

Southcentral Regional Office CLEAN WATER PROGRAM

Application Type Renewal
Facility Type Industrial
Major / Minor Minor

NPDES PERMIT FACT SHEET INDIVIDUAL INDUSTRIAL WASTE (IW) AND IW STORMWATER

Application No. PA0085812

APS ID 274995

Authorization ID 1371354

Applicant Name	Altoc	ona Water Authority	Facility Name	Altoona City Water System		
Applicant Address	900 0	Chestnut Avenue	Facility Address	1591 Kettle Road		
	Altoo	na, PA 16601-4617		Altoona, PA 16602		
Applicant Contact	Micha	ael Sinisi	Facility Contact	Doug DeAngelis		
Applicant Phone	(814)	949-2222	Facility Phone	(814) 944-2597		
Client ID	8589	7	Site ID	238359		
SIC Code	4941		Municipality	Tyrone Township		
SIC Description	Trans	s. & Utilities - Water Supply	County	Blair		
Date Application Rec	eived	September 29, 2021	EPA Waived?	Yes		
Date Application Acc	epted	October 6, 2021	If No, Reason			

Approve	Deny	Signatures	Date
х		Nicholas Hong, P.E. / Environmental Engineer Nick Hong (via electronic signature)	December 7, 2021
х		Daniel W. Martin, P.E. / Environmental Engineer Manager Maria D. Bebenek for	December 20, 2021
х		Maria Bebenek, P.E. / Environmental Program Manager Maria D. Bebenek	December 20, 2021

Summary of Review

The application submitted by the applicant requests a NPDES renewal permit for the Altoona Water Authority- Kettle Creek WTP located at 1591 Kettle Road, Altoona, PA 16601 in Blair County, municipality of Tyrone Township. The existing permit became effective on April 1, 2017 and expires(d) on March 31, 2022. The application for renewal was received by DEP Southcentral Regional Office (SCRO) on October 6, 2021.

The purpose of this Fact Sheet is to present the basis of information used for establishing the proposed NPDES permit effluent limitations. The Fact Sheet includes a description of the facility, a description of the facility's receiving waters, a description of the facility's receiving waters attainment/non-attainment assessment status, and a description of any changes to the proposed monitoring/sampling frequency. Section 6 provides the justification for the proposed NPDES effluent limits derived from technology based effluent limits (TBEL), water quality based effluent limits (WQBEL), total maximum daily loading (TMDL), antidegradation, anti-backsliding, and/or whole effluent toxicity (WET). A brief summary of the outlined descriptions has been included in the Summary of Review section.

The subject facility is a 0.12 MGD treatment facility. The facility anticipates receiving an ozone system upgrade in the next 5 years. The NPDES application has been processed as an Industrial Wastewater Facility due to the type of wastewater and the design flow rate for the facility. The applicant disclosed the Act 14 requirement to Blair County Commissioners and Tyrone Township and the notice was received by the parties on October 27, 2021 and October 28, 2021.

Utilizing the DEP's web-based Emap-PA information system, the receiving waters has been determined to be Kettle Creek. The sequence of receiving streams that Kettle Creek discharges into are the Little Juniata River, the Juniata River, and the Susquehanna River which eventually drains into the Chesapeake Bay. The subject site is subject to the Chesapeake Bay implementation requirements. The receiving water has protected water usage for warm water fishes (WWF) and migratory fishes (MF). No Class A Wild Trout fisheries are impacted by this discharge. The presence of high quality and/or exceptional value surface waters triggers the need for an additional evaluation of anti-degradation requirements.

The Kettle Creek is a Category 2 stream listed in the 2020 Integrated List of All Waters (formerly 303d Listed Streams). This stream is an attaining stream that supports aquatic life. The secondary receiving waters, Little Juniata River, is subject to the Little Juniata River Watershed total maximum daily load (TMDL) plan to improve water quality in the subject facility's watershed.

The existing permit and proposed permit differ as follows:

- For Outfall 001, monitoring shall be required 2x/yr for aluminum, copper, lead, and zinc.
- For Outfall 101, monitoring shall be required 2x/yr for ammonia-nitrogen, copper, mercury, and silver. Iron and manganese shall have a loading limit as lbs/day.

Sludge use and disposal description and location(s): Solids are disposed at Laurel Highlands Landfill in Johnstown County, Cambria County under DEP Permit No. 108603.

The proposed permit will expire five (5) years from the effective date.

Based on the review in this report, it is recommended that the permit be drafted. DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Any additional information or public review of documents associated with the discharge or facility may be available at PA DEP Southcentral Regional Office (SCRO), 909 Elmerton Avenue, Harrisburg, PA 17110. To make an appointment for file review, contact the SCRO File Review Coordinator at 717.705.4700.

1.0 Applicant

1.1 General Information

This fact sheet summarizes PA Department of Environmental Protection's review for the NPDES renewal for the following subject facility.

Facility Name: Altoona Water Authority- Kettle Creek WTP

NPDES Permit # PA0085812

Physical Address: 1591 Kettle Road

Altoona, PA 16601

Mailing Address: 900 Chestnut Avenue

Altoona, PA 16601

Contact: Michael Sinisi, PE

Authority Engineer

msinisi@altoonawater.com

(814) 949-2222

Doug DeAngelis

Water Treatment Supervisor ddeangelis@altoonawater.com

(814) 944-2597

Consultant: There was not a consultant utilized for this NPDES renewal.

1.2 Permit History

Description of Facility

After being dormant since February 25, 2014, the facility resumed operations on February 5, 2020. The facility has operated on a schedule of 1-2 days per week.

Permit submittal included the following information.

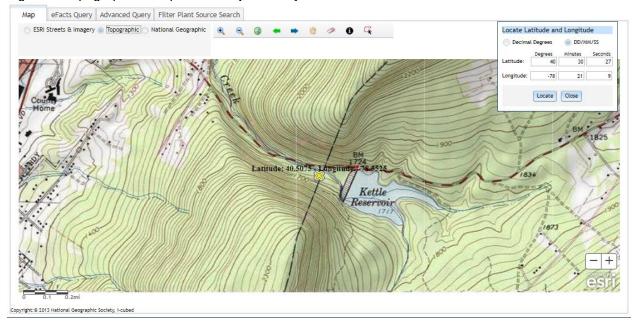
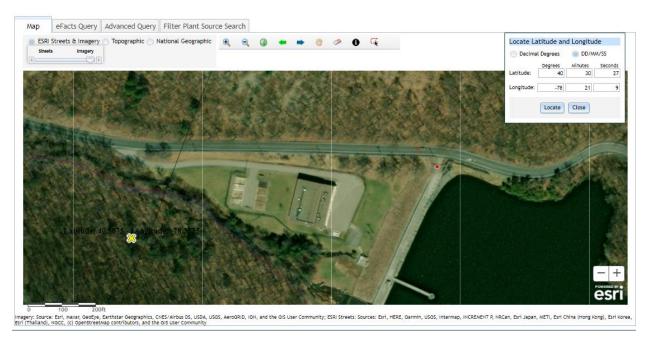
- NPDES Application
- Flow Diagrams
- Influent Sample Data
- Effluent Sample Data

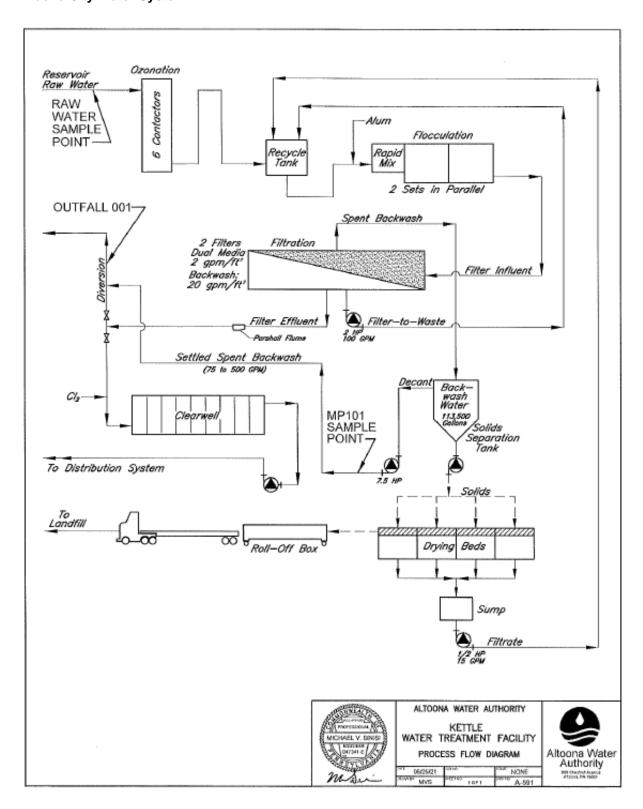
2.0 Treatment Facility Summary

2.1.1 Site location

The physical address for the facility is 1591 Kettle Road, Altoona, PA 16601. A topographical and an aerial photograph of the facility are depicted as Figure 1 and Figure 2.

Figure 1: Topographical map of the subject facility


Figure 2: Aerial Photograph of the subject facility

2.2 Description of Wastewater Treatment Process

The subject facility is a 0.12 MGD design flow facility. The wastewater originates from backwash water. The facility is being evaluated for flow, pH, TSS, nitrogen species, phosphorus, aluminum, iron, and manganese. The existing permits limits for the facility is summarized in Section 2.4.

A schematic of the treatment is shown in the figure.

2.3 Facility Outfall Information

The facility has the following outfall information for wastewater.

Outfall No.	001	Design Flow (MGD) .12	
Latitude	40° 30′ 27.00″	Longitude -78° 21' 9.00"	
Wastewater [Description: Water Treatment Effluent		
	•		
Outfall No.	_ 101	Design Flow (MGD) < 0.12	
Latitude	40° 30′ 27.00″	Longitude -78° 21' 5.00"	
Wastewater D	Description: Backwash wastewater		

2.3.1 Operational Considerations- Chemical Additives

Chemical additives are chemical products introduced into a waste stream that is used for cleaning, disinfecting, or maintenance and which may be detected in effluent discharged to waters of the Commonwealth. Chemicals excluded are those used for neutralization of waste streams, the production of goods, and treatment of wastewater.

The subject facility utilizes the following chemicals as part of their treatment process.

 The facility did not report any chemical usage for the wastewater treatment section of the facility.

2.4 Existing NPDES Permits Limits

The existing NPDES permit limits are summarized in the table.

PART	PART A - EFFLUENT LIMITATIONS, MONITORING, RECORDKEEPING AND REPORTING REQUIREMENTS												
I. A.	For Outfall 001	_, Latitude40° 30′ 27.00", Longitude78° 21′ 9.00", River Mile Index3.11, Stream Code18049											
	Receiving Waters:	Kettle Creek											
	Type of Effluent:	Water Treatment Effluent											

Based on the anticipated wastewater characteristics and flows described in the permit application and its supporting documents and/or amendments, the following effluent limitations and monitoring requirements apply (see also Additional Requirements and Footnotes).

		Effluent Limitations									
Parameter	Mass Units (lbs/day) (1)			Concentrat	Minimum (2)	Required					
Farameter	Average	Average		Average		Instant.	Measurement	Sample			
	Monthly	Weekly	Minimum	Monthly	Maximum	Maximum	Frequency	Type			
		Report									
Flow (MGD)	Report	Daily Max	XXX	XXX	XXX	XXX	1/week	Measured			
					9.0						
pH (S.U.)	XXX	XXX	6.0	XXX	Daily Max	XXX	1/day	Grab			

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

at Outfall 001

The permittee is authorized to discharge during the period from <u>April 1, 2017</u> through <u>March 31, 2022</u>

PART A - EFFLUENT LIMITATIONS, MONITORING, RECORDKEEPING AND REPORTING REQUIREMENTS										
I. B. For Outfall 101	, Latitude40° 30' 27.00", Longitude78° 21' 5.00", River Mile Index3.11, Stream Code16049									
Receiving Waters:	Kettle Creek									
Type of Effluent:	Filter Backwash									
1. The consistencia of	the rised to discharge during the garded from April 4, 2047 through March 24, 2022									

The permittee is authorized to discharge during the period from <u>April 1, 2017</u> through <u>March 31, 2022</u>

Based on the anticipated wastewater characteristics and flows described in the permit application and its supporting documents and/or amendments, the following effluent limitations and monitoring requirements apply (see also Additional Requirements and Footnotes).

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	s (lbs/day) ⁽¹⁾		Concentrat	Minimum (2)	Required		
Parameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	xxx	xxx	1/day	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	9.0 Max	xxx	1/day	Grab
Total Suspended Solids	xxx	xxx	xxx	30	60	75	2/month	8-Hr Composite
Nitrate-Nitrite as N	xxx	XXX	XXX	Report	xxx	xxx	1/6 months	8-Hr Composite
Total Nitrogen	xxx	xxx	XXX	Report	xxx	xxx	1/6 months	Calculation
Total <u>Kieldahl</u> Nitrogen	XXX	XXX	XXX	Report	XXX	xxx	1/6 months	8-Hr Composite
Total Phosphorus	XXX	XXX	XXX	Report	xxx	xxx	1/6 months	8-Hr Composite
Aluminum, Total	1.0	2.0 Daily Max	XXX	1.0	2.0	2.5	2/month	8-Hr Composite
Iron, Total	Report	Report Daily Max	xxx	2.0	4.0	5	2/month	8-Hr Composite
Manganese, Total	Report	Report Daily Max	XXX	1.0	2.0	2.5	2/month	8-Hr Composite

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s): at IMP 101

3.0 Facility NPDES Compliance History

3.1 Summary of Inspections

A summary of the most recent inspections during the existing permit review cycle is as follows.

The DEP inspector noted the following during the inspection.

03/24/2017:

- The facility has two permitted outfalls. One for backwash water (Outfall 101) and the other for diversion flow (Outfall 001). Backwash water is treated in a settling tank before discharge.
 Diversion flow is composed of treated drinking water than cannot be used.
- The treatment plant was currently not in service. The facility was only put in operation every 2-3 years. The last time the plant was in operation was January 2014.

More recent inspection reports were not available in WMS file location.

3.2 Summary of DMR Data

A review of approximately 11 to 12 months of DMR data shows that the monthly average flow data for the facility below the design capacity of the treatment system.

For Outfall 001, the maximum average flow data for the DMR reviewed was 0.09 MGD in August 2021. The design capacity of the treatment system is 0.12 MGD.

For Outfall 101, the maximum average flow data for the DMR reviewed was 0.028 MGD in November 2020. The design capacity of the treatment system is 0.12 MGD.

The off-site laboratory used for the analysis of the parameters was Fairway Laboratories located at 2019 Ninth Avenue, Altoona, PA 16603.

DMR Data for Outfall 001 (from October 1, 2020 to September 30, 2021)

Parameter	SEP-21	AUG-21	JUL-21	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20
Flow (MGD)												
Average Monthly	0.0719	0.09	0.0887	0.0520	0.0378	0.0336	0.0468	0.0282	0.0223	0.0241	0.0160	
Flow (MGD)												
Daily Maximum	0.1877	0.1117	0.0964	0.1103	0.0961	0.053	0.0917	0.0685	0.0466	0.0568	0.0227	
pH (S.U.)												
Minimum	6.32	6.3	6.35	6.37	6.45	6.53	6.06	6.25	6.28	6.35	6.32	
pH (S.U.)												
Daily Maximum	6.42	6.57	6.58	6.47	6.84	6.68	6.75	6.68	6.45	6.41	6.65	

DMR Data for Outfall 101 (from October 1, 2020 to September 30, 2021)

Parameter	SEP-21	AUG-21	JUL-21	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20
Flow (MGD)												
Internal Monitoring												
Point br/> Average												
Monthly	0.0234	0.0255	0.02389	0.02388	0.0222	0.02596	0.025	0.02389	0.02488	0.0239	0.028	0.0223
Flow (MGD)												
Internal Monitoring												
Point br/> Daily	0.0070	0.0070	0.000	0.000	0.0057	0.0404	0.054	0.0450	0.0450	0.0070	0.040	0.004
Maximum	0.0279	0.0373	0.0366	0.026	0.0357	0.0461	0.054	0.0452	0.0459	0.0376	0.049	0.034
pH (S.U.)												
Internal Monitoring Point br/> Minimum	6.02	6.27	6.44	6.59	6.75	6.46	6.0	6.32	6.37	6.55	6.57	6.21
pH (S.U.)	0.02	0.27	0.44	0.59	0.75	0.40	0.0	0.32	0.37	0.55	0.57	0.21
Internal Monitoring												
Point br/> Maximum	6.86	6.86	6.78	6.86	7.14	6.88	6.89	7.14	7.25	6.83	7.10	6.53
TSS (mg/L)	0.00	0.00	0.70	0.00	7	0.00	0.00	7.11	7.20	0.00	7.10	0.00
Internal Monitoring												
Point br/> Average												
Monthly	11	6	3	6	3	7	5	< 5	< 4	< 3	< 3.0	< 2
TSS (mg/L)												
Internal Monitoring												
Point br/> Daily												
Maximum	25	7.8	3.8	11	4.4	11.4	6.4	8	< 7	2.9	3.6	< 2
Nitrate-Nitrite (mg/L)												
Internal Monitoring												
Point br/> Average												
Monthly				0.39						0.37		
Total Nitrogen (mg/L)												
Internal Monitoring												
Point Nonthly				. 1.20						. 1 27		
Monthly				< 1.39						< 1.37		

	T	ı	1	T	T	Т	1	Т	1	ı	T	1
TKN (mg/L)												
Internal Monitoring												
Point hr/> Average												
Monthly				< 1.0						< 1.0		
Total Phosphorus												
(mg/L)												
Internal Monitoring												
Point br/> Average												
Monthly				< 0.11						< 0.11		
Total Aluminum				< 0.11						< 0.11		
(lbs/day)												
Internal Monitoring												
Point br/> Average												
Monthly	0.3	0.2	0.2	0.1	0.1	0.2	0.2	0.2	0.1	0.1	< 0.1	< 0.01
Total Aluminum												
(lbs/day)												
Internal Monitoring												
Point br/> Daily												
Maximum	0.5	0.2	0.5	0.3	0.2	0.2	0.5	0.4	0.2	0.2	0.2	< 0.01
Total Aluminum												
(mg/L)												
Internal Monitoring												
Point br/> Average												
Monthly	1.4	0.8	0.4	0.6	0.4	0.8	0.7	0.7	0.6	0.4	< 0.4	< 0.1
Total Aluminum	1	0.0	0.4	0.0	0.4	0.0	0.1	0.1	0.0	0.4	₹ 0.4	V 0.1
(mg/L)												
Internal Monitoring												
Point br/> Daily	0.407	4.050	0.400	4.000	0.040	4 470	4 0 4 0	0.040	4.050	0.500	0.004	0.05
Maximum	2.497	1.053	0.438	1.382	0.648	1.179	1.048	0.943	1.056	0.589	0.624	< 0.05
Total Iron (lbs/day)												
Internal Monitoring												
Point hr/> Average												
Monthly	0.1	0.1	0.06	< 0.02	< 0.02	0.03	0.04	0.03	0.03	0.03	< 0.03	< 0.01
Total Iron (lbs/day)												
Internal Monitoring												
Point br/> Daily												
Maximum	0.2	0.2	0.1	0.04	0.03	0.03	0.06	0.08	0.07	0.07	0.05	< 0.01
Total Iron (mg/L)				_					-	-		
Internal Monitoring												
Point br/> Average												
Monthly	0.50	0.4	0.1	< 0.1	< 0.1	0.1	0.1	0.1	0.1	0.1	< 0.1	< 0.1
Total Iron (mg/L)	0.50	0.4	0.1	\ U.1	\ 0.1	0.1	0.1	0.1	0.1	0.1	\ 0.1	<u> </u>
Internal Monitoring												
Point br/> Daily	4.054	0.000	0.444	0.407	0.000	0.400	0.470	0.000	0.040	0.007	0.407	0.05
Maximum	1.251	0.603	0.114	0.167	0.099	0.123	0.179	0.202	0.219	0.237	0.137	0.05

NPDES Permit No. PA0085812

Total Manganese (lbs/day) Internal Monitoring Point br/> Average Monthly	0.2	0.1	0.2	0.04	< 0.02	< 0.02	< 0.03	< 0.02	< 0.02	0.02	< 0.02	< 0.01
Total Manganese (lbs/day) Internal Monitoring Point br/> Daily Maximum	0.2	0.2	0.4	0.06	0.03	< 0.02	0.06	0.03	0.03	0.03	0.04	0.02
Total Manganese (mg/L) Internal Monitoring Point br/> Average Monthly	0.8	0.4	0.3	0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.1	< 0.1	< 0.1
Total Manganese (mg/L) Internal Monitoring Point br/> Daily Maximum	1.054	0.547	0.367	0.273	0.104	0.076	0.164	0.088	0.097	0.092	0.109	0.066

3.3 Non-Compliance

3.3.1 Non-Compliance- NPDES Effluent

A summary of the non-compliance to the permit limits for the existing permit cycle is as follows.

From the DMR data beginning in April 1, 2017 to November 8, 2021, the following observed effluent non-compliances.

Summary of Non-Compliance with NPDES Effluent Limits Beginning April 1, 2017 and Ending November 8, 2021

NON COMPLIANCE DATE	PARAMETER	SAMPLEVALUE	VIOLATION CONDITION	PERMIT VALUE	UNIT OF MEASURE	STATISTICAL BASE CODE
10/28/2021	Aluminum, Total	1.4	>	1.0	mg/L	Average Monthly
10/28/2021	Aluminum, Total	2.497	>	2.0	mg/L	Daily Maximum

3.3.2 Non-Compliance- Enforcement Actions

A summary of the non-compliance enforcement actions for the current permit cycle is as follows:

Beginning in April 1, 2017 to November 8, 2021, there were no observed enforcement actions.

3.4 Summary of Biosolids Disposal

A summary of the biosolids disposed of from the facility is as follows.

No biosolids were disposed of in 2020 or 2021.

3.5 Open Violations

No open violations existed as of November 2021.

4.0 Receiving Waters and Water Supply Information Detail Summary

4.1 Receiving Waters

The receiving waters has been determined to be Kettle Creek. The sequence of receiving streams that Kettle Creek discharges into are the Little Juniata River, the Juniata River, and the Susquehanna River which eventually drains into the Chesapeake Bay.

4.2 Public Water Supply (PWS) Intake

The closest PWS to the subject facility is the Mifflintown Municipal Authority (PWS ID #4340008) located approximately 97 miles downstream of the subject facility on the Juniata River. Based upon the distance and the flow rate of the facility, the PWS should not be impacted.

4.3 Class A Wild Trout Streams

Class A Wild Trout Streams are waters that support a population of naturally produced trout of sufficient size and abundance to support long-term and rewarding sport fishery. DEP classifies these waters as high-quality coldwater fisheries.

The information obtained from EMAP suggests that no Class A Wild Trout Fishery will be impacted by this discharge.

4.4 2020 Integrated List of All Waters (303d Listed Streams)

Section 303(d) of the Clean Water Act requires States to list all impaired surface waters not supporting uses even after appropriate and required water pollution control technologies have been applied. The 303(d) list includes the reason for

impairment which may be one or more point sources (i.e. industrial or sewage discharges) or non-point sources (i.e. abandoned mine lands or agricultural runoff and the pollutant causing the impairment such as metals, pH, mercury or siltation).

States or the U.S. Environmental Protection Agency (EPA) must determine the conditions that would return the water to a condition that meets water quality standards. As a follow-up to listing, the state or EPA must develop a Total Maximum Daily Load (TMDL) for each waterbody on the list. A TMDL identifies allowable pollutant loads to a waterbody from both point and non-point sources that will prevent a violation of water quality standards. A TMDL also includes a margin of safety to ensure protection of the water.

The water quality status of Pennsylvania's waters uses a five-part categorization (lists) of waters per their attainment use status. The categories represent varying levels of attainment, ranging from Category 1, where all designated water uses are met to Category 5 where impairment by pollutants requires a TMDL for water quality protection.

The receiving waters is listed in the 2020 Pennsylvania Integrated Water Quality Monitoring and Assessment Report as a Category 2 waterbody. The surface waters is an attaining stream that supports aquatic life. The designated use has been classified as protected waters for warm water fishes (WWF) and migratory fishes (MF).

4.5 Low Flow Stream Conditions

Water quality modeling estimates are based upon conservative data inputs. The data are typically estimated using either a stream gauge or through USGS web based StreamStats program. The NPDES effluent limits are based upon the combined flows from both the stream and the facility discharge.

A conservative approach to estimate the impact of the facility discharge using values which minimize the total combined volume of the stream and the facility discharge. The volumetric flow rate for the stream is based upon the seven-day, 10-year low flow (Q710) which is the lowest estimated flow rate of the stream during a 7 consecutive day period that occurs once in 10 -year time period. The facility discharge is based upon a known design capacity of the subject facility.

The closest gauge station to the subject facility is the Little Juniata River at Spruce Creek, PA (USGS station number 1558000). This gauge station is located approximately 27 miles downstream of the subject facility.

For WQM modeling, pH and stream water temperature data from the water quality network station was used. pH was estimated to be 8.2 and the stream water temperature was estimated to be 17.9 C.

The hardness of the stream was abstracted from the WQN. The hardness of the stream was 106 mg/l CaCO₃.

The low flow yield and the Q710 for the subject facility was estimated using (Method #1) gauge station/StreamStats and (Method #2) a conservative release from the reservoir with the more conservative flow rate being used for modeling.

Method #1:

Gauge Station Data				
USGS Station Number	Little Juniata River at Spruce Creek, PA			
Station Name	1558000			
Q710	59	ft³/sec		
Drainage Area (DA)	220	mi ²		
Calculations				
The low flow yield of th	ne gauge station is:			
Low Flow Yield (LFY) = 0				
LFY =	(59 ft³/sec / 220 mi²)			
LFY =	0.2682	ft³/sec/mi²		
The low flow at the sub	2.35	mi ²		
Q710 = (LFY@gauge station)(DA@Subject Site)				
Q710 = $(0.2682 \text{ ft}^3/\text{sec/mi}^2)(2.35 \text{ mi}^2)$				
Q710 =	0.630	ft³/sec		

Method #2:

In comparison, the conservative release for Kettle Creek in the document titled *Engineer Report- Reservoir Operation and Management Plan* dated for June 2011 was 0.240 MGD (0.37 ft³/s). This report was prepared by Gwin, Dobson, and Foreman. The Q710 calculated from StreamStats and Stream Gauge was similar to the conservative release flow rate from the engineer report.

The low flow yield and Q710 used for modeling was the conservative release flow rate from the engineer report (i.e. 0.15 ft³/s/mi² and 0.37 ft³/s).

The previous fact sheet used a Q710 of 0.371 ft³/s.

4.6.1 Summary of Discharge	ge, Receiving Waters and W	later Supply Information	
Outfall Na 004		Danisus Flavo (MCD)	40
Outfall No. 001		Design Flow (MGD)	.12
Latitude 40° 30' 28.4	<u>·1" </u>	Longitude	-78º 21' 8.84"
Quad Name	Material Transfer and Efficient	Quad Code	
Wastewater Description:	Water Treatment Effluent		-
	e Creek (CWF, EV, EV	0. 0.1	40040
	ting use))	Stream Code	16049
	07546	RMI	2.77
Drainage Area 2.35		Yield (cfs/mi²)	0.15
Q ₇₋₁₀ Flow (cfs) 0.37		Q ₇₋₁₀ Basis	Conservation Release
Elevation (ft) 1668	}	Slope (ft/ft)	MANUEL ME (Decimented
Watershed No. 11-A		Chapter 93 Class.	WWF, MF (Designated Use)
	(COLD WATER FISHES),		RBP - Antidegradation, Use
	EXCEPTIONAL VALUE),	Existing Use Qualifier	Attainability Analysis
Exceptions to Use		Exceptions to Criteria	
Assessment Status	Impaired		
Cause(s) of Impairment	SILTATION		
Source(s) of Impairment	URBAN RUNOFF/STORM		
TMDL Status	Final	Name Little Juniata	River Watershed
De alemane d/A ashi ant Date		Data Causas	
Background/Ambient Data		Data Source	
pH (SU)	8.2	WQN217; median July to Sept	
Temperature (°C)	17.9	WQN217; median July to Sept	
Hardness (mg/L)	106	WQN217; historical median	
Other:			
Nearest Downstream Pub	lic Water Supply Intake	Mifflintown Municipal Authority	ı
PWS Waters Juniata		Flow at Intake (cfs)	
PWS RMI 37	· · · ·	Distance from Outfall (mi)	37
		::::::::::::::::::::::::::::::::::	

DEP has evaluated information indicating that the existing use of the receiving waters is different than the designated use under 25 Pa. Code § 93.9. In developing the draft NPDES permit, DEP is proposing to protect the existing use of the receiving waters.

.6.2 Summary of D	Discharg	e, Receiving Waters and	Water Supply Information	
Outfall No. 101			Design Flow (MGD)	< 0.12
Latitude 40°	30' 26.9	8"	Longitude	-78° 21' 5.01"
Quad Name			_ Quad Code	
Wastewater Desc	ription:	Internal Monitoring Point	; Filter backwash	
	Kottle	e Creek (CWF, EV, EV		
Receiving Waters		ing use))	Stream Code	16049
NHD Com ID	6560		RMI	2.77
Drainage Area	2.35		Yield (cfs/mi²)	0.15
Q ₇₋₁₀ Flow (cfs)	0.37		Q ₇₋₁₀ Basis	Conservation Release
Elevation (ft)	1668		Slope (ft/ft)	
Watershed No.	11-A		Chapter 93 Class.	WWF, MF (Designated Use)
-		(COLD WATER FISHES),	F : II	RBP - Antidegradation, Use
Existing Use		XCEPTIONAL VALUE)	Existing Use Qualifier	Attainability Analysis
Exceptions to Use			Exceptions to Criteria	
Assessment Statu		Impaired		
Cause(s) of Impa		SILTATION	214 2514/552	
Source(s) of Impa	airment	URBAN RUNOFF/STOR		5
TMDL Status		Final	Name Little Juniata	a River Watershed
Background/Amb	ient Data		Data Source	
pH (SU)		8.2	WQN217; median July to Sep	t
Temperature (°C)		17.9	WQN217; median July to Sept	
Hardness (mg/L) 106		106	WQN217; historical median	
Other:				
Nearest Downstre	eam Publ	ic Water Supply Intake	Mifflintown Municipal Authority	y
PWS Waters	Juniata	River	Flow at Intake (cfs)	
PWS RMI	97		Distance from Outfall (mi)	37

DEP has evaluated information indicating that the existing use of the receiving waters is different than the designated use under 25 Pa. Code § 93.9. In developing the draft NPDES permit, DEP is proposing to protect the existing use of the receiving waters

5.0: Overview of Presiding Water Quality Standards

5.1 General

There are at least six (6) different policies which determines the effluent performance limits for the NPDES permit. The policies are technology based effluent limits (TBEL), water quality based effluent limits (WQBEL), antidegradation, total maximum daily loading (TMDL), anti-backsliding, and whole effluent toxicity (WET) The effluent performance limitations enforced are the selected permit limits that is most protective to the designated use of the receiving waters. An overview of each of the policies that are applicable to the subject facility has been presented in Section 6.

5.2.1 Technology-Based Limitations

TBEL treatment requirements under section 301(b) of the Act represent the minimum level of control that must be imposed in a permit issued under section 402 of the Act (40 CFR 125.3).

Permit limits for water treatment plant wastes are subject to handling and disposal of water treatment plant (WTP) using Best Practicable Control Technology (BPCT) currently available. Waste water from treatment of WTP sludges and filter backwash shall have the following permit limits.

Parameter	Monthly Average	Daily Max
	mg/l	mg/l
Suspended Solids	30	60
Iron (total)	2	4
Aluminum (total)	4	8
Manganese		
(total)	1	2
рН	6 - 9	
TRC	0.5	1

Notes:

Source: TECHNOLOGY-BASED CONTROL

REQUIREMENTS FOR WATER TREATMENT PLANT

WASTES

5.2.2 Mass Based Limits

For publicly owned treatment works (POTW), mass loadings are calculated based upon design flow rate of the facility and the permit limit concentration. The generalized calculation for mass loadings is shown below:

Quantity
$$\left(\frac{lb}{day}\right) = (MGD)(Concentration)(8.34)$$

5.3 Water Quality-Based Limitations

WQBEL are based on the need to attain or maintain the water quality criteria and to assure protection of designated and existing uses (PA Code 25, Chapter 92a.2). The subject facility that is typically enforced is the more stringent limit of either the TBEL or the WQBEL.

Determination of WQBEL is calculated by spreadsheet analysis or by a computer modeling program developed by DEP. DEP permit engineers utilize the following computing programs for WQBEL permit limitations: (1) MS Excel worksheet for Total Residual Chorine (TRC); (2) WQM 7.0 for Windows Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen Version 1.1 (WQM Model) and (3) Toxics using DEP Toxics Management Spreadsheet for Toxics pollutants.

The modeling point nodes utilized for this facility are summarized below.

General Data 1		
(Modeling Point	Input Value	Units
#1)	-	
Stream Code	16049	
River Mile Index	2.77	miles
Elevation	1668	feet
Latitude	40.5075	
Longitude	-78.3525	
Drainage Area	2.35	sq miles
Reach Slope	Default	ft/ft
Low Flow Yield	0.15	cfs/sq mile
Potable Water		
Supply	Default	mgd
Withdrawal		
General Data 2		
(Modeling Point	Input Value	Units
#2)		
Stream Code	16049	
River Mile Index	1.38	miles
Elevation	1351	feet
Latitude	40.523454	
Longitude	-78.357392	
Drainage Area	3.15	sq miles
Reach Slope	Default	ft/ft
Low Flow Yield	0.15	cfs/sq mile
Potable Water		
Supply	Default	mgd
Withdrawal		

5.3.1 Water Quality Modeling 7.0

The WQM Model is a computer model that is used to determine NPDES discharge effluent limitations for Carbonaceous BOD (CBOD5), Ammonia Nitrogen (NH3-N), and Dissolved Oxygen (DO) for single and multiple point source discharges scenarios. WQM Model is a complete-mix model which means that the discharge flow and the stream flow are assumed to instantly and completely mixed at the discharge node.

Since the facility is a water treatment plant that does not concern CBOD, ammonia nitrogen, and dissolved oxygen, WQM modeling was not conducted for the facility.

5.3.2 Toxics Modeling

The Toxics Management Spreadsheet model is a computer model that is used to determine effluent limitations for toxics (and other substances) for single discharge wasteload allocations. This computer model uses a mass-balance water quality analysis that includes consideration for mixing, first-order decay, and other factors used to determine recommended water quality-based effluent limits. Toxics Management Spreadsheet does not assume that all discharges completely mix with the stream. The point of compliance with water quality criteria are established using criteria compliance times (CCTs). The available CCTs are either acute fish criterion (AFC), chronic fish criterion (CFC), or human health criteria (THH & CRL).

Acute Fish Criterion (AFC) measures the criteria compliance time as either the maximum criteria compliance time (i.e.15 minutes travel time downstream of the current discharge) or the complete mix time whichever comes first. AFC is evaluated at Q710 conditions.

Chronic Fish Criterion (CFC) measures the criteria compliance time as either the maximum criteria compliance time (i.e. 12 hours travel time downstream of the current discharge) or the complete mix time whichever comes first. CFC is evaluated at Q710 conditions.

Threshold Human Health (THH) measures the criteria compliance time as either the maximum criteria compliance time (i.e. 12 hours travel time downstream of the current discharge) or the estimated travel time downstream to the nearest potable water supply intake whichever comes first. THH is evaluated at Q710 conditions.

Cancer Risk Level (CRL) measures the criteria compliance time as either the maximum criteria compliance time (i.e. 12 hours travel time downstream of the current discharge) or the complete mix time whichever comes first. CRL is evaluated at Qh (harmonic mean or normal flow) conditions.

The Toxics Model requires several input values for calculating output values. The source of data originates from either EMAP, the National Map, or Stream Stats. Data for stream gauge information, if any, was abstracted from USGS Low-Flow, Base-Flow, and Mean-Flow Regression Equations for Pennsylvania Streams authored by Marla H. Stuckey (Scientific Investigations Report 2006-5130).

5.3.2.1 Determining if NPDES Permit Will Require Monitoring/Limits in the Proposed Permit for Toxic Pollutants

To determine if Toxics modeling is necessary, DEP has developed a Toxics Management Spreadsheet to identify toxics of concern. Toxic pollutants whose maximum concentrations as reported in the permit application or on DMRs are greater than the most stringent applicable water quality criterion are pollutants of concern. A Reasonable Potential Analysis was utilized to determine (a) if the toxic parameters modeled would require monitoring or (b) if permit limitations would be required for the parameters. The toxics reviewed for reasonable potential were the pollutants in Groups 1 and 2.

Based upon the SOP- Establishing Water Quality-Based Effluent Limitations (WQBELs) and Permit Conditions for Toxic Pollutants (Revised January 10, 2019), monitoring and/or limits will be established as follows.

- (a) When reasonable potential is demonstrated, establish limits where the maximum reported concentration equals or exceeds 50% of the WQBEL.
- (b) For non-conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 25% 50% of the WQBEL.
- (c) For conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 10% 50% of the WQBEL.

5.4 Total Maximum Daily Loading (TMDL)

5.4.1 TMDL

The goal of the Clean Water Act (CWA), which governs water pollution, is to ensure that all of the Nation's waters are clean and healthy enough to support aquatic life and recreation. To achieve this goal, the CWA created programs designed to regulate and reduce the amount of pollution entering United States waters. Section 303(d) of the CWA requires states to assess their waterbodies to identify those not meeting water quality standards. If a waterbody is not meeting standards, it is listed as impaired and reported to the U.S. Environmental Protection Agency. The state then develops a plan to clean up the impaired waterbody. This plan includes the development of a Total Maximum Daily Load (TMDL) for the pollutant(s) that were found to be the cause of the water quality violations. A Total Maximum Daily Load (TMDL) calculates the maximum amount of a specific pollutant that a waterbody can receive and still meet water quality standards.

Pennsylvania has committed to restoring all impaired waters by developing TMDLs and TMDL alternatives for all impaired waterbodies. The TMDL serves as the starting point or planning tool for restoring water quality.

5.4.1.1 Local TMDL

The subject facility discharges into a local TMDL called the Little Juniata River Watershed. The TMDL was dated for December 2004.

The Little Juniata River is part of State Water Plan subbasin 11A (Frankstown Branch, JuniataRiver) and is located within and north of the City of Altoona in Blair County, Pennsylvania. The Little Juniata is approximately 30 miles in length, with 5 miles designated as impaired. As designated under Chapter 93 in Title 25 of the Pa. Code (Commonwealth of Pennsylvania, 2001), streams in this watershed are protected for aquatic life uses including trout stocking (mainstem Little Juniata River), warm water fishery (Homer Gap Run, Kettle Creek, Spring Run, and unnamed tributaries), and cold water fishery (Riggles Gap Run and Sandy Run).

The TMDL developed for the Little Juniata River watershed addresses non-point source impacts from sediment and point source phosphorus discharges. Implementing Best Management Practices (BMPs) will reduce siltation in the stream. Reduction of nonpoint source phosphorus loading along with the regulation of phosphorus discharges from the two municipal sewage treatment facilities in the watershed will lead to a decrease in organic enrichment and the associated low dissolved oxygen levels.

In an effort to address the nutrient impairments found in the Little Juniata River watershed, Total Maximum Daily Loads (TMDLs) were developed for sediment and total phosphorus. The total phosphorus TMDL is intended to address current nutrient impairments in the Little Juniata River watershed, including impairments that were first identified in Pennsylvania's 1996 303(d) list.

For sediment, the TMDL employs the Reference Watershed Approach. This approach compares two watersheds- one attaining its uses and one that is impaired based on biological assessments.

For phosphorus, in past TMDLs, Reference Watershed approach was employed for setting the phosphorus reduction objectives for a watershed. This method has worked well as a starting point on how we solve nutrient related problem in our waterways, especially in watersheds dominated by NPS 16 pollution. As we have progressed and completed more TMDLs the TMDL team have acknowledged the need to have instream concentration targets for determining the appropriate loading allowed to a waterbody. The TMDL team is currently in the process of developing phosphorus criteria. Table 10 of the TMDL itemizes phosphorus control for Altoona City Authority- East (PA0027014) and LognTownship- Greenwood Facility (PA0032557).

The facility discharges into Kettle Creek and subsequently discharges into the Little Juniata River. The Little Juniata River is a secondary receiving stream.

5.4.1.2 Chesapeake Bay TMDL Requirement

The Chesapeake Bay Watershed is a large ecosystem that encompasses approximately 64,000 square miles in Maryland, Delaware, Virginia, West Virginia, Pennsylvania, New York and the District of Columbia. An ecosystem is composed of interrelated parts that interact with each other to form a whole. All of the plants and animals in an ecosystem depend on each other in some way. Every living thing needs a healthy ecosystem to survive. Human activities affect the Chesapeake Bay ecosystem by adding pollution, using resources and changing the character of the land.

Most of the Chesapeake Bay and many of its tidal tributaries have been listed as impaired under Section 303(d) of the federal Water Pollution Control Act ("Clean Water Act"), 33 U.S.C. § 1313(d). While the Chesapeake Bay is outside the boundaries of Pennsylvania, more than half of the State lies within the watershed. Two major rivers in Pennsylvania are part of the Chesapeake Bay Watershed. They are (a) the Susquehanna River and (b) the Potomac River. These two rivers total 40 percent of the entire Chesapeake Bay watershed.

The overall management approach needed for reducing nitrogen, phosphorus and sediment are provided in the Bay TMDL document and the Phase I, II, and III WIPs which is described in the Bay TMDL document and Executive Order 13508.

The Bay TMDL is a comprehensive pollution reduction effort in the Chesapeake Bay watershed identifying the necessary pollution reductions of nitrogen, phosphorus and sediment across the seven Bay watershed jurisdictions of Delaware, Maryland, New York, Pennsylvania, Virginia, West Virginia and the District of Columbia to meet applicable water quality standards in the Bay and its tidal waters.

The Watershed Implementation Plans (WIPs) provides objectives for how the jurisdictions in partnership with federal and local governments will achieve the Bay TMDL's nutrient and sediment allocations.

Phase 3 WIP provides an update on Chesapeake Bay TMDL implementation activities for point sources and DEP's current implementation strategy for wastewater. The latest revision of the supplement was September 13, 2021.

The Chesapeake Bay TMDL (Appendix Q) categorizes point sources into four sectors:

- Sector A- significant sewage dischargers;
- Sector B- significant industrial waste (IW) dischargers;
- Sector C- non-significant dischargers (both sewage and IW facilities); and
- Sector D- combined sewer overflows (CSOs).

All sectors contain a listing of individual facilities with NPDES permits that were believed to be discharging at the time the TMDL was published (2010). All sectors with the exception of the non-significant dischargers have individual wasteload allocations (WLAs) for TN and TP assigned to specific facilities. Non-significant dischargers have a bulk or aggregate allocation for TN and TP based on the facilities in that sector that were believed to be discharging at that time and their estimated nutrient loads.

Cap Loads will be established in permits as Net Annual TN and TP loads (lbs/yr) that apply during the period of October 1 – September 30. For facilities that have received Cap Loads in any other form, the Cap Loads will be modified accordingly when the permits are renewed.

Offsets have been incorporated into Cap Loads in several permits issued to date. From this point forward, permits will be issued with the WLAs as Cap Loads and will identify Offsets separately to facilitate nutrient trading activities and compliance with the TMDL.

Based upon the supplement the subject facility has been categorized as a Sector C discharger. The supplement defines Sector C as a non-significant dischargers include sewage facilities (Phase 4 facilities: ≥ 0.2 MGD and < 0.4 MGD and Phase 5 facilities: > 0.002 MGD and < 0.2 MGD), small flow/single residence sewage treatment facilities (≤ 0.002 MGD), and non-significant IW facilities, all of which may be covered by statewide General Permits or may have individual NPDES permits.

At this time, there are approximately 850 Phase 4 and 5 sewage facilities, approximately 715 small flow sewage treatment facilities covered by a statewide General Permit, and approximately 300 non-significant IW facilities.

For non-significant IW facilities, monitoring and reporting of TN and TP will be required throughout the permit term in renewed or amended permits anytime the facility has the potential to introduce a net TN or TP increase to the load contained within the intake water used in processing. In general, facilities that discharge groundwater and cooling water with no addition of chemicals containing N or P do not require monitoring. Monitoring for facilities with other discharges will generally conform to the following minimum sampling frequencies, with the permit writer having final discretion.

Non-significant IW facilities that propose expansion or production increases and as a result will discharge at least 75 lbs/day TN or 25 lbs/day TP (on an annual average basis), will be classified as Significant IW dischargers and receive Cap Loads in their permits based on existing performance (existing TN/TP concentrations at current average annual flow).

In general, for new non-significant IW discharges (including existing facilities discharging without a permit), DEP will issue permits containing Cap Loads of "0" and these facilities will be expected to purchase credits and/or apply offsets to achieve compliance.

This facility is subject to Sector C monitoring requirements. Monitoring for nitrogen species and phosphorus shall be 2x/yr.

5.5 Anti-Degradation Requirement

Chapter 93.4a of the PA regulations requires that surface water of the Commonwealth of Pennsylvania may not be degraded below levels that protect the existing uses. The regulations specifically state that *Existing instream water uses and the level of water quality necessary to protect the existing uses shall be maintained and protected.* Antidegradation requirements are implemented through DEP's guidance manual entitled Water Quality Antidegradation Implementation Guidance (Document #391-0300-02).

The policy requires DEP to protect the existing uses of all surface waters and the existing quality of High Quality (HQ) and Exceptional Value (EV) Waters. Existing uses are protected when DEP makes a final decision on any permit or approval for an activity that may affect a protected use. Existing uses are protected based upon DEP's evaluation of the best available information (which satisfies DEP protocols and Quality Assurance/Quality Control (QA/QC) procedures) that indicates the protected use of the waterbody.

For a new, additional, or increased point source discharge to an HQ or EV water, the person proposing the discharge is required to utilize a nondischarge alternative that is cost-effective and environmentally sound when compared with the cost of the proposed discharge. If a nondischarge alternative is not cost-effective and environmentally sound, the person must use the best available combination of treatment, pollution prevention, and wastewater reuse technologies and assure that any discharge is nondegrading. In the case of HQ waters, DEP may find that after satisfaction of intergovernmental coordination and public participation requirements lower water quality is necessary to accommodate important economic or social development in the area in which the waters are located. In addition, DEP will assure that cost-effective and reasonable best management practices for nonpoint source control in HQ and EV waters are achieved.

The subject facility's discharge will be to a special protection waters and the permit conditions are imposed to protect existing instream water quality and uses. The discharge goes to a stream that has existing use designation of EV water but no negative impacts are expected from the discharge since the discharge predates the EV designation of the stream (Fact Sheet dated for December 2016).

5.6 Anti-Backsliding

Anti-backsliding is a federal regulation which prohibits a permit from being renewed, reissued, or modified containing effluent limitations which are less stringent than the comparable effluent limitations in the previous permit (40 CFR 122.I.1 and 40 CFR 122.I.2). A review of the existing permit limitations with the proposed permit limitations confirm that the facility is consistent with anti-backsliding requirements. The facility has proposed effluent limitations that are as stringent as the existing permit.

6.0 NPDES Parameter Details

The basis for the proposed sampling and their monitoring frequency that will appear in the permit for each individual parameter are itemized in this Section. The final limits are the more stringent of technology based effluent treatment (TBEL) requirements, water quality based (WQBEL) limits, TMDL, antidegradation, anti-degradation, or WET.

The reader will find in this section:

- a) a justification of recommended permit monitoring requirements and limitations for each parameter in the proposed NPDES permit;
- b) a summary of changes from the existing NPDES permit to the proposed permit; and
- c) a summary of the proposed NPDES effluent limits.

6.1 Recommended Monitoring Requirements and Effluent Limitations

A summary of the recommended monitoring requirements and effluent limitations are itemized in the tables. The tables are categorized by (a) Conventional Pollutants and Disinfection, (b) Nitrogen Species and Phosphorus, and (c) Toxics.

6.1.1.1 Conventional Pollutants and Disinfection for Outfall 001

	Summary of Proposed NPDES Parameter Details for Conventional Pollutants and Disinfection Altoona City Water- Kettle Creek WTP, PA0085812; Outfall 001			
Parameter Permit Limitation Required by 1: Recommendation				
		Monitoring:	The monitoring frequency shall be daily as a grab sample (Table 6-4).	
ъп (6 II)	TBEL	Effluent Limit:	Effluent limits may range from pH = 6.0 to 9.0	
pH (S.U.)	IDEL	Rationale: The monitoring frequency has been assigned in accordance with Table 6-4 and the effluent limits assigned by Chapter 95.2(1).		
Notes:				

- 1 The NPDES permit was limited by (a) anti-Backsliding, (b) Anti-Degradation, (c) SOP, (d) TBEL, (e) TMDL, (f) WQBEL, (g) WET, or (h) Other 2 Monitoring frequency based on flow rate of 0.12 MGD.
- 3 Table 6-4 (Self Monitoring Requirements for Industrial Discharges) in Technical Guidance for the Development and Specification of Effluent
- 4 Water Quality Antidegradation Implementation Guidance (Document # 391-0300-002)
- 5 Phase 2 Watershed Implementation Plan Wastewater Supplement, Revised September 6, 2017

6.1.1.2 Toxics for Outfall 001

	Summary of Proposed NPDES Parameter Details for Toxics Altoona City Water- Kettle Creek WTP, PA0085812; Outfall 001			
Parameter	Permit Limitation Required by ¹ :	Recommendation		
		Monitoring:	The monitoring frequency shall be 2x/yr as an 8-hr composite sample (Table 6-4).	
		Effluent Limit:	No effluent requirements	
Aluminum	WQBEL	Rationale:	This parameter had a positive sample result. While Toxics Management Spreadsheet recommends limits, DEP recommends collection of more samples to justify new limits. Pending favorable sampling results, the monitoring may be reduced or eliminated in future renewals.	
		Monitoring:	The monitoring frequency shall be 2x/yr as an 8-hr composite sample (Table 6-4).	
		Effluent Limit:	No effluent requirements	
Copper WQBEL	Rationale:	This parameter had a positive sample result. While Toxics Management Spreadsheet recommends limits, DEP recommends collection of more samples to justify new limits. Pending favorable sampling results, the monitoring may be reduced or liminated in future renewals.		
		Monitoring:	The monitoring frequency shall be 2x/yr as an 8-hr composite sample (Table 6-4).	
		Effluent Limit:	No effluent requirements	
Lead	Lead WQBEL	Rationale:	This parameter had a positive sample result. While Toxics Management Spreadsheet recommends limits, DEP recommends collection of more samples to justify new limits. Pending favorable sampling results, the monitoring may be reduced or liminated in future renewals.	
		Monitoring:	The monitoring frequency shall be 2x/yr as an 8-hr composite sample (Table 6-4).	
		Effluent Limit:	No effluent requirements	
Zinc WQB	WQBEL	WQBEL Rationale:	This parameter had a positive sample result. While Toxics Management Spreadsheet recommends limits, DEP recommends collection of more samples to justify new limits. Pending favorable sampling results, the monitoring may be reduced or liminated in future renewals.	

6.1.1.3 Conventional Pollutants and Disinfection for Outfall 101

	Summary of Proposed NPDES Parameter Details for Conventional Pollutants and Disinfection Altoona City Water- Kettle Creek WTP, PA0085812; Outfall 101			
Parameter	Permit Limitation Required by ¹ :	Recommendation		
		Monitoring:	The monitoring frequency shall be daily as a grab sample (Table 6-4).	
pH (S.U.)	TBEL	Effluent Limit:	Effluent limits may range from pH = 6.0 to 9.0	
pn (3.0.)	IBLL	Rationale:	The monitoring frequency has been assigned in accordance with Table 6-4 and the effluent limits assigned by Chapter 95.2(1).	
		Monitoring:	The monitoring frequency shall be 2x/mo as an 8-hr composite sample	
	DEP Guidance	Effluent Limit:	The performance effluent limit shall not exceed 30 mg/l as a monthly average.	
TSS	Document-Water Treatment Plant Wastes	Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by Chapter 92a.47(a)(1). While there is no WQM modeling for this parameter, the permit limit for TSS is generally assigned similar effluent limits as CBOD or BOD. Since the TBEL is more stringent than TBEL, TBEL will apply.	
Notes:				

¹ The NPDES permit was limited by (a) anti-Backsliding, (b) Anti-Degradation, (c) SOP, (d) TBEL, (e) TMDL, (f) WQBEL, (g) WET, or (h) Other 2 Monitoring frequency based on flow rate of 0.12 MGD.

³ Table 6-4 (Self Monitoring Requirements for Industrial Discharges) in Technical Guidance for the Development and Specification of Effluent Limitations and Other Permit Conditions in NPDES Permits) (Document # 362-0400-001) Revised 10/97

⁴ Water Quality Antidegradation Implementation Guidance (Document # 391-0300-002)

⁵ Phase 2 Watershed Implementation Plan Wastewater Supplement, Revised September 6, 2017

6.1.1.4 Nitrogen Species and Phosphorus for Outfall 101

Summary of Proposed NPDES Parameter Details for Nitrogen Species and Phosphorus

Altoona City Water- Kettle Creek WTP, PA0085812; Outfall 101

Parameter	Permit Limitation Required by ¹ :	Recommendation	
		Monitoring:	The monitoring frequency shall be 2x/yr as an 8-hr composite sample
Ammonia-	Chesapeake Bay	Effluent Limit:	No effluent requirements.
Nitrogen	TMDL	Rationale:	Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at least 2x/yr.
		Monitoring:	The monitoring frequency shall be 2x/yr as an 8-hr composite sample
Nitrate-	Chesapeake Bay	Effluent Limit:	No effluent requirements.
Nitrite as N	Nitrite as N TMDL	Rationale:	Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at least 2x/yr.
		Monitoring:	The monitoring frequency shall be 2x/yr as a calculation
Total	Chesapeake Bay	Effluent Limit:	No effluent requirements.
Nitrogen	Nitrogen TMDL	Rationale:	Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at least 2x/yr.
		Monitoring:	The monitoring frequency shall be 2x/yr as an 8-hr composite sample
TKN	Chesapeake Bay	Effluent Limit:	No effluent requirements.
TMDL	Rationale:	Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at least 2x/yr.	
		Monitoring:	The monitoring frequency shall be 2x/yr as an 8-hr composite sample
Total	Chesapeake Bay	Effluent Limit:	No effluent requirements.
Phosphorus	TMDL	Rationale:	Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at least 2x/yr.
Notes:		_	

¹ The NPDES permit was limited by (a) anti-Backsliding, (b) Anti-Degradation, (c) SOP, (d) TBEL, (e) TMDL, (f) WQBEL, (g) WET, or (h) Other

² Monitoring frequency based on flow rate of 0.12 MGD.

³ Table 6-4 (Self Monitoring Requirements for Industrial Discharges) in Technical Guidance for the Development and Specification of Effluent Limitations and Other Permit Conditions in NPDES Permits) (Document # 362-0400-001) Revised 10/97

⁴ Water Quality Antidegradation Implementation Guidance (Document # 391-0300-002)

⁵ Phase 2 Watershed Implementation Plan Wastewater Supplement, Revised September 6, 2017

6.1.1.5 Toxics for Outfall 101

Summary of Proposed NPDES Parameter Details for Toxics

Altoona City Water- Kettle Creek WTP, PA0085812; Outfall 101

Parameter	Permit Limitation Required by ¹ :	Recommendation		
		Monitoring:	The monitoring frequency shall be 2x/mo as an 8-hr composite sample (Table 6-4).	
	DEP Guidance	Effluent Limit:	The performance effluent limit shall not exceed 2 lbs/day and 2 mg/l as a monthly average.	
Iron	Document-Water Treatment Plant Wastes	Rationale:	Effluent limits are defined by DEP Guidance Document- Technology-Based Control Requirements for Water Treatment Plant Wastes- Waste Water from Treatment of WTP Sludges and Filter Backwash	
		Monitoring:	The monitoring frequency shall be 2x/mo as an 8-hr composite sample (Table 6-4).	
Aluminum	Antibacksliding	Effluent Limit:	The performance effluent limit shall not exceed 1 lb/day and 1 mg/l as a monthly average.	
		Rationale:	Due to antibacksliding regulations, the current limit shall continue to the proposed permit	
		Monitoring:	The monitoring frequency shall be 2x/mo as an 8-hr composite sample (Table 6-4).	
	DEP Guidance Document-Water	Effluent Limit:	The performance effluent limit shall not exceed 1 lb/day and 1 mg/l as a monthly average.	
Manganese	Treatment Plant Wastes	Rationale:	Effluent limits are defined by DEP Guidance Document- Technology-Based Control Requirements for Water Treatment Plant Wastes- Waste Water from Treatment of WTP Sludges and Filter Backwash	
		Monitoring:	The monitoring frequency shall be 2x/yr as an 8-hr composite sample (Table 6-4).	
		Effluent Limit:	No effluent requirements	
Copper	Copper WQBEL	Rationale:	This parameter had a positive sample result. While Toxics Management Spreadsheet recommends limits, DEP recommends collection of more samples to justify new limits. Pending favorable sampling results, the monitoring may be reduced or eliminated in future renewals.	
		Monitoring:	The monitoring frequency shall be 2x/yr as an 8-hr composite sample (Table 6-4).	
		Effluent Limit:	No effluent requirements	
Mercury	WQBEL	Rationale:	This parameter had a positive sample result. While Toxics Management Spreadsheet recommends limits, DEP recommends collection of more samples to justify new limits. Pending favorable sampling results, the monitoring may be reduced or eliminated in future renewals.	
		Monitoring:	The monitoring frequency shall be 2x/yr as an 8-hr composite sample (Table 6-4).	
	Silver WQBEL	Effluent Limit:	No effluent requirements	
Silver		Rationale:	This parameter had a positive sample result. While Toxics Management Spreadsheet recommends limits, DEP recommends collection of more samples to justify new limits. Pending favorable sampling results, the monitoring may be reduced or eliminated in future renewals.	
Notes:				

¹ The NPDES permit was limited by (a) anti-Backsliding, (b) Anti-Degradation, (c) SOP, (d) TBEL, (e) TMDL, (f) WQBEL, (g) WET, or (h) Other 2 Monitoring frequency based on flow rate of 0.12 MGD.

³ Table 6-4 (Self Monitoring Requirements for Industrial Discharges) in Technical Guidance for the Development and Specification of Effluent Limitations and Other Permit Conditions in NPDES Permits) (Document # 362-0400-001) Revised 10/97

⁴ Water Quality Antidegradation Implementation Guidance (Document # 391-0300-002)

⁵ Phase 2 Watershed Implementation Plan Wastewater Supplement, Revised September 6, 2017

6.2.1 Summary of Changes From Existing Permit to Proposed Permit for Outfall 001

A summary of how the proposed NPDES permit differs from the existing NPDES permit is summarized as follows.

	Changes in Permit Monitoring o	r Effluent Quality for Outfall 001
Parameter	Existing Permit	Draft Permit
		This parameter had a positive sample result. While
		Toxics Management Spreadsheet recommends limits
Aluminum	No monitoring or officent limits	DEP recommends collection of more samples to
Aluminum	No monitoring or effluent limits	justify new limits. Pending favorable sampling results
		the monitoring may be reduced or eliminated in future
		renewals. Monitoring shall be on a 2x/yr basis.
		This parameter had a positive sample result. While
		Toxics Management Spreadsheet recommends limit
Coppor	No monitoring or effluent limits	DEP recommends collection of more samples to
Copper		justify new limits. Pending favorable sampling results
		the monitoring may be reduced or eliminated in futur
		renewals. Monitoring shall be on a 2x/yr basis.
		This parameter had a positive sample result. While
		Toxics Management Spreadsheet recommends limit
Lead	No monitoring or effluent limits	DEP recommends collection of more samples to
Leau	No monitoring of emdent limits	justify new limits. Pending favorable sampling results
		the monitoring may be reduced or eliminated in futur
		renewals. Monitoring shall be on a 2x/yr basis.
·		This parameter had a positive sample result. While
		Toxics Management Spreadsheet recommends limit
Zinc	No monitoring or effluent limits	DEP recommends collection of more samples to
ZIIIC	Two monitoring of enfacil infiles	justify new limits. Pending favorable sampling results
		the monitoring may be reduced or eliminated in futur
		renewals. Monitoring shall be on a 2x/yr basis.

6.2.2 Summary of Changes From Existing Permit to Proposed Permit for Outfall 101

	Changes in Permit Monitoring or Efflue	nt Quality for Outfall 101
Parameter	Existing Permit	Draft Permit
Ammonia-Nitrogen	No monitoring or effluent limits	Due to the Chesapeake Bay WIP, monitoring shall be required 2x/yr.
Iron	Effluent limits shall not exceed 2 mg/l as an average monthly	Effluent limits shall not exceed 2 lbs/day and 2 mg/l as an average monthly
Manganese	Effluent limits shall not exceed 1 mg/l as an average monthly	Effluent limits shall not exceed 1 lb/day and 2 mg/l as an average monthly
Copper	No monitoring or effluent limits	This parameter had a positive sample result. While Toxics Management Spreadsheet recommends limits, DEP recommends collection of more samples to justify new limits. Pending favorable sampling results, the monitoring may be reduced or eliminated in future renewals. Monitoring shall be on a 2x/yr basis.
Mercury	No monitoring or effluent limits	This parameter had a positive sample result. While Toxics Management Spreadsheet recommends limits, DEP recommends collection of more samples to justify new limits. Pending favorable sampling results, the monitoring may be reduced or eliminated in future renewals. Monitoring shall be on a 2x/yr basis.
Silver	No monitoring or effluent limits	This parameter had a positive sample result. While Toxics Management Spreadsheet recommends limits, DEP recommends collection of more samples to justify new limits. Pending favorable sampling results, the monitoring may be reduced or eliminated in future renewals. Monitoring shall be on a 2x/yr basis.

6.3.1 Summary of Proposed NPDES Effluent Limits

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

The proposed NPDES effluent limitations are summarized in the table below.

PART	A - EFFLUENT LIMITAT	TIONS, MONITORING, RECORDKEEPING AND REPORTING REQUIREMENTS
I. A.	For Outfall 001	, Latitude 40° 30' 27.00" , Longitude 78° 21' 9.00" , River Mile Index 2.7 , Stream Code 18049
	Receiving Waters:	Kettle Creek (CWF, EV, EV (existing use))
	Type of Effluent:	Water Treatment Effluent

- 1. The permittee is authorized to discharge during the period from Permit Effective Date through Permit Expiration Date.
- Based on the anticipated wastewater characteristics and flows described in the permit application and its supporting documents and/or amendments, the following effluent limitations and monitoring requirements apply (see also Additional Requirements and Footnotes).

			Effluent L	imitations.			Monitoring Re	quirements	
D	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum (2)	Required	
Parameter	Semi-Annual	Daily		Semi-Annual		Instant.	Instant. Measurement		
	Average	Maximum	Minimum	Average	Maximum	Maximum	Frequency	Type	
	Report								
Flow (MGD)	Avg Mo	Report	XXX	XXX	XXX	XXX	1/week	Measured	
		·	6.0		9.0				
pH (S.U.)	XXX	XXX	Inst Min	XXX	Daily Max	XXX	1/day	Grab	
								8-Hr	
Aluminum, Total	Report	Report	XXX	Report	XXX	XXX	1/6 months	Composite	
								8-Hr	
Copper, Total	Report	Report	XXX	Report	XXX	XXX	1/6 months	Composite	
								8-Hr	
Lead, Total	Report	Report	XXX	Report	XXX	XXX	1/6 months	Composite	
								8-Hr	
Zinc, Total	Report	Report	XXX	Report	XXX	XXX	1/6 months	Composite	

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

at Outfall 001

PART A - EFFLUENT LIMITATIONS, MONITORING, RECORDKEEPING AND REPORTING REQUIREMENTS I. B. For Outfall 101 , Latitude 40° 30′ 27.00″ , Longitude 78° 21′ 5.00″ , River Mile Index 2.7 , Stream Code 18049 Receiving Waters: Kettle Creek (CWF, EV, EV (existing use)) Type of Effluent: Backwash water

Based on the anticipated wastewater characteristics and flows described in the permit application and its supporting documents and/or amendments, the following effluent limitations and monitoring requirements apply (see also Additional Requirements and Footnotes).

			Effluent l	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrati	ions (mg/L)		Minimum (2)	Required
Parameter	Semi-Annual	Daily		Semi-Annual	Daily	Instant.	Measurement	Sample
	Average	Maximum	Minimum	Average	Maximum	Maximum	Frequency	Type
	Report							
Flow (MGD)	Avg Mo	Report	XXX	XXX	XXX	XXX	1/day	Measured
			6.0					
pH (S.U.)	XXX	XXX	Inst Min	XXX	XXX	9.0	1/day	Grab
				30				8-Hr
Total Suspended Solids	XXX	XXX	XXX	Avg Mo	60	75	2/month	Composite
								8-Hr
Nitrate-Nitrite as N	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Composite
	1007						410 11	
Total Nitrogen	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Calculation
A	2007	2000	2007	B4	2000	2007	410	8-Hr
Ammonia-Nitrogen	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Composite 8-Hr
Total Kjeldahl Nitrogen	XXX	XXX	XXX	Report	xxx	xxx	1/6 months	o-nr Composite
- Old I delegate the Series	7001	7001	7001	1100011	7001	7001		8-Hr
Total Phosphorus	xxx	XXX	xxx	Report	XXX	xxx	1/6 months	Composite
	1.0			1.0				8-Hr
Aluminum, Total	Avg Mo	2.0	XXX	Avg Mo	2.0	2.5	2/month	Composite
								8-Hr
Copper, Total	Report	Report	XXX	Report	XXX	XXX	1/6 months	Composite
	2.0			2.0				8-Hr
Iron, Total	Avg Mo	Report	XXX	Avg Mo	4.0	5	2/month	Composite

Outfall 101, Continued (from Permit Effective Datethrough Permit Expiration Date)

Permit No. PA0085812

			Effluent L	imitations.			Monitoring Requirements		
Parameter	Mass Units	(lbs/day) (1)		Concentrati		Minimum (2)	Required		
rarameter	Semi-Annual	Daily		Semi-Annual	Daily	Instant.	Measurement	Sample	
	Average	Maximum	Minimum	Average	Maximum	Maximum	Frequency	Type	
	1.0			1.0				8-Hr	
Manganese, Total	Avg Mo	Report	XXX	Avg Mo	2.0	2.5	2/month	Composite	
								8-Hr	
Mercury, Total	Report	Report	XXX	Report	XXX	XXX	1/6 months	Composite	
								8-Hr	
Silver, Total	Report	Report	XXX	Report	XXX	XXX	1/6 months	Composite	

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

at Outfall 101

6.3.2 Summary of Proposed Permit Part C Conditions

The subject facility has the following Part C conditions.

- Chesapeake Bay Nutrient Definitions
- Water Treatment Plant Cleaning

^{1.} The permittee is authorized to discharge during the period from Permit Effective Date through Permit Expiration Date.

		Tools and References Used to Develop Permit
	-	
	WQ	M for Windows Model (see Attachment)
\boxtimes	Tox	ics Management Spreadsheet (see Attachment)
	TRO	C Model Spreadsheet (see Attachment)
	Tem	nperature Model Spreadsheet (see Attachment)
	Wat	ter Quality Toxics Management Strategy, 361-0100-003, 4/06.
] Tec	hnical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Poli	cy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Poli	cy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Tec	hnology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
		hnical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004,
	Pen	nsylvania CSO Policy, 385-2000-011, 9/08.
	Wat	ter Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
		lementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-0-002, 4/97.
	Dete	ermining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
		lementation Guidance Design Conditions, 391-2000-006, 9/97.
	l and	hnical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	391	rim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, -2000-008, 10/1997.
		lementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, Impoundments, 391-2000-010, 3/99.
		hnical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program Toxics, Version 2.0, 391-2000-011, 5/2004.
	lmp	lementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
		cy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage annels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
] Imp	lementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	lmp	lementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	lmp	lementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
] Imp	lementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved ds, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	7 Field	d Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design dness, 391-2000-021, 3/99.
		lementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination Vasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Des	ign Stream Flows, 391-2000-023, 9/98.
		d Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) Other Discharge Characteristics, 391-2000-024, 10/98.
	Eva	luations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
		insylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	_	P: Establishing Effluent Limitations for Individual Industrial Permits, rev October 1, 2020
	Oth	

Attachment A Stream Stats/Gauge Data

Table 1. List of U.S. Geological Survey streamgage locations in and near Pennsylvania with updated streamflow statistics.—Continued [Latitude and Longitude in decimal degrees; mi², square miles]

101541303	Streamgage number	Streamgage name	Latitude	Longitude	Drainage area (mi²)	Regulated ¹
1541500 Clearfield Creek at Dimesling, Pa. 40,972 -78,406 371 Y	01541303	West Branch Susquehanna River at Hyde, Pa.	41.005	-78.457	474	Y
101542000 Moshamon Creek at Osceola Mills, Pa. 40.850 -78.268 68.8 N	01541308	Bradley Run near Ashville, Pa.	40.509	-78.584	6.77	N
1542500 WB Susquehanna River at Karthaus, Pn. 41.118 -78.109 1.462 Y	01541500	Clearfield Creek at Dimeling, Pa.	40.972	-78.406	371	Y
101543000 Driffwood Branch Simemahoning Creek at Sterling Run, Pa. 41.579 -78.293 5.24 N	01542000	Moshannon Creek at Osceola Mills, Pa.	40.850	-78.268	68.8	N
Dispay	01542500	WB Susquehanna River at Karthaus, Pa.	41.118	-78.109	1,462	Y
101544500 Simmemahoming Creek at Simmemahoming, Pa. 41.317 -78.103 685 N	01542810	Waldy Run near Emporium, Pa.	41.579	-78.293	5.24	N
101544000 First Fork Simemahoning Creek near Simemahoning, Pa. 41.402 -78.034 345 Y	01543000	Driftwood Branch Sinnemahoning Creek at Sterling Run, Pa.	41.413	-78.197	272	N
134500 Kettle Creek at Cross Fork, Pa. 41.476 -77.826 136 N 1345000 Kettle Creek near Westport, Pa. 41.320 -77.874 233 Y 1345000 Kettle Creek near Westport, Pa. 41.320 -77.874 2.975 Y 101545600 Young Womans Creek near Renovo, Pa. 41.320 -77.691 46.2 N 101546600 North Bald Eagle Creek at Milesburg, Pa. 40.942 -77.794 119 N 101546600 Spring Creek at Houserville, Pa. 40.834 -77.828 58.5 N 101546500 Spring Creek at Houserville, Pa. 40.834 -77.828 58.5 N 101546500 Spring Creek at Milesburg, Pa. 40.834 -77.828 58.5 N 101547100 Spring Creek at Milesburg, Pa. 40.932 -77.786 142 N 101547100 Spring Creek below Spring Creek at Milesburg, Pa. 40.943 -77.786 142 N 101547900 Bald Eagle Creek at Blanchard, Pa. 41.052 -77.604 339 Y 101547900 South Fork Beech Creek near Snow Shoe, Pa. 41.060 -77.606 44.1 N 101547800 South Fork Beech Creek near Snow Shoe, Pa. 41.044 -77.904 12.2 N 101548900 Bald Eagle Creek near Beech Creek Station, Pa. 41.081 -77.549 562 Y 101548900 Biochhouse Creek near Beech Creek Station, Pa. 41.522 -77.447 604 N 101549000 Biochhouse Creek near English Center, Pa. 41.313 -77.379 750 N 101549000 Biochhouse Creek near English Center, Pa. 41.474 -77.321 37.7 N 101549000 Biochhouse Creek near English Center, Pa. 41.474 -77.321 37.7 N 101549000 Biochhouse Creek near English Center, Pa. 41.484 -77.033 173 N 101549000 Susquehanna River at Williamsport, Pa. 41.236 -76.997 5,682 Y 101550000 Lyonning Creek hear Tour Run, Pa. 41.236 -76.997 5,682 Y 101553130 Sand Spring Run near White Deer, Pa. 41.059 -77.077 4.93 N 1015535000 Susquehanna River at Sumbury, Pa. 40.683 -78.697 5.682 Y 101553000 Susquehanna River at Sumbury, Pa. 40.683 -78.09 91.0 N 101555000 Susquehanna River at Sumbury,	01543500	Sinnemahoning Creek at Sinnemahoning, Pa.	41.317	-78.103	685	N
11545000 Kettle Creek near Westport, Pa. 11.320 -77.874 233 Y 11545500 West Branch Susquehanna River at Renovo, Pa. 14.325 -77.751 2.975 Y 101545600 Voung Womans Creek near Renovo, Pa. 14.390 -77.691 46.2 N 10154600 North Bald Eagle Creek at Milesburg, Pa. 40.942 -77.794 119 N 10154600 Spring Creek at Houserville, Pa. 40.834 -77.832 58.5 N 101545000 Spring Creek at Houserville, Pa. 40.890 -77.794 87.2 N 101547000 Spring Creek at Milesburg, Pa. 40.932 -77.786 142 N 101547000 Bald Eagle Creek at Blanchard, Pa. 41.052 -77.604 339 Y 101547000 Bald Eagle Creek at Blanchard, Pa. 41.052 -77.604 339 Y 101547000 Bald Eagle Creek at Blanchard, Pa. 41.060 -77.606 44.1 N 101547800 South Fork Beech Creek near Snow Shoe, Pa. 41.044 -77.904 12.2 N 101547800 South Fork Beech Creek near Snow Shoe, Pa. 41.012 -77.702 152 N 101547800 Bald Eagle Creek near Beech Creek Station, Pa. 41.101 -77.702 152 N 101548900 Pine Creek at Cedar Run, Pa. 41.081 -77.549 562 Y 101548900 Pine Creek at Cedar Run, Pa. 41.331 -77.339 750 N 101549000 Pine Creek near Beech Creek Station, Pa. 41.313 -77.339 750 N 101549700 Pine Creek near English Center, Pa. 41.474 -77.231 37.7 N 101549700 Pine Creek below Little Pine Creek near Waterville, Pa. 41.316 -76.935 76.827 Y 101550000 Lycoming Creek near Trout Run, Pa. 41.236 -76.597 5.682 Y 101550000 Lycoming Creek near Sonestown, Pa. 41.236 -76.597 5.682 Y 101552500 Muncy Creek near Sonestown, Pa. 41.357 -76.535 23.8 N 101553300 West Branch Susquehanna River at Williamsburg, Pa. 40.867 -77.048 301 N 101555000 East Mahantango Creek near Dalmatia, Pa. 40.611 -76.912 435 N 101555000 Little Juniata River at Williamsburg, Pa. 40.663 -78.004 91 N 101559000 Susquehanna River at Sonu	01544000	First Fork Sinnemahoning Creek near Sinnemahoning, Pa.		-78.024	245	Y
101545500 West Branch Susqueharma River at Renovo, Pa. 41.325 -77.751 2,975 Y	01544500	Kettle Creek at Cross Fork, Pa.	41.476	-77.826	136	N
101545600 Young Womans Creek near Renovo, Pa. 41.390 -77.691 46.2 N	01545000	Kettle Creek near Westport, Pa.	41.320	-77.874	233	
101546000 North Bald Eagle Creek at Milesburg, Pa. 40.942 -77.794 119 N	01545500		41.325	-77.751	2,975	Y
101546400 Spring Creek at Houserville, Pa. 40.834 -77.828 58.5 N 101546500 Spring Creek near Axemann, Pa. 40.890 -77.794 87.2 N 101547200 Bald Eagle Creek at Milesburg, Pa. 40.932 -77.786 142 N 101547200 Bald Eagle Creek below Spring Creek at Milesburg, Pa. 40.943 -77.786 265 N 101547500 Bald Eagle Creek at Blanchard, Pa. 41.052 -77.604 339 Y 101547900 Marsh Creek at Blanchard, Pa. 41.060 -77.604 339 Y 101547900 South Fork Beech Creek near Snow Shoe, Pa. 41.060 -77.606 44.1 N 101547900 Beech Creek at Monument, Pa. 41.012 -77.702 152 N 101547950 Beech Creek at Monument, Pa. 41.112 -77.702 152 N 101548500 Biad Eagle Creek near Beech Creek Station, Pa. 41.522 -77.447 604 N 101549500 Biockhouse Creek near English Center, Pa. 41.313 -77.379 750 N 101549500 Biockhouse Creek near English Center, Pa. 41.474 -77.231 37.7 N 101549700 Pine Creek below Little Pine Creek near Waterville, Pa. 41.474 -77.231 37.7 N 101550000 Lycoming Creek near Trout Rum, Pa. 41.216 -76.907 5,682 Y 101552000 Loyalsock Creek at Loyalsockville, Pa. 41.325 -76.912 435 N 1015525000 Loyalsock Creek at Loyalsockville, Pa. 41.357 -76.635 23.8 N 101553130 Sand Spring Rum near White Deer, Pa. 41.059 -77.077 4.93 N 101554500 Shamokin Creek at Washingtonville, Pa. 41.062 -76.806 51.3 N 1015555000 Penns Creek at Panns River at Lewisburg, Pa. 40.867 -77.048 301 N 1015545000 Shamokin Creek near Shamokin, Pa. 40.867 -77.048 301 N 101555000 Penns Creek at Penns Creek, Pa. 40.611 -76.912 162 N 101555000 Penns Creek at Penns Creek, Pa. 40.668 -78.234 44.1 N 101555000 Little Juniata River at Shumokin, Pa. 40.668 -78.234 44.1 N 101555000 Standing Stone Creek near Dalmaria, Pa. 40.613 -78.141 220 N 101559000 Standing Stone Creek	01545600		41.390	-77.691	46.2	N
101546500 Spring Creek near Assemann, Pa. 40.890 -77.794 87.2 N	01546000	North Bald Eagle Creek at Milesburg, Pa.	40.942	-77.794	119	N
01547100 Spring Creek at Milesburg, Pa. 40.932 -77.786 142 N 01547200 Bald Eagle Creek below Spring Creek at Milesburg, Pa. 40.943 -77.786 265 N 01547500 Bald Eagle Creek at Blanchard, Pa. 41.052 -77.604 339 Y 01547500 Marsh Creek at Blanchard, Pa. 41.060 -77.606 44.1 N 01547800 South Fork Beech Creek near Snow Shoe, Pa. 41.024 -77.904 12.2 N 01547800 South Fork Beech Creek near Snow Shoe, Pa. 41.024 -77.904 12.2 N 01547950 Beech Creek near Beech Creek Station, Pa. 41.112 -77.702 152 N 01548800 Bald Eagle Creek near Beech Creek Station, Pa. 41.081 -77.549 562 Y 0154800 Pine Creek near Waterville, Pa. 41.313 -77.379 750 N 01549500 Pine Creek near Waterville, Pa. 41.313 -77.379 750 N 01549500 Blockhouse Creek near English Center, Pa. 41.474 -77.321 37.7 N 01549700 Pine Creek below Little Pine Creek near Waterville, Pa. 41.474 -77.324 944 Y 0155000 Lycoming Creek near Trout Run, Pa. 41.418 -77.033 173 N 01551500 WB Susquehanna River at Williamsport, Pa. 41.326 -76.997 5,682 Y 01552500 Muncy Creek near Sonestown, Pa. 41.357 -76.535 23.8 N 01553500 West Branch Susquehanna River at Lewisburg, Pa. 41.059 -77.077 4.93 N 01554000 Susquehanna River at Lewisburg, Pa. 40.968 -76.876 6,847 Y 01553700 Chillisquaque Creek at Washingtonville, Pa. 40.867 -77.048 301 N 01554000 Susquehanna River at Sumbury, Pa. 40.867 -77.048 301 N 01555500 East Mahantango Creek near Dalmatia, Pa. 40.867 -77.048 301 N 01555500 Frankstown Branch Juniata River at Williamsburg, Pa. 40.684 -78.234 44.1 N 01555000 Frankstown Branch Juniata River at Williamsburg, Pa. 40.664 -78.200 291 N 01555000 Frankstown Branch Juniata River at Williamsburg, Pa. 40.664 -78.200 291 N 01555000 Standing Stone Creek near Huntingdon, Pa. 40.6524 -77.971 128 N 01559700 Sulphur Springs	01546400		40.834	-77.828	58.5	N
Disagraphic	01546500	Spring Creek near Axemann, Pa.	40.890	-77.794	87.2	N
01547500 Bald Eggle Creek at Blanchard, Pa. 41.052 -77.604 339 Y 01547700 Marsh Creek at Blanchard, Pa. 41.060 -77.606 44.1 N 01547800 South Fork Beech Creek near Snow Shoe, Pa. 41.024 -77.904 12.2 N 01547950 Beech Creek at Monument, Pa. 41.081 -77.549 562 Y 01548000 Biald Eagle Creek near Beech Creek Station, Pa. 41.081 -77.447 604 N 01549000 Pine Creek at Cedar Run, Pa. 41.522 -77.447 604 N 01549000 Pine Creek near Waterville, Pa. 41.313 -77.329 750 N 01549700 Pine Creek below Little Pine Creek near Waterville, Pa. 41.474 -77.321 37.7 N 0155900 Lycoming Creek near Trout Run, Pa. 41.418 -77.033 173 N 01552000 Loyalsock Creek at Loyalsockville, Pa. 41.325 -76.912 435 N 01553130 Sand Spring Run near White Deer, Pa. 41.059 -77.077 4.93 </td <td></td> <td>Spring Creek at Milesburg, Pa.</td> <td>40.932</td> <td>-77.786</td> <td>142</td> <td>N</td>		Spring Creek at Milesburg, Pa.	40.932	-77.786	142	N
01547700 Marsh Creek at Blanchard, Pa. 41.060 -77.606 44.1 N 01547800 South Fork Beech Creek near Snow Shoe, Pa. 41.024 -77.904 12.2 N 01547950 Beech Creek at Monument, Pa. 41.112 -77.702 152 N 01548005 Bald Eagle Creek near Beech Creek Station, Pa. 41.081 -77.549 562 Y 01548500 Pine Creek at Cedar Run, Pa. 41.522 -77.447 604 N 01549500 Dine Creek near Waterville, Pa. 41.313 -77.379 750 N 01549700 Dine Creek hear English Center, Pa. 41.474 -77.321 37.7 N 01550000 Lycoming Creek near English Center, Pa. 41.418 -77.033 173 N 01551500 WB Susquehanna River at Williamsport, Pa. 41.236 -76.997 5,682 Y 01552000 Loyalsock Creek at Toyalsockville, Pa. 41.325 -76.912 435 N 01553130 Sand Spring Run near White Deer, Pa. 41.059 -77.077 4.93	01547200	Bald Eagle Creek below Spring Creek at Milesburg, Pa.	40.943	-77.786	265	N
01547800 South Fork Beech Creek near Snow Shoe, Pa. 41.024 -77.904 12.2 N 01547950 Beech Creek at Monument, Pa. 41.112 -77.702 152 N 01548005 Bald Eagle Creek near Beech Creek Station, Pa. 41.081 -77.549 562 Y 01548000 Pine Creek at Cedar Run, Pa. 41.522 -77.447 604 N 01549000 Pine Creek near Waterville, Pa. 41.313 -77.379 750 N 01549700 Pine Creek below Little Pine Creek near Waterville, Pa. 41.474 -77.324 944 Y 01550000 Lycoming Creek near Trout Run, Pa. 41.418 -77.033 173 N 01551500 WB Susquehanna River at Williamsport, Pa. 41.236 -76.997 5,682 Y 01552500 Loyalsock Creek at Loyalsockville, Pa. 41.325 -76.912 435 N 01553500 Mancy Creek near Sonestown, Pa. 41.357 -76.535 23.8 N 01553700 Chillisquaque Creek at Washingtonville, Pa. 41.069 -77.077	01547500	Bald Eagle Creek at Blanchard, Pa.	41.052	-77.604	339	Y
1547950 Beech Creek at Monument, Pa. 41.112 -77.702 152 N	01547700	Marsh Creek at Blanchard, Pa.	41.060	-77.606	44.1	N
Discrete Discrete	01547800	South Fork Beech Creek near Snow Shoe, Pa.	41.024	-77.904	12.2	N
01548500 Pine Creek at Cedar Run, Pa. 41.522 -77.447 604 N 01549000 Pine Creek near Waterville, Pa. 41.313 -77.379 750 N 01549500 Blockhouse Creek near English Center, Pa. 41.474 -77.231 37.7 N 01549700 Pine Creek below Little Pine Creek near Waterville, Pa. 41.274 -77.324 944 Y 01559000 Lycoming Creek near Trout Run, Pa. 41.418 -77.033 173 N 01551500 WB Susquehanna River at Williamsport, Pa. 41.236 -76.997 5,682 Y 01552500 Loyalsock Creek at Loyalsockville, Pa. 41.325 -76.912 435 N 01552500 Muncy Creek near Sonestown, Pa. 41.357 -76.535 23.8 N 01553130 Sand Spring Run near White Deer, Pa. 41.059 -77.077 4.93 N 01553700 West Branch Susquehanna River at Lewisburg, Pa. 40.968 -76.876 6,847 Y 01554000 Susquehanna River at Sumbury, Pa. 40.810 -76.827	01547950	Beech Creek at Monument, Pa.	41.112	-77.702	152	N
01549000 Pine Creek near Waterville, Pa. 41.313 -77.379 750 N 01549500 Blockhouse Creek near English Center, Pa. 41.474 -77.231 37.7 N 01549700 Pine Creek below Little Pine Creek near Waterville, Pa. 41.274 -77.324 944 Y 01550000 Lycoming Creek near Trout Run, Pa. 41.418 -77.033 173 N 01551500 WB Susquehanna River at Williamsport, Pa. 41.336 -76.997 5,682 Y 01552000 Loyalsock Creek at Loyalsockville, Pa. 41.325 -76.912 435 N 01552500 Muncy Creek near Sonestown, Pa. 41.357 -76.535 23.8 N 01553130 Sand Spring Run near White Deer, Pa. 41.059 -77.077 4.93 N 01553700 West Branch Susquehanna River at Lewisburg, Pa. 40.968 -76.876 6,847 Y 01554000 Susquehanna River at Sunbury, Pa. 40.835 -76.827 18,300 Y 01554500 Shamokin Creek near Shamokin, Pa. 40.810 -76.5	01548005	Bald Eagle Creek near Beech Creek Station, Pa.	41.081	-77.549	562	Y
Disagraphic	01548500	Pine Creek at Cedar Run, Pa.	41.522	-77.447	604	N
01549700 Pine Creek below Little Pine Creek near Waterville, Pa. 41.274 -77.324 944 Y 01550000 Lycoming Creek near Trout Run, Pa. 41.418 -77.033 173 N 01551500 WB Susquehanna River at Williamsport, Pa. 41.236 -76.997 5,682 Y 01552000 Loyalsock Creek at Loyalsockville, Pa. 41.325 -76.912 435 N 01552500 Muncy Creek near Sonestown, Pa. 41.357 -76.535 23.8 N 01553130 Sand Spring Run near White Deer, Pa. 41.059 -77.077 4.93 N 01553700 West Branch Susquehanna River at Lewisburg, Pa. 40.968 -76.876 6,847 Y 01553700 Chillisquaque Creek at Washingtonville, Pa. 41.062 -76.680 51.3 N 01554000 Susquehanna River at Sumbury, Pa. 40.835 -76.827 18,300 Y 0155500 Shamokin Creek near Shamokin, Pa. 40.810 -76.584 54.2 N 0155500 Penns Creek at Penns Creek, Pa. 40.611 -76.	01549000		41.313		750	
01550000 Lycoming Creek near Trout Run, Pa. 41.418 -77.033 173 N 01551500 WB Susquehanna River at Williamsport, Pa. 41.236 -76.997 5,682 Y 01552000 Loyalsock Creek at Loyalsockville, Pa. 41.325 -76.912 435 N 01552500 Muncy Creek near Sonestown, Pa. 41.357 -76.535 23.8 N 01553130 Sand Spring Run near White Deer, Pa. 41.059 -77.077 4.93 N 01553500 West Branch Susquehanna River at Lewisburg, Pa. 40.968 -76.876 6,847 Y 01553700 Chillisquaque Creek at Washingtonville, Pa. 41.062 -76.680 51.3 N 01554000 Susquehanna River at Sunbury, Pa. 40.835 -76.827 18,300 Y 01555000 Shamokin Creek near Shamokin, Pa. 40.810 -76.584 54.2 N 01555000 Penns Creek at Penns Creek, Pa. 40.687 -77.048 301 N 01555000 Frankstown Branch Juniata River at Williamsburg, Pa. 40.684 -78.2	01549500		41.474	-77.231	37.7	N
01551500 WB Susquehanna River at Williamsport, Pa. 41.236 -76.997 5,682 Y 01552000 Loyalsock Creek at Loyalsockville, Pa. 41.325 -76.912 435 N 0155200 Muncy Creek near Sonestown, Pa. 41.357 -76.535 23.8 N 01553130 Sand Spring Rum near White Deer, Pa. 41.059 -77.077 4.93 N 01553500 West Branch Susquehanna River at Lewisburg, Pa. 40.968 -76.876 6,847 Y 01553700 Chillisquaque Creek at Washingtonville, Pa. 41.062 -76.880 51.3 N 01554000 Susquehanna River at Sunbury, Pa. 40.835 -76.827 18,300 Y 01555000 Shamokin Creek near Shamokin, Pa. 40.810 -76.584 54.2 N 01555500 Penns Creek at Penns Creek, Pa. 40.867 -77.048 301 N 01555000 Frankstown Branch Juniata River at Williamsburg, Pa. 40.611 -76.912 162 N 01555000 Frankstown Branch Juniata River at Williamsburg, Pa. 40.684	01549700	Pine Creek below Little Pine Creek near Waterville, Pa.	41.274	-77.324	944	Y
01552000 Loyalsock Creek at Loyalsockville, Pa. 41.325 -76.912 435 N 01552500 Muncy Creek near Sonestown, Pa. 41.357 -76.535 23.8 N 01553130 Sand Spring Rum near White Deer, Pa. 41.059 -77.077 4.93 N 01553500 West Branch Susquehanna River at Lewisburg, Pa. 40.968 -76.876 6,847 Y 01553700 Chillisquaque Creek at Washingtonville, Pa. 41.062 -76.680 51.3 N 01554000 Susquehanna River at Sunbury, Pa. 40.835 -76.827 18,300 Y 01554500 Shamokin Creek near Shamokin, Pa. 40.810 -76.584 54.2 N 01555000 Penns Creek at Penns Creek, Pa. 40.867 -77.048 301 N 01555000 East Mahantango Creek near Dalmatia, Pa. 40.611 -76.912 162 N 01555000 Frankstown Branch Juniata River at Williamsburg, Pa. 40.684 -78.200 291 N 01555000 Little Juniata River at Spruce Creek, Pa. 40.684 -	01550000	Lycoming Creek near Trout Run, Pa.	41.418	-77.033	173	N
01552500 Muncy Creek near Sonestown, Pa. 41.357 -76.535 23.8 N 01553130 Sand Spring Run near White Deer, Pa. 41.059 -77.077 4.93 N 01553500 West Branch Susquehanna River at Lewisburg, Pa. 40.968 -76.876 6,847 Y 01553700 Chillisquaque Creek at Washingtonville, Pa. 41.062 -76.680 51.3 N 01554000 Susquehanna River at Sunbury, Pa. 40.835 -76.827 18,300 Y 01554500 Shamokin Creek near Shamokin, Pa. 40.810 -76.584 54.2 N 01555500 Penns Creek at Penns Creek, Pa. 40.867 -77.048 301 N 01555500 East Mahantango Creek near Dalmatia, Pa. 40.611 -76.912 162 N 0155500 Frankstown Branch Juniata River at Williamsburg, Pa. 40.463 -78.200 291 N 01559000 Little Juniata River at Spruce Creek, Pa. 40.684 -78.234 44.1 N 01559000 Juniata River at Huntingdon, Pa. 40.485 -78.019	01551500	•	41.236	-76.997	5,682	Y
01553130 Sand Spring Rum near White Deer, Pa. 41.059 -77.077 4.93 N 01553500 West Branch Susquehanna River at Lewisburg, Pa. 40.968 -76.876 6,847 Y 01553700 Chillisquaque Creek at Washingtonville, Pa. 41.062 -76.680 51.3 N 01554000 Susquehanna River at Sunbury, Pa. 40.835 -76.827 18,300 Y 01554500 Shamokin Creek near Shamokin, Pa. 40.810 -76.584 54.2 N 01555500 Penns Creek at Penns Creek, Pa. 40.867 -77.048 301 N 01555500 East Mahantango Creek near Dalmatia, Pa. 40.611 -76.912 162 N 01556000 Frankstown Branch Juniata River at Williamsburg, Pa. 40.463 -78.200 291 N 01557500 Bald Eagle Creek at Tyrone, Pa. 40.684 -78.234 44.1 N 01559000 Juniata River at Huntingdon, Pa. 40.613 -78.141 220 N 01559700 Standing Stone Creek near Huntingdon, Pa. 40.524 -77.971	01552000	Loyalsock Creek at Loyalsockville, Pa.	41.325	-76.912	435	N
01553500 West Branch Susquehanna River at Lewisburg, Pa. 40.968 -76.876 6,847 Y 01553700 Chillisquaque Creek at Washingtonville, Pa. 41.062 -76.680 51.3 N 01554000 Susquehanna River at Sunbury, Pa. 40.835 -76.827 18,300 Y 01554500 Shamokin Creek near Shamokin, Pa. 40.810 -76.584 54.2 N 01555000 Penns Creek at Penns Creek, Pa. 40.867 -77.048 301 N 01555500 East Mahantango Creek near Dalmatia, Pa. 40.611 -76.912 162 N 01555000 Frankstown Branch Juniata River at Williamsburg, Pa. 40.463 -78.200 291 N 01555700 Bald Eagle Creek at Tyrone, Pa. 40.684 -78.234 44.1 N 01558000 Little Juniata River at Spruce Creek, Pa. 40.613 -78.141 220 N 01559000 Juniata River at Huntingdon, Pa. 40.485 -78.019 816 LF 01559700 Standing Stone Creek near Huntingdon, Pa. 40.524 -7	01552500	Muncy Creek near Sonestown, Pa.	41.357	-76.535	23.8	N
01553700 Chillisquaque Creek at Washingtonville, Pa. 41.062 -76.680 51.3 N 01554000 Susquehanna River at Sunbury, Pa. 40.835 -76.827 18,300 Y 01554500 Shamokin Creek near Shamokin, Pa. 40.810 -76.584 54.2 N 01555000 Penns Creek at Penns Creek, Pa. 40.867 -77.048 301 N 01555000 East Mahantango Creek near Dalmatia, Pa. 40.611 -76.912 162 N 01556000 Frankstown Branch Juniata River at Williamsburg, Pa. 40.463 -78.200 291 N 01557500 Bald Eagle Creek at Tyrone, Pa. 40.684 -78.234 44.1 N 01558000 Little Juniata River at Spruce Creek, Pa. 40.613 -78.141 220 N 01559000 Juniata River at Huntingdon, Pa. 40.485 -78.019 816 LF 01559700 Sulphur Springs Creek near Huntingdon, Pa. 40.524 -77.971 128 N 01559700 Sulphur Springs Creek near Manns Choice, Pa. 39.978 -78.61	01553130	Sand Spring Run near White Deer, Pa.	41.059	-77.077	4.93	
01554000 Susquehanna River at Sunbury, Pa. 40.835 -76.827 18,300 Y 01554500 Shamokin Creek near Shamokin, Pa. 40.810 -76.584 54.2 N 01555000 Penns Creek at Penns Creek, Pa. 40.867 -77.048 301 N 0155500 East Mahantango Creek near Dalmatia, Pa. 40.611 -76.912 162 N 01556000 Frankstown Branch Juniata River at Williamsburg, Pa. 40.463 -78.200 291 N 01557500 Bald Earle Creek at Tyrone, Pa. 40.684 -78.234 44.1 N 01558000 Little Juniata River at Spruce Creek, Pa. 40.613 -78.141 220 N 01559000 Juniata River at Huntingdon, Pa. 40.485 -78.019 816 LF 01559700 Sulphur Springs Creek near Huntingdon, Pa. 40.524 -77.971 128 N 01559700 Sulphur Springs Creek near Manns Choice, Pa. 39.978 -78.619 5.28 N	01553500	West Branch Susquehanna River at Lewisburg, Pa.	40.968		6,847	
01554500 Shamokin Creek near Shamokin, Pa. 40.810 -76.584 54.2 N 01555000 Penns Creek at Penns Creek, Pa. 40.867 -77.048 301 N 01555500 East Mahantango Creek near Dalmatia, Pa. 40.611 -76.912 162 N 01555000 Frankstown Branch Juniata River at Williamsburg, Pa. 40.463 -78.200 291 N 01557500 Bald Eagle Creek at Tyrone, Pa. 40.684 -78.234 44.1 N 01558000 Little Juniata River at Spruce Creek, Pa. 40.613 -78.141 220 N 01559000 Juniata River at Huntingdon, Pa. 40.485 -78.019 816 LF 01559700 Standing Stone Creek near Huntingdon, Pa. 40.524 -77.971 128 N 01559700 Sulphur Springs Creek near Manns Choice, Pa. 39.978 -78.619 5.28 N	01553700	Chillisquaque Creek at Washingtonville, Pa.	41.062	-76.680	51.3	N
01555000 Penns Creek at Penns Creek, Pa. 40.867 -77.048 301 N 01555500 East Mahantango Creek near Dalmatia, Pa. 40.611 -76.912 162 N 01555000 Frankstown Branch Juniata River at Williamsburg, Pa. 40.463 -78.200 291 N 01557500 Bald Eagle Creek at Tyrone, Pa. 40.684 -78.234 44.1 N 01558000 Little Juniata River at Spruce Creek, Pa. 40.613 -78.141 220 N 01559000 Juniata River at Huntingdon, Pa. 40.485 -78.019 816 LF 01559500 Standing Stone Creek near Huntingdon, Pa. 40.524 -77.971 128 N 01559700 Sulphur Springs Creek near Manns Choice, Pa. 39.978 -78.619 5.28 N	01554000	Susquehanna River at Sunbury, Pa.	40.835	-76.827	18,300	Y
01555500 East Mahantango Creek near Dalmatia, Pa. 40.611 -76.912 162 N 01556000 Frankstown Branch Juniata River at Williamsburg, Pa. 40.463 -78.200 291 N 01557500 Bald Eagle Creek at Tyrone, Pa. 40.684 -78.234 44.1 N 01558000 Little Juniata River at Spruce Creek, Pa. 40.613 -78.141 220 N 01559000 Juniata River at Huntingdon, Pa. 40.485 -78.019 816 LF 01559500 Standing Stone Creek near Huntingdon, Pa. 40.524 -77.971 128 N 01559700 Sulphur Springs Creek near Manns Choice, Pa. 39.978 -78.619 5.28 N	01554500	Shamokin Creek near Shamokin, Pa.	40.810	-76.584	54.2	N
01556000 Frankstown Branch Juniata River at Williamsburg, Pa. 40.463 -78.200 291 N 01557500 Bald Eagle Creek at Tyrone, Pa. 40.684 -78.234 44.1 N 01558000 Little Juniata River at Spruce Creek, Pa. 40.613 -78.141 220 N 01559000 Juniata River at Huntingdon, Pa. 40.485 -78.019 816 LF 01559500 Standing Stone Creek near Huntingdon, Pa. 40.524 -77.971 128 N 01559700 Sulphur Springs Creek near Manns Choice, Pa. 39.978 -78.619 5.28 N	01555000	Penns Creek at Penns Creek, Pa.	40.867	-77.048	301	N
01557500 Bald Eagle Creek at Tyrone, Pa. 40.684 -78.234 44.1 N 01558000 Little Juniata River at Spruce Creek, Pa. 40.613 -78.141 220 N 01559000 Juniata River at Huntingdon, Pa. 40.485 -78.019 816 LF 01559500 Standing Stone Creek near Huntingdon, Pa. 40.524 -77.971 128 N 01559700 Sulphur Springs Creek near Manns Choice, Pa. 39.978 -78.619 5.28 N	01555500	East Mahantango Creek near Dalmatia, Pa.	40.611	-76.912	162	N
01558000 Little Juniata River at Spruce Creek, Pa. 40.613 -78.141 220 N 01559000 Juniata River at Huntingdon, Pa. 40.485 -78.019 816 LF 01559500 Standing Stone Creek near Huntingdon, Pa. 40.524 -77.971 128 N 01559700 Sulphur Springs Creek near Manns Choice, Pa. 39.978 -78.619 5.28 N	01556000	Frankstown Branch Juniata River at Williamsburg, Pa.	40.463		291	N
01559000 Juniata River at Huntingdon, Pa. 40.485 -78.019 816 LF 01559500 Standing Stone Creek near Huntingdon, Pa. 40.524 -77.971 128 N 01559700 Sulphur Springs Creek near Manns Choice, Pa. 39.978 -78.619 5.28 N						
01559500 Standing Stone Creek near Huntingdon, Pa. 40.524 -77.971 128 N 01559700 Sulphur Springs Creek near Manns Choice, Pa. 39.978 -78.619 5.28 N	01558000					-
01559700 Sulphur Springs Creek near Manns Choice, Pa. 39.978 -78.619 5.28 N						
		Standing Stone Creek near Huntingdon, Pa.	40.524	-77.971	128	
01560000 Dunning Creek at Belden, Pa. 40.072 -78.493 172 N	01559700		39.978	-78.619	5.28	N
	01560000	Dunning Creek at Belden, Pa.	40.072	-78.493	172	N

Table 2. Selected low-flow statistics for streamgage locations in and near Pennsylvania.—Continued [ft³/s; cubic feet per second; —, statistic not computed; <, less than]

Streamgage number	Period of record used in analysis¹	Number of years used in analysis	1-day, 10-year (ft³/s)	7-day, 10-year (ft³/s)	7-day, 2-year (ft ³ /s)	30-day, 10-year (ft∛s)	30-day, 2-year (ft³/s)	90-day, 10-year (ft³/s)
01546000	1912-1934	17	1.8	2.2	6.8	3.7	12.1	11.2
01546400	1986-2008	23	13.5	14.0	19.6	15.4	22.3	18.7
01546500	1942-2008	67	26.8	29.0	41.3	31.2	44.2	33.7
01547100	1969-2008	40	102	105	128	111	133	117
01547200	1957-2008	52	99.4	101	132	106	142	115
01547500	21971-2008	38	28.2	109	151	131	172	153
01547500	31956-1969	14	90.0	94.9	123	98.1	131	105
01547700	1957-2008	52	.5	.6	2.7	1.1	3.9	2.2
01547800	1971-1981	11	1.6	1.8	2.4	2.1	2.9	3.5
01547950	1970-2008	39	12.1	13.6	28.2	17.3	36.4	23.8
01548005	21971-2000	25	142	151	206	178	241	223
01548005	31912-1969	58	105	114	147	125	165	140
01548500	1920-2008	89	21.2	24.2	50.1	33.6	68.6	49.3
01549000	1910-1920	11	26.0	32.9	78.0	46.4	106	89.8
01549500	1942-2008	67	.6	.8	2.5	1.4	3.9	2.6
01549700	1959-2008	50	33.3	37.2	83.8	51.2	117	78.4
01550000	1915-2008	94	6.6	7.6	16.8	11.2	24.6	18.6
01551500	21963-2008	46	520	578	1,020	678	1.330	919
01551500	31901-1961	61	400	439	742	523	943	752
01552000	1927-2008	80	20.5	22.2	49.5	29.2	69.8	49.6
01552500	1942-2008	67	.9	1.2	3.1	1.7	4.4	3.3
01553130	1969-1981	13	1.0	1.1	1.5	1.3	1.8	1.7
01553500	21968-2008	41	760	838	1.440	1,000	1.850	1.470
01553500	31941-1966	26	562	619	880	690	1,090	881
01553700	1981-2008	28	9.1	10.9	15.0	12.6	17.1	15.2
01554000	21981-2008	28	1.830	1.990	3,270	2.320	4,210	3.160
01554000	31939-1979	41	1.560	1.630	2,870	1.880	3,620	2,570
01554500	1941-1993	53	16.2	22.0	31.2	25.9	35.7	31.4
01555000	1931-2008	78	33.5	37.6	58.8	43.4	69.6	54.0
01555500	1931-2008	78	4.9	6.5	18.0	9.4	24.3	16.0
01556000	1918-2008	91	43.3	47.8	66.0	55.1	75.0	63.7
01557500	1946-2008	63	2.8	3.2	6.3	4.2	8.1	5.8
01558000	1940-2008	69	56.3	59.0	79.8	65.7	86.2	73.1
01559000	1943-2008	66	104	177	249	198	279	227
01559500	1931-1958	28	9.3	10.5	15.0	12.4	17.8	15.8
01559700	1963-1978	16	.1	.1	2	.1	.3	.2
01560000	1941-2008	68	8.5	9.4	15.6	12.0	20.2	16.2
01561000	1932-1958	27	.4	.5	1.6	.8	2.5	1.7
01562000	1913-2008	96	64.1	67.1	106	77.4	122	94.5
01562500	1931–1957	27	1.1	1.6	3.8	2.3	5.4	3.7
01563200	21974-2008	35				112	266	129
01563200	31948-1972	25	10.3	28.2	86.1	64.5	113	95.5
01563500	21974-2008	35	384	415	519	441	580	493
01563500	31939-1972	34	153	242	343	278	399	333
01564500	1940-2008	69	3.6	4.2	10.0	6.2	14.4	10.6

Attachment B

Toxics Management Spreadsheet Output Values

Toxics Management Spreadsheet Version 1.3, March 2021

Discharge Information

Instructions Discharge Stream

Facility: Altoona Water Authority- Kettle WTP NPDES Permit No.: PA0085812 Outfall No.: 101

Evaluation Type: Major Sewage / Industrial Waste Wastewater Description: Backwash wastewater

	Discharge Characteristics												
Design Flow	Hardness (mg/l)*	pH (SU)*	Partial Mix Factors (PMFs) Complete Mix Times (r										
(MGD)*	naruness (mg/i)	рн (30)	AFC	CFC	THH	Q ₇₋₁₀	Qh						
0.12	16.9	6.56											

						t blank	0.5 if le	ft blank	0	if left blan	k	1 if left blank	
	Discharge Pollutant	Units	Ma	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L		82.67									
7	Chloride (PWS)	mg/L		6.05									
Group	Bromide	mg/L	٧	0.072									
5	Sulfate (PWS)	mg/L		9.49									
	Fluoride (PWS)	mg/L	٧	0.099									
	Total Aluminum	μg/L		15.2									
	Total Antimony	μg/L	٧	0.348									
	Total Arsenic	μg/L		3.68									
	Total Barium	μg/L		31.03									
	Total Beryllium	μg/L		0.7									
	Total Boron	μg/L		56.3									
	Total Cadmium	μg/L		0.096									
	Total Chromium (III)	μg/L		2									
	Hexavalent Chromium	μg/L		0.2									
	Total Cobalt	μg/L		0.116									
	Total Copper	μg/L		19.83									
2	Free Cyanide	μg/L											
Group	Total Cyanide	μg/L		6									
5	Dissolved Iron	μg/L		47									
	Total Iron	μg/L		75									
	Total Lead	μg/L		2.97									
	Total Manganese	μg/L		49.57									
	Total Mercury	μg/L		0.1									
	Total Nickel	μg/L		1.35									
	Total Phenols (Phenolics) (PWS)	μg/L		4.1									
	Total Selenium	μg/L		1.2									
	Total Silver	μg/L		14.15									
	Total Thallium	μg/L		0.05									
	Total Zinc	μg/L		63.1									
	Total Molybdenum	μg/L		0.2									
	Acrolein	μg/L	<										
	Acrylamide	μg/L	<										
	Acrylonitrile	μg/L	<										
	Benzene	μg/L	<										
	Bromoform	μg/L	<										

Toxics Management Spreadsheet Version 1.3 March 2021

Stream / Surface Water Information

Altoona Water Authority- Kettle WTP, NPDES Permit No. PA0085812, Outfall 101

Instructions Disch	arge Str	eam														
Receiving Surface W	/ater Name:	Kettle Cree	k				No. Rea	aches to l	Mode	el:	Statewide Criteria Great Lakes Criteria					
Location Stream Code* RMI* Elevation (ft)* DA (mi²						Slope (ft/ft) PWS Withdrawal Apply Fis (MGD) Criteria			Fish ORSANCO Criteria							
Point of Discharge	016049	2.77	7 1668	3 2.35						Yes						
End of Reach 1	016049	1.38	3 135	1 3.15						Yes						
Q ₇₋₁₀																
Location	RMI	LFY		(cfs)	W/E			Velocit		raver Fime	Tributa	ary	Strea		Analys	
Location	TXIVII	(cfs/mi ²)*	Stream	Tributary	Ratio	o (ft)	(ft)	y (fps)		days)	Hardness	pН	Hardness*	pH*	Hardness	pН
Point of Discharge	2.77	0.15											106	8.2		
End of Reach 1	1.38	0.15											106	8.2		
Q _h																
Location	RMI	LFY	Flow	(cfs)	W/E			Velocit		raver Fime	Tributa	ary	Strea	m	Analys	is
Location	TAVII	(cfs/mi ²)	Stream	Tributary	Ratio	o (ft)	(ft)	y (fps)		davs)	Hardness	pН	Hardness	pН	Hardness	pН
Point of Discharge	2.77															
End of Reach 1	1.38															
,						•										

Stream / Surface Water Information 12/1/2021 Page 4

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits	Concentration Limits						
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Arsenic	Report	Report	Report	Report	Report	μg/L	29.0	THH	Discharge Conc > 10% WQBEL (no RP)
Total Cadmium	Report	Report	oort Report		Report	μg/L	0.64	CFC	Discharge Conc > 10% WQBEL (no RP)
Total Copper	0.02	0.031	19.9	31.0	49.8	μg/L	19.9	AFC	Discharge Conc ≥ 50% WQBEL (RP)
Total Lead	Report	Report	Report	Report	Report	μg/L	6.42	CFC	Discharge Conc > 10% WQBEL (no RP)
Total Mercury	0.0001	0.0002	0.14	0.23	0.36	μg/L	0.14	THH	Discharge Conc ≥ 50% WQBEL (RP)
Total Silver	0.004	0.007 4.31		6.73	10.8	μg/L	4.31	AFC	Discharge Conc ≥ 50% WQBEL (RP)
Total Zinc	Report Report Report		Report	Report	μg/L	175	AFC	Discharge Conc > 10% WQBEL (no RP)	

Toxics Management Spreadsheet Version 1.3, March 2021

Discharge Information

Facility: Altoona Water Authority- Kettle WTP NPDES Permit No.: PA0085812 Outfall No.: 001

Evaluation Type: Major Sewage / Industrial Waste Wastewater Description: Effluent

	Discharge Characteristics												
Design Flow	Hardness (mg/l)*	pH (SU)*	P	artial Mix Fa	s)	Complete Mix Times (min)							
(MGD)*	naruness (mg/l)	pn (30)	AFC	CFC	THH	CRL	Q ₇₋₁₀	Q _h					
0.12	16.9	6.56											

						t blank	0.5 if left blank		0 if left blank			1 if left blank	
	Discharge Pollutant	Units	Max Discharge Conc		Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L		112									
7	Chloride (PWS)	mg/L		6.1									
Group	Bromide	mg/L	٧	0.072									
ច	Sulfate (PWS)	mg/L		10.9									
	Fluoride (PWS)	mg/L	٧	0.099									
	Total Aluminum	μg/L		715									
	Total Antimony	μg/L	٧	0.35									
	Total Arsenic	μg/L	٧	1.5									
	Total Barium	μg/L		30.6									
	Total Beryllium	μg/L	٧	0.68									
	Total Boron	μg/L	٧	56									
	Total Cadmium	μg/L	٧	0.123									
	Total Chromium (III)	μg/L	٧	1.9									
	Hexavalent Chromium	μg/L	٧	0.25									
	Total Cobalt	μg/L	٧	0.119									
	Total Copper	μg/L		32.4									
2 2	Free Cyanide	μg/L											
Group	Total Cyanide	μg/L	٧	6									
5	Dissolved Iron	μg/L	٧	60									
	Total Iron	μg/L		68									
	Total Lead	μg/L		4.48									
	Total Manganese	μg/L		50									
	Total Mercury	μg/L	<	0.104									
	Total Nickel	μg/L	٧	1.44									
	Total Phenols (Phenolics) (PWS)	μg/L	٧	0.005									
	Total Selenium	μg/L	٧	1.7									
	Total Silver	μg/L	٧	0.5									
	Total Thallium	μg/L	٧	0.068									
	Total Zinc	μg/L		99.7									
	Total Molybdenum	μg/L	٧	0.798									
	Acrolein	μg/L	<										
	Acrylamide	μg/L	<										
	Acrylonitrile	μg/L	٧										
	Benzene	μg/L	٧										
	Bromoform	μg/L	٧										

Toxics Management Spreadsheet Version 1.3, March 2021

Stream / Surface Water Information

Altoona Water Authority- Kettle WTP, NPDES Permit No. PA0085812, Outfall 001

Instructions Discharge Stream																	
Receiving Surface W	/ater Name:	Kettle	e Creek	(No. Rea	aches to	Mod	el:	Statewide Criteria Great Lakes Criteria					
Location	Stream Code* RMI* Elevation (ft)* DA (mi²)*					Slope (ft/ft) PWS Withdrawal (MGD)				Apply F Criteri							
Point of Discharge	016049		2.77	1668	3 2	.35					Yes	i	j 				
End of Reach 1	016049		1.38	1351	1 3	.15					Yes	i					
Q ₇₋₁₀																	
Location	RMI	LFY (cfs/mi ²)*		Stream	Tributar	_	//D Width atio (ft)	Depth (ft)			Time	Hardness	pH	Hardness*	m pH*	Analys Hardness	pH
Point of Discharge	2.77	0.	.15								lavsi			106	8.2		
End of Reach 1	1.38	0.	.15											106	8.2		
Q_h																	
Location	RMI	LFY		Flow (cfs)		W	//D Width	Depth	Velocit		raver Time	Tributa	ary	Stream		Analysis	
Location		(cfs/	/mi²)	Stream	Tributar	y Ra	atio (ft)	(ft)	y (fps)		davs)	Hardness	pН	Hardness	pН	Hardness	pН
Point of Discharge	2.77										, i						
End of Reach 1	1.38										Ť						

Stream / Surface Water Information 12/1/2021 Page 4

✓ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

Mass Limits			Concentra	tion Limits				
AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
1.39	2.18	1,394	2,174	3,484	μg/L	1,394	AFC	Discharge Conc ≥ 50% WQBEL (RP)
0.02	0.031	19.9	31.0	49.8	μg/L	19.9	AFC	Discharge Conc ≥ 50% WQBEL (RP)
0.006	0.01	6.42	10.0	16.1	μg/L	6.42	CFC	Discharge Conc ≥ 50% WQBEL (RP)
Report	Report	Report	Report	Report	μg/L	4.31	AFC	Discharge Conc > 10% WQBEL (no RP)
0.18	0.27	175	273	437	μg/L	175	AFC	Discharge Conc ≥ 50% WQBEL (RP)
	AML (lbs/day) 1.39 0.02 0.006 Report	AML (lbs/day) (lbs/day) 1.39 2.18 0.02 0.031 0.006 0.01 Report Report	AML (lbs/day) AML (lbs/day) AML (lbs/day) 1.39 2.18 1,394 0.02 0.031 19.9 0.006 0.01 6.42 Report Report Report	AML (lbs/day) MDL (lbs/day) AML (lbs/day) MDL MDL 1.39 2.18 1,394 2,174 0.02 0.031 19.9 31.0 0.006 0.01 6.42 10.0 Report Report Report Report	AML (lbs/day) MDL (lbs/day) AML (lbs/day) MDL (lbs/day) IMAX 1.39 2.18 1,394 2,174 3,484 0.02 0.031 19.9 31.0 49.8 0.006 0.01 6.42 10.0 16.1 Report Report Report Report Report	AML (lbs/day) MDL (lbs/day) AML MDL MDL MDL MDL IMAX Units 1.39 2.18 1,394 2,174 3,484 μg/L 0.02 0.031 19.9 31.0 49.8 μg/L 0.006 0.01 6.42 10.0 16.1 μg/L Report Report Report Report Report Report	AML (lbs/day) MDL (lbs/day) AML (lbs/day) MDL (lbs/day) IMAX Units WOBEL Governing WOBEL 1.39 2.18 1,394 2,174 3,484 µg/L 1,394 0.02 0.031 19.9 31.0 49.8 µg/L 19.9 0.006 0.01 6.42 10.0 16.1 µg/L 6.42 Report Report Report Report µg/L 4.31	AML (Ibs/day) MDL (Ibs/day) AML (Ibs/day) MDL (Ibs/day) IMAX Units (MOBEL WQBEL Basis) WOBEL Basis 1.39 2.18 1,394 2,174 3,484 μg/L 1,394 AFC 0.02 0.031 19.9 31.0 49.8 μg/L 19.9 AFC 0.006 0.01 6.42 10.0 16.1 μg/L 6.42 CFC Report Report Report Report μg/L 4.31 AFC

Attachment C Correspondence

Hong, Nicholas

From: Mike Sinisi < MSinisi @altoonawater.com>
Sent: Thursday, December 2, 2021 12:41 PM

To: Hong, Nicholas
Cc: Doug DeAngelis

Subject: [External] RE: comments on Kettle Creek NPDES renewal permit

ATTENTION: This email message is from an external sender. Do not open links or attachments from unknown sources. To report suspicious email, forward the message as an attachment to CWOPA_SPAM@pa.gov.

Dear Nick,

- It is anticipated that the facility will receive an ozone system upgrade within the next 5 years.
- The Kettle facility resumed operations on February 5, 2020 after being dormant since February 25, 2014. The
 plant has since operated on a schedule of 1-2 days per week.
- No biosolids have been disposed of in 2020 or 2021.

If you need any further information, we are happy to provide you with whatever that may be.

Sincerely, Mike

Michael V. Sinisi, P.E. Authority Engineer 814.949.2222, x2203 Altoona Wster Authority

From: Hong, Nicholas <nhong@pa.gov>

Sent: Wednesday, December 1, 2021 10:19 AM

To: Mike Sinisi <MSinisi@altoonawater.com>; Doug DeAngelis <ddeangelis@altoonawater.com>

Subject: comments on Kettle Creek NPDES renewal permit

This message acknowledges that DEP has received the NPDES renewal application for Altoona City Water- Kettle Creek.

DEP has the following preliminary comments on the renewal package.

- Confirm if the facility anticipates any proposed upgrades to the treatment facility in the next 5 years.
- Past operations history has the plant in operation every 2-3 years, confirm if the plant is in operations. Provide brief narrative on operation history in the last 3 years.
- Summarize biosolids disposal for 2021

Nick Hong, PE | Environmental Engineer PA Department of Environmental Protection Clean Water Programs Southcentral Regional Office