal description and location(s): Biosolids/sewage sludge disposed by Smiths Disposal at Penn Township in York County

The proposed permit will expire five (5) years from the effective date.

Based on the review in this report, it is recommended that the permit be drafted. DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Any additional information or public review of documents associated with the discharge or facility may be available at PA DEP Southcentral Regional Office (SCRO), 909 Elmerton Avenue, Harrisburg, PA 17110. To make an appointment for file review, contact the SCRO File Review Coordinator at 717.705.4700.

1.0 Applicant

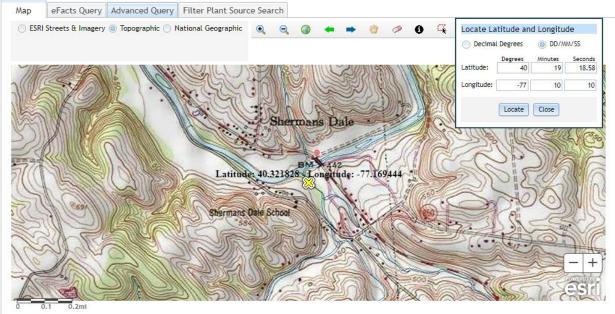
1.1 General Information

This fact sheet summarizes PA Department of Environmental Protection's review for the NPDES renewal for the following subject facility.

Facility Name:	Village Square Plaza Mall
NPDES Permit #	PA0084417
Physical Address:	5282 Spring Road Shermans Dale, PA 17090
Mailing Address:	PO Box 487 Shermans Dale, PA 17090
Contact:	Brett Brunner Owner (717) 433-6538 Bbrunner1@comcast.net
Consultant:	Michael Kern Operator/Consultant Quality Water Resources, Inc. (717) 225-4555 qwr@pa.net

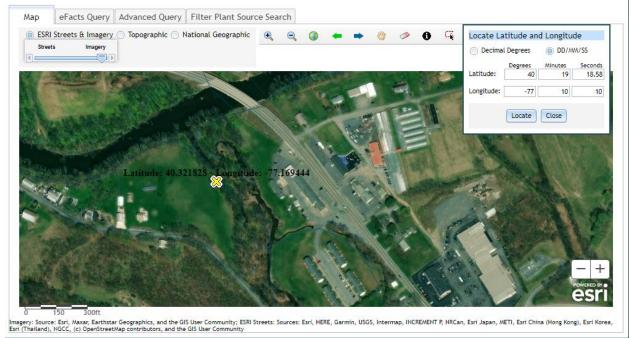
1.2 Permit History

Permit submittal included the following information.


- NPDES Application
- Effluent Sample Data

2.0 Treatment Facility Summary

2.1.1 Site location


The physical address for the facility is 5282 Spring Road, Shermans Dale, PA 17090. A topographical and an aerial photograph of the facility are depicted as Figure 1 and Figure 2.

Copyright:© 2013 National Geographic Society, i-cubed

Figure 2: Aerial Photograph of the subject facility

2.1.2 Sources of Wastewater/Stormwater

The facility does not have any contributions from industrial or commercial users.

The facility did not receive hauled-in wastes in the last three years and does not anticipate receiving hauled-in wastes in the next five years.

2.2 Description of Wastewater Treatment Process

The subject facility is a 0.03 MGD design flow facility. The subject facility treats wastewater using an equalization tank, an aeration tank, a settling tank, and a chlorine contact tank prior to discharge through the outfall. The facility is being evaluated for flow, pH, dissolved oxygen, TRC, CBOD5, TSS, fecal coliform, nitrogen species, and phosphorus. The existing permits limits for the facility is summarized in Section 2.4.

The treatment process is summarized in the table.

Treatment Facility Summary

Treatment Facility Name: Village Square

Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
Sewage			Hypochlorite	0.03
			Ι	Piecelido
Hydraulic Capacity	Organic Capacity			Biosolids
Hydraulic Capacity (MGD)	Organic Capacity (Ibs/day)	Load Status	Biosolids Treatment	Biosolids Use/Disposa

2.3 Facility Outfall Information

The facility has the following outfall information for wastewater.

Outfall No.	001	Design Flow (MGD)	.03
Latitude	40º 19' 18.59"	Longitude	-77º 10' 10.00"
Wastewater D	escription: Sewage Effluent		

The subject facility outfall is within the vicinity of another sewage/wastewater outfall. The downstream outfall is Creekview MHP (PA0084051) which is about 2 miles from the subject facility.

2.3.1 Operational Considerations- Chemical Additives

Chemical additives are chemical products introduced into a waste stream that is used for cleaning, disinfecting, or maintenance and which may be detected in effluent discharged to waters of the Commonwealth. Chemicals excluded are those used for neutralization of waste streams, the production of goods, and treatment of wastewater.

The subject facility utilizes the following chemicals as part of their treatment process.

- Sodium hypochlorite for disinfection
- Soda ash for pH adjustment
- Alum for pH adjustment

2.4 Existing NPDES Permits Limits

The existing NPDES permit limits are summarized in the table.

PART A - EFFLUENT LIMITATIONS, MONITORING, RECORDKEEPING AND REPORTING REQUIREMENTS

I. A. For Outfall 001	_, Latitude _40° 19' 18.59" _, Longitude _77° 10' 10.00" _, River Mile Index _11060 _, Stream Code _0.05
Receiving Waters:	Unnamed Tributary to Sherman Creek
Type of Effluent:	Sewage Effluent

1. The permittee is authorized to discharge during the period from June 1, 2019 through May 31, 2024.

2. Based on the anticipated wastewater characteristics and flows described in the permit application and its supporting documents and/or amendments, the following effluent limitations and monitoring requirements apply (see also Additional Requirements and Footnotes).

			Monitoring Re	quirements				
Parameter	Mass Units	(lbs/day) (1)		Concentrat	Minimum (2)	Required		
i arameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	xxx	XXX	xxx	xxx	Continuous	Measured
pH (S.U.)	XXX	xxx	6.0 Inst Min	xxx	xxx	9.0	1/day	Grab
Dissolved Oxygen	XXX	xxx	5.0 Inst Min	xxx	XXX	XXX	1/day	Grab
Total Residual Chlorine (TRC)	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5)	XXX	XXX	XXX	25	XXX	50	2/month	8-Hr Composite
Total Suspended Solids	XXX	XXX	XXX	30	XXX	60	2/month	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab
Nitrate-Nitrite as N	XXX	XXX	XXX	Report Annl Avg	XXX	XXX	1/year	8-Hr Composite
Total Nitrogen	XXX	XXX	XXX	Report Annl Avg	XXX	XXX	1/year	Calculation
Total Nitrogen (Total Load, lbs) (lbs)	Report Annl Avg	XXX	XXX	XXX	XXX	XXX	1/year	Calculation

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

	Effluent Limitations							
Parameter	Mass Units	(lbs/day) (1)		Concentrat	Minimum (2)	Required		
ratameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Ammonia-Nitrogen								8-Hr
May 1 - Oct 31	XXX	XXX	XXX	11	XXX	22	2/month	Composite
				Report				8-Hr
Total Kieldahl Nitrogen	XXX	XXX	XXX	Anni Avg	XXX	XXX	1/year	Composite
				Report				8-Hr
Total Phosphorus	XXX	XXX	XXX	Anni Avg	XXX	XXX	1/year	Composite
Total Phosphorus (Total Load,	Report							
lbs) (lbs)	Annl Avg	XXX	XXX	XXX	XXX	XXX	1/year	Calculation

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

at Outfall 001

3.0 Facility NPDES Compliance History

3.1 Summary of Inspections

A summary of the most recent inspections during the existing permit review cycle is as follows.

The DEP inspector noted the following during the inspection.

04/23/2020:

An administrative inspection was conducted by telephone and email communication. The purpose
of the inspection was to follow-up on the facility during the COVID-19 related restrictions. Ms. Kim
Shaw (Quality Water Resources, Inc.) responded to the inquiry. The wastewater treatment facility
was currently operating normal with all treatment units online. No significant operational changes
were made to the treatment facility. Ms. Shaw stated that no recent bypasses, SSOs, or sampling
issues have occurred since the last inspection. The facility had spare parts on hand and no
significant maintenance issues since the last inspection. Ms. Shaw stated that there were no
changes in staffing or outstanding issues. In a previous email dated 4-2-2020, the facility installed
an effluent flowmeter to comply with the continuous / measured"monitoring requirement in Part A
of their permit.

3.2 Summary of DMR Data

A review of approximately 1-year of DMR data shows that the monthly average flow data for the facility below the design capacity of the treatment system. The maximum average flow data for the DMR reviewed was 0.003759 MGD in July 2023. The design capacity of the treatment system is 0.03 MGD.

The off-site laboratory used for the analysis of the parameters was ALS Environmental located at 301 Fulling Mill Lane, Middletown, PA 17057.

DMR Data for Outfall 001 (from October 1, 2022 to September 30, 2023)

Parameter	SEP-23	AUG-23	JUL-23	JUN-23	MAY-23	APR-23	MAR-23	FEB-23	JAN-23	DEC-22	NOV-22	OCT-22
Flow (MGD)	0.00323	0.00288	0.00375	0.00300	0.00359	0.00240	0.00292	0.00296	0.00359	0.00298	0.00315	0.00298
Average Monthly	6	7	9	8	4	4	8	8	7	1	7	5
Flow (MGD)	0.00564	0.00513		0.00625	0.00654	0.00645	0.00757	0.00621	0.00728	0.00634	0.00663	0.00506
Daily Maximum	1	1	0.0105	5	6	9	8	5	4	7	3	3
pH (S.U.)												
Instantaneous												
Minimum	6.61	6.75	6.76	6.68	6.8	6.25	6.29	6.43	6.63	6.59	6.89	7.0
pH (S.U.)												
Instantaneous												
Maximum	7.73	7.7	7.7	7.31	7.32	7.42	7.12	7.52	7.23	7.72	7.62	7.66
DO (mg/L)												
Instantaneous												
Minimum	7.05	6.8	6.3	8.48	9.0	9.75	11.24	10.25	9.9	10.35	8.03	8.3
TRC (mg/L)												
Average Monthly	0.23	0.23	0.27	0.33	0.31	0.35	0.4	0.35	0.36	0.33	0.34	0.34
TRC (mg/L)												
Instantaneous												
Maximum	0.41	0.33	0.45	0.56	0.51	0.5	0.48	0.49	0.70	0.8	0.68	0.6
CBOD5 (mg/L)												
Average Monthly	< 2	< 2.7	< 8	< 2.6	3.5	< 3.1	2.4	2.8	3.4	3.2	2.9	< 2
TSS (mg/L)												
Average Monthly	< 6	8	< 5	6	8	< 5	< 5	8	8	< 6	11	< 5
Fecal Coliform												
(No./100 ml)												
Geometric Mean	< 1	< 1	< 1	< 1	< 1	< 1	< 1	5	< 1	< 1	< 1	< 1
Fecal Coliform												
(No./100 ml)												
Instantaneous												
Maximum	< 1	1	< 1	2	< 1	< 1	< 1	15	1	< 1	2	< 1
Nitrate-Nitrite (mg/L)												
Annual Average										< 9.5		
Total Nitrogen (mg/L)												
Annual Average										< 10.7		
										<		
Total Nitrogen (lbs)										0.55880		
Annual Average										83		

NPDES Permit Fact Sheet Village Square Plaza Mall

NPDES Permit No. PA0084417

Ammonia (mg/L) Average Monthly	0.567	< 0.127	0.335	0.304	1.837				0.707
TKN (mg/L) Annual Average								1.2	
Total Phosphorus (mg/L) Annual Average								1.9	
Total Phosphorus (lbs) Annual Average								0.09922 76	

3.3 Non-Compliance

3.3.1 Non-Compliance- NPDES Effluent

A summary of the non-compliance to the permit limits for the existing permit cycle is as follows.

From the DMR data beginning in June 1, 2019 to November 27, 2023, the following were observed effluent non-compliances.

	Summary of Non-Compliance with NPDES Effluent Limits Beginning June 1, 2019 and Ending November 27, 2023											
				8				-				
NON_COMPLIANCE_ DATE	NON_COMPL_ TYPE_DESC	PARAMETER		VIOLATION_ CONDITION			STAT_BASE_CODE	FACILITY_COMMENTS				
9/24/2019	Violation of permit condition	Fecal Coliform	1010	>	1000	No./100 ml	Instantaneous Maximum	We increased the % on the chemical feed pump to decrease the fecal level. The monthly average was within limits.				
7/22/2021	Violation of permit condition	Ammonia-Nitrogen	12	>	11	mg/L	Average Monthly	INCREASED MIXING IN AERATION & EQ TANKS. WE HAVE ADDED AN AMMONIA REDUCER. DUE TO DISINFECTION A CLEANER WAS INTORDUCED INTO THE WTP. WE HAVE DISCUSSED WITH THE SITE				

3.3.2 Non-Compliance- Enforcement Actions

A summary of the non-compliance enforcement actions for the current permit cycle is as follows:

Beginning in June 1, 2019 to November 27, 2023, there were no observed enforcement actions.

3.4 Summary of Biosolids Disposal

A summary of the biosolids disposed of from the facility is as follows.

2023							
Sewage Slu	Sewage Sludge / Biosolids Production Information						
	Hauled	Off-Site					
2023	Gallons	% Solids	Dry Tons				
January							
February							
March	6,000	0.5	0.125				
April							
May							
June							
July							
August							
September	6,000	0.5	0.125				
Notes:							
Biosolids/sewage sludge disposed by Smiths Disposal at Penn Township in York County							

3.5 Open Violations

No open violations existed as of November 2023.

4.0 Receiving Waters and Water Supply Information Detail Summary

4.1 Receiving Waters

The receiving waters has been determined to be Tributary 11060 to Sherman Creek. The sequence of receiving streams that the Tributary 11060 to Sherman Creek discharges into are Sherman Creek and the Susquehanna River which eventually drains into the Chesapeake Bay.

4.2 Public Water Supply (PWS) Intake

The closest PWS to the subject facility is Suez Water (PWS ID #7220015) located approximately 22 miles downstream of the subject facility on the Susquehanna River. Based upon the distance and the flow rate of the facility, the PWS should not be impacted.

4.3 Class A Wild Trout Streams

Class A Wild Trout Streams are waters that support a population of naturally produced trout of sufficient size and abundance to support long-term and rewarding sport fishery. DEP classifies these waters as high-quality coldwater fisheries.

The information obtained from EMAP suggests that no Class A Wild Trout Fishery will be impacted by this discharge.

4.4 2022 Integrated List of All Waters (303d Listed Streams)

Section 303(d) of the Clean Water Act requires States to list all impaired surface waters not supporting uses even after appropriate and required water pollution control technologies have been applied. The 303(d) list includes the reason for impairment which may be one or more point sources (i.e. industrial or sewage discharges) or non-point sources (i.e. abandoned mine lands or agricultural runoff and the pollutant causing the impairment such as metals, pH, mercury or siltation).

States or the U.S. Environmental Protection Agency (EPA) must determine the conditions that would return the water to a condition that meets water quality standards. As a follow-up to listing, the state or EPA must develop a Total Maximum Daily Load (TMDL) for each waterbody on the list. A TMDL identifies allowable pollutant loads to a waterbody from both point and non-point sources that will prevent a violation of water quality standards. A TMDL also includes a margin of safety to ensure protection of the water.

The water quality status of Pennsylvania's waters uses a five-part categorization (lists) of waters per their attainment use status. The categories represent varying levels of attainment, ranging from Category 1, where all designated water uses are met to Category 5 where impairment by pollutants requires a TMDL for water quality protection.

The receiving waters is listed in the 2022 Pennsylvania Integrated Water Quality Monitoring and Assessment Report as a Category 2 and 5 waterbody. The surface waters is an attaining stream that supports aquatic life. The receiving water is impaired for recreational uses. The designated use has been classified as protected waters for warm water fishes (WWF) and migratory fishes (MF).

4.5 Low Flow Stream Conditions

Water quality modeling estimates are based upon conservative data inputs. The data are typically estimated using either a stream gauge or through USGS web based StreamStats program. The NPDES effluent limits are based upon the combined flows from both the stream and the facility discharge.

A conservative approach to estimate the impact of the facility discharge using values which minimize the total combined volume of the stream and the facility discharge. The volumetric flow rate for the stream is based upon the seven-day, 10-

year low flow (Q710) which is the lowest estimated flow rate of the stream during a 7 consecutive day period that occurs once in 10 -year time period. The facility discharge is based upon a known design capacity of the subject facility.

The closest WQN station to the subject facility is the Susquehanna River station @ Harrisburg (WQN202). This WQN station is located approximately 28 miles downstream of the subject facility.

The closest gauge station to the subject facility is the Sherman Creek at Shermans Dale, PA (USGS station number 1568000). This gauge station is located approximately 0.15 miles downstream of the subject facility.

For WQM modeling, pH and stream water temperature data from the water quality network station was used. pH was estimated to be 8.25 and the stream water temperature was estimated to be 23.75 C.

The hardness of the stream was estimated from the water quality network to be 109 mg/l CaCO₃.

The low flow yield and the Q710 for the subject facility was estimated as shown below.

	Gauge Station Data		
USGS Station Number	1568000		
Station Name	Sherman Creek at Shern	nans Dale, PA	
Q710	15.5	ft ³ /sec	
Drainage Area (DA)	207	mi ²	
Calculations			
The low flow yield of th	ne gauge station is:		
Low Flow Yield (LFY) = 0	2710 / DA		
LFY =	(15.5 ft ³ /sec / 207 mi ²)		
LFY =	0.0749	ft ³ /sec/mi ²	
The low flow at the sub	ject site is based upon the DA of	8.98	mi ²
Q710 = (LFY@gauge stat	tion)(DA@Subject Site)		
Q710 = (0.0749 ft ³ /sec/r	ni ²)(8.98 mi ²)		
Q710 =	0.672	ft ³ /sec	

4.6 Summary of Discharge,	Receiving Waters and Wa	ater Supply Information	
Outfall No. <u>001</u> Latitude <u>40º 19' 17.46</u> Quad Name	5"	Design Flow (MGD) Longitude Quad Code	.03 -77º 10' 8.05"
Wastewater Description:	Sewage Effluent		
		Stream Code RMI Yield (cfs/mi²)	<u>11060</u> 0.04 0.0749
Q ₇₋₁₀ Flow (cfs) 0.672			Streamstats/streamgauge
Elevation (ft) 429		Slope (ft/ft)	Streamstats/streamgauge
Watershed No. 7-A		Chapter 93 Class.	WWF, MF
	as chapter 93 class	Existing Use Qualifier	
Exceptions to Use		Exceptions to Criteria	
Assessment Status	Attaining Use(s) supports	aquatic life. Impaired for recreat	
Cause(s) of Impairment	Pathogens		
Source(s) of Impairment	Agriculture		
TMDL Status	Not applicable	Name	
Background/Ambient Data		Data Source	
pH (SU)	8.25	WQN202; median July to Sep	
Temperature (°C)	23.75	WQN202; median July to Sep	t
Hardness (mg/L)	109	WQN202; historical median	
Other:			
Nearest Downstream Publi		Suez Water	
·	nanna River	Flow at Intake (cfs)	
PWS RMI 76		Distance from Outfall (mi)	22

5.0: Overview of Presiding Water Quality Standards

5.1 General

There are at least six (6) different policies which determines the effluent performance limits for the NPDES permit. The policies are technology based effluent limits (TBEL), water quality based effluent limits (WQBEL), antidegradation, total maximum daily loading (TMDL), anti-backsliding, and whole effluent toxicity (WET) The effluent performance limitations enforced are the selected permit limits that is most protective to the designated use of the receiving waters. An overview of each of the policies that are applicable to the subject facility has been presented in Section 6.

5.2.1 Technology-Based Limitations

TBEL treatment requirements under section 301(b) of the Act represent the minimum level of control that must be imposed in a permit issued under section 402 of the Act (40 CFR 125.3). Available TBEL requirements for the state of Pennsylvania are itemized in PA Code 25, Chapter 92a.47.

The presiding sources for the basis for the effluent limitations are governed by either federal or state regulation. The reference sources for each of the parameters is itemized in the tables. The following technology-based limitations apply, subject to water quality analysis and best professional judgement (BPJ) where applicable:

Parameter	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

5.3 Water Quality-Based Limitations

WQBEL are based on the need to attain or maintain the water quality criteria and to assure protection of designated and existing uses (PA Code 25, Chapter 92a.2). The subject facility that is typically enforced is the more stringent limit of either the TBEL or the WQBEL.

Determination of WQBEL is calculated by spreadsheet analysis or by a computer modeling program developed by DEP. DEP permit engineers utilize the following computing programs for WQBEL permit limitations: (1) MS Excel worksheet for Total Residual Chorine (TRC); (2) WQM 7.0 for Windows Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen Version 1.1 (WQM Model) and (3) Toxics using DEP Toxics Management Spreadsheet for Toxics pollutants.

The modeling point nodes utilized for this facility are summarized below. The facility is near the confluence of Sherman Creek. Thus, the modeling was commenced at the mouth of the Sherman Creek rather than Tributary 11060 to Sherman Creek. This explains the different stream code utilized for the modeling nodes.

General Data 1	(Modeling Point #1)	(Modeling Point #2)	Units
Stream Code	10991	10991	
River Mile Index	0.04	12.33	miles
Elevation	429.43	412.99	feet
Latitude	40.321828	40.331152	
Longitude	-77.169444	-77.152398	
Drainage Area	8.98	207	sq miles
Low Flow Yield	0.0749	0.0749	cfs/sq mile

5.3.1 Water Quality Modeling 7.0

The WQM Model is a computer model that is used to determine NPDES discharge effluent limitations for Carbonaceous BOD (CBOD5), Ammonia Nitrogen (NH3-N), and Dissolved Oxygen (DO) for single and multiple point source discharges scenarios. WQM Model is a complete-mix model which means that the discharge flow and the stream flow are assumed to instantly and completely mixed at the discharge node.

WQM recommends effluent limits for DO, CBOD5, and NH₃-N in mg/l for the discharge(s) in the simulation.

Four types of limits may be recommended. The limits are

- (a) a minimum concentration for DO in the discharge as 30-day average;
- (b) a 30-day average concentration for CBOD5 in the discharge;
- (c) a 30-day average concentration for the NH₃-N in the discharge;
- (d) 24-hour average concentration for NH_3 -N in the discharge.

The WQM Model requires several input values for calculating output values. The source of data originates from either EMAP, the National Map, or Stream Stats. Data for stream gauge information, if any, was abstracted from USGS Low-Flow, Base-Flow, and Mean-Flow Regression Equations for Pennsylvania Streams authored by Marla H. Stuckey (Scientific Investigations Report 2006-5130).

The applicable WQM Effluent Limit Type are discussed in Section 6 under the corresponding parameter which is either DO, CBOD, or ammonia-nitrogen.

5.3.2 Toxics Modeling

The facility is not subject to toxics modeling.

5.4 Total Maximum Daily Loading (TMDL)

5.4.1 TMDL

The goal of the Clean Water Act (CWA), which governs water pollution, is to ensure that all of the Nation's waters are clean and healthy enough to support aquatic life and recreation. To achieve this goal, the CWA created programs designed to regulate and reduce the amount of pollution entering United States waters. Section 303(d) of the CWA requires states to assess their waterbodies to identify those not meeting water quality standards. If a waterbody is not meeting standards, it is listed as impaired and reported to the U.S. Environmental Protection Agency. The state then develops a plan to clean up the impaired waterbody. This plan includes the development of a Total Maximum Daily Load (TMDL) for the pollutant(s) that were found to be the cause of the water quality violations. A Total Maximum Daily Load (TMDL) calculates the maximum amount of a specific pollutant that a waterbody can receive and still meet water quality standards. A TMDL for a given pollutant and waterbody is composed of the sum of individual wasteload allocations (WLAs) for point sources and load allocations (LAs) for nonpoint sources and natural background levels. In addition, the TMDL must include an implicit or explicit margin of safety (MOS) to account for the uncertainty in the relationship between pollutant loads and the quality of the receiving waterbody. The TMDL components are illustrated using the following equation:

$$\mathsf{TMDL} = \Sigma W \mathsf{LAs} + \Sigma \, \mathsf{LAs} + \mathsf{MOS}$$

Pennsylvania has committed to restoring all impaired waters by developing TMDLs and TMDL alternatives for all impaired waterbodies. The TMDL serves as the starting point or planning tool for restoring water quality.

5.4.1.1 Local TMDL

The subject facility does not discharge into a local TMDL.

5.4.1.2 Chesapeake Bay TMDL Requirement

The Chesapeake Bay Watershed is a large ecosystem that encompasses approximately 64,000 square miles in Maryland, Delaware, Virginia, West Virginia, Pennsylvania, New York and the District of Columbia. An ecosystem is composed of interrelated parts that interact with each other to form a whole. All of the plants and animals in an ecosystem depend on each other in some way. Every living thing needs a healthy ecosystem to survive. Human activities affect the Chesapeake Bay ecosystem by adding pollution, using resources and changing the character of the land.

Most of the Chesapeake Bay and many of its tidal tributaries have been listed as impaired under Section 303(d) of the federal Water Pollution Control Act ("Clean Water Act"), 33 U.S.C. § 1313(d). While the Chesapeake Bay is outside the boundaries of Pennsylvania, more than half of the State lies within the watershed. Two major rivers in Pennsylvania are part of the Chesapeake Bay Watershed. They are (a) the Susquehanna River and (b) the Potomac River. These two rivers total 40 percent of the entire Chesapeake Bay watershed.

The overall management approach needed for reducing nitrogen, phosphorus and sediment are provided in the Bay TMDL document and the Phase I, II, and III WIPs which is described in the Bay TMDL document and Executive Order 13508.

The Bay TMDL is a comprehensive pollution reduction effort in the Chesapeake Bay watershed identifying the necessary pollution reductions of nitrogen, phosphorus and sediment across the seven Bay watershed jurisdictions of Delaware, Maryland, New York, Pennsylvania, Virginia, West Virginia and the District of Columbia to meet applicable water quality standards in the Bay and its tidal waters.

The Watershed Implementation Plans (WIPs) provides objectives for how the jurisdictions in partnership with federal and local governments will achieve the Bay TMDL's nutrient and sediment allocations.

Phase 3 WIP provides an update on Chesapeake Bay TMDL implementation activities for point sources and DEP's current implementation strategy for wastewater. The latest revision of the supplement was September 13, 2021.

The Chesapeake Bay TMDL (Appendix Q) categorizes point sources into four sectors:

- Sector A- significant sewage dischargers;
- Sector B- significant industrial waste (IW) dischargers;
- Sector C- non-significant dischargers (both sewage and IW facilities); and
- Sector D- combined sewer overflows (CSOs).

All sectors contain a listing of individual facilities with NPDES permits that were believed to be discharging at the time the TMDL was published (2010). All sectors with the exception of the non-significant dischargers have individual wasteload allocations (WLAs) for TN and TP assigned to specific facilities. Non-significant dischargers have a bulk or aggregate allocation for TN and TP based on the facilities in that sector that were believed to be discharging at that time and their estimated nutrient loads.

Cap Loads will be established in permits as Net Annual TN and TP loads (lbs/yr) that apply during the period of October 1 – September 30. For facilities that have received Cap Loads in any other form, the Cap Loads will be modified accordingly when the permits are renewed.

NPDES Permit Fact Sheet Village Square Plaza Mall

Offsets have been incorporated into Cap Loads in several permits issued to date. From this point forward, permits will be issued with the WLAs as Cap Loads and will identify Offsets separately to facilitate nutrient trading activities and compliance with the TMDL.

Based upon the supplement the subject facility has been categorized as a Sector C discharger. The supplement defines Sector C as a non-significant dischargers include sewage facilities (Phase 4 facilities: ≥ 0.2 MGD and < 0.4 MGD and Phase 5 facilities: > 0.002 MGD and < 0.2 MGD), small flow/single residence sewage treatment facilities (≤ 0.002 MGD), and non-significant IW facilities, all of which may be covered by statewide General Permits or may have individual NPDES permits.

At this time, there are approximately 850 Phase 4 and 5 sewage facilities, approximately 715 small flow sewage treatment facilities covered by a statewide General Permit, and approximately 300 non-significant IW facilities.

For Phase 5 sewage facilities with individual permits (average annual design flow on August 29, 2005 > 0.002 MGD and < 0.2 MGD), DEP will issue individual permits with monitoring and reporting for TN and TP throughout the permit term at a frequency no less than annually, unless 1) the facility has already conducted at least two years of nutrient monitoring and 2) a summary of the monitoring results are included in the next permit's fact sheet. If, however, Phase 5 facilities choose to expand, the renewed or amended permits will contain Cap Loads based on the lesser of a) existing TN/TP concentrations at current design average annual flow or b) 7,306 lbs/yr TN and 974 lbs/yr TP.

If no data are available to determine existing concentrations for expanding Phase 4 or 5 facilities, default concentrations of 25 mg/l TN and 4 mg/l TP may be used (these are the average estimated concentrations of all non-significant sewage facilities).

DEP will not issue permits to existing Phase 4 and 5 facilities containing Cap Loads unless it is done on a broad scale or unless the facilities are expanding.

For new Phase 4 and 5 sewage discharges, in general DEP will issue new permits containing Cap Loads of "0" and new facilities will be expected to purchase credits and/or apply offsets to achieve compliance, with the exception of small flow and single residence facilities.

Due to the Chesapeake Bay waste implementation plan, this facility is subject to Sector C monitoring requirements. Monitoring for nitrogen species and phosphorus shall be at least 1x/yr.

5.5 Anti-Degradation Requirement

Chapter 93.4a of the PA regulations requires that surface water of the Commonwealth of Pennsylvania may not be degraded below levels that protect the existing uses. The regulations specifically state that *Existing instream water uses and the level of water quality necessary to protect the existing uses shall be maintained and protected*. Antidegradation requirements are implemented through DEP's guidance manual entitled Water Quality Antidegradation Implementation Guidance (Document #391-0300-02).

The policy requires DEP to protect the existing uses of all surface waters and the existing quality of High Quality (HQ) and Exceptional Value (EV) Waters. Existing uses are protected when DEP makes a final decision on any permit or approval for an activity that may affect a protected use. Existing uses are protected based upon DEP's evaluation of the best available information (which satisfies DEP protocols and Quality Assurance/Quality Control (QA/QC) procedures) that indicates the protected use of the waterbody.

For a new, additional, or increased point source discharge to an HQ or EV water, the person proposing the discharge is required to utilize a nondischarge alternative that is cost-effective and environmentally sound when compared with the cost of the proposed discharge. If a nondischarge alternative is not cost-effective and environmentally sound, the person must use the best available combination of treatment, pollution prevention, and wastewater reuse technologies and assure that any discharge is nondegrading. In the case of HQ waters, DEP may find that after satisfaction of intergovernmental coordination and public participation requirements lower water quality is necessary to accommodate important economic or social development in the area in which the waters are located. In addition, DEP will assure that cost-effective and reasonable best management practices for nonpoint source control in HQ and EV waters are achieved.

The subject facility's discharge will be to a non-special protection waters and the permit conditions are imposed to protect existing instream water quality and uses. Neither HQ waters or EV waters is impacted by this discharge.

5.6 Anti-Backsliding

Anti-backsliding is a federal regulation which prohibits a permit from being renewed, reissued, or modified containing effluent limitations which are less stringent than the comparable effluent limitations in the previous permit (40 CFR 122.I.1 and 40 CFR 122.I.2). A review of the existing permit limitations with the proposed permit limitations confirm that the facility is consistent with anti-backsliding requirements. The facility has proposed effluent limitations that are as stringent as the existing permit.

6.0 NPDES Parameter Details

The basis for the proposed sampling and their monitoring frequency that will appear in the permit for each individual parameter are itemized in this Section. The final limits are the more stringent of technology based effluent treatment (TBEL) requirements, water quality based (WQBEL) limits, TMDL, antidegradation, anti-degradation, or WET.

The reader will find in this section:

- a) a justification of recommended permit monitoring requirements and limitations for each parameter in the proposed NPDES permit;
- b) a summary of changes from the existing NPDES permit to the proposed permit; and
- c) a summary of the proposed NPDES effluent limits.

6.1 Recommended Monitoring Requirements and Effluent Limitations

A summary of the recommended monitoring requirements and effluent limitations are itemized in the tables. The tables are categorized by (a) Conventional Pollutants and Disinfection and (b) Nitrogen Species and Phosphorus.

6.1.1 Conventional Pollutants and Disinfection

D	Permit Limitation		Decommendation
Parameter	Required by ¹ :		Recommendation
		Monitoring:	The monitoring frequency shall be daily as a grab sample (Table 6-3).
pH (S.U.)	TBEL	Effluent Limit:	Effluent limits may range from pH = 6.0 to 9.0
p()		Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by Chapter 95.2(1).
		Monitoring:	The monitoring frequency shall be daily as a grab sample (Table 6-3).
Dissolved	BPJ	Effluent Limit:	Effluent limits shall be greater than 5.0 mg/l.
Oxygen		Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by best professional judgement.
		Monitoring:	The monitoring frequency shall be 2x/month as an 8-hr composite sample (Table 6-3).
		Effluent Limit:	Effluent limits shall not exceed 25 mg/l as an average monthly.
CBOD	TBEL	Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by Chapter 92a.47(a)(1). WQM modeling indicates that the TBEL is more stringent than the WQBEL. Thus, the permit limit is confined to TBEL.
		Monitoring:	The monitoring frequency shall be 2x/month as an 8-hr composite sample (Table 6-3).
		Effluent Limit:	Effluent limits shall not exceed 30 mg/l as an average monthly.
TSS	TBEL	Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by Chapter 92a.47(a)(1). While there is no WQM modeling for this parameter, the permit limit for TSS is generally assigned similar effluent limits as CBOD or BOD.
		Monitoring:	The monitoring frequency shall be on a daily basis as a grab sample (Table 6-3).
		Effluent Limit:	The average monthly limit should not exceed 0.5 mg/l and/or 1.6 mg/l as an instantaneous maximum.
TRC	TBEL	other forms of to be imposed shall be expre concentration Based on the facility calcula	lorine in both combined (chloramine) and free form is extremely toxic to freshwater fish and f aquatic life (Implementation Guidance Total Residual Chlorine 1). The TRC effluent limitations d on a discharger shall be the more stringent of either the WQBEL or TBEL requirements and essed in the NPDES permit as an average monthly and instantaneous maximum effluent (Implementation Guidance Total Residual Chlorine 4). stream flow rate (lowest 7-day flow rate in 10 years) and the design flow rate of the subject ated by the TRC Evaluation worksheet, the TBEL is more stringent than the WQBEL. g frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned I ₄₈ (b)(2)
		Monitoring:	The monitoring frequency shall be 2x/month as a grab sample (Table 6-3).
Fecal Coliform	TBEL	Effluent Limit:	Summer effluent limits shall not exceed 200 No./100 mL as a geometric mean. Winter effluen limits shall not exceed 2000 No./100 mL as a geometric mean.
		Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by Chapter 92a.47(a)(4) and 92a.47(a)(5).
		Monitoring:	The monitoring frequency shall be 1x/year as a grab sample (SOP).
	SOP; Chapter	Effluent Limit:	No effluent requirements.
E. Coli	92a.61	Rationale:	Consistent with the SOP- Establishing Effluent Limitations for Individual Sewage Permits (Revised March 22, 2019) and under the authority of Chapter 92a.61, the facility will be require to monitor for E.Coli.
lotes:			
The NPDES	S permit was limited l	oy (a) anti-Bac	ksliding, (b) Anti-Degradation, (c) SOP, (d) TBEL, (e) TMDL, (f) WQBEL, (g) WET, or (h) Othe

Limitations and Other Permit Conditions in NPDES Permits) (Document # 362-0400-001) Revised 10/97

4 Water Quality Antidegradation Implementaton Guidance (Document # 391-0300-002)

5 Chesapeake Bay Phase 3 Watershed Implementation Plan Wastewater Supplement, Revised September 13, 2021

6.1.2 Nitrogen Species and Phosphorus

	Summary of Proposed NPDES Parameter Details for Nitrogen Species and Phosphorus							
	Village Square Plaza Mall, PA0084417							
Parameter	Parameter Permit Limitation Required by ¹ : Recommendation							
		Monitoring:	The monitoring frequency shall be 2x/month as an 8-hr composite sample					
Ammonia- Nitrogen	WQBEL	Effluent Limit:	During the months of May 1 to October 31, effluent limits shall not exceed 11 mg/l as an average monthly.					
naogen		Rationale:	Water quality modeling recommends effluent limits. The facility is required to be monitored on a frequency at least 2x/month.					
		Monitoring:	The monitoring frequency shall be 1x/yr as an 8-hr composite sample					
Nitrate-	Chesapeake Bay TMDL	Effluent Limit:	No effluent requirements.					
Nitrite as N		Rationale:	Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at least 1x/yr.					
		Monitoring:	The monitoring frequency shall be 1x/yr as an 8-hr composite sample					
Total	Chesapeake Bay	Effluent Limit:	No effluent requirements.					
Nitrogen	TMDL	Rationale:	Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at least 1x/yr.					
		Monitoring:	The monitoring frequency shall be 1x/yr as an 8-hr composite sample					
TKN	Chesapeake Bay	Effluent Limit:	No effluent requirements.					
I KIN	TMDL	Rationale:	Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at least 1x/yr.					
		Monitoring:	The monitoring frequency shall be 1x/yr as an 8-hr composite sample					
Total Phosphorus	Chesapeake Bay	Effluent Limit:	No effluent requirements.					
	TMDL	Rationale:	Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at least 1x/yr.					
Notes:								

1 The NPDES permit was limited by (a) anti-Backsliding, (b) Anti-Degradation, (c) SOP, (d) TBEL, (e) TMDL, (f) WQBEL, (g) WET, or (h) Other

2 Monitoring frequency based on flow rate of 0.03 MGD.

3 Table 6-3 (Self Monitoring Requirements for Sewage Discharges) in Technical Guidance for the Development and Specification of Effluent Limitations and Other Permit Conditions in NPDES Permits) (Document # 362-0400-001) Revised 10/97

4 Water Quality Antidegradation Implementaton Guidance (Document # 391-0300-002)

5 Chesapeake Bay Phase 3 Watershed Implementation Plan Wastewater Supplement, Revised September 13, 2021

6.1.3.1 Implementation of Regulation- Chapter 92a.61

Chapter 92a.61 provides provisions to DEP to monitor for pollutants that may have an impact on the quality of waters of the Commonwealth. Based upon DEP policy directives issued on March 22, 2021 and in conjunction with EPA's 2017 Triennial Review, monitoring for E. Coli shall be required.

6.2 Summary of Changes From Existing Permit to Proposed Permit

A summary of how the proposed NPDES permit differs from the existing NPDES permit is summarized as follows.

• Due to the EPA triennial review, monitoring shall be required for E. Coli.

6.3.1 Summary of Proposed NPDES Effluent Limits

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

The proposed NPDES effluent limitations are summarized in the table below.

PART A - EFFLUENT LIMIT	ATIONS, MONITORING, RECORDKEEPING AND REPORTING REQUIREMENTS
I. A. For Outfall 001	_, Latitude, Longitude, River Mile Index, Stream Code
Receiving Waters:	Unnamed Tributary to Sherman Creek (WWF, MF)
Type of Effluent:	Sewage Effluent

1. The permittee is authorized to discharge during the period from <u>Permit Effective Date</u> through <u>Permit Expiration Date</u>.

2. Based on the anticipated wastewater characteristics and flows described in the permit application and its supporting documents and/or amendments, the following effluent limitations and monitoring requirements apply (see also Additional Requirements and Footnotes).

	Effluent Limitations						Monitoring Requirements	
Parameter	Mass Units	(lbs/day) (1)		Concentrat	Minimum ⁽²⁾	Required		
Falameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
Dissolved Oxygen	XXX	xxx	5.0 Inst Min	xxx	XXX	xxx	1/day	Grab
Total Residual Chlorine (TRC)	XXX	xxx	xxx	0.5	XXX	1.6	1/day	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5)	XXX	xxx	xxx	25	XXX	50	2/month	8-Hr Composite
Total Suspended Solids	XXX	xxx	xxx	30	XXX	60	2/month	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	xxx	xxx	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	xxx	xxx	200 Geo Mean	XXX	1000	2/month	Grab
E. Coli (No./100 ml)	XXX	xxx	xxx	XXX	Report	xxx	1/year	Grab
Nitrate-Nitrite as N	XXX	xxx	xxx	Report Annl Avg	XXX	xxx	1/year	8-Hr Composite
Total Nitrogen	XXX	xxx	XXX	Report Annl Avq	XXX	xxx	1/year	Calculation

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

	Effluent Limitations						Monitoring Requirements	
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum (2)	Required
Falameter	Average	Average		Average	Daily	Instant.	Measurement	Sample
	Monthly	Weekly	Minimum	Monthly	Maximum	Maximum	Frequency	Туре
Total Nitrogen (Total Load, Ibs)	Report							
(lbs)	Annl Avg	XXX	XXX	XXX	XXX	XXX	1/year	Calculation
Ammonia-Nitrogen								8-Hr
May 1 - Oct 31	XXX	XXX	XXX	11	XXX	22	2/month	Composite
				Report				8-Hr
Total Kjeldahl Nitrogen	XXX	XXX	XXX	Anni Avg	XXX	XXX	1/year	Composite
				Report				8-Hr
Total Phosphorus	XXX	XXX	XXX	Anni Avg	XXX	XXX	1/year	Composite
Total Phosphorus (Total Load,	Report							
lbs) (lbs)	Anni Avg	XXX	XXX	XXX	XXX	XXX	1/year	Calculation

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

at Outfall 001

6.3.2 Summary of Proposed Permit Part C Conditions

The subject facility has the following Part C conditions.

- Chlorine Minimization
- Hauled-in Waste Restrictions
- Chesapeake Bay Nutrient Definitions
- Solids Management for Non-Lagoon Treatment Systems

	Tools and References Used to Develop Permit
\square	WQM for Windows Model (see Attachment
	Toxics Management Spreadsheet (see Attachment)
	TRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 386-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 386-2000-019, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 386-2000-018, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 386-2183-001, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 386-2183-002, 12/97.
	Pennsylvania CSO Policy, 386-2000-002, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 386-2000-008, 4/97.
	Determining Water Quality-Based Effluent Limits, 386-2000-004, 12/97.
	Implementation Guidance Design Conditions, 386-2000-007, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 386-2000-016, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 386-2000-012, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 386-2000-009, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 386-2000-015, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 386-2000-022, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 386-2000-013, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 386-2000-011, 11/1994.
	Implementation Guidance for Temperature Criteria, 386-2000-001, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 386-2000-021, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 386-2000-020, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 386-2000-005, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 386-2000-010, 3/1999.
	Design Stream Flows, 386-2000-003, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 386-2000-006, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 386-3200-001, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
$\overline{\boxtimes}$	SOP: New and Reissuance Sewage Individual NPDES Permit Applications, Revised, February 3, 2022
	Other:

Attachment A

Stream Stats/Gauge Data

14 Selected Streamflow Statistics for Streamgage Locations in and near Pennsylvania

Table 1. List of U.S. Geological Survey streamgage locations in and near Pennsylvania with updated streamflow statistics.-Continued

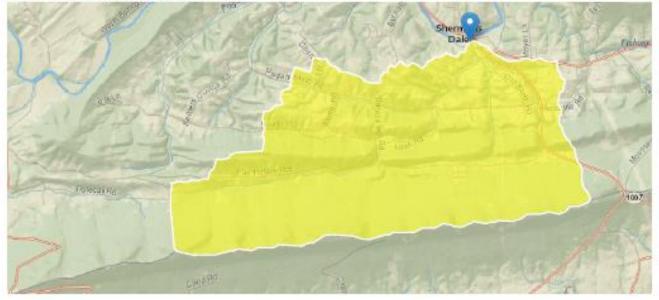
[Latitude and Longitude in decimal degrees; mi², square miles]

01561000 Brush Creek at Gapsville, Pa. 39.956 -78.254 36.8 N 01562000 Raystown Branch Juniata River at Saxton, Pa. 40.216 -78.265 756 N 01562100 Great Trough, Creek near Marklesburg, Pa. 40.429 -77.991 960 Y 01563100 Aughwick Creek near Marklesburg, Pa. 40.429 -77.991 960 Y 01564500 Aughwick Creek near Marklesburg, Pa. 40.505 -77.583 164 N 01565000 Tucacroa Creek near Miller, Pa. 40.055 -77.119 214 N 01566000 Cocolamus Creek near Millerstown, Pa. 40.566 -77.119 214 N 01567000 Juniata River at Newport, Pa. 40.371 -77.402 150 N 01568000 Sherman Creek at Shermans Dale, Pa. 40.323 -77.140 22.5 LF 01568000 Story Creek rn Toughin, Pa. 40.325 -77.139 21.6 N 01568000 Clark Creek near Carisole, Pa. 40.235 -77.139 21.6 N	Streamgage number	Streamgage name	Latitude	Longitude	Drainage area (mi²)	Regulated ¹
01562300 Greet Trough Creek nerr Marklesburg, Pa. 40.350 7-78.130 84.6 N 01563300 Raystown Branch Juniata River below Rays Dam nr Huntingdon, Pa. 40.429 -77.931 960 Y 01564300 Aughwick Creek nerr Mapleton Depot, Pa. 40.320 -77.925 2.030 Y 01564500 Kinhacoquillas Creek at Reedsville, Pa. 40.615 -77.7181 164 N 01565000 Tuccaroa Creek near Marklesburg, Pa. 40.515 -77.7149 2.14 N 01566500 Cocolamus Creek near Millestown, Pa. 40.515 -77.149 2.14 N 01565000 Juniata River at Newport, Pa. 40.371 -77.1402 15.0 N 01565000 Sherman Creek at Shermanas Dale, Pa. 40.323 -77.140 15.0 N 01565000 Clark Creek near Carsonville, Pa. 40.380 -76.907 3.2.2 N 01565000 Clark Creek near Carsonville, Pa. 40.323 -77.113 2.1.6 N 01565000 Clark Creek near Hogestown, Pa. 40.330 -76.907 3.2.2 N 01569000 Leotr Spring Run ne	01561000	Brush Creek at Gapsville, Pa.	39.956	-78.254	36.8	N
01563200 Raystown Branch Juniata River below Rays Dam nr Huntingdon, Pa. 40.429 -77.991 960 Y 01563500 Juniata River at Mapieton Depot, Pa. 40.392 -77.935 2.030 Y 01565500 Kishacoquillas Creek ater Acedsville, Pa. 40.655 -77.583 164 N 01565500 Tuscarora Creek near Port Royal, Pa. 40.515 -77.711 6.52 N 0156500 Tuscarora Creek near Nort Royal, Pa. 40.566 -77.118 5.72 N 0156500 Discore Ray Townille, Pa. 40.371 -77.402 1.50 N 0156500 Discore Ray Townille, Pa. 40.371 -77.402 1.50 N 0156500 Discore Ray Creek at Shermans Diale, Pa. 40.323 -77.169 20.7 N 0156500 Ciak Creek near Carsonville, Pa. 40.320 -76.501 3.2. N 0156500 Ciak Creek near Carsonville, Pa. 40.325 -76.807 3.2. N 0156500 Ciak Creek near Carsonville, Pa. 40.330 -76.507 3.2	01562000	Raystown Branch Juniata River at Saxton, Pa.	40.216	-78.265	756	N
01563500 Juniata River at Mapleton Depot, Pa. 40.392 -77.935 2.030 Y 01564300 Aughvick Creek near Three Springs, Pa. 40.213 -77.925 015 N 0156500 Little Lost Creek at eadville, Pa. 40.655 -77.583 164 N 0156500 Little Lost Creek at Oakland Mills, Pa. 40.515 -77.119 15.52 N 01566500 Cocolamus Creek near Milrestown, Pa. 40.56 -77.119 3.354 Y 01567000 Juniata River at Newport, Pa. 40.371 -77.402 15.0 N 01568000 Sherman Creek at Shermans Dale, Pa. 40.332 -77.109 20.7 N 01568000 Sherman Creek at Shermans Dale, Pa. 40.235 -77.119 21.6 N 01569000 Stany Creek ner Jouphin, Pa. 40.235 -77.12 47.0 LF 01570000 Susquehaman Kiver at Haribing, Pa. 40.235 -77.01 47.0 LF 01570000 Susquehaman Kiver at Haribing, Pa. 40.308 -76.850 11.2 N<	01562500	Great Trough Creek near Marklesburg, Pa.	40.350	-78.130	84.6	N
01564500 Aughwick Creek near Three Springs, Pa. 40.213 -77.925 205 N 01565000 Kishacoquillas Creek at Reedville, Pa. 40.655 -77.583 164 N 01565000 Tuiscarora Creek at Reedville, Pa. 40.655 -77.583 164 N 01566000 Tuiscarora Creek at Reedwille, Pa. 40.515 -77.149 214 N 01565000 Dimitan River at Newport, Pa. 40.478 -77.118 57.2 N 01565000 Bixtler Run near Lovyville, Pa. 40.478 -77.169 207 N 01568500 Clark Creek near Carsonville, Pa. 40.460 -76.751 22.5 LF 01568900 Stary Creek nr Dauphin, Pa. 40.252 -77.118 71.22 L N 01569000 Stary Creek nr Dauphin, Pa. 40.252 -77.13 21.6 N 0157000 Susquehama River at Harrisburg, Pa. 40.255 -76.886 24.100 Y 01571000 Paxton Creek near Pineorok, Pa. 40.353 -76.571 33.7 N <td>01563200</td> <td>Raystown Branch Juniata River below Rays Dam nr Huntingdon, Pa.</td> <td>40.429</td> <td>-77.991</td> <td>960</td> <td>Y</td>	01563200	Raystown Branch Juniata River below Rays Dam nr Huntingdon, Pa.	40.429	-77.991	960	Y
01565000 Kuñacoquilla Creek at Reedville, Pa. 40.655 -77.583 164 N 01565700 Little Lost Creek at Alkand Mills, Pa. 40.605 -77.311 6.52 N 01566000 Tuccaroz Creek near Vat Noyal, Pa. 40.515 -77.118 57.2 N 01567000 Jimata River at Newport, Pa. 40.371 -77.129 3,354 Y 01567000 Sherman Creek at Shermans Dale, Pa. 40.371 -77.169 207 N 01568000 Sherman Creek at Shermans Dale, Pa. 40.380 -76.507 32.2 N 01569000 Condoguinet Creek near Carison'lle, Pa. 40.252 -77.199 21.6 N 01569000 Letort Spring Run near Hogestown, Pa. 40.255 -76.850 11.2 N 01570000 Susquehanna River at Harrisburg, Pa. 40.388 -76.377 34.3 N 01571000 Paxton Creek near Denbrook, Pa. 40.338 -76.402 11.6 N 01572000 Lower Little Swatara Creek at Pine Grove, Pa. 40.333 -76.6377 34.3 </td <td>01563500</td> <td>Juniata River at Mapleton Depot, Pa.</td> <td>40.392</td> <td>-77.935</td> <td>2,030</td> <td>Y</td>	01563500	Juniata River at Mapleton Depot, Pa.	40.392	-77.935	2,030	Y
01565700 Little Lot Creek at Oakland Mills, Pa. 40.605 -77.311 6.52 N 01566000 Tuccarora Creek near Port Royal, Pa. 40.516 -77.118 57.2 N 01566000 Juniata River at Newport, Pa. 40.478 -77.129 3,354 Y 01567000 Juniata River at Newport, Pa. 40.371 -77.129 3,354 Y 01568000 Clark Creek at Shermans Dale, Pa. 40.323 -77.116 70.7 N 01568000 Steman Creek at Shermans Dale, Pa. 40.323 -77.119 21.6 N 01568000 Stony Creek nr Dauphin, Pa. 40.323 -77.01 22.5 LF 01569000 Stony Creek nar Playenkov, Pa. 40.252 -77.021 470 LF 01570000 Conodoguinet Creek near Charpok, Pa. 40.308 -76.850 11.2 N 01571000 Susquehanna River at Harrioburg, Pa. 40.333 -76.640 116 N 01571000 Lettort Spring Grove, Pa. 40.533 -76.640 11.2 N <td< td=""><td>01564500</td><td>Aughwick Creek near Three Springs, Pa.</td><td>40.213</td><td>-77.925</td><td>205</td><td>N</td></td<>	01564500	Aughwick Creek near Three Springs, Pa.	40.213	-77.925	205	N
01566000 Tuscarora Creek near Port Royal, Pa. 40.515 -77.419 214 N 01566000 Cocolamus Creek near Millerstown, Pa. 40.566 -77.118 57.2 N 01567000 Juniata River at Newport, Pa. 40.371 -77.402 15.0 N 01568000 Shemana Creek at Shemans Dale, Pa. 40.323 -77.169 20.7 N 01568000 Story Creek nr Dauphin, Pa. 40.380 -76.690 33.2 N 01569000 Letort Spring Run near Cartisle, Pa. 40.255 -77.139 21.6 N 01570000 Susquehanna River at Harriburg, Pa. 40.255 -77.686 42.100 Y 01570000 Susquehanna River at Harriburg, Pa. 40.255 -76.898 21.3 N 01571000 Paxton Creek near Penbrook, Pa. 40.338 -76.817 34.3 N 01572002 Swatara Creek at Pine Grove, Pa. 40.333 -76.402 116 N 01572005 Swatara Creek near Clean, Pa. 40.333 -76.6102 116 N	01565000	Kishacoquillas Creek at Reedsville, Pa.	40.655	-77.583	164	N
01566500 Cocolamus Creek near Millerstown, Pa. 40.566 -77.118 57.2 N 01567500 Juniata River at Newport, Pa. 40.371 -77.129 3,354 Y 01567500 Sixder Rum near Lowsville, Pa. 40.323 -77.169 207 N 0156800 Clark Creek near Carsonville, Pa. 40.380 -76.751 22.5 LF 0156900 Stony Creek near Carsonville, Pa. 40.323 -77.139 21.6 N 0156900 Canto Coologuinet Creek near Hogestown, Pa. 40.252 -77.021 470 LF 01571000 Conodoguinet Creek near Hogestown, Pa. 40.252 -77.021 470 LF 01571000 Paxton Creek near Penbrook, Pa. 40.308 -76.850 11.2 N 01571000 Paxton Creek near Creek at Pine Grove, Pa. 40.333 -76.498 213 N 01572000 Lower Little Swatara Creek at Pine Grove, Pa. 40.333 -76.492 116 N 01573100 Swatara Creek near Linwood, Pa. 40.343 -76.551 167	01565700	Little Lost Creek at Oakland Mills, Pa.	40.605	-77.311	6.52	N
01567000 Juniata River at Newport, Pa. 40.478 -77.129 3,354 Y 0156500 Bicker Run neur Loxycille, Pa. 40.321 -77.169 207 N 01568000 Sherman Creek at Shermans Dale, Pa. 40.323 -77.169 207 N 01568500 Clark Creek net Carstorville, Pa. 40.460 -76.751 22.5 LF 01569800 Letort Spring Run near Carlisle, Pa. 40.325 -77.139 21.6 N 0157000 Conodoguinet Creek near Hogestown, Pa. 40.255 -76.886 24,100 Y 01571000 Paxton Creek near Carstop Hill, Pa. 40.255 -76.886 24,100 Y 01571000 Paxton Creek near Pine Grove, Pa. 40.538 -76.377 34.3 N 01572000 Lower Little Swatara Creek at Pine Grove, Pa. 40.538 -76.402 116 N 01572000 Lower Little Swatara Creek at Pine Grove, Pa. 40.333 -76.402 116 N 01572000 Swatara Creek near Hengrey, Pa. 40.4033 -76.551 167	01566000	Tuscarora Creek near Port Royal, Pa.	40.515	-77.419	214	Ν
01567500 Bixler Run neur Lovaville, Pa. 40.371 -77.402 15.0 N 01568000 Sherman Creek at Shermans Dale, Pa. 40.323 -77.169 207 N 01568500 Clark Creek near Carsonville, Pa. 40.460 -76.751 22.5 LF 01569500 Story Creek ner Dauphin, Pa. 40.380 -76.907 33.2 N 01570500 Susquehann River at Harrisburg, Pa. 40.255 -77.021 470 LF 01570500 Susquehanna River at Harrisburg, Pa. 40.308 -76.850 11.2 N 01571000 Paxton Creek near Penbrook, Pa. 40.338 -76.377 34.3 N 01572000 Lower Little Swatara Creek at Pine Grove, Pa. 40.533 -76.402 116 N 01572010 Lower Little Swatara Creek at Pine Grove, Pa. 40.433 -76.571 33.7 N 01572020 Swatara Creek at Parper Tavern, Pa. 40.433 -76.402 116 N 01573100 Swatara Creek at Harper Tavern, Pa. 40.343 -76.709 13.5	01566500	Cocolamus Creek near Millerstown, Pa.	40.566	-77.118	57.2	N
01568000 Sherman Creek at Shermans Dale, Pa. 40.323 -77.169 207 N 01568500 Clark Creek near Carsonville, Pa. 40.460 -76.571 22.5 LF 01569800 Letort Spring Run near Carlisle, Pa. 40.235 -77.139 21.6 N 01570000 Conodoguinet Creek near Hogestown, Pa. 40.252 -77.021 470 LF 01570000 Susquehama River at Harrisburg, Pa. 40.302 -76.886 24,100 Y 01571000 Paxton Creek near Penotock, Pa. 40.303 -76.898 213 N 01572000 Lower Little Swatara Creek at Pine Grove, Pa. 40.533 -76.402 116 N 01571200 Lower Little Swatara Creek at Hame Grove, Pa. 40.533 -76.402 116 N 01572000 Lower Little Swatara Creek at Hamper Tavern, Pa. 40.403 -76.577 337 N 01573000 Swatara Creek near Ellegrove, Pa. 40.333 -76.483 N N 01573000 Guittapalhilla Creek near Bellegrove, Pa. 40.397 -76.709 <td>01567000</td> <td>Juniata River at Newport, Pa.</td> <td>40.478</td> <td>-77.129</td> <td>3,354</td> <td>Y</td>	01567000	Juniata River at Newport, Pa.	40.478	-77.129	3,354	Y
01568500 Clark Creek near Carsonville, Pa. 40.460 -76.751 22.5 LF 01569800 Stony Creek nr Dauphin, Pa. 40.380 -76.997 33.2 N 01569800 Letort Spring Run near Carlisle, Pa. 40.235 -77.139 21.6 N 0157000 Susquehama River at Harrisburg, Pa. 40.255 -76.886 24,100 Y 01571000 Paxton Creek near Penbrook, Pa. 40.308 -76.850 11.2 N 01571000 Lower Little Swatara Creek at Pine Grove, Pa. 40.538 -76.477 34.3 N 01572005 Swatara Creek near Pine Grove, Pa. 40.533 -76.402 116 N 01572000 Lower Little Swatara Creek at Thine Grove, Pa. 40.403 -76.573 17 N 01572000 Swatara Creek near Inwood, Pa. 40.403 -76.631 167 N 01573000 Swatara Creek near Helegrove, Pa. 40.403 -76.562 74.2 N 01573160 Quitapahila Creek near Bellegrove, Pa. 40.323 -76.670 15.5	01567500	Bixler Run near Lovsville, Pa.	40.371	-77.402	15.0	N
01569000 Stony Creek nr Dauphin, Pa. 40.380 -76.907 33.2 N 01569800 Letort Spring Run near Carlisle, Pa. 40.235 -77.139 21.6 N 01570000 Conodoguinet Creek near Hogestown, Pa. 40.252 -77.021 470 LF 01570000 Susquehama River at Harrisburg, Pa. 40.252 -76.886 24.100 Y 01571000 Paxton Creek near Peubrook, Pa. 40.308 -76.850 11.2 N 01571000 Lower Little Swatara Creek near Camp Hill, Pa. 40.255 -76.898 213 N 01572000 Lower Little Swatara Creek near Pine Grove, Pa. 40.538 -76.402 116 N 01572100 Swatara Creek near Fine Grove, Pa. 40.433 -76.521 167 N 01573000 Swatara Creek near Cleona, Pa. 40.403 -76.577 337 N 01573100 Quittapahilla Creek near Bellegrove, Pa. 40.343 -76.562 74.2 N 01573500 Manada Creek at Spring Grove, Pa. 40.343 -76.709 13.5<	01568000	Sherman Creek at Shermans Dale, Pa.	40.323	-77.169	207	N
01569800 Letort Spring Run near Carlisle, Pa. 40.235 -77.139 21.6 N 01570000 Conodoguinet Creek near Hogestown, Pa. 40.252 -77.021 470 LF 01570000 Susquehama River at Harrisburg, Pa. 40.255 -76.886 24,100 Y 01571000 Paxton Creek near Phorook, Pa. 40.308 -76.850 11.2 N 01571000 Lower Little Swatara Creek near Camp Hill, Pa. 40.533 -76.377 34.3 N 01572000 Lower Little Swatara Creek near Pine Grove, Pa. 40.633 -76.402 116 N 01572105 Swatara Creek near Pine Grove, Pa. 40.403 -76.577 33.7 N 01573100 Swatara Creek at Harper Tavern, Pa. 40.403 -76.577 33.7 N 01573100 Quittapahilla Creek near Bellegrove, Pa. 40.333 -76.668 48.3 N 01573500 Swatara Creek at Amachester, Pa. 40.929 -76.668 48.3 N 01574000 West Conewago Creek near York, Pa. 39.921 -76.749	01568500	Clark Creek near Carsonville, Pa.	40.460	-76.751	22.5	LF
01570000 Conodoguinet Creek near Hogestown, Pa. 40.252 -77.021 470 LF 01570500 Susquehanna River at Harrisburg, Pa. 40.255 -76.886 24,100 Y 015710500 Paxton Creek near Penbrook, Pa. 40.308 -76.850 11.2 N 015710500 Lower Little Swatara Creek arear Camp Hill, Pa. 40.235 -76.898 213 N 01572000 Lower Little Swatara Creek are Time Grove, Pa. 40.538 -76.377 34.3 N 01572000 Swatara Creek near Inwood, Pa. 40.479 -76.531 167 N 01573000 Swatara Creek near Inwood, Pa. 40.403 -76.402 116 N 01573000 Swatara Creek near Gleona, Pa. 40.333 -76.402 116 N 01573000 Manada Creek near Helgrove, Pa. 40.343 -76.552 74.2 N 01573500 Manada Creek at Manada Gap, Pa. 40.397 -76.709 13.5 N 01573500 Soutara Creek at Spring Grove, Pa. 39.819 -76.853 75.5	01569000	Stony Creek nr Dauphin, Pa.	40.380	-76.907	33.2	N
01570500 Susquehanna River at Harrisburg, Pa. 40.255 -76.886 24,100 Y 01571000 Paxton Creek near Penbrook, Pa. 40.308 -76.850 11.2 N 01571000 Lower Little Swatara Creek arear Camp Hill, Pa. 40.225 -76.898 213 N 01571000 Lower Little Swatara Creek at Pine Grove, Pa. 40.533 -76.402 116 N 01571000 Swatara Creek near Ciewon, Pa. 40.479 -76.531 167 N 01572005 Swatara Creek near Cleona, Pa. 40.403 -76.577 337 N 01573000 Swatara Creek near Bellegrove, Pa. 40.323 -76.483 7.87 N 01573160 Quittapahilla Creek near Bellegrove, Pa. 40.343 -76.562 74.2 N 01573500 Manada Creek at Manada Gap, Pa. 40.298 -76.668 483 N 01574000 West Conewago Creek near Machester, Pa. 39.897 -76.853 75.5 Y 01575500 Codorus Creek at Spring Grove, Pa. 39.8946 -76.755 222 </td <td>01569800</td> <td>Letort Spring Run near Carlisle, Pa.</td> <td>40.235</td> <td>-77.139</td> <td>21.6</td> <td>N</td>	01569800	Letort Spring Run near Carlisle, Pa.	40.235	-77.139	21.6	N
01571000 Paxton Creek near Penbrook, Pa. 40.308 -76.850 11.2 N 01571500 Yellow Breeches Creek near Camp Hill, Pa. 40.225 -76.898 213 N 01572000 Lower Little Swatara Creek at Pine Grove, Pa. 40.538 -76.377 34.3 N 01572100 Swatara Creek near Dine Grove, Pa. 40.403 -76.531 167 N 01572109 Swatara Creek at Harper Tavern, Pa. 40.403 -76.577 337 N 01573000 Swatara Creek at Harper Tavern, Pa. 40.323 -76.483 7.87 N 01573100 Quittapahilla Creek near Cleona, Pa. 40.343 -76.562 74.2 N 01573500 Manada Creek at Manada Gap, Pa. 40.397 -76.709 13.5 N 01573500 Swatara Creek near Hershey, Pa. 40.082 -76.720 510 N 01573500 South Branch Codorus Creek near York, Pa. 39.879 -76.531 25.990 Y 0157600 Susguehanna River at Marietta, Pa. 40.055 -76.531 25.990 <td>01570000</td> <td>Conodoguinet Creek near Hogestown, Pa.</td> <td>40.252</td> <td>-77.021</td> <td>470</td> <td>LF</td>	01570000	Conodoguinet Creek near Hogestown, Pa.	40.252	-77.021	470	LF
01571500 Yellow Breeches Creek near Camp Hill, Pa. 40.225 -76.898 213 N 01572000 Lower Little Swatara Creek at Pine Grove, Pa. 40.538 -76.377 34.3 N 01572025 Swatara Creek near Pine Grove, Pa. 40.533 -76.402 116 N 01572190 Swatara Creek near Inwood, Pa. 40.403 -76.571 337 N 01573000 Swatara Creek at Harper Tavern, Pa. 40.343 -76.562 74.2 N 01573160 Quittapahilla Creek near Bellegrove, Pa. 40.343 -76.668 483 N 01573500 Manada Creek at Manada Gap, Pa. 40.397 -76.709 13.5 N 01573500 Swatara Creek near Hershey, Pa. 40.082 -76.720 510 N 01574000 West Conewago Creek near York, Pa. 39.879 -76.533 75.5 Y 0157500 Codorus Creek near York, Pa. 39.946 -76.755 222 Y 01576000 Susquehanna River at Marietta, Pa. 40.055 -76.581 25,990	01570500	Susquehanna River at Harrisburg, Pa.	40.255	-76.886	24,100	Y
01572000 Lower Little Swatara Creek at Pine Grove, Pa. 40.538 -76.377 34.3 N 01572025 Swatara Creek near Pine Grove, Pa. 40.533 -76.402 116 N 01572190 Swatara Creek near Inwood, Pa. 40.479 -76.531 167 N 01573000 Swatara Creek at Harper Tavern, Pa. 40.403 -76.577 337 N 01573100 Beck Creek near Cleona, Pa. 40.323 -76.483 7.87 N 01573100 Quittapahilla Creek at Manada Gap, Pa. 40.343 -76.562 74.2 N 01573500 Manada Creek at Manada Gap, Pa. 40.397 -76.668 483 N 01573500 Swatara Creek near Hershey, Pa. 40.082 -76.720 510 N 01574500 Codorus Creek near York, Pa. 39.879 -76.853 75.5 Y 0157500 Codorus Creek near Churchtown, Pa. 40.055 -76.531 25.990 Y 01576050 Susquehanna River at Marietta, Pa. 40.050 -76.531 25.990 Y </td <td>01571000</td> <td>Paxton Creek near Penbrook, Pa.</td> <td>40.308</td> <td>-76.850</td> <td>11.2</td> <td>Ν</td>	01571000	Paxton Creek near Penbrook, Pa.	40.308	-76.850	11.2	Ν
01572025 Swatara Creek near Pine Grove, Pa. 40.533 -76.402 116 N 01572190 Swatara Creek near Inwood, Pa. 40.479 -76.531 167 N 01573000 Swatara Creek at Harper Tavern, Pa. 40.403 -76.577 337 N 01573086 Beck Creek near Cleona, Pa. 40.323 -76.483 7.87 N 01573160 Quittapahilla Creek near Bellegrove, Pa. 40.343 -76.502 74.2 N 01573500 Manada Creek at Manada Gap, Pa. 40.397 -76.709 13.5 N 01573500 Swatara Creek near Hershey, Pa. 40.082 -76.720 510 N 01573500 West Conewago Creek near York, Pa. 39.879 -76.853 75.5 Y 01575000 South Branch Codorus Creek near York, Pa. 39.946 -76.735 222 Y 01576005 Little Conestoga River at Marietta, Pa. 40.055 -76.531 25.990 Y 01576005 Codorus Creek near Churchtown, Pa. 40.145 -75.989 5.82 N <td>01571500</td> <td>Yellow Breeches Creek near Camp Hill, Pa.</td> <td>40.225</td> <td>-76.898</td> <td>213</td> <td>N</td>	01571500	Yellow Breeches Creek near Camp Hill, Pa.	40.225	-76.898	213	N
01572190 Swatara Creek near Inwood, Pa. 40.479 -76.531 167 N 01573000 Swatara Creek at Harper Tavern, Pa. 40.403 -76.577 337 N 01573006 Beck Creek near Cleona, Pa. 40.323 -76.483 7.87 N 01573060 Quittapahilla Creek near Bellegrove, Pa. 40.343 -76.562 74.2 N 01573500 Manada Creek at Manada Gap, Pa. 40.397 -76.709 13.5 N 01573500 Swatara Creek near Hershey, Pa. 40.028 -76.668 483 N 01574500 Codorus Creek near Manchester, Pa. 40.0298 -76.6720 510 N 01574500 Codorus Creek near York, Pa. 39.879 -76.853 75.5 Y 01575500 Codorus Creek near York, Pa. 39.921 -76.749 117 Y 01576500 Conestoga River at Lancaster, Pa. 40.055 -76.531 25.990 Y 01576500 Conestoga River at Conestoga, Pa. 39.946 -76.368 470 N	01572000	Lower Little Swatara Creek at Pine Grove, Pa.	40.538	-76.377	34.3	N
01573000 Swatara Creek at Harper Tavern, Pa. 40.403 -76.577 337 N 01573086 Beck Creek near Cleona, Pa. 40.323 -76.483 7.87 N 01573160 Quittapahilla Creek near Bellegrove, Pa. 40.343 -76.562 74.2 N 01573500 Manada Creek at Manada Gap, Pa. 40.397 -76.709 13.5 N 01573500 Swatara Creek near Hershey, Pa. 40.028 -76.668 483 N 01574000 West Conewago Creek near Manchester, Pa. 40.082 -76.720 510 N 01575000 South Branch Codorus Creek near York, Pa. 39.879 -76.853 75.5 Y 01575000 South Branch Codorus Creek near York, Pa. 39.946 -76.755 222 Y 01576000 Susquehanna River at Marietta, Pa. 40.055 -76.531 25.990 Y 0157600 Susquehanna River at Conestoga, Pa. 39.946 -76.358 470 N 01576500 Conestoga River at Conestoga, Pa. 39.946 -76.368 470	01572025	Swatara Creek near Pine Grove, Pa.	40.533	-76.402	116	N
01573086 Beck Creek near Cleona, Pa. 40.323 -76.483 7.87 N 01573160 Quittapahilla Creek near Bellegrove, Pa. 40.343 -76.562 74.2 N 01573500 Manada Creek at Manada Gap, Pa. 40.397 -76.709 13.5 N 01573500 Swatara Creek near Hershey, Pa. 40.397 -76.668 483 N 01574500 West Conewago Creek near Manchester, Pa. 40.082 -76.720 510 N 01574500 Codorus Creek at Spring Grove, Pa. 39.879 -76.853 75.5 Y 01575000 South Branch Codorus Creek near York, Pa. 39.921 -76.749 117 Y 01575000 Souguehanna River at Marietta, Pa. 40.055 -76.531 25.990 Y 01576005 Little Conestoga Creek near Churchtown, Pa. 40.145 -75.989 5.82 N 01576050 Conestoga River at Loncaster, Pa. 40.050 -76.368 470 N 0157654 Conestoga River at Conestoga, Pa. 39.946 -76.368 470	01572190	Swatara Creek near Inwood, Pa.	40.479	-76.531	167	N
01573160 Quittapahilla Creek near Bellegrove, Pa. 40.343 -76.562 74.2 N 01573500 Manada Creek at Manada Gap, Pa. 40.397 -76.709 13.5 N 01573500 Swatara Creek near Hershey, Pa. 40.298 -76.668 483 N 01574000 West Conewago Creek near Manchester, Pa. 40.082 -76.720 510 N 01574500 Codorus Creek at Spring Grove, Pa. 39.879 -76.853 75.5 Y 01575000 South Branch Codorus Creek near York, Pa. 39.921 -76.749 117 Y 01575000 South Branch Codorus Creek near York, Pa. 39.946 -76.755 222 Y 01576000 Susquehanna River at Marietta, Pa. 40.055 -76.531 25.990 Y 01576000 Susquehanna River at Churchtown, Pa. 40.145 -75.989 5.82 N 01576500 Conestoga River at Conestoga, Pa. 39.946 -76.368 470 N 0157654 Conestoga River at Conestoga, Pa. 39.658 -76.174 27,100 <td>01573000</td> <td>Swatara Creek at Harper Tavern, Pa.</td> <td>40.403</td> <td>-76.577</td> <td>337</td> <td>N</td>	01573000	Swatara Creek at Harper Tavern, Pa.	40.403	-76.577	337	N
01573500 Manada Creek at Manada Gap, Pa. 40.397 -76.709 13.5 N 01573560 Swatara Creek near Hershey, Pa. 40.298 -76.668 483 N 01573560 West Conewago Creek near Manchester, Pa. 40.082 -76.720 510 N 01574000 West Conewago Creek near Manchester, Pa. 39.879 -76.853 75.5 Y 0157500 South Branch Codorus Creek near York, Pa. 39.946 -76.755 222 Y 0157500 Codorus Creek near York, Pa. 39.946 -76.531 25.990 Y 01576000 Susquehana River at Marietta, Pa. 40.055 -76.531 25.990 Y 01576000 Susquehana River at Lancaster, Pa. 40.050 -76.277 324 N 01576500 Conestoga River at Conestoga, Pa. 39.946 -76.638 470 N 0157654 Conestoga River at Conowingo, Md. 39.658 -76.174 27,100 Y 01578400 Bowery Run near Quarryville, Pa. 39.895 -76.114 5.98 N <td>01573086</td> <td>Beck Creek near Cleona, Pa.</td> <td>40.323</td> <td>-76.483</td> <td>7.87</td> <td>N</td>	01573086	Beck Creek near Cleona, Pa.	40.323	-76.483	7.87	N
01573560 Swatara Creek near Hershey, Pa. 40.298 -76.668 483 N 01574000 West Conewago Creek near Manchester, Pa. 40.082 -76.720 510 N 01574000 Codorus Creek at Spring Grove, Pa. 39.879 -76.853 75.5 Y 0157500 South Branch Codorus Creek near York, Pa. 39.946 -76.755 222 Y 01576000 Susquehanna River at Marietta, Pa. 40.055 -76.531 25,990 Y 01576000 Susquehanna River at Marietta, Pa. 40.055 -76.531 25,990 Y 01576000 Susquehanna River at Churchtown, Pa. 40.145 -75.989 5.82 N 01576500 Conestoga River at Lancaster, Pa. 40.050 -76.277 324 N 01576754 Conestoga River at Conowingo, Md. 39.658 -76.174 27,100 Y 01578400 Bowery Run near Quarryville, Pa. 39.895 -76.114 5.98 N 01580000 Deer Creek at Rocks, Md. 39.630 -76.403 94.4 N <td>01573160</td> <td>Quittapahilla Creek near Bellegrove, Pa.</td> <td>40.343</td> <td>-76.562</td> <td>74.2</td> <td>N</td>	01573160	Quittapahilla Creek near Bellegrove, Pa.	40.343	-76.562	74.2	N
01574000 West Conewago Creek near Manchester, Pa. 40.082 -76.720 510 N 01574500 Codorus Creek at Spring Grove, Pa. 39.879 -76.853 75.5 Y 01575000 South Branch Codorus Creek near York, Pa. 39.921 -76.749 117 Y 01575000 South Branch Codorus Creek near York, Pa. 39.946 -76.755 222 Y 01576000 Susquehanna River at Marietta, Pa. 40.055 -76.531 25,990 Y 01576005 Little Conestoga Creek near Churchtown, Pa. 40.145 -75.989 5.82 N 01576500 Conestoga River at Lancaster, Pa. 40.050 -76.277 324 N 01576514 Conestoga River at Constoga, Pa. 39.946 -76.368 470 N 01578310 Susquehanna River at Conowingo, Md. 39.658 -76.114 5.98 N 01580000 Deer Creek at Rocks, Md. 39.630 -76.403 94.4 N 01581500 Bynum Run at Bel Air, Md. 39.501 -76.330 8.52 <td< td=""><td>01573500</td><td>Manada Creek at Manada Gap, Pa.</td><td>40.397</td><td>-76.709</td><td>13.5</td><td>N</td></td<>	01573500	Manada Creek at Manada Gap, Pa.	40.397	-76.709	13.5	N
01574500Codorus Creek at Spring Grove, Pa.39.879-76.85375.5Y01575000South Branch Codorus Creek near York, Pa.39.921-76.749117Y01575000Codorus Creek near York, Pa.39.946-76.755222Y01576000Susquehanna River at Marietta, Pa.40.055-76.53125,990Y01576085Little Conestoga Creek near Churchtown, Pa.40.145-75.9895.82N01576500Conestoga River at Lancaster, Pa.40.050-76.277324N01576540Conestoga River at Conestoga, Pa.39.946-76.368470N01578310Susquehanna River at Conowingo, Md.39.658-76.17427,100Y01578400Bowery Run near Quarryville, Pa.39.895-76.1145.98N01580000Deer Creek at Rocks, Md.39.630-76.40394.4N01581500Bynum Run at Bel Air, Md.39.520-76.37334.8N01582000Little Falls at Blue Mount, Md.39.604-76.62052.9N01582500Gunpowder Falls at Glencoe, Md.39.550-76.636160Y01583000Slade Run near Glyndon, Md.39.495-76.7952.09N	01573560	Swatara Creek near Hershey, Pa.	40.298	-76.668	483	Ν
01575000South Branch Codorus Creek near York, Pa.39.921-76.749117Y01575500Codorus Creek near York, Pa.39.946-76.755222Y01576000Susquehanna River at Marietta, Pa.40.055-76.53125,990Y01576085Little Conestoga Creek near Churchtown, Pa.40.145-75.9895.82N01576500Conestoga River at Lancaster, Pa.40.050-76.277324N01576754Conestoga River at Conestoga, Pa.39.946-76.368470N01578310Susquehanna River at Conowingo, Md.39.658-76.17427,100Y01578400Bowery Run near Quarryville, Pa.39.895-76.1145.98N01580000Deer Creek at Rocks, Md.39.630-76.40394.4N01581500Bynum Run at Bel Air, Md.39.541-76.37334.8N01582000Little Falls at Blue Mount, Md.39.604-76.62052.9N01582500Gunpowder Falls at Glencoe, Md.39.550-76.636160Y01583000Slade Run near Glyndon, Md.39.495-76.7952.09N	01574000	West Conewago Creek near Manchester, Pa.	40.082	-76.720	510	N
01575500Codorus Creek near York, Pa.39.946-76.755222Y01576000Susquehanna River at Marietta, Pa.40.055-76.53125,990Y01576085Little Conestoga Creek near Churchtown, Pa.40.145-75.9895.82N01576500Conestoga River at Lancaster, Pa.40.050-76.277324N01576754Conestoga River at Conestoga, Pa.39.946-76.368470N01578310Susquehanna River at Conowingo, Md.39.658-76.17427,100Y01578400Bowery Run near Quarryville, Pa.39.895-76.1145.98N01580000Deer Creek at Rocks, Md.39.630-76.40394.4N01581500Bynum Run at Bel Air, Md.39.541-76.3308.52N01582000Little Falls at Blue Mount, Md.39.604-76.62052.9N01582500Gunpowder Falls at Glencoe, Md.39.550-76.636160Y01583000Slade Run near Glyndon, Md.39.495-76.7952.09N	01574500	Codorus Creek at Spring Grove, Pa.	39.879	-76.853	75.5	Y
01576000Susquehanna River at Marietta, Pa.40.055-76.53125,990Y01576085Little Conestoga Creek near Churchtown, Pa.40.145-75.9895.82N01576500Conestoga River at Lancaster, Pa.40.050-76.277324N01576754Conestoga River at Conestoga, Pa.39.946-76.368470N01578310Susquehanna River at Conowingo, Md.39.658-76.17427,100Y01578400Bowery Run near Quarryville, Pa.39.895-76.1145.98N01580000Deer Creek at Rocks, Md.39.630-76.40394.4N01581500Bynum Run at Bel Air, Md.39.520-76.37334.8N01582000Little Falls at Blue Mount, Md.39.604-76.62052.9N01582500Gunpowder Falls at Glencoe, Md.39.550-76.636160Y01583000Slade Run near Glyndon, Md.39.495-76.7952.09N	01575000	South Branch Codorus Creek near York, Pa.	39.921	-76.749	117	Y
01576085Little Conestoga Creek near Churchtown, Pa.40.145-75.9895.82N01576500Conestoga River at Lancaster, Pa.40.050-76.277324N01576754Conestoga River at Conestoga, Pa.39.946-76.368470N01578310Susquehanna River at Conowingo, Md.39.658-76.17427,100Y01578400Bowery Run near Quarryville, Pa.39.895-76.1145.98N01580000Deer Creek at Rocks, Md.39.630-76.40394.4N01581500Bynum Run at Bel Air, Md.39.541-76.3308.52N01582000Little Falls at Blue Mount, Md.39.604-76.62052.9N01582500Gunpowder Falls at Glencoe, Md.39.550-76.636160Y01583000Slade Run near Glyndon, Md.39.495-76.7952.09N	01575500	Codorus Creek near York, Pa.	39.946	-76.755	222	Y
01576500Conestoga River at Lancaster, Pa.40.050-76.277324N01576754Conestoga River at Conestoga, Pa.39.946-76.368470N01578310Susquehanna River at Conowingo, Md.39.658-76.17427,100Y01578400Bowery Run near Quarryville, Pa.39.895-76.1145.98N01580000Deer Creek at Rocks, Md.39.630-76.40394.4N01581500Bynum Run at Bel Air, Md.39.541-76.3308.52N01581700Winters Run near Benson, Md.39.520-76.77334.8N01582000Little Falls at Blue Mount, Md.39.604-76.62052.9N01582500Gunpowder Falls at Glencoe, Md.39.550-76.636160Y01583000Slade Run near Glyndon, Md.39.495-76.7952.09N	01576000	Susquehanna River at Marietta, Pa.	40.055	-76.531	25,990	Y
01576754 Conestoga River at Conestoga, Pa. 39.946 -76.368 470 N 01578310 Susquehanna River at Conowingo, Md. 39.658 -76.174 27,100 Y 01578400 Bowery Run near Quarryville, Pa. 39.895 -76.114 5.98 N 01580000 Deer Creek at Rocks, Md. 39.630 -76.403 94.4 N 01581500 Bynum Run at Bel Air, Md. 39.541 -76.330 8.52 N 01581700 Winters Run near Benson, Md. 39.604 -76.620 52.9 N 01582000 Little Falls at Blue Mount, Md. 39.550 -76.636 160 Y 01582500 Gunpowder Falls at Glencoe, Md. 39.495 -76.795 2.09 N	01576085	Little Conestoga Creek near Churchtown, Pa.	40.145	-75.989	5.82	Ν
01578310Susquehama River at Conowingo, Md.39.658-76.17427,100Y01578400Bowery Run near Quarryville, Pa.39.895-76.1145.98N01580000Deer Creek at Rocks, Md.39.630-76.40394.4N01581500Bynum Run at Bel Air, Md.39.541-76.3308.52N01581700Winters Run near Benson, Md.39.520-76.37334.8N01582000Little Falls at Blue Mount, Md.39.604-76.62052.9N01582500Gunpowder Falls at Glencoe, Md.39.550-76.636160Y01583000Slade Run near Glyndon, Md.39.495-76.7952.09N	01576500	Conestoga River at Lancaster, Pa.	40.050	-76.277	324	Ν
01578400 Bowery Run near Quarryville, Pa. 39.895 -76.114 5.98 N 01580000 Deer Creek at Rocks, Md. 39.630 -76.403 94.4 N 01581500 Bynum Run at Bel Air, Md. 39.541 -76.330 8.52 N 01581700 Winters Run near Benson, Md. 39.520 -76.373 34.8 N 01582000 Little Falls at Blue Mount, Md. 39.604 -76.620 52.9 N 01582500 Gunpowder Falls at Glencoe, Md. 39.550 -76.636 160 Y 01583000 Slade Run near Glyndon, Md. 39.495 -76.795 2.09 N	01576754	Conestoga River at Conestoga, Pa.	39.946	-76.368	470	N
01580000 Deer Creek at Rocks, Md. 39.630 -76.403 94.4 N 01581500 Bynum Run at Bel Air, Md. 39.541 -76.330 8.52 N 01581700 Winters Run near Benson, Md. 39.520 -76.373 34.8 N 01582000 Little Falls at Blue Mount, Md. 39.604 -76.620 52.9 N 01582500 Gunpowder Falls at Glencoe, Md. 39.550 -76.636 160 Y 01583000 Slade Run near Glyndon, Md. 39.495 -76.795 2.09 N	01578310	Susquehanna River at Conowingo, Md.	39.658	-76.174	27,100	Y
01581500 Bynum Run at Bel Air, Md. 39.541 -76.330 8.52 N 01581700 Winters Run near Benson, Md. 39.520 -76.373 34.8 N 01582000 Little Falls at Blue Mount, Md. 39.604 -76.620 52.9 N 01582500 Gunpowder Falls at Glencoe, Md. 39.550 -76.636 160 Y 01583000 Slade Run near Glyndon, Md. 39.495 -76.795 2.09 N	01578400		39.895	-76.114	5.98	Ν
01581700 Winters Run near Benson, Md. 39.520 -76.373 34.8 N 01582000 Little Falls at Blue Mount, Md. 39.604 -76.620 52.9 N 01582500 Gunpowder Falls at Glencoe, Md. 39.550 -76.636 160 Y 01583000 Slade Run near Glyndon, Md. 39.495 -76.795 2.09 N	01580000	Deer Creek at Rocks, Md.	39.630	-76.403	94.4	N
01582000 Little Falls at Blue Mount, Md. 39.604 -76.620 52.9 N 01582500 Gunpowder Falls at Glencoe, Md. 39.550 -76.636 160 Y 01583000 Slade Run near Glyndon, Md. 39.495 -76.795 2.09 N	01581500	Bynum Run at Bel Air, Md.	39.541	-76.330	8.52	Ν
01582000 Little Falls at Blue Mount, Md. 39.604 -76.620 52.9 N 01582500 Gunpowder Falls at Glencoe, Md. 39.550 -76.636 160 Y 01583000 Slade Run near Glyndon, Md. 39.495 -76.795 2.09 N	01581700	Winters Run near Benson, Md.	39.520	-76.373	34.8	Ν
01583000 Slade Run near Glyndon, Md. 39.495 -76.795 2.09 N	01582000	Little Falls at Blue Mount, Md.	39.604	-76.620	52.9	
01583000 Slade Run near Glyndon, Md. 39.495 -76.795 2.09 N	01582500	Gunpowder Falls at Glencoe, Md.	39.550	-76.636	160	Y
	01583000	•	39.495	-76.795	2.09	N
01583100 Piney Run at Dover, Md. 39.521 -76.767 12.3 N	01583100	Piney Run at Dover, Md.	39.521	-76.767	12.3	N

Table 2. Selected low-flow statistics for streamgage locations in and near Pennsylvania.—Continued

[ft³/s; cubic feet per second; ---, statistic not computed; <, less than]

Streamgage number	Period of record used in analysis ¹	Number of years used in analysis	1-day, 10-year (ft³/s)	7-day, 10-year (ft³/s)	7-day, 2-year (ft³/s)	30-day, 10-year (ft³/s)	30-day, 2-year (ft³/s)	90-day, 10-year (ft³/s)
01565000	1941-2008	37	17.6	18.6	28.6	20.3	32.4	24.4
01565700	1965-1981	17	.4	.4	.9	.5	1.1	.8
01566000	1913-2008	52	4.3	7.9	18.8	12.4	25.6	19.2
01566500	1932-1958	27	1.7	2.4	4.0	3.2	5.7	4.9
01567000	21974-2008	35	504	534	725	589	857	727
01567000	31901-1972	72	311	367	571	439	704	547
01567500	1955-2008	54	2.0	2.2	3.3	2.6	3.8	3.1
01568000	1931-2008	78	12.7	15.5	25.5	19.2	32.0	26.0
01568500	21943-1997	55	1.8	2.3	4.3	2.7	5.0	3.1
01569000	1939-1974	14	2.6	4.0	7.4	5.1	9.4	7.8
01569800	1978-2008	31	15.9	17.0	24.4	18.4	26.1	20.3
01570000	31913-1969	35	_	63.1	110	76.1	124	95.3
01570000	21971-2008	38	63.1	69.3	109	78.3	125	97.8
01570500	31901-1972	72	2,310	2,440	4,000	2,830	4,950	3,850
01570500	21974-2008	35	3,020	3,200	5,180	3,690	6,490	4,960
01571000	1941-1995	16	.1	.2	.6	.3	1.2	.8
01571500	1911-2008	62	81.6	86.8	115	94.0	124	105
01572000	1921-1984	14	2.1	2.3	4.8	3.0	6.5	4.5
01572025	1990-2008	17	15.2	16.4	26.7	18.5	34.6	27.7
01572190	1990-2008	17	19.1	20.5	36.2	23.9	45.8	35.3
01573000	1920-2008	89	18.0	22.0	52.0	30.8	69.2	50.9
01573086	1965-1981	17	.5	.6	2.6	.8	3.3	1.1
01573160	1977-1994	18	26.9	29.6	46.4	33.6	51.9	39.5
01573500	1939-1958	20	1.3	1.4	2.5	1.8	3.2	2.6
01573560	1977-2008	30	50.3	62.0	104	76.9	131	108
01574000	1930-2008	79	8.0	11.1	32.0	17.7	47.0	33.9
01574500	21968-2008	41	14.2	24.0	35.9	29.4	42.0	33.3
01574500	31930-1966	34	2.3	7.1	11.5	9.3	14.8	12.7
01575000	21973-1995	23	.7	1.4	6.7	3.2	12.0	9.3
01575000	31929-1971	43	.1	.6	10.3	2.3	15.0	6.1
01575500	21948-1996	49	12.1	18.7	41.3	23.9	50.0	33.8
01576000	31933-1972	40	2,100	2,420	4,160	2,960	5,130	4,100
01576000	21974-2008	35	2,990	3,270	5,680	3,980	7,180	5,540
01576085	1984-1995	12	.4	.5	.8	.7	1.2	1.2
01576500	1931-2008	78	27.2	38.6	79.4	49.1	97.3	66.1
01576754	1986-2008	23	74.2	84.9	151	106	189	147
401578310	1969-2008	40	549	2,820	5,650	4,190	7,380	6,140
01578400	1964-1981	18	1.4	1.5	2.7	1.9	3.2	2.5
401580000	1928-2008	81	19.7	22.8	48.1	28.1	51.8	35.4
401581500	1946-2008	28	.2	.3	1.2	.8	1.7	1.5
401581700	1969-2008	40	4.7	5.5	17.5	8.1	18.3	12.0
401582000	1946-2008	63	11.3	12.5	25.0	15.5	28.0	20.3
401582500	1979-2008	27	41.2	43.9	78.8	53.8	90.6	74.1
401583000	1949-1981	33	.3	.3	.7	.3	1.0	.6
401583100	1984-2008	15	2.1	2.4	5.5	3.2	6.0	4.2


StreamStats Report

 Region ID:
 PA

 Workspace ID:
 PA20231127140020146000

 Clicked Point (Latitude, Longitude):
 40.32188, -77.16928

 Time:
 2023-11-27 09:00:40 -0500

Village Square Plaza Mall PA0084417 Modeling Point #1 November 2023

Collapse All

> Basin Characteristics Parameter Code Parameter Description Value Unit Percentage of area of carbonate rock CARBON 6.52 percent DRNAREA Area that drains to a point on a stream 8.98 square miles PRECIP Mean Annual Precipitation inches 39 ROCKDEP 4.2 Depth to rock feet STRDEN Stream Density -- total length of streams divided by drainage area 1.47 miles per square mile

> Low-Flow Statistics

Low-Flow Statistics Parameters [Low Flow Region 2]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	8.98	square miles	4.93	1280
PRECIP	Mean Annual Precipitation	39	inches	35	50.4

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
STRDEN	Stream Density	1.47	miles per square mile	0.51	3.1
ROCKDEP	Depth to Rock	4.2	feet	3.32	5.65
CARBON	Percent Carbonate	6.52	percent	0	99

Low-Flow Statistics Flow Report [Low Flow Region 2]

PIL: Lower 90% Prediction Interval, PIU: Upper 90% Prediction Interval, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	ASEp
7 Day 2 Year Low Flow	0.861	ft^3/s	38	38
30 Day 2 Year Low Flow	1.2	ft*3/s	33	33
7 Day 10 Year Low Flow	0.369	ft*3/s	51	51
30 Day 10 Year Low Flow	0.522	ft*3/s	46	46
90 Day 10 Year Low Flow	0.879	ft^3/s	36	36

Low-Flow Statistics Citations

Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.18.1 StreamStats Services Version: 1.2.22 NSS Services Version: 2.2.1

StreamStats Report

 Region ID:
 PA

 Workspace ID:
 PA20231127140340811000

 Clicked Point (Latitude, Longitude):
 40.33104, -77.15245

 Time:
 2023-11-27 09:04:01 -0500

Village Square Plaza Mall PA0084417 Modeling Point #2 November 2023

Collapse All

Parameter Code	Parameter Description	Value	Unit
CARBON	Percentage of area of carbonate rock	11.39	percent
DRNAREA	Area that drains to a point on a stream	207	square miles
PRECIP	Mean Annual Precipitation	40	inches
ROCKDEP	Depth to rock	4.8	feet
STRDEN	Stream Density total length of streams divided by drainage area	1.9	miles per square mile

Low-Flow Statistics

Low-Flow Statistics Parameters [Low Flow Region 2]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	207	square miles	4.93	1280
PRECIP	Mean Annual Precipitation	40	inches	35	50.4
STRDEN	Stream Density	1.9	miles per square mile	0.51	3.1
ROCKDEP	Depth to Rock	4.8	feet	3.32	5.65
CARBON	Percent Carbonate	11.39	percent	0	99

Low-Flow Statistics Flow Report [Low Flow Region 2]

PIL: Lower 90% Prediction Interval, PIU: Upper 90% Prediction Interval, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	ASEp
7 Day 2 Year Low Flow	32.5	ft*3/s	38	38
30 Day 2 Year Low Flow	40.3	ft*3/s	33	33
7 Day 10 Year Low Flow	19.8	ft*3/s	51	51
30 Day 10 Year Low Flow	24.2	ft*3/s	46	46
90 Day 10 Year Low Flow	32.7	ft*3/s	36	36

Low-Flow Statistics Citations

Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.18.1 StreamStats Services Version: 1.2.22 NSS Services Version: 2.2.1

Attachment B WQM Output Files

	SWP Basin St 07A	ream Code 10991						
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)	
13.900	Village Square	PA0084417	0.030	CBOD5	25			
				NH3-N	11.39	22.78		
				Dissolved Oxygen			5	

WQM 7.0 Effluent Limits

5

0

0

		<u> </u>	NQM 7	.0 Wast	teload A	llocatio	ns	
	SWP Basin	Strea	am Code		St	ream Name		
	07A	1	0991		SHE	RMAN CREEK	C	
NH3-N	Acute Alloc	ation	s					
RMI	Discharge	Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
13.9	00 Village Squa	re	3.25	i 41.81	3.25	41.81	0	0
NH3-N RMI	Chronic All Discharge N		O NS Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
13.9	00 Village Squa	re	.6	11.39	.6	11.39	0	0
Dissolv	/ed Oxygen	Alloc	ations					
0100011	,,,							

25

11.39

11.39

5

25

13.90 Village Square

	SWP Basir			Stre	am Name		RMI		vation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	07A	109	91 SHER	MAN CRE	EK		13.90	00	429.00	8.98	0.00000	0.00	✓
					S	tream Da	ta						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> 1p pH	Tem	<u>Stream</u> p pH	
cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°C)	
Q7-10	0.075	0.00	0.00	0.000	0.000	0.0	0.00	0.0	0 2	3.75 8.2	25 (0.00 0.00)
Q1-10 Q30-10		0.00	0.00	0.000	0.000								

Input Data WQM 7.0

	Dis	scharge D	ata					
Name	Permit Number Flow Flo		Permitted Disc Flow (mgd)	Design Disc Flow (mgd)	Reserve Factor		Disc Temp (°C)	Disc pH
Village Square	PA0084417	0.0300	0.0300	0.0300) 0.(000	25.00	7.0
	Par	rameter D	ata					
	arameter Name	Dis Co	ac Tril nc Cor		eam onc	Fate Coef		
Pi	arameter Name	(m <u>ç</u>	g/L) (mg	/L) (m	g/L) (1/days)		
CBOD5		2	5.00 2	2.00	0.00	1.50)	
Dissolved C	xygen		5.00 8	3.24	0.00	0.00)	
NH3-N		2	5.00 0	0.00	0.00	0.70)	

Input Data WQM 7.0

	SWP Basir			Stre	am Name		RMI	E	evation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	07A	109	91 SHER	MAN CRE	EEK		12.33	30	412.00	207.00	0.00000	0.00	✓
					s	tream Da	ta						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Dept		<u>Tributary</u> np pH	Tem	<u>Stream</u> ip pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	C)	(°C)	
Q7-10 Q1-10 Q30-10	0.075	0.00 0.00 0.00		0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.	.00 2	23.75 8.2	25 (0.00 0.00)

Г	Di	ischarge Da	ata				
	Name Permit Numbe	Existing Disc r Flow (mgd)	Permitted Disc Flow (mgd)	Design Disc Flow (mgd)	Reserve Factor	Disc Temp (ºC)	Disc pH
		0.0000	0.0000	0.000	0.000	25.00	7.00
	Pa	arameter Da	ata				
	Parameter Name	Disc Cor			ream Fa Conc Co		
		(mg	/L) (mg	/L) (n	ng/L) (1/da	ays)	
	CBOD5	25	5.00	2.00	0.00	1.50	
	Dissolved Oxygen	3	3.00	8.24	0.00	0.00	
	NH3-N	25	5.00 (0.00	0.00	0.70	

<u>SWP Basin</u> 07A	Stream Code 10991		s	Stream Name HERMAN CREEK	
<u>RMI</u> 13.900	Total Discharge 0.03) Anal	l <u>ysis Temperature (</u> 23.831	<u>°C) Analysis pH</u> 7.968
Reach Width (ft)	Reach De	epth (ft)		Reach WDRatio	Reach Velocity (fps)
14.353	0.50	1		28.674	0.100
Reach CBOD5 (mg/L)	Reach Kc	(1/days)	R	each NH3-N (mg/L)	Reach Kn (1/days)
3.48	0.41	8		0.74	0.940
Reach DO (mg/L)	Reach Kr (Kr Equation	Reach DO Goal (mg/L)
8.034	18.28	88		Owens	5
Reach Travel Time (days)	1	Subreach	Results		
0.959	TravTime		NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.096	3.32	0.67	7.69	
	0.192	3.17	0.61	7.69	
	0.288	3.02	0.56	7.69	
	0.383	2.88	0.51	7.69	
	0.479	2.74	0.47	7.69	
	0.575	2.62	0.43	7.69	
	0.671	2.49	0.39	7.69	
	0.767	2.38	0.36	7.69	
	0.863	2.27	0.33	7.69	
	0.959	2.16	0.30	7.69	

WQM 7.0 D.O.Simulation

	<u>SWP Basin</u> 07A			Stream Code 10991			SHERMAN CREEK					
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-10	0 Flow											
13.900	0.67	0.00	0.67	.0464	0.00205	.501	14.35	28.67	0.10	0.959	23.83	7.97
Q1-1(0 Flow											
13.900	0.55	0.00	0.55	.0464	0.00205	NA	NA	NA	0.09	1.063	23.85	7.93
Q30-	10 Flow	,										
13.900	0.83	0.00	0.83	.0464	0.00205	NA	NA	NA	0.11	0.856	23.82	8.01

WQM 7.0 Hydrodynamic Outputs

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.82	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.24	Temperature Adjust Kr	~
D.O. Saturation	90.00%	Use Balanced Technology	~
D.O. Goal	5		

Attachment C TRC Evaluation

в	с	D	E	F	G	
TRC EVALU	ATION	_		-	-	
		B4:B8 and E4:E7				
0.672	= Q stream (cfs)	0.5	= CV Daily		
0.03	= Q discharg	e (MGD)		= CV Hourly		
	30 = no. samples		1 = AFC_Partial Mix Factor			
0.3 = Chlorine Demand of Stream						
0 = Chlorine Demand of Dischar 0.5 = BAT/BPJ Value						
				Compliance Time (min)		
Source	= % Factor of Reference	AFC Calculations	U	=Decay Coeffic Reference	CFC Calculations	
TRC	1.3.2.iii	WLA afc =	4 639	1.3.2.iii	WLA cfc = 4.514	
PENTOXSD TRG		LTAMULT afc =		5.1c	LTAMULT cfc = 0.581	
PENTOXSD TRG		LTA_afc=		5.1d	LTA_cfc = 2.624	
Source		Effluent	Limit Calo	culations		
PENTOXSD TRG			L MULT =			
PENTOXSD TRG	5.1g	AVG MON LIM			BAT/BPJ	
		INST MAX LIM	(mg/i) =	1.635		
WLA afo	(010/o/.k*A	FC_tc)) + [(AFC_Yc*Q	* 019/04	e(-k*AFC to))		
		C_Yc*Qs*Xs/Qd)]*(1-F		e(* / * •		
		(cvh^2+1))-2.326*LN(0.5)		
LTAMULT afo	wla_afc*LTA	MULT_afc				
	-					
LTA_afo	(.011/e(-k*Cl	FC_tc) + [(CFC_Yc*Qs		e(-k*CFC_tc))		
LTA_afc WLA_cfc	(.011/e(-k*Ci + Xd + (CF	C_Yc*Qs*Xs/Qd)]*(1-F	OS/100)			
LTA_afc WLA_cfc LTAMULT_cfo	(.011/e(-k*Cl + Xd + (CFl EXP((0.5*LN	C_Yc*Qs*Xs/Qd)]*(1-F (cvd^2/no_samples+1	OS/100)			
LTA_afc WLA_cfc LTAMULT_cfc	(.011/e(-k*Ci + Xd + (CF	C_Yc*Qs*Xs/Qd)]*(1-F (cvd^2/no_samples+1	OS/100)			
LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc LTA_cfc AML MULT	(.011/e(-k*Cl + Xd + (CF EXP((0.5*LN wla_cfc*LTA	C_Yc*Qs*Xs/Qd)]*(1-F (cvd^2/no_samples+1	08/100)))-2.326*L	N(cvd^2/no_sam	nples+1)^0.5)	

41