

Southcentral Regional Office CLEAN WATER PROGRAM

Application Type	Renewal	
Facility Type	Non- Municipal	NI
Major / Minor	Minor	

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. PA0084646

APS ID 278297

Authorization ID 1220306

Applicant Name	Southern Fulton School District	Facility Name	Southern Fulton Elementary School
Applicant Address	3072 Great Cove Road, Suite # 100	Facility Address	3072 Great Cove Road
	Warfordsburg, PA 17267-8530	<u> </u>	Warfordsburg, PA 17267-8530
Applicant Contact	John Bain	Facility Contact	John Bain
Applicant Phone	(717) 294-3251	Facility Phone	(717) 294-3251
Client ID	44393	Site ID	2355
Ch 94 Load Status	Not Overloaded	Municipality	Bethel Township
Connection Status		County	Fulton
Date Application Rece	eived January 24, 2018	EPA Waived?	Yes
Date Application Acce	epted March 30, 2018	If No, Reason	

Summary of Review

Southern Fulton School District has applied to the Pennsylvania Department of Environmental Protection (DEP) for reissuance of its NPDES permit. The permit was last reissued on July 19, 2013 and became effective on August 1, 2013. The permit expired on July 31, 2018 but the terms and conditions of the permit have been extended since that time.

Changes from the previous permit: Unit of Fecal Coliform changed from CFU/100 ml to No./100 ml.

Based on the review outlined in this fact sheet, it is recommended that the permit be drafted. A public notice of the draft permit will be published in the *Pennsylvania Bulletin* for public comments for 30 days. Any additional information or public review of documents associated with the discharge or the applicant may be available at the PA DEP Southcentral Regional Office (SCRO), 909 Elmerton Avenue, Harrisburg, PA 17110. To make an appointment for file reviews, contact the SCRO File Review Coordinator at 717.705.4700.

Approve	Deny	Signatures	Date
X			
		Hilary H. Le / Environmental Engineering Specialist	October 4, 2019
		Daniel W. Martin, P.E. / Environmental Engineer Manager	
		Maria D. Bebenek, P.E. / Clean water Program Manager	

Discharge, Receiving Waters and Water Supply Information								
Outfall No. 001		Design Flow (MGD)	0.01					
Latitude 39° 4°	7' 43.97"	Longitude	-78º 11' 15.09"					
	edmore	Quad Code						
Wastewater Descrip	otion: Sewage Effluent							
Receiving Waters	UNT to White Oak Run (TSF)	Stream Code	60898					
NHD Com ID	49477866	RMI	0.09 mile					
Drainage Area	0.81 mi. ²	Yield (cfs/mi²)	See comments below					
Q ₇₋₁₀ Flow (cfs)	See comments below	Q ₇₋₁₀ Basis	USGS StreamStats					
Elevation (ft)	630.0 ft	Slope (ft/ft)						
Watershed No.	13-B	Chapter 93 Class.	TSF					
Existing Use		Existing Use Qualifier						
Exceptions to Use		Exceptions to Criteria						
Assessment Status	Attaining Use(s)							
Cause(s) of Impairm	nent							
Source(s) of Impairr	ment							
TMDL Status		Name						
Nearest Downstrear	m Public Water Supply Intake	R.C. Wilson Water Treatment	Plant near Williamsport, MD					
PWS Waters F	otomac River	_ Flow at Intake (cfs)						
PWS RMI		Distance from Outfall (mi)	Approximate 23.0 miles					

Drainage Area

The discharge is to Unnamed Tributary to White Oak Run at RMI 0.09 mile. A drainage area upstream of the discharge is estimated to be 0.81 mi.², according to USGS PA StreamStats available at https://streamstats.usgs.gov/ss/.

Stream Flow

According to StreamStats, the discharge point on Unnamed Tributary to White Oak Run has a Q_{7-10} of 0.00704 cfs and a drainage area of 0.81 mi.² (resulting in a low flow yield of 0.00869 cfs/mi.²). However, the drainage area at the discharge point is well below the minimum value for the regression equations used. Therefore, the entire White Oak Run watershed was chosen as an appropriate representative drainage area. The Q_{7-10} at the exit point of this watershed is 0.0372 cfs and the drainage area is 3.37 mi.² which results in a Q_{7-10} low flow yield of 0.011 cfs/mi.². This information is used to obtain a chronic or 30-day (Q_{30-10}), and an acute or 1-day (Q_{1-10}) exposure stream flow for the point of first use as follows (Guidance No. 391-2000-023):

Low Flow Yield = 0.0372 cfs / 3.37 mi. $^2 \approx 0.011$ cfs/mi. 2 Q₇₋₁₀ = 0.011 cfs/mi. $^2 * 0.81$ mi. $^2 \approx 0.0089$ cfs Q₃₀₋₁₀ = 1.36 * 0.0089 cfs ≈ 0.0121 cfs Q₁₋₁₀ = 0.64 * 0.0089 cfs ≈ 0.0057 cfs

The resulting Q_{7-10} dilution ratio is: $Q_{\text{stream}} / Q_{\text{discharge}} = 0.0089 \text{ cfs} / [0.01 \text{ MGD} * (1.55 \text{ cfs/MGD})] = 0.57:1$

Unnamed Tributary to White Oak Run to Little Tonoloway Creek

25 Pa. Code 93.9z classifies Little Tonoloway Creek as Trout Stocking Fishes (TSF) surface water. Based on the 2016 Integrated Report, Little Tonoloway Creek, is not impaired. A TMDL currently does not exist for this stream segment, therefore, no TMDL has been taken into consideration during this review.

Potable Water Supply Intake

The nearest downstream public water supply intake is the R.C. Wilson Water Treatment Plant near Williamsport, MD intake on the Potomac River, approximately 23.0 miles from the point of discharge. eMapPA confirms that there are still no public water supplies downstream of this facility prior to the PA-MD border (over nine miles of stream). Given the nature and dilution, the discharge is not expected to significantly impact the water supply.

	Tr	eatment Facility Summar	у	
Treatment Facility Na	me: Southern Fulton Elem	entary		
WQM Permit No.	Issuance Date			
	Degree of			Avg Annual
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)
		Extended Aeration With		-
Sewage	Tertiary	Solids Removal	Gas Chlorine	0.01
		•		
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal
•				Combination of
0.01		Not Overloaded	Aerobic Digestion	methods

Changes Since Last Permit Issuance: none

The WWTP train is as follows:

Comminutor / Bar Screen (1) \Rightarrow EQ Tank (1) \Rightarrow Aeration Tank (1) \Rightarrow Settling Tank (1) \Rightarrow Sand Filters (2) \Rightarrow Chlorine Contact Tank (with liquid feed) (1) \Rightarrow De-chlorination System (with tablet feed) (1) \Rightarrow Discharge

The system incorporates chemical addition in the form of liquid chlorine (for disinfection), sodium bisulfite tablets (for dechlorination), and soda ash (for pH control). A sludge holding tank is used for solids storage.

	Compliance History						
Summary of DMRs:	DMRs reported last 12 months from August 1, 2018 to July 31, 2019 are summarized in the Table below.						
Summary of Inspections:	11/18/2016: Mr. Clark, DEP WQS, conducted a compliance evaluation inspection. The effluent was clear. There were no violations during inspection. There were recommendations: record composite sampler start and end times, and record results of process control testing.						
	11/30/2017: Mr. Clark, DEP WQS, conducted a compliance evaluation inspection. The effluent was clear. There were no violations during inspection. There were recommendations: flow chart adjusted, and record D.O. meter calibration information.						
	12/14/2018: Mr. Clark, DEP WQS, conducted a compliance evaluation inspection. The effluent was clear. The field tests were within permit limits. There was a violation due to pH meter not being calibrated as required. There were some recommendations as follows. - Calibrate pH meter each day it is used; - Submit annual C-Bay supplemental form for 2017-2018 report; - Have flow chart adjusted; and - Record all process control test results.						
Other Comments:	There are no open violations against permittee or facility.						

Other Comments: DMRs for the past 12 months indicate one instance of non-compliance (one under 5.0 mg/L for minimum limit of D.O.). The facility appears to be operating satisfactorily.

NPDES Permit Fact Sheet Southern Fulton Elementary School

Compliance History

DMR Data for Outfall 001 (from August 1, 2018 to July 31, 2019)

Parameter	JUL-19	JUN-19	MAY-19	APR-19	MAR-19	FEB-19	JAN-19	DEC-18	NOV-18	OCT-18	SEP-18	AUG-18
Flow (MGD)												
Average Monthly	0.002468	0.002053	0.003696	0.00232	0.00214	0.00193	0.00217	0.00182	0.00169	0.001961	0.00233	0.00093
Flow (MGD)												
Daily Maximum	0.0065	0.0057	0.00754	0.00777	0.00512	0.00454	0.00587	0.00724	0.00546	0.00531	0.00833	0.00447
pH (S.U.)												
Minimum	6.85	6.78	7.04	7.02	7.27	7.41	7.29	7.08	6.99	6.91	6.85	6.91
pH (S.U.)												
Maximum	7.32	7.63	7.4	7.84	7.91	7.76	7.69	7.86	7.49	7.54	7.41	7.41
DO (mg/L)	0.0	0.0	7.0	0.4	0.0	0.04	0.0	0.0	0.0	0.0	7.0	0.0
Minimum	6.9	6.9	7.6	8.1	9.3	< 0.01	9.8	8.9	9.2	8.3	7.6	8.0
TRC (mg/L)	0.04	.0.04	. 0. 00	. 0. 00	. 0. 00	. 0.04	. 0.04	. 0. 00	. 0.00	. 0. 00	. 0.04	0.04
Average Monthly	0.04	< 0.04	< 0.02	< 0.02	< 0.02	< 0.01	< 0.01	< 0.02	< 0.02	< 0.02	< 0.01	0.01
TRC (mg/L) Instantaneous Maximum	0.09	0.13	0.05	0.03	< 0.03	0.03	0.03	0.04	< 0.10	0.04	0.03	0.02
CBOD5 (mg/L)	0.09	0.13	0.05	0.03	< 0.03	0.03	0.03	0.04	< 0.10	0.04	0.03	0.02
Average Monthly	< 2.0	< 3.0	< 2	< 2.0	2.0	< 2	11	< 2.0	< 2	< 3	< 2	4
TSS (mg/L)	₹ 2.0	< 3.0	\ <u>Z</u>	₹ 2.0	2.0	\ Z	11	₹ 2.0	\ Z	\ 3	\ \ Z	4
Average Monthly	< 1	< 3.0	< 2	< 1	< 2	< 2	3.0	< 3.0	< 1	< 1	3	4
Fecal Coliform (CFU/100		₹ 5.0	\ <u>L</u>		\	\	5.0	₹ 5.0				7
ml)												
Geometric Mean	< 1	< 1.0	< 1	< 1	< 1	< 1	< 1	< 1.0	< 1	< 1	< 1	< 1
Fecal Coliform (CFU/100	1.	1	, ,			7.		1	7.	, ,	7.	, .
ml)												
Instantaneous Maximum	< 1	< 1.0	< 1	< 1	< 1	< 1	< 1.0	< 1.0	< 1	< 1	1	< 1
Nitrate-Nitrite (mg/L)												
Annual Average											54.5	
Nitrate-Nitrite (lbs)												
Total Annual											205.7	
Total Nitrogen (mg/L)												
Annual Average											< 56.2	
Total Nitrogen (lbs)												
Total Annual											212	
Ammonia (mg/L)												
Average Monthly	< 1.0	< 0.5	< 1.0	< 1.0	< 1.0	< 0.5	1.0	< 0.5	< 1.0	< 1.0	< 1.0	2.0
TKN (mg/L)												
Annual Average											< 1.0	
TKN (lbs)											0.77	
Total Annual	1										< 3.77	
Total Phosphorus (mg/L)											. 0.05	
Annual Average											< 0.05	
Total Phosphorus (lbs)											-040	
Total Annual					l						< 0.19	

Southern ruito	II Lieilleillai	y ochool						
	Development of Effluent Limitations							
Outfall No.	001		Design Flow (MGD)	0.01				
Latitude	39° 47′ 42.90)"	Longitude	-78º 11' 21.04"				
Wastewater Description:		Sewage Effluent						

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation	
CBOD₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)	
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)	
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)	
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)	
pН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)	
Fecal Coliform					
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)	
Fecal Coliform					
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)	
Fecal Coliform					
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)	
Fecal Coliform					
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)	
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)	

Water Quality-Based Limitations

Carbonaceous Biochemical Oxygen Demand (CBOD₅):

The attached printout of the WQM 7.0 model indicates that a monthly average limit of 25.0 mg/L, or secondary treatment, is adequate to protect the water quality of the stream. Recent DMRs and inspection reports show that the facility has been consistently achieving concentrations well below this limit.

Ammonia (NH₃-N):

NH₃-N calculations were first based on the Department's Implementation Guidance of Section 93.7 Ammonia Criteria, dated 11/4/97 (ID No. 391-2000-013). The following data is necessary to determine the in-stream NH₃-N criteria used in the attached computer model of the stream:

•	Discharge pH	=	7.0	(Default)
•	Discharge Temperature	=	25°C	(Estimated)
•	Stream pH	=	6.3	(Measurement)
•	Stream Temperature	=	20°C	(Estimated for shaded TSF)
•	Background NH ₃ -N	=	0	(Default)

The model input data and results are attached. The printout of the WQM 7.0 output indicates that at a discharge of 0.010 MGD, limits of 3.6 mg/L NH₃-N as a monthly average and 7.3 mg/L NH₃-N instantaneous maximum are necessary to protect the aquatic life from toxicity effects for summer, to calculate winter limits based on a typical multiplier of 3.0 used by DEP. The existing limits of 3.0 mg/L NH₃-N monthly average and 6.0 mg/L NH₃-N instantaneous maximum for summer are slightly more stringent and will remain in the proposed permit. The facility's recent DMRs indicate that the facility has been consistently achieving concentrations below these limits.

Total Suspended Solids (TSS):

The existing limits of 30.0 mg/L average monthly and 60.0 mg/L instantaneous maximum will remain in the proposed permit based on the minimum level of effluent quality attainable by secondary treatment based on 25 Pa. Code § 92a.47. Recent DMRs and inspection reports show that the facility has been consistently achieving concentrations well under these limits.

Dissolved Oxygen (D.O.):

A minimum D.O. of 5.0 mg/L is required per 25 Pa. Code § 93.7. This is consistent with the previous permit and current Department criteria.

pH:

The effluent discharge pH should remain above 6.0 and below 9.0 standard units according to 25 Pa. Code § 95.2(2).

NPDES Permit Fact Sheet Southern Fulton Elementary School

Fecal Coliform:

The recent coliform guidance in 25 Pa. Code § 92a.47.(a)(4) requires a summer technology limit of 200/100 ml as a geometric mean and an instantaneous maximum not greater than 1,000/100 ml and 25 Pa. Code § 92a.47.(a)(5) requires a winter limit of 2,000/100 ml as a geometric mean and an instantaneous maximum not greater than 10,000/100 ml.

Total Residual Chlorine (TRC):

Based on the attached TRC Excel Spreadsheet calculator, which uses the equations and calculations from the Department's May 1, 2003 Implementation Guidance for Total Residual Chlorine (ID No. 391-2000-015), the facility's discharge must meet a monthly average limit of 0.09 mg/L and an instantaneous maximum limit of 0.30 mg/L. These limits are less stringent than those in the existing permit. Due to anti-backsliding policy, the existing TRC limits of 0.04 mg/L monthly average and 0.13 mg/L instantaneous maximum will remain in the proposed permit.

Chesapeake Bay Strategy:

The discharge of TN and TP from this facility is consistent with and covered under the Chesapeake Bay TMDL aggregate WLA for non-significant wastewater discharges.

This facility falls in Phase V of Pennsylvania's Chesapeake Bay Tributary Strategy Point Source Implementation Plan. At this time, the Department is not requiring a total maximum annual phosphorus or nitrogen loading cap.

The Supplement to Phase II Watershed Implementation Plan states the following:

"For Phase V sewage facilities with individual permits (average annual design flow on August 29, 2005 > 0.002 MGD and < 0.2 MGD), DEP will issue individual permits with monitoring and reporting for TN and TP throughout the permit term at a frequency no less than annually, unless 1) the facility has already conducted at least two years of nutrient monitoring and 2) a summary of the monitoring results are included in the next permit's fact sheet. If, however, Phase V facilities choose to expand, the renewed or amended permits will contain Cap Loads based on the lesser of a) existing TN/TP concentrations at existing average annual flow or b) 7,306 lbs/yr TN and 974 lbs/yr TP."

A 1/year "Monitor & Report" requirement for TN and TP will remain in the proposed permit.

Toxic:

This is a minor sewage facility receiving domestic wastewater only and the current application does not require sampling of toxic pollutants (or heavy metals) for those facilities with design flows less than 0.1 MGD. Therefore, no reasonable potential analysis for toxic pollutants has been performed for this permit renewal.

Antidegradation (93.4)

The effluent limits for this discharge have been developed to ensure that existing in-stream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

303d LISTED STREAMS

This discharge is not located on a 303d listed stream segment.

Class A Wild Trout Fisheries

No Class A Wild Trout Fisheries are impacted by this discharge.

Additional Considerations

Flow Monitoring

The requirement to monitor the volume of effluent will remain in the proposed permit per 40 CFR § 122.44(i)(1)(ii).

Monitoring Frequency and Sample Type

The facility currently is required to collect daily effluent grab samples for D.O., pH; and total residual chlorine; two-month effluent 8-hr composite samples of CBOD₅, and TSS; two-month effluent grab samples of fecal coliform; two-month influent 8-hr composite sample of ammonia-nitrogen; annually effluent 8-hr composite samples of TP, nitrate-nitrite as N, and total Kjeldahl Nitrogen; and annually effluent calculation samples of TN. Based on the best professional judgement of the author, the existing monitoring frequencies are sufficient and necessary. Therefore, the existing monitoring frequencies will remain the same as those specified in the proposed permit.

WQM 7.0 Data:

MODEL INPUTS

There are no upstream discharges. Hence, the two nodes were used:

Node 1: Outfall 001 on UNT White Oak Run (60898)

Elevation: 630 ft (USGS National Map Viewer)
Drainage Area: 0.81 mi.² (USGS PA StreamStats)
River Mile Index: 0.09 mile (PA DEP eMapPA)

Low Flow Yield: 0.011 cfs/mi.² Discharge Flow: 0.010 MGD

Node 2: Just before confluence with White Oak Run

Elevation: 615 ft (USGS National Map Viewer)
Drainage Area: 0.82 mi.² (USGS PA StreamStats)
River Mile Index: 0.001 mile (PA DEP eMapPA)

Low Flow Yield: 0.011 cfs/mi.² Discharge Flow: 0.000 MGD

Attachment is WQM7.0 data.

PDF

WQm7.0 data.pdf

TRC Results:

1	TRC EVAL	UATION				
2	Input appropris	ate values ir	n A3:A9 and D3:D9			
3	0.0089	= Q stream	n (cfs)	0.5	= CV Daily	
4	0.01	= Q discha	arge (MGD)	0.5	= CV Hourly	
5	30	= no. sam	oles	1	= AFC_Partia	al Mix Factor
6	0.3	= Chlorine	Demand of Stream	1	= CFC_Partia	al Mix Factor
7	0	= Chlorine	Demand of Discharge	15		ria Compliance Time (min)
8		= BAT/BP.			_	ria Compliance Time (min)
9	0	= % Facto	r of Safety (FOS)		=Decay Coe	fficient (K)
10	Source	Reference	AFC Calculations		Reference	CFC Calculations
11	TRC	1.3.2.iii	WLA afc =	0.203	1.3.2.iii	WLA cfc = 0.190
12	PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581
13	PENTOXSD TRG	5.1b	LTA_afc=	0.075	5.1d	LTA_cfc = 0.110
14						
15	Source		Effluer	nt Limit Calcu	lations	
16	PENTOXSD TRG	5.1f		AML MULT =	1.231	
17	PENTOXSD TRG	5.1g	AVG MON L	.IMIT (mg/l) =	0.093	AFC
18			INST MAX L	IMIT (mg/l) =	0.304	_
19						
20						
21						
	WLA afc		'AFC_tc)) + [(AFC_Yc*Q		e(-k*AFC_tc))
23			AFC_Yc*Qs*Xs/Qd)]*(1-			_
	LTAMULT afc		(cvh^2+1))-2.326*LN(cvh^2	2+1)^0.5)		
	LTA_afc	wla_afc*LTA	AMULI_atc			
26	WIA of	/ 044/-/ 14	OEC 1-1 + (/OEC V-+O	* 044/04*	/ L*CEC 1-11	
28	WLA_cfc		'CFC_tc) + [(CFC_Yc*Qs CFC_Yc*Qs*Xs/Qd)]*(1-l		(-K CFC_tc)	
	LTAMULT_cfc		l(cvd^2/no_samples+1))-2.3		lno camplest	1)^0.5)
	LTA_cfc	wla_cfc*LTA		20 LINGUVU 2	o_samples+	1, 0.0,
31	LIM_CIC	ma_olo LTA				
	AML MULT	EXP(2.326*I	N((cvd^2/no_samples+1)^(0.5)-0.5*LN(c	vd^2/no samp	les+1))
	AVG MON LIMIT		PJ,MIN(LTA_afc,LTA_cfc)*			
	INST MAX LIMIT		non_limit/AML_MULT)/L1		c)	
35						

Existing Effluent Limitations and Monitoring Requirements

		Monitoring Re	quirements						
Parameter	Mass Unit	s (lbs/day) ⁽¹⁾	Concentrations (mg/L)				Minimum ⁽²⁾	Required	
Parameter	Average Monthly	Total Annual	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type	
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured	
pH (S.U.)	XXX	xxx	6.0	XXX	XXX	9.0	1/day	Grab	
DO	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab	
TRC	XXX	XXX	XXX	0.04	XXX	0.13	1/day	Grab	
CBOD₅	XXX	XXX	XXX	25.0	XXX	50.0	2/month	8-Hr Composite	
TSS	XXX	XXX	XXX	30.0	XXX	60.0	2/month	8-Hr Composite	
Fecal Coliform (CFU/100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1,000	2/month	Grab	
Fecal Coliform (CFU/100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2,000 Geo Mean	XXX	10,000	2/month	Grab	
Ammonia May 1 - Oct 31	XXX	XXX	XXX	3.0	XXX	6.0	2/month	8-Hr Composite	
Ammonia								8-Hr	
Nov 1 - Apr 30	XXX	XXX	XXX	9.0 Report	XXX	18.0	2/month	Composite 8-Hr	
Nitrate-Nitrite	XXX	Report	XXX	Annl Avg Report	XXX	XXX	1/year	Composite	
Total Nitrogen	XXX	Report	XXX	Anni Avg	XXX	XXX	1/year	Calculation	
TKN	XXX	Report	XXX	Report Annl Avg	XXX	XXX	1/year	8-Hr Composite	
Total Phosphorus	XXX	Report	XXX	Report Annl Avg	XXX	XXX	1/year	8-Hr Composite	

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

Parameter	Effluent Limitations						Monitoring Requirements	
	Mass Units (lbs/day) (1)		Concentrations (mg/L)				Minimum (2)	Required
	Average Monthly	Total Annual	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.04	XXX	0.13	1/day	Grab
CBOD ₅	XXX	XXX	XXX	25.0	XXX	50.0	2/month	8-Hr Composite
TSS	XXX	XXX	XXX	30.0	XXX	60.0	2/month	8-Hr Composite
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1,000	2/month	Grab
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2,000 Geo Mean	XXX	10,000	2/month	Grab
Ammonia May 1 - Oct 31	XXX	XXX	XXX	3.0	XXX	6.0	2/month	8-Hr Composite
Ammonia Nov 1 - Apr 30	xxx	XXX	XXX	9.0	XXX	18.0	2/month	8-Hr Composite
Nitrate-Nitrite	XXX	Report	XXX	Report Annl Avg	XXX	XXX	1/year	8-Hr Composite
Total Nitrogen	XXX	Report	XXX	Report Annl Avg	XXX	XXX	1/year	Calculation
TKN	XXX	Report	XXX	Report Annl Avg	XXX	XXX	1/year	8-Hr Composite
Total Phosphorus	XXX	Report	XXX	Report Annl Avg	XXX	XXX	1/year	8-Hr Composite

Compliance Sampling Location:

Other Comments:

Tools and References Used to Develop Permit							
\square	WQM for Windows Model (see Attachment)						
	PENTOXSD for Windows Model (see Attachment)						
	TRC Model Spreadsheet (see Attachment)						
	Temperature Model Spreadsheet (see Attachment)						
一	Toxics Screening Analysis Spreadsheet (see Attachment)						
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.						
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.						
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.						
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.						
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.						
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.						
	Pennsylvania CSO Policy, 385-2000-011, 9/08.						
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.						
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.						
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.						
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.						
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.						
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.						
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.						
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.						
\boxtimes	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.						
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.						
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.						
Ц	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.						
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.						
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.						
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.						
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.						
	Design Stream Flows, 391-2000-023, 9/98.						
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.						
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.						
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.						
	SOP:						
	Other:						