

Southcentral Regional Office CLEAN WATER PROGRAM

Application Type Renewal
Facility Type Industrial
Major / Minor
Minor

NPDES PERMIT FACT SHEET INDIVIDUAL INDUSTRIAL WASTE (IW) AND IW STORMWATER

 Application No.
 PA0085871

 APS ID
 110

 Authorization ID
 1285478

Applicant Name	Moun	t Joy Borough Authority	Facility Name	Mt Joy Borough Water System		
Applicant Address	PO Bo	ox 25	Facility Address	1314 Carmany Road		
	Mount	Joy, PA 17552-0025		Mount Joy, PA 17552-9781		
Applicant Contact	Joseph Ardini		Facility Contact	Zach Dennis		
Applicant Phone	(717)	653-5938	Facility Phone	(717) 653-8534		
Client ID	25153	1	Site ID	253425		
SIC Code	4941		Municipality	East Donegal Township		
SIC Description	Trans	& Utilities - Water Supply	County	Lancaster		
Date Application Rece	eived	August 9, 2019	EPA Waived?	Yes		
Date Application Acce	epted	August 28, 2019	If No, Reason			

Summary of Review

1.0 General Discussion

This factsheet supports the renewal of an existing NPDES permit for a discharge of treated industrial wastewater from Mount Joy Borough(Borough) Authority's water treatment plant. The facility produces potable water by water filtration, water softening, and denitrification. Backwash from the filter is mostly recycled, with the remaining filtrate going to a final holding tank where it is pumped along with the nitrate removal backwash (anion exchange) to the Mount Joy Borough sewer system. The water softener backwash (cation exchange) is discharged to Unnamed Tributary to Donegal Creek which is classified for Cold Water Fishes(CWF) and Migratory Fishes (MF)

The previous factsheet indicated that in the past, both the cation exchange and anion exchange backwashes were sent to the Mount Joy Borough sewer system, but the combination of the cation and anion backwashes resulted in the formation of CaCO₃ deposition which began clogging the holding tank, pump and force main. It was decided to separate the anion and cation backwashes to address the problem. A wastewater treatment plant was designed to treat approximately 0.04 MGD of the softener backwash and discharge to the stream. The Borough plan to design a separate holding tank and pump for the softener to pump it to the sewers at a different time than the anion backwash if needed. The equalization tank needed for the stream discharge was designed with an orifice plate to control the discharge. The tank is located to serve as the future holding tank for the softener backwash when it will be necessary to pump to the sewers. The EQ tank was installed in 1998 along with the necessary piping for pumping.

In addition to the softener discharge, the filter backwash from the sand filtration unit has an occasional overflow of up to approximately 90,000GPD from the settling tank during times of heavy rainfall. Heavy rainfall causes higher turbidity in the

Approve	Deny	Signatures	Date
Х		g. Pascal Kwedza J. Pascal Kwedza, P.E. / Environmental Engineer	March 22, 2021
Х		Maria D. Bebeuek for Daniel W. Martin Daniel W. Martin, P.E. / Environmental Engineer Manager	March 30, 2021
Х		Maria D. Bebenek Maria D. Bebenek, P.E./ Program Manager	March 30, 2021

Summary of Review

Borough's wells which increases the need for more frequent backwashing of the filter. This in return exceeds the holding capacity of the settling tank and the pump which recycles the water and allows the excess water to flow to the creek.

The facility is not covered by ELG but has technology-based treatment requirements developed by the Department. Storm water runoff from the plant site is also conveyed to the receiving stream. The existing permit was issued on March 17, 2015 with effective date of April 1, 2015 and expiration date of March 31, 2020. The permittee submitted a timely renewal application to the Department and has been operating under the conditions in the existing permit pending permit renewal

A topographic map showing the discharge location and schematic of the water flow at the facility are presented in attachment A and C respectively.

1.1 Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

1.2 Change to the existing permit

An internal monitoring point has been added to monitor for compliance with DEP's water treatment technology-based limits for Aluminum, Total Iron, Total Manganese, pH and Total Suspended Solids anytime the filter backwash is discharged.

1.3 Existing Permit Limits:

	DISCHARGE LIMITATIONS										
		Mass Units			Concentrations						
Discharge Parameter	Average Monthly (lbs/mo)	Average Maximum To Monthly Daily Ani		Average Maximum Monthly Daily (mg/L) (mg/L)		Inst. Maximum (mg/L)	Monitoring Frequency	Sample Type			
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	1/day	Measured			
pH (S.U.)	XXX	XXX	XXX	Fron	n 6.0 to 9.0 incl	1/week	Grab				
Osmotic Pressure	XXX	XXX	XXX	XXX	535	2/month	8-hour comp				

	1.40Discharge, Receiving Wa	iters and Water Supply Inforn	nation
Outfall No. 001/ II	MP 101	Design Flow (MGD)	0.04 / 0.09
Latitude 40° 06	6' 42.1"	Longitude	76° 32' 28.3"
Quad Name Colu	umbia West	Quad Code	1833
Wastewater Descrip	tion: Water softener backwash,	filter backwash overflow, and s	tormwater
Receiving Waters	Unnamed Tributary to Donegal Creek (CWF, MF)	Stream Code	07924
NHD Com ID	57463337	Siteam Code RMI	2.37
Drainage Area	3.79 sq. mi.	Yield (cfs/mi²)	0.2
-	0.76	Q ₇₋₁₀ Basis	Gage Data / BPJ
Elevation (ft)	350		Gage Data / BF3
Watershed No.		Slope (ft/ft)	CVA/E NAE
	7-G	Chapter 93 Class.	CWF, MF
Existing Use		Existing Use Qualifier	
Exceptions to Use	I a server I	Exceptions to Criteria	
Assessment Status	Impaired Notice Constitution Constitution	- F. dah	
Cause(s) of Impairm		c Enrichment/Low D.O.	
Source(s) of Impairm			
TMDL Status	Final, 04/09/2000	Name Donegal Cre	eek Watershed
	n Public Water Supply Intake	Wrightsville Water Supply Co.	
	usquehanna River	Flow at Intake (cfs)	7.40
PWS RMI		Distance from Outfall (mi)	7.42

Changes Since Last Permit Issuance: None

1.4.1 Public Water Supply:

The nearest downstream public water supply intake is the Wrightsville Water Supply Co. on Susquehanna River in York County, approximately 7 miles downstream of this discharge. Considering distance and dilution, the discharge is not expected to impact the water supply.

2.0 Compliance History

2.1 DMR Data for Outfall 001 (from February 1, 2020 to January 31, 2021)

Parameter	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20	AUG-20	JUL-20	JUN-20	MAY-20	APR-20	MAR-20	FEB-20
Flow (MGD)												
Average Monthly	0.031	0.041	0.028	0.023	0.026	0.018	0.037	0.037	0.037	0.028	0.037	0.039
Flow (MGD)												
Daily Maximum	0.037	0.057	0.037	0.037	0.037	0.037	0.037	0.037	0.037	0.037	0.037	0.097
pH (S.U.)												
Minimum	7.3	7.1	7.1	7.2	7.2	7.1	7.2	7.1	7.2	7.2	7.2	7.2
pH (S.U.)												
Maximum	7.4	7.5	7.3	7.4	7.3	7.4	7.2	7.3	7.3	7.3	7.5	7.3
Osmotic Pressure												
(mOs/kg)												
Daily Maximum	219	463	279	424	292	270	385	239	324	306	243	262

2.2 Summary of DMRs:

Discharge Monitoring Reports (DMRs) review for the facility for the last 12 months of operation presented on the table above indicate permit limits have been met consistently. No permit violation noted on DMRs during the period reviewed.

2.3 Summary of Inspections:

The facility was inspected a couple of times during the past permit cycle. Inspection reports review for the facility during the period indicate permit limits have been met consistently. The facility has good compliance record.

3.0 Development of Effluent Limitations									
Outfall No.	001		Design Flow (MGD)	.137					
Latitude	40° 6' 42.10'		Longitude	-76° 32' 28.30"					
Wastewater Description: Water Treatment Effluent		-							

3.1 Basis for Effluent Limitations

In general, the CWA requires that the effluent limits for a particular pollutant be the more stringent of either technology-based limits or water quality-based limits. Technology-based limits are set according to the level of treatment that is achievable using available technology. A water quality-based effluent limit is designed to ensure that the water quality standards applicable to a waterbody are being met and may be more stringent than technology-based effluent limits.

3.1.1 Technology-Based Limitations

Technology-based (BAT) effluent limits for water treatment plant wastewater discharges are presented in the Department's June 1989 Guidance document entitled, "Technology Based Controls for Discharges from Water Treatment Plants" as follows:

Parameter	Monthly Avg mg/l	Daily Max. mg/l					
Total Suspended Solids	30	60					
Aluminum	4	8					
Iron	2	4					
TRC*	0.5	1					
Manganese	1	2					
рН	6 - 9 S.U at all times						

^{*}TRC is not applicable to this discharge because Chlorine is not utilized at the facility.

3.2 Water Quality-Based Limitations

3.2.1 Stream Flow:

The previous protection report stated that Donegal Creek is known to geologists for its springs and high groundwater yield. A prior discussion with a Department hydrogeologist confirmed the previous permit writer's opinion that the stream is one of high yield and that the stream is largely composed of springs that cause it to have significantly more stable flows than the average Pennsylvania stream. Based on that information combined with gage data from Octoraro Creek in southern Lancaster County, it was recommended that a low flow yield of 0.2 cfs/mi² be used for this site. This permit will continue to utilize this recommendation. The drainage area taken from the previous factsheet is 3.79 mi² · The Q₇₋₁₀ at the discharge is calculated as follows:

 $Q_{7-10} = 0.2 \text{ cfs/mi}^2 \text{ x } 3.79 \text{ mi}^2 = 0.76 \text{ cfs}$

3.2.2 The following input data were used for Toxic Management Spreadsheet (TMS) Analysis:

• Discharge pH = 7.15 (DMR median July – Sept.)

• Stream pH = 7.0 (Default)

Discharge Hardness = 277.7 mg/l (Application)
 Stream Hardness = 166 mg/l (Default)

3.2.3 Filter Backwash Overflow:

The previous factsheet indicated overflow of filter backwash water is infrequent, only occurs during periods of heavy rainfall, which also coincides with high creek flows. Samples of the overflow taken in 1996 show that the discharge is relatively clean with no elevated levels of metals, and TSS is less than 10 mg/L. It is recommended during the initial permit that no additional

NPDES Permit Fact Sheet Mt Joy Borough Water System

sampling requirements for the overflow water be imposed since no significant impact to the stream was expected. Current data does not support that recommendation anymore, therefore that recommendation will be discontinued, and the facility will be required to comply with the technology limits presented in section 4.1.1 or water quality-based limits if needed at an internal monitoring point or at outfall 001 anytime there is a filter backwash overflow discharge.

3.2.4 Toxics

A reasonable potential (RP) was done for pollutant Groups 1 and 2 submitted with the application. All pollutants that were presented in the application sampling data were entered into the Toxics Management Spreadsheet(TMS) which combines logic in the existing Toxics Screening. Analysis Spreadsheet and PENTOXSD Model to calculate WQBELs. WQBELs recommended by the TMS are presented in attachment B. The results of the TMS indicate that in exception of Total Aluminum and Total Cadmium, the discharge levels of all other pollutants are well below DEP's target quantitation limits and the calculated WQBELs therefore, no monitoring or limitation was recommended. Monitoring was recommended for Total Aluminum and Total Cadmium. Monitoring of Total Cadmium will be required in the permit in addition to the technology-based limits for water treatment plant discharges presented in section 4.1.1. Monitoring of these pollutants will be conducted at an internal motoring point prior to outfall 001 or at outfall 001 anytime there is a filter backwash overflow discharge. TRC is not application since chlorine is not used at the site. Mass loads will be reported following permit writer's manual No. 362-0400-001 Table 5-2, 10/1/97 Edition. The permittee had an opportunity to re-sample Total Cadmium which was reported as non-detect but used a less sensitive MDL for the analysis. If three 24-hour composite effluent samples for Total Cadmium are collected at least one week apart and analyzed using DEP's target QLs, and the results are non-detect Total Cadmium monitoring will be removed from the final permit.

The recommended limitations follow the logic presented in DEPs SOP, to establish limits in the permit where the maximum reported concentration exceeds 50% of the WQBEL, or for non-conservative pollutants to establish monitoring requirements where the maximum reported concentration is between 25% - 50% of the WQBEL, or to establish monitoring requirements for conservative pollutants where the maximum reported concentration is between 10% - 50% of the WQBEL.

3.2.5 Osmotic Pressure:

According to 25 Pa. Code § 93.7(a), the in-stream osmotic pressure criteria is a maximum of 50 mOsm/kg. The previous permit writer assumed a background osmotic pressure of 10 mOsm/kg based on past experience with other streams.

Using a mass balance equation with the below values, the osmotic pressure limit was be calculated as follows:

Osmotic pressure criteria: 50 mOsm/kg Background osmotic pressure: 10 mOsm/kg

Discharge flow: 0.04 MGD * 1.547 cfs/MGD = 0.062 cfs

Stream flow: 0.76 cfs

Q_{stream} (10 mOsm/kg) + Q_{discharge} (Max. Daily Limit) = Q_{total} (50 mOsm/kg)

Max. Daily Limit = [Qtotal (50 mOsm/kg) - Qstream (10 mOsm/kg)] / Qdischarge

Max. Daily Limit = [(0.76 cfs + 0.062 cfs)(50 mOsm/kg) - (0.76 cfs)(10 mOsm/kg)] / 0.062 cfs

Max. Daily Limit = 540 mOsm/kg

This limit is slightly less stringent than the existing limit. Per anti-backsliding policy, the existing maximum daily limit of 535 mOsm/kg will remain in the permit. The permittee has been consistently achieving concentrations well below this limit.

3.2.6 Chesapeake Bay Strategy:

In 2003, EPA established state-wide cap loads for Total Nitrogen and Total Phosphorus for Pennsylvania that are needed to ensure compliance with new water quality standards enacted to restore the water quality of the Chesapeake Bay. DEP released Pennsylvania's Chesapeake Bay Tributary Strategy (CBTS) in January of 2005 to guide Pennsylvania's efforts to meet those cap loads and revised the Strategy in 2006-2007 following a stakeholder process. Industrial discharges have been prioritized by Central Office based on their delivered TN and TP loadings to the Bay. Significant industrial wastewater dischargers are facilities that discharge more than 75 lbs/day of TN or 25 lbs/day of TP on an average annual basis and the rest are classified as non-significant dischargers. DEP developed Chesapeake Bay IW monitoring plan for all industrial facilities that discharge to the Chesapeake Bay. This facility is classified as a non-significant discharger with little or no potential to introduce nutrients to the receiving stream therefore no monitoring of TP and the TN series (nitrate-nitrite, TKN) is warranted at this time.

4.0 Other Requirements

4.1 Anti-backsliding

Not applicable to this permit

4.2 Anti-Degradation (93.4)

The effluent limits for this discharge have been developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High-Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

4.3 Class A Wild Trout Fisheries

No Class A Wild Trout Fisheries are impacted by this discharge.

4.4 303(d) Listed Streams

This discharge is located on a 303(d) listed stream segment that is impaired for Nutrients, Siltation, and Organic Enrichment/Low D.O. due to agriculture. The Donegal Creek Watershed TMDL was finalized on April 9, 2000 for these impairments. For nutrients, the TMDL states that phosphorus is the limiting factor. Phosphorus is generally held to be the limiting nutrient in a waterbody when the nitrogen/phosphorus ratio exceed 10 to 1, the ratio in Donegal Creek is 37 to 1. This discharge is not expected cause any significant impact to the stream as no significant amount of nutrients or organic enrichment is being added to the receiving stream by the Water Treatment Plant. No action is warranted at this time.

4.5 Basis for Effluent and Surface Water Monitoring

Section 308 of the CWA and federal regulation 40 CFR 122.44(i) require monitoring in permits to determine compliance with effluent limitations. Monitoring may also be required to gather effluent and surface water data to determine if additional effluent limitations are required and/or to monitor effluent impacts on receiving water quality. The permittee is responsible for conducting the monitoring and for reporting results on Discharge Monitoring Reports (DMRs).

4.6 Effluent Monitoring

Monitoring frequencies are based on the nature and effect of the pollutant, as well as a determination of the minimum sampling necessary to adequately monitor the facility's performance. Permittees have the option of taking more frequent samples than are required under the permit. These samples can be used for averaging if they are conducted using EPA-approved test methods (generally found in 40 CFR 136) and if the Method Detection Limits are less than the effluent limits. The sampling location must be after the last treatment unit and prior to discharge to the receiving water. If no discharge occurs during the reporting period, "no discharge" shall be reported on the DMR.

5.0 Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

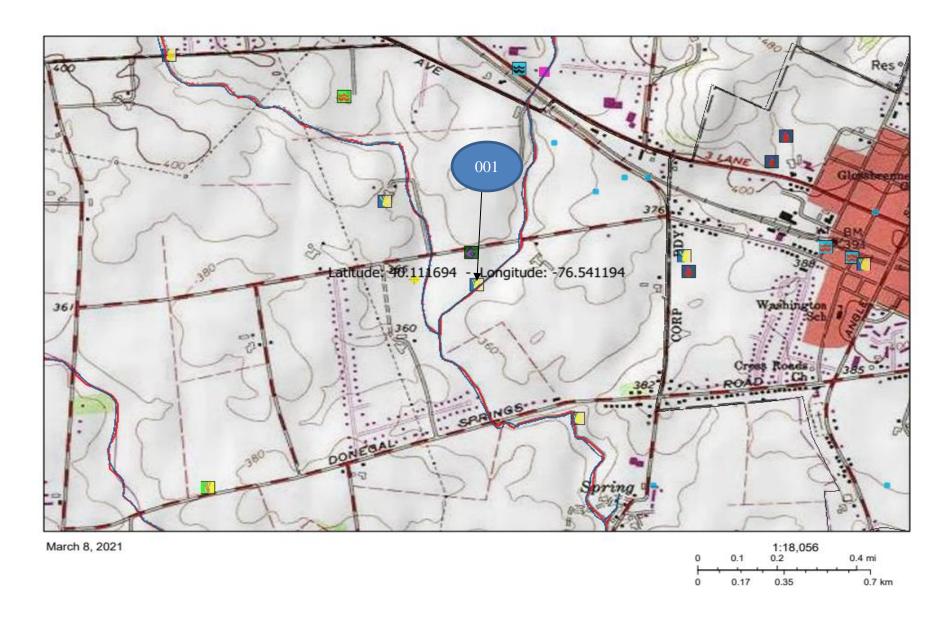
			Effluent L	imitations			Monitoring Requirements		
Parameter	Mass Units	(lbs/day) (1)		Concentrat		Minimum ⁽²⁾	Required		
rarameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type	
		Report							
Flow (MGD)	Report	Daily Max	XXX	XXX	XXX	XXX	1/day	Measured	
			6.0						
pH (S.U.)	XXX	XXX	Inst Min	XXX	XXX	9.0	1/week	Grab	
								8-Hr	
Osmotic Pressure (mOs/kg)	XXX	XXX	XXX	XXX	535	665	2/month	Composite	

Compliance Sampling Location: Ay Outfall 001

5.1 Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 101, Effective Period: Permit Effective Date through Permit Expiration Date.


			Effluent L	imitations			Monitoring Requirements	
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	tions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	1/discharge	Measured
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/discharge	Grab
TSS	Report	Report	XXX	30.0	60.0	75	1/discharge	8-Hr Composite
Total Aluminum	Report	Report	XXX	4.0	8.0	10	1/discharge	8-Hr Composite
Total Iron	Report	Report	XXX	2.0	4.0	5	1/discharge	8-Hr Composite
Total Manganese	Report	Report	XXX	1.0	2.0	2.5	1/discharge	8-Hr Composite
Total Cadmium	Report	Report	XXX	Report	Report	XXX	1/discharge	8-Hr Composite

Compliance Sampling Location: Prior to Outfall 001 or at Outfall 001

	6.0 Tools and References Used to Develop Permit
	WQM for Windows Model (see Attachment)
	Toxic Management Spreadsheet (see Attachment B)
	TRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment)
\boxtimes	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
\boxtimes	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
\boxtimes	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
\boxtimes	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
\boxtimes	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
\boxtimes	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
\boxtimes	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
\boxtimes	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
\boxtimes	Supplement to Phase II Watershed Implementation Plan, Revised 3/6/14.
	SOP – Establishing Effluent Limitations for Individual Industrial Permits, Revised 9/10/13.

7.0 Attachments

A. Topographical Map

B. Toxic Management Spreadsheet Results

Toxics Management Spreadsheet Version 1.3, March 2021

Discharge Information

	Discharge Characteristics										
Design Flow	Headana (ma/lht	pH (SU)*	P	artial Mix Fa	Complete Mix Times (min)						
(MGD)*	Hardness (mg/l)*		AFC	CFC	THH	CRL	Q ₇₋₁₀	Qh			
0.09	277.7	7.15									

						t blank	0.5 If le	eft blank	(if left blan	k	1 if left blank	
	Discharge Pollutant	Units	Ма	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS		Chem Transl
	Total Dissolved Solids (PWS)	mg/L		363									
7	Chloride (PWS)	mg/L		27.4									
Group	Bromide	mg/L	<	1									
5	Sulfate (PWS)	mg/L		23.9									
	Fluoride (PWS)	mg/L	<	0.4									
\Box	Total Aluminum	μg/L		1400									
	Total Antimony	μg/L	<	0.4									
	Total Arsenic	μg/L	<	1									
	Total Barium	μg/L		40									
	Total Beryllium	μg/L	<	0.4									
	Total Boron	μg/L	<	50									
	Total Cadmium	μg/L	<	0.4									
	Total Chromium (III)	μg/L	<	1									
	Hexavalent Chromium	μg/L		0.51									
	Total Cobalt	μg/L	<	1									
	Total Copper	μg/L	<	2									
2	Free Cyanide	μg/L											
Group	Total Cyanide	μg/L	<	5									
٥	Dissolved Iron	μg/L		15									
-	Total Iron	μg/L	<	100									
	Total Lead	μg/L	<	1									
	Total Manganese	μg/L	<	10									
	Total Mercury	μg/L	<	0.2									
	Total Nickel	μg/L		1									
	Total Phenols (Phenolics) (PWS)	µg/L	<	5									
	Total Selenium	μg/L	<	2									
	Total Silver	μg/L	<	1									
	Total Thallium	µg/L	<	0.4									
	Total Zinc	μg/L	<	10									
	Total Molybdenum	μg/L	<	1									
	Acrolein	µg/L	<										
	Acrylamide	μg/L	<										
	Acrylonitrile	μg/L	<										
	Benzene	μg/L	<										
	Bromoform	μg/L	<										

Toxics Management Spreadsheet Version 1.3, March 2021

Stream / Surface Water Information

Mt Joy Brorugh Carmany Water Plant, NPDES Permit No. PA0085871, Outfall 001

Instructions Disch	arge Stream	1						
Receiving Surface V	Vater Name: UN	T to Donega	l Creek			No. Reaches to Mod	el: <u>1</u>	Statewide Criteria Great Lakes Criteria
Location	Stream Code*	RMI*	Elevation (ft)*	DA (mi ²)*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*	ORSANCO Criteria
Point of Discharge	007924	2.37	350	3.79			Yes	
End of Reach 1	007924	2.19	347	3.8			Yes	

Q 7-10

Location	RMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time	Tributa	ary	Strea	n	Analys	iis
Location	TXIVII	(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	рН	Hardness*	pH*	Hardness	рН
Point of Discharge	2.37	0.2										166	7		
End of Reach 1	2.19	0.2													

 Q_h

Location	RMI LFY		Flow	(cfs)	W/D	Width	Depth	Velocit	Time	Tributa	ary	Stream	m	Analys	SiS
Location	KIVII	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness	pН	Hardness	pН
Point of Discharge	2.37														
End of Reach 1	2.19														

Toxics Management Spreadsheet Version 1.3, March 2021

Model Results

Mt Joy Brorugh Carmany Water Plant, NPDES Permit No. PA0085871, Outfall 001

Instructions	Results	RETURN TO INPUTS	SAVE AS PDF	PRINT	All Inputs	Results 🔾 Li	mits
☐ Hydrodyn	amics						
✓ Wasteload	d Allocations						
☑ AFC		CCT (min): 7.852	PMF: 1	Analysis Hardness (mg	/l): 183.33	Analysis pH: 7.	02

	Jueann							
Pollutants	Conc	Stream	Trib Conc	Fate	WQC	WQ Obj	WLA (µg/L)	Comments
	(uall.)	CV	(µg/L)	Coef	(µg/L)	(µg/L)		
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	750	750	4,833	
Total Antimony	0	0		0	1,100	1,100	7,089	
Total Arsenic	0	0		0	340	340	2,191	Chem Translator of 1 applied
Total Barium	0	0		0	21,000	21,000	135,329	
Total Boron	0	0		0	8,100	8,100	52,198	
Total Cadmium	0	0		0	3.629	3.95	25.5	Chem Translator of 0.919 applied
Total Chromium (III)	0	0		0	936.029	2,962	19,089	Chem Translator of 0.316 applied
Hexavalent Chromium	0	0		0	16	16.3	105	Chem Translator of 0.982 applied
Total Cobalt	0	0		0	95	95.0	612	
Total Copper	0	0		0	23.790	24.8	160	Chem Translator of 0.96 applied
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	124.106	177	1,138	Chem Translator of 0.703 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	1.400	1.65	10.6	Chem Translator of 0.85 applied
Total Nickel	0	0		0	781.928	783	5,049	Chem Translator of 0.998 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	Chem Translator of 0.922 applied
Total Silver	0	0		0	9.124	10.7	69.2	Chem Translator of 0.85 applied
Total Thallium	0	0		0	65	65.0	419	
Total Zinc	0	0		0	195.839	200	1,290	Chem Translator of 0.978 applied

 ✓ CFC
 CCT (min):
 7.852
 PMF:
 1
 Analysis Hardness (mg/l):
 183.33
 Analysis pH:
 7.02

Pollutants	Conc (ug/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	220	220	1,418	
Total Arsenic	0	0		0	150	150	967	Chem Translator of 1 applied
Total Barium	0	0		0	4,100	4,100	26,421	
Total Boron	0	0		0	1,600	1,600	10,311	
Total Cadmium	0	0		0	0.375	0.42	2.73	Chem Translator of 0.884 applied
Total Chromium (III)	0	0		0	121.758	142	912	Chem Translator of 0.86 applied
Hexavalent Chromium	0	0		0	10	10.4	67.0	Chem Translator of 0.962 applied
Total Cobalt	0	0		0	19	19.0	122	
Total Copper	0	0		0	15.033	15.7	101	Chem Translator of 0.96 applied
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	1,500	1,500	9,666	WQC = 30 day average; PMF = 1
Total Lead	0	0		0	4.836	6.88	44.4	Chem Translator of 0.703 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	0.770	0.91	5.84	Chem Translator of 0.85 applied
Total Nickel	0	0		0	86.848	87.1	561	Chem Translator of 0.997 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	4.600	4.99	32.2	Chem Translator of 0.922 applied
Total Silver	0	0		0	N/A	N/A	N/A	Chem Translator of 1 applied
Total Thallium	0	0		0	13	13.0	83.8	
Total Zinc	0	0		0	197.441	200	1,290	Chem Translator of 0.986 applied

☑ THH CCT (min): 7.852 PMF: 1 Analysis Hardness (mg/l): N/A Analysis pH: N/A

Pollutants	Conc (ug/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (μg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A	
Chloride (PWS)	0	0		0	250,000	250,000	N/A	
Sulfate (PWS)	0	0		0	250,000	250,000	N/A	
Fluoride (PWS)	0	0		0	2,000	2,000	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	5.6	5.6	36.1	
Total Arsenic	0	0		0	10	10.0	64.4	
Total Barium	0	0		0	2,400	2,400	15,466	
Total Boron	0	0		0	3,100	3,100	19,977	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	

0	0		0	N/A	N/A	N/A	
0	0		0	N/A	N/A	N/A	
0	0		0	N/A	N/A	N/A	
0	0		0	300	300	1,933	
0	0		0	N/A	N/A	N/A	
0	0		0	N/A	N/A	N/A	
0	0		0	1,000	1,000	6,444	
0	0		0	0.050	0.05	0.32	
0	0		0	610	610	3,931	
0	0		0	5	5.0	N/A	
0	0		0	N/A	N/A	N/A	
0	0		0	N/A	N/A	N/A	
0	0		0	0.24	0.24	1.55	
0	0		0	N/A	N/A	N/A	
	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 N/A 0 0 0 0 N/A 0 0 0 0 N/A 0 0 0 0 0 N/A 0 0 0 0 1,000 0 0 0 0,050 0 0 0 610 0 0 0 0 5 0 0 0 N/A 0 0 0 0 N/A 0 0 0 0 N/A 0 0 0 0 N/A	0 0 0 0 N/A N/A 0 0 0 0 N/A N/A 0 0 0 0 0 N/A N/A 0 0 0 0 0 300 300 0 0 0 N/A N/A 0 0 0 0 N/A N/A 0 0 0 0 N/A N/A 0 0 0 0 1,000 1,000 0 0 0 1,000 0.050 0 0 0 0 610 610 0 0 0 0 5 5.0 0 0 0 0 N/A N/A 0 0 0 N/A N/A 0 0 0 0 N/A N/A	0 0 0 N/A N/A N/A 0 0 0 1,000 1,000 6,444 0 0 0 0.050 0.05 0.32 0 0 0 610 610 3,931 0 0 0 5 5.0 N/A 0 0 0 N/A N/A N/A 0 0 0 N/A N/A N/A 0 0 0 0.24 0.24 1.55 0 0 0 N/A N/A N/A

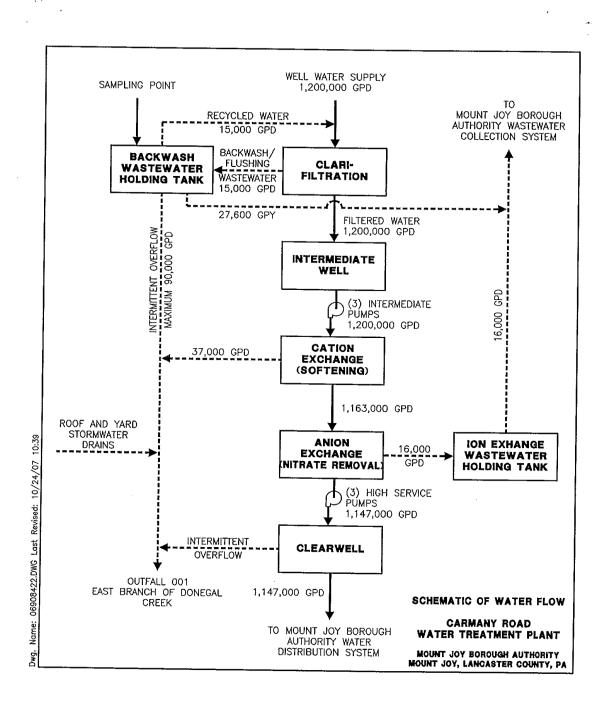
1	CRL CCT (mi): 3.004	PMF:	1	Analysis Hardness (mg/l):	N/A	Analysis pH:	N/A	
---	-------------	----------	------	---	---------------------------	-----	--------------	-----	--

Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	(ua/L)	0	113 /	0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	N/A	N/A	N/A	
Total Arsenic	0	0		0	N/A	N/A	N/A	
Total Barium	0	0		0	N/A	N/A	N/A	
Total Boron	0	0		0	N/A	N/A	N/A	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	N/A	N/A	N/A	
Total Nickel	0	0		0	N/A	N/A	N/A	
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	

NPDES Permit Fact Sheet Mt Joy Borough Water System

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4


	Mass	Limits	Concentration Limits						
Pollutants	AML (lbs/dav)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Aluminum	Report	Report	Report	Report	Report	μg/L	3,098	AFC	Discharge Conc > 10% WQBEL (no RP)
Total Cadmium	Report	Report	Report	Report	Report	μg/L	2.73	CFC	Discharge Conc > 10% WQBEL (no RP)

✓ Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

	0		
Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Fluoride (PWS)	N/A	N/A	PWS Not Applicable
Total Antimony	N/A	N/A	Discharge Conc < TQL
Total Arsenic	N/A	N/A	Discharge Conc < TQL
Total Barium	15,466	μg/L	Discharge Conc ≤ 10% WQBEL
Total Beryllium	N/A	N/A	No WQS
Total Boron	10,311	μg/L	Discharge Conc < TQL
Total Chromium (III)	912	μg/L	Discharge Conc < TQL
Hexavalent Chromium	67.0	μg/L	Discharge Conc ≤ 10% WQBEL
Total Cobalt	122	μg/L	Discharge Conc < TQL
Total Copper	101	μg/L	Discharge Conc < TQL
Total Cyanide	N/A	N/A	No WQS
Dissolved Iron	1,933	μg/L	Discharge Conc ≤ 10% WQBEL
Total Iron	9,666	μg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	44.4	μg/L	Discharge Conc < TQL
Total Manganese	6,444	μg/L	Discharge Conc ≤ 10% WQBEL
Total Mercury	0.32	μg/L	Discharge Conc < TQL
Total Nickel	561	μg/L	Discharge Conc ≤ 10% WQBEL
Total Phenols (Phenolics) (PWS)		μg/L	Discharge Conc < TQL
Total Selenium	32.2	μg/L	Discharge Conc < TQL
Total Silver	44.3	μg/L	Discharge Conc ≤ 10% WQBEL
Total Thallium	1.55	μg/L	Discharge Conc < TQL
Total Zinc	827	μg/L	Discharge Conc ≤ 10% WQBEL
Total Molybdenum	N/A	N/A	No WQS

C. Flow Schematic

