

 Application Type
 Renewal

 Facility Type
 Industrial

 Major / Minor
 Minor

NPDES PERMIT FACT SHEET INDIVIDUAL INDUSTRIAL WASTE (IW) AND IW STORMWATER

 Application No.
 PA0084638

 APS ID
 16694

 Authorization ID
 1401645

Applicant and Facility Information

Applicant Name	Boyertown Borough	Facility Name	Boyertown Borough Water System
Applicant Address	100 S. Washington Street	Facility Address	1 Grandview Road
	Boyertown, PA 19512-1521		Boyertown, PA 19512-1599
Applicant Contact	Patricia Loder	Facility Contact	Ralph Schoenly
Applicant Phone	(610) 369-3031	Facility Phone	(610) 369-3041
Client ID	28598	Site ID	866
SIC Code	4952	Municipality	Earl Township
SIC Description	Trans. & Utilities - Water Supply	County	Berks
Date Application Rece	ived June 30, 2022	EPA Waived?	Yes
Date Application Acce	pted	If No, Reason	
Purpose of Application	NPDES permit Renewal.		

Summary of Review

Spotts, Stevens and McCoy, on behalf of the Boyertown Borough Water System (Authority/Permittee), applied to the Pennsylvania Department of Environmental Protection (DEP) for issuance of the NPDES permit. The permit was reissued on December 21, 2017 and became effective on January 1, 2018. The permit expired on December 31, 2022 but the terms and conditions of the permit have been extended since that time.

The facility is a minor industrial waste permit without Effluent Limitation Guideline (ELG). The discharge average design flow and hydraulic design capacity is 0.04 MGD, comprised mostly of filter backwash.

No WQM permit is shown in DEP's eFACTs database or reported in the permit application.

Delaware River Basin Commission

As per standard procedure, a copy of the draft permit will also be forwarded to the Delaware River Basin Commission (DRBC). Ironstone Creek is within the DE River watershed. The relevant standard Part C Condition will also be added in the permit: "This discharge may be subject to other DRBC requirements".

Changes from the previous permit: NA

Based on the review outlined in this fact sheet, it is recommended that the permit be drafted. A public notice of the draft permit will be published in the *Pennsylvania Bulletin* for public comments for 30 days.

Approve	Deny	Signatures	Date
x		<i>Hilaryle</i> Hilary H. Le / Environmental Engineering Specialist	December 1, 2023
x		<i>Maria D. Bebenek for Danial W. Martin</i> Daniel W. Martin, P.E. / Environmental Engineer Manager	December 8, 2023

Discharge, Receiving	Waters and Water Supply Informat	ion	
Outfall No. 001		Design Flow (MGD)	0.04
Latitude 40° 20	0' 25.28"	Longitude	-75º 40' 52.74"
Quad Name Boy	/ertown	Quad Code	
	Filter backwash, chlorine ana		5,
Wastewater Descrip	otion: settling tank and flocculator d	rains	
	Line and Tributany to lace store		
Receiving Waters	Unnamed Tributary to Ironstone Creek	Stream Code	01664
NHD Com ID	25964968	RMI	1.5
Drainage Area	0.44 mi. ²	Yield (cfs/mi²)	See comments below
Q ₇₋₁₀ Flow (cfs)	See comments below	Q ₇₋₁₀ Basis	See comments below
Elevation (ft)	540 (est'd)	Slope (ft/ft)	
Watershed No.	3-D	Chapter 93 Class.	TSF, MF
Existing Use	CWF (Cold Water Fishes)	Existing Use Qualifier	Coldwater Community
Exceptions to Use		Exceptions to Criteria	
Assessment Status	Attaining Use(s),	_ '	
Cause(s) of Impairm			
Source(s) of Impairr			
TMDL Status	None	Name	
Nearest Downstrear	m Public Water Supply Intake	lorth Coventry Township Wat	ter Authority, Chester County
	Schuylkill River	Flow at Intake (cfs)	
PWS RMI		Distance from Outfall (mi)	Approximate 11.2 miles

Changes Since Last Permit Issuance:

Drainage Area

The discharge is to UNT to Ironstone at RMI 1.50 miles. A drainage area upstream of the discharge is estimated to be 0.44 mi.², according to USGS PA StreamStats available at <u>https://streamstats.usgs.gov/ss/</u>.

Streamflow

There is a category B-1 High Hazard Dam at Boyertown Reservoir just upstream of this discharge point, the PA Stream Stats Q₇₋₁₀ could not be relied upon. The nearest USGS Streamgage is 01471980 in Pottstown, PA which is approximately 8.1 miles downstream of the discharge point hence is not representative. Moreover, stream flow data collected from USGS StreamStats indicated some parameters are outside of the recommended range for regression analysis to calculate low flows. The drainage area was found to be 85.5 mi² at the gage, Q₇₋₁₀, and Q₃₀₋₁₀ values at this gage are 22.9 cfs, and 25.7 cfs. As a result, low flows were estimated using the Low-Flow Yield approach as follows:

 $\begin{array}{l} \mbox{Yield} = 22.9 \mbox{ cfs}/85.5 \ \mbox{mi}^2 = 0.27 \ \mbox{cfs}/mi^2 \\ \mbox{Q}_{7\text{-}10} = 0.27 \ \mbox{cfs}/mi^2 * 0.44 \ \mbox{mi}^2 = 0.12 \ \mbox{cfs} \\ \mbox{Q}_{30\text{-}10} = 0.12 \ \mbox{cfs} * 1.36 = 0.16 \ \mbox{cfs} \\ \mbox{Q}_{1\text{-}10} = 0.12 \ \mbox{cfs} * 0.64 = 0.08 \ \mbox{cfs} \\ \end{array}$

Receiving Water Characteristics

Under 25 Pa Code §93.9f, Trib. 01664 to Ironstone Creek is designated as Trout Stocking Fishes and Migratory Fishes (TSF & MF). The discharge is located within a stream segment listed as attaining uses.

Water Supply Intake

The nearest downstream public water supply intake is North Coventry Township Water Authority located on the Schuylkill River, in Chester County, approximately 11.2 miles from the point of discharge. Based on the dilution and nature of discharge, the discharge is not expected to impact the water supply intake.

	Tre	eatment Facility Summar	ſy	
Treatment Facility Na	me: Boyertown Boro/ Iw			
WQM Permit No.	Issuance Date			
None in database	-			
		Γ	1	A
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
	Physical (Industrial Waste),Physical		Chlorine With	
Industrial	(Industrial Waste)	Filtration, Flocculation	Dechlorination	0.04
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal
0.04		Not Overloaded	Concentration	Land Application

Changes Since Last Permit Issuance: none

The plant has a rated capacity of 0.79 MGD. The unit processes include aeration basin, rapid mixer and flocculation tanks, sedimentation, multimedia filters, a clear well, and two lagoons. The discharge is filter backwash, chlorine analyzer wastewater, floor drains, settling tank and flocculator drains.

Two sedimentation basins in series have been provided for sludge and filter backwash.

Chemicals:

Powdered activated carbon is used for taste ordo control. DelPAC 2020 is used for coagulation. Soda ash is used for pH adjustment/corrosion control. Chlorine (gaseous) is used for disinfection. Ammonia (gaseous) is used for chloramine formation. Sodium Thiosulfate is used for dechlorination.

	Compliance History				
Summary of DMRs:	s: A summary of past 12-month DMRs is presented on next pages.				
Summary of Inspections: 9/8/2020: Ms. Tomtishen, DEP's WQS, conducted a compliance evaluation inspection Recommendations were please update contact information in onsite Emergency Resp Plan, including DEP's 24-hour ER Number 1-800-541-2050, and maintain hard copies laboratory sample results and chain of custody forms with monthly DMRs for minimum years in accordance with Part A.III.A.2 of your NPDES permit. There were no violatio identified during inspection. The field test results were within permit limits.					
Other Comments:	There are currently no open violations associated with the permittee or the facility.				

Other Comments:

The DEP Inspector's sample on 11/19/2020 results are shown below:

Parameter	Units	10/19/2020
рН	s.u.	6.91
D.O.	mg/L	-
TRC	mg/L	0.15
TSS	mg/L	< 5.0
Temperature	٥C	23.0
Total Aluminum	ug/L	370.0
Total Iron	ug/L	< 100.0
Total Manganese	ug/L	138.0

Compliance History

DMR Data for Outfall 001 (from October 1, 2022 to September 30, 2023)

Parameter	SEP-23	AUG-23	JUL-23	JUN-23	MAY-23	APR-23	MAR-23	FEB-23	JAN-23	DEC-22	NOV-22	OCT-22
Flow (MGD)												
Average Monthly	0.027	0.051	0.057	0.052	0.046	0.044	0.034	0.031	0.034	0.037	0.035	0.039
Flow (MGD)												
Daily Maximum	0.070	0.076	0.080	0.096	0.065	0.109	0.041	0.039	0.045	0.058	0.083	0.062
pH (S.U.)												
Minimum	6.6	6.8	7.0	6.9	6.8	6.9	6.7	6.7	6.9	7.0	6.9	6.7
pH (S.U.)												
IMAX	7.7	8.6	7.8	7.7	7.8	7.9	7.9	8.0	7.8	7.7	8.4	7.4
TRC (mg/L)												
Average Monthly	0.15	0.14	0.14	0.12	0.06	0.07	0.09	0.16	0.16	0.13	0.08	0.06
TRC (mg/L)												
IMAX	0.31	0.37	0.38	0.26	0.20	0.23	0.27	0.35	0.42	0.41	0.29	0.18
TSS (lbs/day)		0.00	4.00		4.04	0.44	0.70	0.70	0.45	0.40		4.00
Average Monthly	1.45	0.92	1.63	1.14	1.04	0.41	0.72	0.79	0.45	0.48	0.44	1.09
TSS (lbs/day)	0.00	1 70	2.05	2.4.4	0.75	0.04	4.05	1.04	0.05	0.01	0.50	0.40
Daily Maximum	2.62	1.79	3.85	3.14	2.75	0.61	1.85	1.24	0.85	0.61	0.50	2.13
TSS (mg/L) Average Monthly	4.8	2.0	3.5	2.5	2.4	1.3	2.5	3.0	1.6	1.8	1.6	2.8
TSS (mg/L)	4.0	2.0	3.5	2.5	2.4	1.5	2.5	3.0	1.0	1.0	1.0	2.0
Daily Maximum	7.0	4.0	9.0	7.0	6.0	2.0	6.0	5.0	3.0	3.0	2.0	5.0
Total Aluminum	7.0	<u>ч.0</u>	5.0	7.0	0.0	2.0	0.0	0.0	0.0	0.0	2.0	5.0
(lbs/day)												
Average Monthly	0.10	0.18	0.22	0.20	0.23	0.11	0.08	0.07	0.10	0.13	0.13	0.15
Total Aluminum		0.10		0.20	0.20	0	0.00	0.01	0110	0110	0110	0110
(lbs/day)												
Daily Maximum	0.19	0.22	0.30	0.32	0.31	0.19	0.09	0.09	0.14	0.17	0.37	0.23
Total Aluminum												
(mg/L)												
Average Monthly	0.33	0.41	0.44	0.42	0.55	0.34	0.29	0.26	0.37	0.41	0.41	0.40
Total Aluminum												
(mg/L)												
Daily Maximum	0.43	0.57	0.53	0.55	0.72	0.49	0.30	0.34	0.54	0.57	1.01	0.51
Total Iron (lbs/day)												
Average Monthly	0.03	0.02	0.05	0.02	0.07	0.01	0.01	0.01	0.03	0.03	0.01	0.05
Total Iron (lbs/day)												
Daily Maximum	0.05	0.03	0.07	0.03	0.29	0.02	0.01	0.02	0.03	0.05	0.01	0.09
Total Iron (mg/L)					o (=							
Average Monthly	0.12	0.05	0.09	0.05	0.17	0.04	0.02	0.04	0.09	0.10	0.03	0.12

NPDES Permit No. PA0084638

oycitowii Dolougii V	value oysten	•										
Total Iron (mg/L) Daily Maximum	0.14	0.07	0.12	0.06	0.67	0.05	0.03	0.07	0.12	0.15	0.04	0.21
Total Manganese (lbs/day) Average Monthly	0.06	0.14	0.21	0.22	0.06	0.02	0.02	0.08	0.02	0.02	0.03	0.03
Total Manganese (lbs/day) Daily Maximum	0.09	0.19	0.33	0.24	0.09	0.02	0.02	0.14	0.02	0.03	0.05	0.03
Total Manganese (mg/L) Average Monthly	0.23	0.32	0.44	0.48	0.14	0.07	0.08	0.29	0.06	0.06	0.08	0.07
Total Manganese (mg/L) Daily Maximum	0.33	0.42	0.77	0.66	0.21	0.08	0.09	0.56	0.08	0.08	0.12	0.08

Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	0.04
Latitude	40° 20' 25.28	3"	Longitude	-75º 40' 52.74"
Wastewater D	escription:	Water Treatment Effluent		

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Parameter	Limit (mg/l)	SBC	Federal	State	State Developed TBEL
			Regulation	Regulation	_
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)	DEP Technical Guidance
Solids	60	Daily Maximum	133.102(b)(2)	92a.47(a)(2)	Document 362-2183-003
	6.0 - 9.0				DEP Technical Guidance
pН	S.U.	Min – Max	133.102(c)	95.2(1)	Document 362-2183-003
Total Residual					DEP Technical Guidance
Chlorine	0.5	Average Monthly	-	92a.48(b)(2)	Document 362-2183-003
	2	Average Monthly			DEP Technical Guidance
Total Iron	4	Daily Maximum			Document 362-2183-003
	4	Average Monthly			DEP Technical Guidance
Total Aluminum	8	Daily Maximum			Document 362-2183-003
	1	Average Monthly			DEP Technical Guidance
Total Manganese	2	Daily Maximum			Document 362-2183-003

Water Quality-Based Limitations

pH:

The effluent discharge pH should remain above 6.0 and below 9.0 standard units according to 25 Pa. Code § 95.2(1).

Total Residual Chlorine (TRC):

Based on the attached TRC Excel Spreadsheet calculator, which uses the equations and calculations from the Department's May 1, 2003 Implementation Guidance for Total Residual Chlorine (ID No. 391-2000-015), the facility's discharge must meet a monthly average limit of 0.29 (0.3) mg/L and an instantaneous maximum limit of 0.96 (0.9) mg/L for a design flow of 0.04 MGD. The existing limit of 0.3 mg/L AML & 0.9 mg/L IMAX will remain in the proposed permit. Minimum monitoring frequency will be 1/day.

TRG EVAL	TRG EVALUATION						
Input appropri	ate values ir	A3:A9 and D3:D9					
0.12	2 = Q stream	ı (cfs)	0.5	= CV Daily			
0.04	= Q discha	rge (MGD)	= CV Hourly				
30) = no. samp	oles	= AFC_Partia	al Mix Factor			
0.3	= Chlorine	Demand of Stream	1	= CFC_Partia	al Mix Factor		
C) = Chlorine	Demand of Discharge	15	= AFC_Criter	ia Compliance Time (min)		
0.5	= BAT/BPJ	Value	720	= CFC_Criter	ria Compliance Time (min)		
C) = % Facto	r of Safety (FOS)		=Decay Coef	ficient (K)		
Source	Reference	AFC Calculations		Reference	CFC Calculations		
TRC	1.3.2.iii	WLA afc =	0.638	1.3.2.iii	WLA cfc = 0.614		
PENTOXSD TRO	∋ 5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581		
PENTOXSD TRO	∋ 5.1b	LTA_afc=	0.238	5.1d	LTA_cfc = 0.357		
Source			nt Limit Calcu				
PENTOXSD TRO			AML MULT =				
PENTOXSD TRO	∋ 5.1g		.IMIT (mg/l) =		AFC		
		INST MAX L	.IMIT (mg/l) =	0.956			
WLA afc		AFC_tc)) + [(AFC_Yc*Q AFC_Yc*Qs*Xs/Qd)]*(1-		e(- k*A FC_tc))			
LTAMULT afc	EXP((0.5*LN	(cvh^2+1))-2.326*LN(cvh^2	2+1)^0.5)				
LTA_afc	wla_afc*LTA	MULT_afc					
WLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) + Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) wla_cfc*LTAMULT_cfc							
AML MULT		N((cvd^2/no_samples+1)^		vd^2/no_sampl	es+1))		
AVG MON LIMIT		PJ,MIN(LTA_afc,LTA_cfc)*					
INST MAX LIMIT	1.5*((av_п	on_limit/AML_MULT)/L1	TAMULT_af	c)			

NPDES Permit Fact Sheet Boyertown Borough Water System Total Suspended Solids (TSS):

The existing limits of 30.0 mg/L average monthly, 60.0 mg/L weekly average, and 75.0 mg/L IMAX will remain in the proposed permit. Recent DMRs and inspection reports show that the facility has been consistently achieving concentrations below these limits. Mass limits are calculated as follows:

Average monthly mass limit: $30.0 \text{ mg/L} \times 0.04 \text{ MGD} \times 8.34 = 10.0 \text{ lbs/day}$ Average weekly mass limit: $60.0 \text{ mg/L} \times 0.04 \text{ MGD} \times 8.34 = 20.0 \text{ lbs/day}$

TDS Baseline:

State regulations have requirements for significant increases from 2010 TDS loads. Fact Sheets are documenting the existing TDS loads at facilities as baselines which can be used to calculate future load 'increases'. Chapter 95.10(a)(1) states that "existing mass loads" will be considered maximum daily discharge loads of TDS...that were authorized by the Department prior to August 21, 2010. This facility's 2022 NPDES permit application indicated a maximum TDS effluent concentration of 134.0 mg/L, based on three effluent samples. The resulting TDS load would be 44.7 (45.0) lbs/day: 134.0 mg/l TDS x 0.04 MGD x 8.34 c.f.

Stormwater:

The renewal application also indicates that there are no stormwater outfalls or outfalls with combined stormwater and industrial wastewater. No stormwater outfall annual inspection or stormwater sampling requirements are applicable.

Nutrients:

Their application did not show nutrient concentrations in their discharge at levels of concern. Based on three effluent samples, the maximum concentrations were as follows: 0.44 mg/L for NO₃-NO₂, <0.5 mg/L for TKN, <0.06 mg/L for Ammonia, and <0.01 mg/L for Total Phosphorus. No monitoring requirement has therefore been added.

Chemical Additives:

The application did not show any "chemical additives" in use, as defined by the application instructions and DEP's Standard Operating Procedure (SOP) for Chemical Additives.

Anti-Backsliding:

No limits in this renewal permit are less stringent than in the previous permit. Federal and State regulations which prohibit back-sliding (with some exceptions) are therefore satisfied.

Antidegradation:

The effluent limits for this discharge have been developed to ensure that existing in-stream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No Exceptional Value (EV) waters are impacted by this discharge. At this time, the downstream water has not been designated a High Quality (HQ) water. If it becomes a HQ water, after appropriate assessment and a public comment period, this facility's existing discharge will be "grandfathered", but it would have to satisfy the requirements at 25 PA Code Chapter 94c for any future proposed increases in flow or pollutant loads. These requirements include evaluating non-discharge alternatives or demonstrating that the discharge will maintain and protect the existing quality of the receiving surface water or obtaining a Social or Economic Justification (SEJ).

The discharge is into Trib. 01664 to Ironstone Creek which Ironstone Creek has been listed by the PA Fish and Boat Commission as under consideration for designation as a Class A Wild Trout Water. If that happens, the downstream receiving water would become a "High-Quality" water. Loads from existing dischargers would be "grandfathered" but any increased loading would be subject to DEP's antidegradation policies and regulations.

Additional Considerations:

Because the downstream receiving water is designated as Natural Trout Reproduction, the Dissolved Oxygen (D.O.) water quality criteria for certain months is higher than for other CWF waters: 8.0 mg/L during October-May. This discharge is not high in organic content and is not expected to interfere with this designation. The renewal 2022 application indicated <2.0 mg/L for BOD₅ and <2.5 mg/L for COD, based on three effluent samples. The DEP inspector sampled for D.O. at least once with a result of 10.6 mg/L. No limit or monitoring requirement has therefore been imposed for D.O.

Flow Monitoring:

Flow monitoring will remain in the proposed permit and is required by 40 CFR § 122.44(i)(1)(ii).

Other:

WQBELs are developed based on the designated and existing use of the particular receiving water, Water Quality Standards including water quality criteria [25 Pa Code Chapter 93 and 96], and an analysis of the reasonable potential to cause an in-stream exceedance of water quality criteria.

DEP uses:

1) The WQM 7.0 model, when applicable.

Because this discharge has very low **Ammonia** concentrations and **CBOD**₅ concentrations per their application and as would be expected from such operations, the WQM 7.0 model would not normally be run, consistent with DEP Standard Operating Procedures for Individual Industrial NPDES Permits. No permit limit or monitoring requirement is proposed for Ammonia and CBOD₅ or BOD₅.

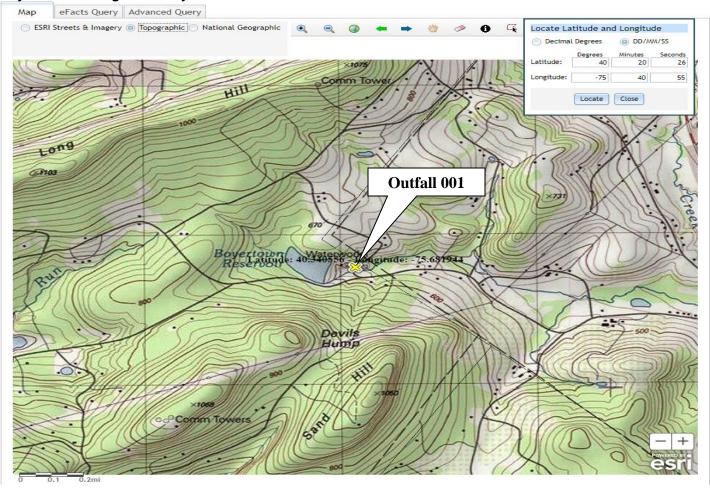
2) The Toxics Management Spreadsheet/model (TMS), when applicable.

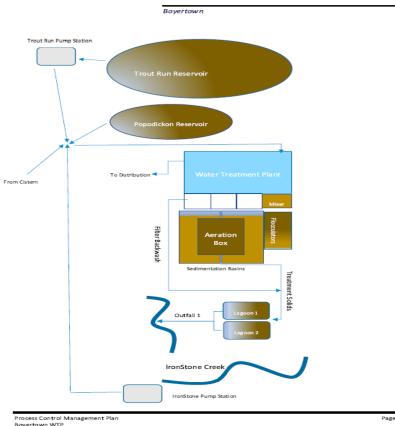
The following input data were used for Toxic Management Spreadsheet (TMS) Analysis:

٠	Discharge pH	= 7.38 (6.96 + 7.8 = 7.38) (Renewal Application)
•	Stroom nU	-70 (Default)

- Stream pH = 7.0 (Default)
- Discharge Hardness = 39.3 mg/L (Renewal Application)
- Stream Hardness = 100 mg/L (Default)

Node 1:	Outfall 001 at Trib. 016	64 to Ironstone Creek (01664)
	Elevation:	540.00 ft (USGS National Map)
	Drainage Area:	0.44 mi ² (USGS StreamStats)
	River Mile Index:	1.50 (PA DEP eMapPA)
	Low Flow Yield:	0.27 cfs/mi ²
	Discharge Flow:	0.04 MGD
Node 2:	At the confluence to Iro	
	Elevation:	380.00 ft (USGS National Map)
	Drainage Area:	0.71 mi ² (USGS StreamStats)
	River Mile Index:	0.001 (PA DEP eMapPA)
	Low Flow Yield:	0.27 cfs/mi ²
	Discharge Flow:	0.00 MGD


This data was analyzed based on the guidelines found in DEP's Water Quality Toxics Management Strategy (Document No. 361-0100-003) and DEP's SOP No. BPNPSM-PMT-033. Spreadsheet results are attached to this fact sheet. The Toxics Management Spreadsheet uses the following logic:


- a. Establish average monthly and IMAX limits in the draft permit where the maximum reported concentration exceeds 50% of the WQBEL.
- b. For non-conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 25%-50% of the WQBEL.
- c. For conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 10%-50% of the WQBEL.

DEP's Toxics Management spreadsheet was utilized to perform a reasonable potential analysis and develop water quality effluent limits for toxic pollutants. Summarized information are in the Table below.

Parameter	Calculated WQBEL (units)	Model	Comments	Recommended
Total Aluminum		TMS	Discharge Concentration less than or	Not needed
	1,404 ug/L (1.404 mg/L)		equal 10% WQBEL	
Total Iron		TMS	Discharge Concentration less than	Not needed
TOLALITOT	4,380 ug/L (4.380 mg/L)		Target QL	
Total Manganaga		TMS	Discharge Concentration less than or	Not needed
Total Manganese	2,920 ug/L (2.920 mg/L)		equal 10% WQBEL	

The TMS analysis results limits of Total Aluminum, Total Iron, and Total Manganese shown in the Table above, which are higher than the existing limits requirements; therefore, the existing limits of these pollutants are more stringent and will remain in the proposed permit.

Process Control Management Plan Boyertown WTP Date printed: 4/14/2021

Page 4

science for a changing world	>
SELECT A STATE / REGI Pennsylvania 🚯	
IDENTIFY A STUDY AR Basin Delineated	
SELECT SCENARIOS	
BUILD A REPORT Report Built	>
Step 1: You can modify computed basin characteristics here, then select the types reports you wish to generate. Then click th "Build Report" button	
✓ Show Basin Characteristics	
Select available reports to display:	
✓ Basin Characteristics Report	
 Scenario Flow Reports 	1
Open Report	
POWERED BY WIM	l
USGS Home Contact USGS Search USG Accessibility FOIA Privacy Policy & Notic	

USGS

F

cience for a changing world	>	Basin Character	istics
SELECT A STATE / REGI Pennsylvania		Parameter Code	Parameter Description
		BSLOPD	Mean basin slope measu
IDENTIFY A STUDY AR		DRNAREA	Area that drains to a poi
Basin Delineated		ROCKDEP	Depth to rock
SELECT SCENARIOS		URBAN	Percentage of basin with
LD A REPORT Report Built			
	>	Low-Flow Statis	tics
Step 1: You can modify computed basin characteristics here, then select the types		Low-Flow Statis	tics Parameters [Low Fl
reports you wish to generate. Then click th "Build Report" button		Parameter Code	Parameter Name
✓ Show Basin Characteristics		DRNAREA	Drainage Area
		BSLOPD	Mean Basin Slope degrees
ect available reports to display:		ROCKDEP	Depth to Rock
Basin Characteristics Report		URBAN	Percent Urban
Scenario Flow Reports		Low-Flow Statis	tics Disclaimers [Low Fl
Open Report		One or more of th unknown errors.	
POWERED BY WIM		Low-Flow Statist	tics Flow Report [Low F
		Statistic	
SGS Home Contact USGS Search USG		7 Day 2 Year Low	Flow
essibility FOIA Privacy Policy & Notic		30 Day 2 Year Lo	w Flow
		7 Day 10 Year Lo	w Flow
		30 Day 10 Year L	ow Flow
		90 Day 10 Year L	ow Flow

			Collapse A
Basin Character			
Parameter Code	Parameter Description	Value	Unit
BSLOPD	Mean basin slope measured in degrees	7.9998	degrees
DRNAREA	Area that drains to a point on a stream	0.44	square miles
ROCKDEP	Depth to rock	5	feet
URBAN	Percentage of basin with urban development	0.235	percent

Low-Flow Statistics

Low-Flow Statistics Parameters [Low Flow Region 1]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.44	square miles	4.78	1150
BSLOPD	Mean Basin Slope degrees	7.9998	degrees	1.7	6.4
ROCKDEP	Depth to Rock	5	feet	4.13	5.21
URBAN	Percent Urban	0.235	percent	0	89

Low-Flow Statistics Disclaimers [Low Flow Region 1]

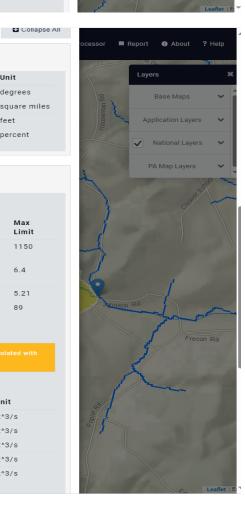
One or more of the parameters is outside the sug unknown errors.		
Low-Flow Statistics Flow Report [Low Flow	ow Region 1]	
Statistic	Value	Unit
7 Day 2 Year Low Flow	0.212	ft^3/s
30 Day 2 Year Low Flow	0.241	ft^3/s
7 Day 10 Year Low Flow	0.108	ft^3/s
30 Day 10 Year Low Flow	0.129	ft^3/s
90 Day 10 Year Low Flow	0.157	ft^3/s

Mean basin slope measured in degrees

Area that drains to a point on a stream

Value Unit

5


8.2572 degrees

0.71 square miles

feet

3 ~

Percentage of basin with urban development 0.1472 percent

low Statistics Parameters [Low Flow Region 1]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.71	square miles	4.78	1150
BSLOPD	Mean Basin Slope degrees	8.2572	degrees	1.7	6.4
ROCKDEP	Depth to Rock	5	feet	4.13	5.21
URBAN	Percent Urban	0.1472	percent	0	89

low Statistics Disclaimers [Low Flow Region 1]

Flow Statistics Flow Report [Low Flow Region 1] tic Value Unit 2 Year Low Flow 0.356 ft^3/s y 2 Year Low Flow 0.401 ft^3/s 10 Year Low Flow 0.189 ft^3/s y 10 Year Low Flow 0.221 ft^3/s y 10 Year Low Flow 0.262 ft^3/s

NPDES Permit No. PA0084638

NPDES Permit No. PA0084638

USGS StreamStats	> Basin Character	ristics					ocessor 🛤 I	Report 🚯 About
	Parameter Code	Parameter Description	n		Value	Unit		Layers
Pennsylvania 🚯	BSLOPD	Mean basin slope mea	asured in de	grees	6.446	degrees		
	DRNAREA	Area that drains to a p	ooint on a st	ream	85.5	square miles	a manda	Base Maps
IDENTIFY A STUDY AR Basin Delineated	ROCKDEP	Depth to rock			5.1	feet	~ ~	Application Laye
	URBAN	Percentage of basin w	rith urban de	evelopment	2.2204	percent	1-	Application caye
							Hutrs Thurch R	✓ National Laye
A REPORT Report Built	Low-Flow Statis	itics						PA Map Layers
Step 1: You can modify computed basin characteristics here, then select the types	1]	tics Parameters [99.9	Percent (8	5.4 square n	niles) Lov	w Flow Region		
reports you wish to generate. Then click the "Build Report" button	Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit	2	
✓ Show Basin Characteristics	DRNAREA	Drainage Area	85.5	square miles	4.78	1150	P -	
available reports to display:	BSLOPD	Mean Basin Slope degrees	6.446	degrees	1.7	6.4	Ros.	2 1
	ROCKDEP	Depth to Rock	5.1	feet	4.13	5.21	Byc	telsville"
asin Characteristics Report	URBAN	Percent Urban	2.2204	percent	0	89	E	
cenario Flow Reports	Low-Flow Statis	tics Disclaimers [99.9	Percent (8	5.4 square n	niles) Lov	w Flow Region	5	New Berli
Open Report	1]							Boyertown
	One or more of th					polated with		E Page
	unknown errors.						NAME AND STORE	Gilbertsville
							(
POWERED BY WIM	Low-Flow Statis	tics Flow Report [99.9	Percent (8	5.4 square r	niles) Lo	w Flow		
POWERED BY WIM	Region 1]	tics Flow Report [99.9	Percent (8	5.4 square r	niles) Lo	w Flow	~	
Home Contact USGS Search USG	Region 1]	tics Flow Report [99.9	Percent (8	5.4 square r Value		w Flow	5	
Home Contact USGS Search USG	Region 1]		Percent (8		1		A	
Home Contact USGS Search USG	Region 1] Statistic	/ Flow	Percent (8	Value	1	Unit	~	
Home Contact USGS Search USG	Region 1] Statistic 7 Day 2 Year Low	/ Flow w Flow	Percent (8	Value 36.8	1	Unit ft^3/s		
Home Contact USGS Search USG	Region 1] Statistic 7 Day 2 Year Low 30 Day 2 Year Lo	v Flow w Flow w Flow) Percent (8	Value 36.8 41.8	1	Unit ft^3/s ft^3/s	MMM MMM SORT	
	Region 1] Statistic 7 Day 2 Year Low 30 Day 2 Year Lo 7 Day 10 Year Lo	v Flow w Flow w Flow ow Flow) Percent (8	Value 36.8 41.8 22.9	1	Unit ft^3/s ft^3/s ft^3/s		g simplified Basin.

Pennsylvania DEPARTMENT OF ENVIRONMENT

Discharge Information

	ity: Boy	erctown Borough				NP	DES Per	mit No.:	PA0084	683		Outfall	No.: 001	
Va		Major Sewage /					stewater	Descrip	tion: Tril	b 01884	to Irons	tone Cre	ek .	
						arge Cha	raoteric	tios						
	(MGD)*	Hardness (mg/l)*	pH	(SU)*	AF		al Mix Fi CFC	actors (i TH		CRL		plete Mi 7-19	x Times	(min) 2,
	0.04	39.3	7.	.38	-	-						1-10		-
						0 f let	blank	0.5#8	nt blank	(Wet blar	*	184	t blank
	Disch	arge Pollutant	Units	Ма	x Discharge	Trib	Stream	Daily CV	Hourty CV	Strea	Fate Coeff	FOS	Criteri	Chem
4		ed Solida (PWS)	mgL		Conc 134	Conc	Conc	CV	CV	m CV	Соеп		a Mod	Transi
- 1	Chloride (PW Bromide	8)	mgL.	<	28.2									
ŝ	Sulfete (PWS Fluoride (PW		mgL.	~	15									
	Total Aluminu Total Antimor	m	Pol		1.27									
	Total Amenic		Hot.	~	0.001									
- [Total Barium Total Beryllium	n	ugt_ ugt_	<	0.021									
- [Total Boron Total Cadmiu		µgL µgL	4 4 4	0.2									
- [Total Chromit Hexavalent C		µgL µgL	<	0.001									
	Total Cobalt Total Copper		µg/L µg/L	× ×	0.005									
đ	Free Cyanide Total Cyanide)	µgL µgL	<	0.01									
	Dissolved Iron Total Iron	n	µgL µgL	* *	0.02									
	Total Lead Total Mangan		µgL µgL	<	0.002									
	Total Mercury Total Nickel		µgL µgL	× ×	0.0002									
- [Total Seleniu	(Phenolics) (PWS) m	µgL µgL	A A	0.004									
l	Total Silver Total Thaliun	1	µgL µgL	× ×	0.001									
	Total Zinc Total Molybde	num	µg/L µg/L	× ×	0.005									
	Acrolein Acrylamide		µgL µgL	× ×										
	Acrylonibile Berzene		µgL µgL	× ×										
	Bromoform		Pg/L	<										
	Chlorodibrom Chloroethane		µgL µgL	× ×										
- [2-Chloroethyl Chloroform		µgL µgL	× ×										
1	Dichlorobrom 1, 1-Dichloroe	there	µgL µgL	A A										
8	1,2-Dichloroe 1,1-Dichloroe	thylene	µgL µgL	A A										
	1,2-Dichlorop 1,3-Dichlorop	ropane ropylene	µgL µgL	* *										
- [1,4-Dioxane Ethylbenzene Methyl Bromi		µgL µgL	< < <										
1	Methyl Chlorid Methylene Ch	de .	ygt ygt ygt	× ×										
	1, 1, 2, 2-Tetrac Tetrachioroet	hioroethane	Hgt.	*										
	Toluene 1,2-trans-Dict		µgL µgL	*										
	1, 1, 1-Trichlon 1, 1, 2-Trichlon	oethane	µg/L µg/L	*										
	Trichioroethyl Vinyl Chiotide	ene	µgL µgL	× ×										
	2-Chlorophen 2,4-Dichlorop	ol	Hor Hor	< <										
	2,4-Dimethyl; 4,6-Dinitro-o-	cresol	Hgt.	× ×										
đ	2,4-Dinitrophe 2-Nitrophenol	mol	µgL µgL	× ×										
	4-Nitrophenol p-Chloro-m-C	resol	HQL HQL	× ×										
	Pentachiorop Phenol		Hor Hor	A A										
	2,4,6-Trichlon Acenaphthen	0	µg/L µg/L	× ×										
	Acenaphthyle Anthracene	ne	µgL µgL	A A										
	Berzidine Berzo(a)Anth	racene	µgL µgL	*										
	Benzo(a)Pyre 3,4-Benzofluc	enedinax	µgL µgL	A A										
	Berzo(ghi)Pe Berzo(k)Fluo	ranthene	µgL µgL	A A										
1	Bis(2-Chloroe	thoxy)Methane thyl)Ether	µgL µgL	× × .										
	Bis(2-Ethylhe	xopropyl)Ether xyl)Phthalate	µg/L µg/L	× ×										
1	Butyl Benzyl I		µgL µgL	*										
		thalene yl Phenyl Ether	µgL µgL	× ×										
	Chrysene	othrancene	HQL HQL	A A										
	Diberzo(a,h)/													
	Diberzo(a,h)/ 1,2-Dichlorob 1,3-Dichlorob	enzene enzene	Hgt.	A A										
nb 2	Diberzo(a,h)/ 1,2-Dichlorob	enzene enzene enzidine												

Page 2 12

Management Spreadtheet Version 1.4, May 2028

rtown Bo																	
	T	2,6-Dinitrotoluene	-	µg/L	<												
		Di-n-Octyl Phthalate		µg/L	<												
		1,2-Diphenylhydrazine Fluoranthene		µgL µgL	*				-			<u> </u>	<u> </u>				
		Fluorene		µg/L	<												
		Hexachiorobenzene Hexachiorobutadiene		PgL PgL	A 4		-		-			<u> </u>	<u> </u>				
		Hexachiorocyclopentadiene		µg/L	~												
		Hexachioroethane Indeno(1,2,3-cd)Pyrene		µg/L	*												
		Indeno(1,2,3-cd)Pyrene Isophorone		Hgt.	× ×				-								
		Naphthalene		µgt_	<												
		Nitroberzene n-Nitrosodimethylamine		Hgt.	< <			-	-								
		n-Nitrosodi-n-Propylamine		µgL.	<												
		n-Nitrosodiphenylamine Phenanthrene		µg/L	A A			-									
		Pyrene		Hgt.	~				-	+							
		1,2,4-Trichlorobenzene		µg/L	~												
		Aldrin alpha-BHC		µgL µgL	*		_					<u> </u>					
		beta-BHC		µg/L	<												
		gamma-BHC delta BHC		µg/L	* *		_	-				<u> </u>	<u> </u>				
		Chlordane		Hgt.	<												
		4,4-DDT		µg/L	<												
		4,4-DDE 4,4-DDD		µgL µgL	× ×		_		-			<u> </u>	<u> </u>				
		Dieldrin		µgL.	<												
		alpha-Endosulfan		µg/L	A A			-									
		beta-Endosulfen Endosulfen Sulfete		Hgt.	~					-							
	Group	Endrin		µg/L	<												
	ð	Endrin Aldehyde Heptachlor		Hgt.	A A		_		-			<u> </u>	<u> </u>				
		Heptachior Epoxide		µg/L	<											I	
		PCB-1018		µg/L	*											I	
		PC8-1221 PC8-1232		HgL HgL	A 4					-							
		PCB-1242		µg/L	<												
		PCB-1248 PCB-1254		µgL µgL	~				-							I	
		PCB-1260		µg/L	<												
		PCBs, Total		µg/L	<												
		Toxaphene 2,3,7,8-TCDD		ngL	~				-			<u> </u>	<u> </u>				
		Gross Alpha		pCi/L													
	5	Total Beta		pCi/L	× ×			-									
	ding	Redium 226/228 Total Strontium		pCi/L µg/L	<					-							
	ø	Total Uranium		µg/L	<												
		Osmotic Pressure	n	nOs/kg					-				<u> </u>				
							_	-				<u> </u>	<u> </u>				
															I I		
	Disch	arge Information					11/2	9/2023							Pa	ge 3	
	Disch	arge information					11/2	9/2023							Pa	ge 3	
	Disch	arge Information					11/2	9/2023							Pa	ge 3	
							11/2	9/2023									
penns	syl	vania					11/2	9/2023								ce Managerre	et Spraukheet h 14, May 2003
penns	syl						11/2	9/2023								ce Managerre	
penns Departmen	syl	vania					11/2	9/2023								ce Managerre	
penns DEPARTMED PROTECTIO	syl Marar	vania ENVBROMMENTAL	forma	tio			11/2	9/2023		Во	yerstown	Borou	p, NPD	ES Permi	Toul	cs Manageme Versio	
penns DEPARTMED PROTECTIO	syl Marar	vania	forma	itio	n		11/2	9/2023		Во	yerstown	n Boroų	gh, NPD	ES Permi	Toul	cs Manageme Versio	1.4, May 2023
Stream / S	syl M Sur	vania ENVERONMENTAL face Water Inf	forma	tio	n		11/2	9/2023		Во	yerstown	Borou	gh, NPD	ES Permi	Toul	cs Manageme Versio	1.4, May 2023
penns DEPARTMED PROTECTIO	syl M Sur	vania ENVERONMENTAL face Water Inf	forma	tio	n		11/2	9/2023		Во	yerstown	n Borou	gh, NPD	ES Permi	Toul	cs Manageme Versio	1.4, May 2023
Stream / S	syl M Sur	vania ENVERONMENTAL face Water Inf	forma	tio	n		11/2	9/2023		Во	yerstown	n Borou	gh, NPD	ES Permi	Toul	cs Manageme Versio	1.4, May 2023
Stream / S	syl Marar Sur	vania ENVERONMENTAL face Water Inf			n				es to Mic						Tool	cs Manageme Versio	1.4, May 2023
Stream / S	syl Marar Sur	vania ENVERONMENTAL face Water Inf	ronstone (Creek	n		Ν	o. React		xdel:	1		Statew Great	ide Crite Lakes Cr	Tool t No. PAI ria iteria	cs Manageme Versio	1.4, May 2023
Stream / S	syl Marian Sur Mate	vania ENVERONMENTAL face Water Inf	ronstone (Creek	n	Py Siop	N	o. Reach	thdrawal	Apply	1 Fish		Statew Great	ide Crite	Tool t No. PAI ria iteria	cs Manageme Versio	1.4, May 2023
Dependent opportunition Stream / S Instructions Disc Receiving Surface Location	syl Mit of Mi Sur Charg Wate	vania ENVERONMENTAL face Water Inf Stream	ronstone (Creek	A (m		Ν	o. React	thdrawal	xdel:	1 Fish fia'		Statew Great	ide Crite Lakes Cr	Tool t No. PAI ria iteria	cs Manageme Versio	1.4, May 2023
Dependent Dependent Penterno Stream / S Instructions Diss Receiving Surface	syl Mit of Mi Sur Charg Wate	vania ENVERONMENTAL face Water Inf Stream er Name: <u>Trib 01884 to in</u> ream Code: RMI'	Elevation (ft)*	Creek		4	N	o. Reach	thdrawal	Apply Crite	1 Fish ria*		Statew Great	ide Crite Lakes Cr	Tool t No. PAI ria iteria	cs Manageme Versio	1.4, May 2023
Stream / S Instructions Disa Receiving Surface Location Point of Discharge End of Reach 1	syl Mit of Mi Sur Charg Wate	vania ENVEROMMENTAL face Water Inf stream r Name: <u>Trib 01884 to in</u> ream Code' RMI' 001664 1.5	Elevation (ft)*	Creek	A (m	4	N	o. Reach	thdrawal	Apply Crite Ye	1 Fish ria*		Statew Great	ide Crite Lakes Cr	Tool t No. PAI ria iteria	cs Manageme Versio	1.4, May 2023
Stream / S Instructions Disc Receiving Surface Location Point of Discharge End of Reach 1 9240	syl Mit of Mi Sur Charg Wate	Vania ENVEROMMENTAL face Water Inf Stream er Name: Trib 01884 to in tream Code* 001664 0.001	Elevatio (ft)* 540 380	Dreek	A (m	4	e (ft/ft)	o. Reach PWS Wi (MC	thdrawal 3D)	Apply Crite Ye Ye	1 Fish ria' S		Statew Great	ide Crite Lakes Cr NCO Cri	Tosk t No. PAd iteria iteria eria	ct Manageme Vector	0 14, May 2003
Stream / S Instructions Disa Receiving Surface Location Point of Discharge End of Reach 1	syl Mit of Mi Sur Charg Wate	Vania ENVEROMMENTAL face Water Inf stream r Name: Trib 01884 to in tream Code' 001664 0.001 RMI LFY (ctaimit)*	Elevation (ft)' 540 380 Flow (r	Dreek	A (m 0.44 0.71	4	e (ft/ft)	o. Reach PWS Wi (MC	thdrawal	Apply Crite Ye Ye	1 Fish ria' S	(C) (C) (C)) Statew) Great I) ORSA	ide Crite Lakes Cr	Tosk t No. PAd iteria iteria eria	ct Manageme Vector	outfall 001
Receiving Surface Location Point of Discharge End of Reach 1 Q749 Location Point of Discharge	Sur Sur	Vania ENVERONMENTAL face Water Inf Stream er Name: Trib 01884 to in tream Code* 001664 001664 001664 001664 0.001 RMI LFY 1.5 0.27	Elevation (ft)' 540 380 Flow (r	Creek	A (m 0.44 0.71		e (fuft) Width	o. Reach PWS Wi (MC	elocit	Apply Crite Ye Ye	1 Fish fia* s s	(C) (C) (C)) Statew) Great I) ORSA	ide Crite Lakes Cr NCO Crit Strei	Tool t No. PAI ria iteria eria	or Managemen Version	outfall 001
Stream / S Instructions Disc Receiving Surface Location Point of Discharge End of Reach 1 Q ₇₄₀ Location	Sur Sur	Vania ENVEROMMENTAL face Water Inf stream r Name: Trib 01884 to in tream Code' 001664 0.001 RMI LFY (ctaimit)*	Elevation (ft)' 540 380 Flow (r	Creek	A (m 0.44 0.71		e (fuft) Width	o. Reach PWS Wi (MC	elocit	Apply Crite Ye Ye	1 Fish fia* s s	(C) (C) (C)) Statew) Great I) ORSA	ide Crite Lakes Cr NCO Crit Strei ardness	Tool t No. PAI ria iteria eria	or Managemen Version	outfall 001
Pennes pennes Stream / S Instruction Receiving Surface Location Point of Discharge End of Reach 1 Q7-49 Location Point of Discharge	Sur Sur	Vania ENVERONMENTAL face Water Inf Stream er Name: Trib 01884 to in tream Code* 001664 001664 001664 001664 001654 001654 001654 001654 0.001	Elevation (ft)' 540 380 Flow (r	Creek	A (m 0.44 0.71		e (fuft) Width	o. Reach PWS Wi (MC	elocit	Apply Crite Ye Ye Time (days)	1 Fish fia* s s	(C) (C) (C)) Statew) Great I) ORSA	ide Crite Lakes Cr NCO Crit Strei ardness	Tool t No. PAI ria iteria eria	or Managemen Version	outfall 001
Stream / S Stream / S Instructions Disc Receiving Surface Location Point of Discharge End of Reach 1 Q7-10 Location Point of Discharge End of Reach 1	Sur Sur	Vania ENVEROMMENTAL face Water Inf g Stream er Name: Trib 01884 to in tream Code* RMI LEY 1.5 0.27 0.001 RMI LEY	Flow (Flow (Creek n D cfs) Tribut	A (m 0.44 0.71	W/D Ratio	N e (ft/ft) (ft) Width (1 Width 1	io. Reach PIWS WI (MC (ft) y Depth V	elocit (fps)	Apply Crite Ye Ye	1 Fish ia' s T Hardn	Tibutary ess i) Statew) Great I) ORSA	Ade Crite Lakes Cr NCO Crit Strei ardness 100 Strei	Tool t No. PAI tteria eria am <u>PHI</u> 7 7	ti Monapera Vecto 00084683, Hardine	8) ysis 22 pH
Stream / S Stream / S Instruction Disc Receiving Surface Location Point of Discharge End of Reach 1 Q ₇₋₆₀ Location Point of Discharge End of Reach 1 Q ₈ Location		Vania ENVIRONMENTAL face Water Inf Stream er Name: Trib 01884 to in tream Code* RMI* 001664 1.5 001664 0.001 RMI LFY 1.5 0.27 0.001 0.27 RMI LFY (cfalmi ⁰) S	Flow (Flow (Creek n D. cfs) Tribut	A (m 0.44 0.71	W/D Ratio	N e (f/tf) (f)	io. Reach PIWS WI (MC (ft) y Depth V	elocit (fps)	Apply Crite Ye Ye Time (daus)	1 Fish ria* s s Hardn	Tibutary ess i) Statew) Great I) ORSA	ide Crite Lakes Cr NCO Crit Strei ardness ¹ 100	Tool t No. PAI tteria eria am <u>PHI</u> 7 7	ta Maragens Vector	Nysis 25 pH
Stream / S Instructions Disc Receiving Surface Location Point of Discharge End of Reach 1 Q ₂₋₁₀ Location Point of Discharge End of Reach 1 Q ₃		Vania ENVEROMMENTAL face Water Inf g Stream er Name: Trib 01884 to in tream Code* RMI LEY 1.5 0.27 0.001 RMI LEY	Flow (Flow (Creek n D cfs) Tribut	A (m 0.44 0.71	W/D Ratio	N e (ft/ft) (ft) Width (1 Width 1	io. Reach PIWS WI (MC (ft) y Depth V	elocit (fps)	Apply Crite Ye Ye Time (days)	1 Fish ia' s T Hardn	Tibutary ess i) Statew) Great I) ORSA	Ade Crite Lakes Cr NCO Crit Strei ardness 100 Strei	Tool t No. PAI tteria eria am <u>PHI</u> 7 7	ti Monapera Vecto 00084683, Hardine	8) ysis 22 pH
Point of Discharge End of Reach 1 Q 2:0 Location Point of Discharge End of Reach 1 Q 2:0 Location Point of Discharge End of Reach 1 Q_A Location Point of Discharge		Vania ENVEROMMENTAL face Water Inf Stream stream cole RMI LFY (cts/ml)* S 0.01 0.27 0.001 0.27 RMI LFY RMI LFY I.5 0.27 I.5 0.27	Flow (Flow (Creek n D cfs) Tribut	A (m 0.44 0.71	W/D Ratio	N e (ft/ft) (ft) Width (1 Width 1	io. Reach PIWS WI (MC (ft) y Depth V	elocit (fps)	Apply Crite Ye Ye Time (days)	1 Fish ia' s T Hardn	Tibutary ess i) Statew) Great I) ORSA	Ade Crite Lakes Cr NCO Crit Strei ardness 100 Strei	Tool t No. PAI tteria eria am <u>PHI</u> 7 7	ti Monapera Vecto 00084683, Hardine	8) ysis 22 pH
Stream / S Stream / S Instruction Disc Receiving Surface Location Point of Discharge End of Reach 1 Q to Location Point of Discharge End of Reach 1 Q to Location Point of Discharge		Vania ENVEROMMENTAL face Water Inf Stream stream cole RMI LFY (cts/ml)* S 0.01 0.27 0.001 0.27 RMI LFY RMI LFY I.5 0.27 I.5 0.27	Flow (Flow (Creek n D cfs) Tribut	A (m 0.44 0.71	W/D Ratio	N e (ft/ft) (ft) Width (1 Width 1	io. Reach PIWS WI (MC (ft) y Depth V	elocit (fps)	Apply Crite Ye Ye Time (days)	1 Fish ia' s T Hardn	Tibutary ess i) Statew) Great I) ORSA	Ade Crite Lakes Cr NCO Crit Strei ardness 100 Strei	Tool t No. PAI ris teria eria am <u>PH^T</u> 7	ti Monapera Vecto 00084683, Hardine	8) ysis 22 pH
Point of Discharge End of Reach 1 Q 2:0 Location Point of Discharge End of Reach 1 Q 2:0 Location Point of Discharge End of Reach 1 Q_A Location Point of Discharge		Vania ENVEROMMENTAL face Water Inf Stream stream cole RMI LFY (cts/ml)* S 0.01 0.27 0.001 0.27 RMI LFY RMI LFY I.5 0.27 I.5 0.27	Flow (Flow (Creek n D cfs) Tribut	A (m 0.44 0.71	W/D Ratio	N e (ft/ft) (ft) Width (1 Width 1	io. Reach PIWS WI (MC (ft) y Depth V	elocit (fps)	Apply Crite Ye Ye Time (days)	1 Fish ia' s T Hardn	Tibutary ess i) Statew) Great I) ORSA	Ade Crite Lakes Cr NCO Crit Strei ardness 100 Strei	Tool t No. PAI ris teria eria am <u>PH^T</u> 7	ti Monapera Vecto 00084683, Hardine	8) ysis 22 pH
Point of Discharge End of Reach 1 Q 2:0 Location Point of Discharge End of Reach 1 Q 2:0 Location Point of Discharge End of Reach 1 Q_A Location Point of Discharge		Vania ENVEROMMENTAL face Water Inf Stream stream cole RMI LFY (cts/ml)* S 0.01 0.27 0.001 0.27 RMI LFY RMI LFY I.5 0.27 I.5 0.27	Flow (Flow (Creek n D cfs) Tribut	A (m 0.44 0.71	W/D Ratio	N e (ft/ft) (ft) Width (1 Width 1	io. Reach PIWS WI (MC (ft) y Depth V	elocit (fps)	Apply Crite Ye Ye Time (days)	1 Fish ia' s T Hardn	Tibutary ess i) Statew) Great I) ORSA	Ade Crite Lakes Cr NCO Crit Strei ardness 100 Strei	Tool t No. PAI ris teria eria am <u>PH^T</u> 7	ti Monapera Vecto 00084683, Hardine	8) ysis 22 pH
Point of Discharge End of Reach 1 Q 2:0 Location Point of Discharge End of Reach 1 Q 2:0 Location Point of Discharge End of Reach 1 Q_A Location Point of Discharge		Vania ENVEROMMENTAL face Water Inf Stream stream cole RMI LFY (cts/ml)* S 0.01 0.27 0.001 0.27 RMI LFY RMI LFY I.5 0.27 I.5 0.27	Flow (Flow (Creek n D cfs) Tribut	A (m 0.44 0.71	W/D Ratio	N e (ft/ft) (ft) Width (1 Width 1	io. Reach PIWS WI (MC (ft) y Depth V	elocit (fps)	Apply Crite Ye Ye Time (days)	1 Fish ia' s T Hardn	Tibutary ess i) Statew) Great I) ORSA	Ade Crite Lakes Cr NCO Crit Strei ardness 100 Strei	Tool t No. PAI ris teria eria am <u>PH^T</u> 7	ti Monapera Vecto 00084683, Hardine	8) ysis 22 pH
Stream / S Stream / S Instruction Disc Receiving Surface Location Point of Discharge End of Reach 1 Q to Location Point of Discharge End of Reach 1 Q to Location Point of Discharge		Vania ENVEROMMENTAL face Water Inf Stream stream cole RMI LFY (cts/ml)* S 0.01 0.27 0.001 0.27 RMI LFY RMI LFY I.5 0.27 I.5 0.27	Flow (Flow (Creek n D cfs) Tribut	A (m 0.44 0.71	W/D Ratio	N e (ft/ft) (ft) Width (1 Width 1	io. Reach PIWS WI (MC (ft) y Depth V	elocit (fps)	Apply Crite Ye Ye Time (days)	1 Fish ia' s T Hardn	Tibutary ess i) Statew) Great I) ORSA	Ade Crite Lakes Cr NCO Crit Strei ardness 100 Strei	Tool t No. PAI tteria eria am <u>PHI</u> 7 7	ti Monapera Vecto 00084683, Hardine	8) ysis 22 pH
Stream / S Stream / S Instruction Disc Receiving Surface Location Point of Discharge End of Reach 1 Q to Location Point of Discharge End of Reach 1 Q to Location Point of Discharge		Vania ENVEROMMENTAL face Water Inf Stream stream cole RMI LFY (cts/ml)* S 0.01 0.27 0.001 0.27 RMI LFY RMI LFY I.5 0.27 I.5 0.27	Flow (Flow (Creek n D cfs) Tribut	A (m 0.44 0.71	W/D Ratio	N e (ft/ft) (ft) Width (1 Width 1	io. Reach PIWS WI (MC (ft) y Depth V	elocit (fps)	Apply Crite Ye Ye Time (days)	1 Fish ia' s T Hardn	Tibutary ess i) Statew) Great I) ORSA	Ade Crite Lakes Cr NCO Crit Strei ardness 100 Strei	Tool t No. PAI tteria eria am <u>PHI</u> 7 7	ti Monapera Vecto 00084683, Hardine	8) ysis 22 pH
Point of Discharge End of Reach 1 Q 2:0 Location Point of Discharge End of Reach 1 Q 2:0 Location Point of Discharge End of Reach 1 Q_A Location Point of Discharge		Vania ENVEROMMENTAL face Water Inf Stream stream cole RMI LFY (cts/ml)* S 0.01 0.27 0.001 0.27 RMI LFY RMI LFY I.5 0.27 I.5 0.27	Flow (Flow (Creek n D cfs) Tribut	A (m 0.44 0.71	W/D Ratio	N e (ft/ft) (ft) Width (1 Width 1	io. Reach PIWS WI (MC (ft) y Depth V	elocit (fps)	Apply Crite Ye Ye Time (days)	1 Fish ia' s T Hardn	Tibutary ess i) Statew) Great I) ORSA	Ade Crite Lakes Cr NCO Crit Strei ardness 100 Strei	Tool t No. PAI tteria eria am <u>PHI</u> 7 7	ti Monapera Vecto 00084683, Hardine	8) ysis 22 pH

Stream / Surface Water Information

Page 4

Chem Translator of 0.825 applied

Chem Translator of 0.85 applied Chem Translator of 0.998 applied

Chem Translator of 0.922 applied Chem Translator of 0.85 applied

Chem Translator of 0.978 applied

	Pennsylvania DEPARTMENT OF ENVIRONMENTA PROTECTION	L								,	Culos Management Spreadch Version 1.4, May 3	
	Model Results							Boyerstown	Borough, NPDE	ES Permit No. P	PA0084683, Outfall 0	01
1	Instructions Results	RETURN	TO INPU	лз	SAVE AS	PDF	PRINT		VI O Inputs	O Results	O Limits	
1	Hydrodynamics											
I	Westeload Allocations											
	AFC CC	T (min): 0.	303	PMF:	1	[Anal	ysis Hardnes	ss (mg/l):	79.211	Analysis pH:	7.10	
[Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µgL)	WQ Obj (µg/L)	WLA (µg/L)		Co	omments	
- 1												
- 1	Total Dissolved Solids (PWS)	(1001)	0		0	N/A	NA	NA				
ł	Total Dissolved Solids (PWS) Chloride (PWS)				0	N/A N/A		N/A N/A				
ł		0	0				NA					
	Chloride (PWS)	0	0		ō	NA	N/A N/A	N/A				
	Chioride (PWS) Sulfate (PWS)	0	0		0	N/A N/A	N/A N/A N/A	N/A N/A				
	Chloride (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Antimory	0	0 0 0 0		0 0 0 0 0 0 0	N/A N/A N/A 750 1,100	N/A N/A N/A 750 1,100	N/A N/A 2,190 3,212				
	Chioride (PWS) Sulfate (PWS) Fluoride (PWS) Total Auminum Total Antimony Total Arsenic	0 0 0 0 0 0 0 0	0 0 0 0 0 0		0	N/A N/A 750 1,100 340	N/A N/A N/A 750 1,100 340	N/A N/A 2,190 3,212 993		Chem Trans	siator of 1 appiled	
	Chloride (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Antimory	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0	N/A N/A N/A 750 1,100	N/A N/A N/A 750 1,100	N/A N/A 2,190 3,212		Chem Trans	slator of 1 applied	
	Chioride (PWS) Sulfate (PWS) Fluoride (PWS) Total Auminum Total Antimony Total Arsenic	000000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N/A N/A 750 1,100 340	N/A N/A N/A 750 1,100 340	N/A N/A 2,190 3,212 993				
	Chioride (PWS) Suifate (PWS) Fluoride (PWS) Total Artiminum Total Antimony Total Antenic Total Bartum Total Boron Total Cadmium	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				NIA NIA NIA 750 1,100 340 21,000 8,100 1,605	N/A N/A N/A 750 1,100 340 21,000	N/A N/A 2,190 3,212 993 61,317 23,651 4.91		Chem Transia	ator of 0.954 applied	
•	Chioride (PWS) Suifate (PWS) Fluoride (PWS) Total Auminum Total Antenic Total Bartum Total Bartum Total Bartum Total Cadmium Total Cadmium					N/A N/A N/A 750 1,100 340 21,000 8,100 1,505 470,761	N/A N/A N/A N/A 750 1,100 340 21,000 8,100 1,68 1,490	N/A N/A N/A 2,190 3,212 993 61,317 23,651 4,91 4,350		Chem Transia Chem Transia	ator of 0.954 applied ator of 0.316 applied	
•	Chioride (PWS) Suifate (PWS) Fluoride (PWS) Total Auminum Total Ansenic Total Ansenic Total Bartum Total Bartum Total Catomium Total Chromium (III) Heisavalent Chromium					N/A N/A N/A 750 1,100 340 21,000 8,100 1,605 470,761 16	N/A N/A N/A 750 1,100 340 21,000 8,100 1,68 1,490 16.3	N/A N/A 2,190 3,212 993 61,317 23,651 4,91 4,350 47,5		Chem Transia Chem Transia	ator of 0.954 applied	
•	Chioride (PWS) Suifate (PWS) Fluoride (PWS) Total Auminum Total Antenic Total Bartum Total Bartum Total Bartum Total Cadmium Total Cadmium					N/A N/A N/A 750 1,100 340 21,000 8,100 1,605 470,761 16 95	N/A N/A N/A 750 1,100 340 21,000 8,100 1.68 1,490 16.3 95.0	N/A N/A 2,190 3,212 993 61,317 23,651 4,91 4,350 47,5 277		Chem Transia Chem Transia Chem Transia	ator of 0.954 applied ator of 0.316 applied ator of 0.982 applied	
	Chioride (PWS) Suifate (PWS) Fluoride (PWS) Total Auminum Total Ansenic Total Ansenic Total Bartum Total Bartum Total Catomium Total Chromium (III) Heisavalent Chromium					N/A N/A N/A 750 1,100 340 21,000 8,100 1,605 470,761 16	N/A N/A N/A 750 1,100 340 21,000 8,100 1,68 1,490 16.3	N/A N/A 2,190 3,212 993 61,317 23,651 4,91 4,350 47,5		Chem Transia Chem Transia Chem Transia	ator of 0.954 applied ator of 0.316 applied	
	Chioride (PM/S) Suifate (PM/S) Fluoride (PM/S) Total Antiminum Total Antimony Total Antenic Total Boron Total Boron Total Cohomium Total Chromium Total Chromium Total Chromium Total Cohomium					N/A N/A N/A 750 1,100 340 21,000 8,100 1,605 470,761 16 95	N/A N/A N/A 750 1,100 340 21,000 8,100 1.68 1,490 16.3 95.0	N/A N/A 2,190 3,212 993 61,317 23,651 4,91 4,350 47,5 277		Chem Transia Chem Transia Chem Transia	ator of 0.954 applied ator of 0.316 applied ator of 0.982 applied	

0

0

0

0

0

0

0

N/A N/A

50.063 N/A

1,400

384.448 N/A

N/A 2.154

65 96.183

Model Results

Total

Total Iron

Total Lead Total Manganes

Total Mercury

Total Nickel

Total Selenium Total Silver

Total Thailum

Total Zinc

enois (Phenoilcs) (PWS)

0

0

0

0

0

0

0

0

0

0

0

0

0

11/29/2023

N/A N/A

60.7 N/A 1.65

385

NA

N/A 2.53

65.0 98.3

N/A N/A

177 N/A

4.81

1,125

N/A 7.4

190

287

N/A

CFC CA	CT (min): 0.	303	PMF:	1		alysis Hardne	ss (mgri):	79.211 Analysis pH: 7.10
Pollutants	Conc (up1)	Stream CV	Trib Conc (µg/L)	Fate Coef	(ugL)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	NA	NA	
Chloride (PWS)	0	0		0	N/A	N/A	NA	
Sulfate (PWS)	0	0		0	N/A	NA	NA	
Fluoride (PWS)	0	0		0	N/A	N/A	NA	
Total Aluminum	0	0		0	N/A	N/A	NA	
Total Antimony	0	0		0	220	220	642	
Total Arsenic	0	0		0	150	150	438	Chem Translator of 1 applied
Total Barlum	0	0		0	4,100	4,100	11,971	
Total Boron	0	0		0	1,600	1,600	4,672	
Total Cadmium	0	0		0	0.209	0.23	0.66	Chem Translator of 0.919 applied
Total Chromium (III)	0	0		0	61.236	71.2	208	Chem Translator of 0.86 applied
Hexavalent Chromium	0	0		0	10	10.4	30,4	Chem Translator of 0.962 applied
Total Cobalt	0	0		0	19	19.0	55.5	
Total Copper	0	0		0	7.339	7.64	22.3	Chem Translator of 0.96 applied
Dissolved iron	0	0		0	N/A	NA	NA	
Total Iron	0	0		0	1,500	1,500	4,380	WQC = 30 day average; PMF = 1
Total Lead	0	0		0	1.951	2.36	6.9	Chem Translator of 0.825 applied
Total Manganese	0	0		0	N/A	N/A	NA	
Total Mercury	0	0		0	0.770	0.91	2.65	Chem Translator of 0.85 applied
Total Nickel	0	0		0	42.700	42.8	125	Chem Translator of 0.997 applied
Total Phenois (Phenolics) (PWS)	0	0		0	N/A	N/A	NA	
Total Selenium	0	0		0	4.600	4.99	14.6	Chem Translator of 0.922 applied
Total Silver	0	0		0	N/A	N/A	NA	Chem Translator of 1 applied
Total Thailium	0	0		0	13	13.0	38.0	
Total Zinc	0	0		0	96.970	98.3	287	Chem Translator of 0.986 applied

THH CCT (min): (

0.303 PMF: 1 Analysis Hardness (mg/l): N/A Analysis pH: N/A

Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µgL)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	NA	
Chloride (PWS)	0	0		0	250,000	250,000	N/A	
Sulfate (PWS)	0	0		0	250,000	250,000	NA	
Fluoride (PWS)	0	0		0	2,000	2,000	NA	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	5.6	5.6	16.4	
Total Arsenic	0	0		0	10	10.0	29.2	
Total Barlum	0	0		0	2,400	2,400	7,008	
Total Boron	0	0		0	3,100	3,100	9,052	
Total Cadmium	0	0		0	N/A	N/A	NA	
Total Chromium (III)	0	0		0	N/A	N/A	NA	

Page 5

Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	NA	
Total Copper	0	0		0	N/A	N/A	NA	
Dissolved Iron	0	0		0	300	300	876	
Total Iron	0	0		0	N/A	N/A	NA	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	1,000	1,000	2,920	
Total Mercury	0	0		0	0.050	0.05	0.15	
Total Nickel	0	0		0	610	610	1,781	
Total Phenois (Phenoilcs) (PWS)	0	0		0	5	5.0	N/A	
Total Selenium	0	0		0	N/A	N/A	NA	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thailum	0	0		0	0.24	0.24	0.7	
Total Zinc	0	0		0	N/A	N/A	N/A	
CRL CC	T (min): 0.1	180	PMF:	1	Ana	alysis Hardne	ss (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc (unl.)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µgL)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	NA	
Chloride (PWS)	0	0		0	N/A	N/A	NA	
Sulfate (PWS)	0	0		0	N/A	N/A	NA	
Fluoride (PWS)	0	0		0	N/A	N/A	NA	
Total Auminum	_	0						
	0	u		0	N/A	NA	N/A	
Total Antimony	0	0		0	NA	N/A N/A	N/A N/A	
	-	-		-				
Total Antimony	0	0		0	N/A	N/A	NA	
Total Antimony Total Arsenic	0	0		0	N/A N/A	N/A N/A	N/A N/A	
Total Antimony Total Arsenic Total Barlum	0	0		0	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	
Total Antimony Total Arsenic Total Barlum Total Boron	0 0 0 0 0	0 0 0 0		0	N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A N/A	
Total Antimony Total Ansenic Total Barlum Total Boron Total Cadmium	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0		0	N/A N/A N/A N/A	N/A N/A N/A N/A	NIA NIA NIA NIA	
Total Antimony Total Arsenic Total Barfum Total Boron Total Cadmium Total Chromium (III)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0	NIA NIA NIA NIA NIA	NIA NIA NIA NIA NIA	N/A N/A N/A N/A N/A	
Total Antimony Total Ansenic Total Barlum Total Boron Total Cadmium Total Chromium (III) Hexavalent Chromium					NIA NIA NIA NIA NIA NIA	NIA NIA NIA NIA NIA NIA	N/A N/A N/A N/A N/A N/A	
Total Antimony Total Arsenic Total Bartum Total Boron Total Cadmium Total Cadmium (III) Hexavalent Chromium Total Cobalt					NIA NIA NIA NIA NIA NIA	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A	
Total Antimony Total Arsenic Total Barlum Total Boron Total Cadmium Total Chromium (III) Hexavalent Chromium Total Cobalt Total Copper					NA NA NA NA NA NA NA NA	N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A	
Total Antimony Total Ansenic Total Bartum Total Boron Total Cadmium Total Cononium (III) Hexavalent Chromium Total Cobait Total Copper Dissolved iron					N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A	
Total Antimony Total Ansenic Total Barlum Total Cadmium Total Commum Total Chromium (III) Hexavalent Chromium Total Cobalt Total Cobalt Total Copper Dissolved Iron Total Iron					NIA NIA NIA NIA NIA NIA NIA NIA NIA NIA	N/A	N/A	
Total Antimony Total Arsenic Total Barlum Total Boron Total Cadmilum Total Chromium (III) Hexavalent Chromium Total Cobalt Total Copper Dissolved Iron Total Iron Total Lead					NIA NIA NIA NIA NIA NIA NIA NIA NIA NIA	N/A	N/A	
Total Antimony Total Ansenic Total Bartum Total Boron Total Cadmium Total Chromium (III) Hexavalent Chromium Total Copper Dissolved Iron Total Lead Total Lead Total Manganese					NIA NIA	N/A	N/A	
Total Antimony Total Ansenic Total Barlum Total Barlum Total Cadmium Total Chromium (III) Hexavalent Chromium Total Cobalt Total Cobalt Total Copper Dissolved Iron Total Iron Total Iron Total Iron Total Manganese Total Manganese Total Mercury					N/A	N/A	N/A	
Total Antimony Total Arsenic Total Bartum Total Boron Total Cadmium Total Cobalt Total Cobalt Total Cobalt Total Copper Dissolved Iron Total Iron Total Iron Total Lead Total Manganese Total Mercury Total Nickel					NIA NIA NIA NIA NIA NIA NIA NIA NIA NIA	N/A	N/A N/A	
Total Antimony Total Anenic Total Bartum Total Boron Total Goron Total Commum Total Chromium Total Chromium Total Copper Dissolved iron Total Lead Total Lead Total Manganese Total Manganese Total Mickel Total Mickel					NIA NIA NIA NIA NIA NIA NIA NIA NIA NIA	N/A	NIA NIA NIA NIA NIA NIA NIA NIA NIA NIA	
Total Antimony Total Ansenic Total Sarfum Total Barfum Total Cadmium Total Commum Total Copper Dissolved iron Total Copper Dissolved iron Total Lead Total Manganese Total Manganese Total Manganese Total Manganese Total Manganese Total Manganese Total Mencury Total Phenolics (PMIS) Total Selenium					NIA NIA NIA NIA NIA NIA NIA NIA NIA NIA	NIA NIA	NA NA NA NA NA NA NA NA NA NA NA NA NA N	

Model Results

11/29/2023

Page 7

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits		Concentration Limits					
Pollutants	AML (Ibs/day)	MDL (Ibs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality oriteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	NA	N/A	PWS Not Applicable
Chloride (PWS)	NA	N/A	PWS Not Applicable
Bromide	NA	N/A	No WQS
Sulfate (PWS)	NA	NA	PWS Not Applicable
Fluoride (PW8)	NA	NA	PWS Not Applicable
Total Aluminum	1,404	μgL	Discharge Conc ≤ 10% WQBEL
Total Antimony	NA	N/A	Discharge Conc < TQL
Total Arsenic	NA	N/A	Discharge Conc < TQL
Total Bartum	7,008	µgL.	Discharge Conc ≤ 10% WQBEL
Total Beryllum	NA	N/A	No WQS
Total Boron	4,672	µg/L	Discharge Conc < TQL
Total Cadmium	0.66	µg/L	Discharge Conc < TQL
Total Chromium (III)	208	µgL.	Discharge Conc < TQL
Hexavalent Chromium	30.4	µgL.	Discharge Conc < TQL
Total Cobalt	55.5	µg/L	Discharge Conc < TQL
Total Copper	21.0	µgL.	Discharge Conc < TQL
Total Cyanide	NA	N/A	No WQS
Dissolved iron	876	µgL.	Discharge Conc < TQL
Total Iron	4,380	μgL	Discharge Conc < TQL
Total Lead	6.9	µg/L	Discharge Conc < TQL
Total Manganese	2,920	µgL.	Discharge Conc s 10% WQBEL
Total Mercury	0.15	µgL.	Discharge Conc < TQL
Total Nickel	125	µgL.	Discharge Conc < TQL
Total Phenois (Phenolics) (PWS)		µgL.	Discharge Conc < TQL
Total Selenium	14.6	µgL.	Discharge Conc < TQL
Total Silver	4.74	µgL.	Discharge Conc < TQL
Total Thailium	0.7	µgL.	Discharge Conc < TQL
Total Zinc	184	µgL.	Discharge Conc < TQL
Total Molybdenum	N/A	N/A	No WQS

Page 8

Existing Effluent Limitations and Monitoring Requirements

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	; (lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required		
Falametei	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	1/day	Measured
pH (S.U.)	XXX	xxx	6.0 Daily Min	XXX	XXX	9.0	1/day	Grab
TRC	ххх	xxx	XXX	0.3	xxx	0.9	1/day	Grab
TSS	10	20	xxx	30.0	60.0	75	1/week	24-Hr Composite
Total Aluminum	0.4	0.7	xxx	1.3	2.1	3.3	1/week	24-Hr Composite
Total Iron	0.7	1.3	xxx	2.0	4.0	5	1/week	24-Hr Composite
Total Manganese	0.3	0.7	XXX	1.0	2.0	2.5	1/week	24-Hr Composite

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	; (lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required		
	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	ххх	XXX	xxx	xxx	1/day	Measured
pH (S.U.)	xxx	XXX	6.0	XXX	XXX	9.0	1/day	Grab
TRC	xxx	XXX	XXX	0.3	XXX	0.9	1/day	Grab
TSS	10.0	20.0	XXX	30.0	60.0	75.0	1/week	24-Hr Composite
Total Aluminum	0.4	0.7	XXX	1.3	2.1	3.3	1/week	24-Hr Composite
Total Iron		1.2	XXX	2.0	4.0	5.0	1/week	24-Hr
Total Iron	0.7	1.3		2.0	4.0			Composite 24-Hr
Total Manganese	0.3	0.7	XXX	1.0	2.0	2.5	1/week	Composite

Compliance Sampling Location:

Other Comments:

	Tools and References Used to Develop Permit
	WQM for Windows Model (see Attachment
	Toxics Management Spreadsheet (see Attachment)
	TRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 386-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 386-2000-019, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 386-2000-018, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 386-2183-001, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 386-2183-002, 12/97.
	Pennsylvania CSO Policy, 386-2000-002, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 386-2000-008, 4/97.
	Determining Water Quality-Based Effluent Limits, 386-2000-004, 12/97.
	Implementation Guidance Design Conditions, 386-2000-007, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 386-2000-016, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 386-2000-012, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 386-2000-009, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 386-2000-015, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 386-2000-022, 11/97.
\square	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 386-2000-013, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 386-2000-011, 11/1994.
	Implementation Guidance for Temperature Criteria, 386-2000-001, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 386-2000-021, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 386-2000-020, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 386-2000-005, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 386-2000-010, 3/1999.
	Design Stream Flows, 386-2000-003, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 386-2000-006, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 386-3200-001, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP:
	Other: