

Southcentral Regional Office CLEAN WATER PROGRAM

Application Type

Facility Type

Major / Minor

Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0085979

 APS ID
 475114

 Authorization ID
 1398515

Applicant Name	Guest Farm Village Sewer Authority	Facility Name	Guest Farm Village STP
Applicant Address	11364 Fort Loudon Road	_ Facility Address	11334 Punch Bowl Road
	Mercersburg, PA 17236-8503	-	Mercersburg, PA 17236-9779
Applicant Contact	Michael Rife	_ Facility Contact	Jon Piper
Applicant Phone	(717) 328-3743	_ Facility Phone	(717) 328-5769
Client ID	206551	Site ID	661
Ch 94 Load Status	Not Overloaded	_ Municipality	Montgomery Township
Connection Status		County	Franklin
Date Application Rece	ived June 3, 2022	EPA Waived?	Yes
Date Application Acce	ptedJune 6, 2022	If No, Reason	
Purpose of Application	NPDES Renewal		

Summary of Review

Guest Farm Village Sewer Authority (GFVSA) has applied to the Pennsylvania Department of Environmental Protection (DEP) for reissuance of the NPDES permit. The permit was last reissued on November 16, 2017 and expired on November 30, 2022. The permit was amended on February 22, 2018 for to correct a typographical error.

Based on the review, it is recommended that the permit be drafted. The original draft permit was sent on September 11, 2023 but it was not sent to US EPA for review/comments. Consequently, the draft permit has once again been prepared.

Sludge use and disposal description and location(s): Sludge is being processed on-site and then transport to another WWTP (McConnellsburg Sewer Authority) or land-applied under PAG 073522.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
Х		ງ່ແລນ Kim Jinsu Kim / Environmental Engineering Specialist	01/17/2024
Х		Maria D. Bebenek Daniel W. Martin, P.E. / Environmental Engineer Manager	02/02/2024
Х		Maria D. Bebenek Maria D. Bebenek, P.E. / Program Manager	02/02/2024

scharge, Receivi	ng Water	s and Water Supply Inform	nation	
Outfall No. 001			Design Flow (MGD)	.0372
Latitude 39°	46' 24"		Longitude	-77º 57' 37.18"
Quad Name			Quad Code	
Wastewater Desc	ription:	Sewage Effluent		
Receiving Waters		med Tributary to Licking (TSF, MF)	Stream Code	59481
NHD Com ID	49482	2950	RMI	0.57
Drainage Area	0.99		Yield (cfs/mi²)	
Q ₇₋₁₀ Flow (cfs)	0.015	8	Q ₇₋₁₀ Basis	StreamStats
Elevation (ft)			Slope (ft/ft)	
Watershed No.	13-C		Chapter 93 Class.	TSF, MF
Existing Use	none		Existing Use Qualifier	none
Exceptions to Use	e none		Exceptions to Criteria	
Assessment Statu	ıs	Attaining Use(s)		
Cause(s) of Impa	irment			
Source(s) of Impa	irment			
TMDL Status		Approved (May 25, 2021)	Name Licking Cre	ek Sediment TMDL
Nearest Downstre	am Publi	c Water Supply Intake	Carlisle Borough WTP	
PWS Waters	Conodo	guinet Creek	Flow at Intake (cfs)	
PWS RMI	37.03		Distance from Outfall (mi)	33

Drainage Area

The discharge is to Unnamed Tributary of Licking Creek (59481) at RM 0.57. A drainage area upstream of the discharge point is estimated to be 0.99 sq.mi. according to USGS StreamStats available at https://streamstats.usgs.gov/ss/.

Streamflow

StreamStats produced a Q7-10 flow of 0.0158 cfs at the point of discharge.

Newburg Run

Under 25 Pa Code §93.9z, Licking Creek basin has a designated water use of trout stocking and migratory fishes (TSF, MF). No special protection water is therefore impacted by this discharge. The latest integrated water quality report finalized in 2022 shows that the receiving stream is not impaired; however the main stem, Licking Creek, is impaired for siltation as a result of agricultural activities. A TMDL was approved on May 25, 2021 to address this impairment and a wasteload allocation (WLA) for TSS was assigned to this facility. Further details will be discussed later in this fact sheet.

Public Water Supply Intake

The fact sheet developed during the last permit renewal indicates that the nearest downstream PWS is Carlisle Borough in North Middleton Township at RMI 37.03, about 33 miles downstream of the discharge. The Q₇₋₁₀ at the intake is about 62.47 cfs. The discharge will not impact the intake because of the distance, dilution, and effluent limits.

	Tro	eatment Facility Summar	у	
Treatment Facility Na	me: Guest Farm Village W	WTP		
WQM Permit No.	Issuance Date			
2894405	03/06/2020			
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
Sewage	Tertiary	Extended Aeration With Solids Removal	Hypochlorite	0.0372
Hydraulic Capacity (MGD)	Organic Capacity (lbs/day)	Load Status	Biosolids Treatment	Biosolids Use/Disposal
	` '			Other
0.0372	75	Not Overloaded	Aerobic Digestion	WWTP/Land Applied

GFVSA utilizes an extended aeration activated sludge treatment process including an equalization tank, aeration tanks, chlorination, post aeration tank, a tertiary filter. A sludge digestor is available for sludge processing. This is technically owned by Montgomery Township serving only residential units located in Montgomery Township. Therefore, this is a POTW.

Compliance History								
Summary of DMRs:	A summary of past 12-month DMR data is available on the next page.							
Summary of Inspections:	04/26/2021: Brandon Bettinger conducted a routine inspection during the plant upgrade. No issues were noted at the time of inspection.							
Other Comments:	A number of effluent violations have been reported (see page 6). There is no open violation associated with this facility.							

Effluent Data

DMR Data for Outfall 001 (from December 1, 2022 to November 30, 2023)

Parameter	NOV-23	OCT-23	SEP-23	AUG-23	JUL-23	JUN-23	MAY-23	APR-23	MAR-23	FEB-23	JAN-23	DEC-22
Flow (MGD)	0.00441		0.00466		0.00727							
Average Monthly	7	0.00514	7	0.0044	7	0.0059	0.0061	0.0079	0.0078	0.0105	0.0080	0.0078
Flow (MGD)	0.03200	0.00273	0.01310									
Daily Maximum	0	0	0	0.0095	0.0268	0.0140	0.0146	0.0313	0.0354	0.0244	0.0165	0.0359
pH (S.U.)												
Daily Minimum	8.2	8.3	8.3	7.7	7.7	7.5	7.3	7.3	7.5	7.8	7.9	8.0
pH (S.U.)												
Instantaneous												
Maximum	8.8	8.8	8.9	8.8	8.8	8.1	7.8	7.7	8.1	8.2	8.7	8.6
DO (mg/L)												
Daily Minimum	9.5	8.6	7.7	7.9	8.1	8.8	8.6	9.5	10.0	10.9	10.4	11.3
TRC (mg/L)	0.40	0.40			0.40				0.40	0.44		0.40
Average Monthly	0.10	0.10	0.09	0.11	0.10	0.08	0.09	0.07	0.10	0.11	0.11	0.12
TRC (mg/L)												
Instantaneous	0.40	0.40	0.40	0.40	0.00	0.04	0.004	0.05	0.05	0.05	0.40	0.50
Maximum CDOD5 (lba/day)	0.42	0.43	0.43	0.46	0.39	0.34	0.021	0.25	0.25	0.25	0.49	0.59
CBOD5 (lbs/day)	0.12	0.12	0.11	2.00	0.21	0.11	0.14	0.17	0.33	0.10	0.33	0.40
Average Monthly CBOD5 (lbs/day)	0.12	0.12	0.11	3.00	0.21	0.11	0.14	0.17	0.32	0.10	0.32	0.40
Weekly Average	0.16	0.16	0.013	3.00	0.031	0.12	0.19	0.2	0.34	0.14	0.33	0.68
CBOD5 (mg/L)	0.10	0.10	0.013	3.00	0.001	0.12	0.13	0.2	0.04	0.14	0.00	0.00
Average Monthly	5.88	5.39	3.00	0.09	3.00	3.15	3.0	4.45	5.60	4.28	5.95	10.5
CBOD5 (mg/L)	0.00	0.00	0.00	0.00	0.00	0.10	0.0		0.00	11.20	0.00	10.0
Weekly Average	6.70	5.58	3.00	0.11	3.00	3.29	3.0	5.89	6.35	5.56	8.89	18.00
BOD5 (lbs/day)		0.00		9111	0.00	0.20	0.0	0.00	0.00	0.00	0.00	70100
Raw Sewage Influent												
Average Monthly	5	6	10	11	14	13	14	10	7	8	12	6
BOD5 (lbs/day)												
Raw Sewage Influent												
Daily Maximum	5	9	12	14	17	18	21	11	9	8	12	6
BOD5 (mg/L)												
Raw Sewage Influent												
Average Monthly	224	249	265	366	239	379	276	243	128	352	197	149
TSS (lbs/day)												
Average Monthly	0.15	0.07	0.17	0.11	0.42	0.10	0.11	0.17	0.31	0.16	0.67	0.33
TSS (lbs/day)												
Raw Sewage Influent												
Average Monthly	3	8	7	7	16	9	9	4	3	4	7	5

NPDES Permit Fact Sheet Guest Farm Village STP

Parameter	NOV-23	OCT-23	SEP-23	AUG-23	JUL-23	JUN-23	MAY-23	APR-23	MAR-23	FEB-23	JAN-23	DEC-22
TSS (lbs/day)												
Raw Sewage Influent												
Daily Maximum	5	15	8	10	21	12	10	5	3	4	7	5
TSS (lbs/day)												
Weekly Average	0.20	0.11	0.19	0.11	0.74	0.14	0.18	0.17	0.45	0.16	0.97	0.50
TSS (mg/L)												
Average Monthly	7.20	3.00	5.00	3.80	5.00	2.80	2.20	4.20	5.0	7.20	9.80	8.40
TSS (mg/L)												
Raw Sewage Influent												
Average Monthly	164	267	210	269	257	242	258	102	55	198	138	122
TSS (mg/L)												
Weekly Average	8.40	3.60	5.60	4.40	7.20	4.00	2.80	4.80	6.4	8.00	10.40	13.20
Fecal Coliform												
(No./100 ml)		_	_	_				_				
Geometric Mean	13	4	5	2	109	19	49	7	15	40	20	15
Fecal Coliform												
(No./100 ml)												
Instantaneous	40	0	4.4		404	4.4	400	00	70	5 4	00	000
Maximum	13	8	11	4	161	41	128	23	72	54	93	236
Nitrate-Nitrite (mg/L)	45.70	0.00	0.00	2.40	0.40	0.40	0.70	40.00	00.4	04.05	00.05	00.00
Average Monthly	15.72	6.39	2.89	2.40	2.40	2.40	2.78	10.92	28.4	31.25	26.85	26.63
Nitrate-Nitrite (lbs) Total Monthly	9.51	4.26	3.32	2.07	5.01	2.55	4.07	13.24	52.97	20.64	53.77	33.41
Total Nitrogen (mg/L)	9.51	4.20	3.32	2.07	5.01	2.55	4.07	13.24	52.97	20.04	55.77	33.41
Average Monthly	16.22	9.70	4.64	4.92	4.19	4.68	3.74	11.5	28.9	32.00	27.6	27.21
Total Nitrogen (lbs)	10.22	9.70	4.04	4.92	4.19	4.00	3.74	11.5	20.9	32.00	27.0	21.21
Total Monthly	9.82	7.12	5.24	4.07	8.94	4.98	5.43	13.92	53.84	21.13	55.11	34.12
Total Nitrogen (lbs)	9.02	7.12	5.24	4.07	0.34	4.30	3.43	13.32	33.04	21.13	33.11	34.12
Total Annual			7.958									
Ammonia (lbs/day)			7.000									
Average Monthly	0.01	0.0018	0.009	0.0011	0.023	0.007	0.006	0.004	0.01	0.002	0.039	0.008
Ammonia (mg/L)	0.01	0.0010	0.000	0.0011	0.020	0.007	0.000	0.001	0.01	0.002	0.000	0.000
Average Monthly	0.53	0.86	0.27	0.41	0.34	0.20	0.14	0.1	0.17	0.10	0.40	0.21
Ammonia (lbs)			-	-			-	-	-			_
Total Monthly	0.30	0.56	0.29	0.32	0.68	0.21	0.18	0.12	0.29	0.07	1.17	0.24
Ammonia (lbs)												
Total Annual			0.243									
TKN (mg/L)												
Average Monthly	0.50	3.31	1.75	0.07	1.79	2.28	0.96	0.58	0.50	0.02	0.75	0.58
TKN (lbs)												
Total Monthly	0.031	2.86	1.92	2.00	3.93	2.42	1.36	0.68	0.88	0.49	1.34	0.70
Total Phosphorus												
(mg/L)												
Average Quarterly			5.70			5.03			4.05			3.98

NPDES Permit No. PA0085979

Parameter	NOV-23	OCT-23	SEP-23	AUG-23	JUL-23	JUN-23	MAY-23	APR-23	MAR-23	FEB-23	JAN-23	DEC-22
Total Phosphorus (lbs)												
Total Annual			2.56									

Compliance History

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
TRC	08/31/22	Avg Mo	0.22	mg/L	.18	mg/L
TRC	11/30/22	Avg Mo	0.19	mg/L	.18	mg/L
CBOD5	12/31/22	Avg Mo	10.5	mg/L	10.0	mg/L
CBOD5	12/31/22	Wkly Avg	18.00	mg/L	15.0	mg/L
CBOD5	11/30/22	Wkly Avg	16.50	mg/L	15.0	mg/L
Nitrate-Nitrite	05/31/21	Avg Mo	26.31	mg/L	10	mg/L
Nitrate-Nitrite	06/30/21	Avg Mo	25.83	mg/L	10	mg/L
Nitrate-Nitrite	07/31/21	Avg Mo	18.56	mg/L	10	mg/L
Nitrate-Nitrite	08/30/21	Avg Mo	18.09	mg/L	10	mg/L
Nitrate-Nitrite	10/31/21	Avg Mo	24.8	mg/L	10	mg/L
Nitrate-Nitrite	10/31/22	Avg Mo	10.87	mg/L	10	mg/L
TSS	05/31/21	Avg Mo	10.4	mg/L	10	mg/L
TSS	10/31/21	Avg Mo	10.4	mg/L	10	mg/L
TSS	11/30/21	Avg Mo	11.4	mg/L	10	mg/L
TSS	11/30/21	Wk Avg	15.6	mg/L	15	mg/L
TSS	02/29/22	Wk Avg	26	mg/L	15	mg/L
Fecal Coliform	08/30/21	Geo Mean	530	CFU/100 mL	200	CFU/100 mL
Fecal Coliform	08/30/21	Inst. Max	2420	CFU/100 mL	1000	CFU/100 mL
Dissolved Oxygen	12/31/21	Daily Min	0.2	mg/L	5	mg/L
Dissolved Oxygen	02/29/22	Daily Min	1.7	mg/L	5	mg/L
Dissolved Oxygen	03/31/22	Daily Min	1.7	mg/L	5	mg/L
Ammonia-Nitrogen	04/30/22	Avg Mo	18.21	mg/L	5.1	mg/L
	5/31/2022					

NPDES Permit Fact Sheet Guest Farm Village STP

NPDES Permit No. PA0085979

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
Fecal Coliform	5/31/2022	IMAX	1414	No./100 ml	1000	No./100 ml
Fecal Coliform	6/30/2022	Geo Mean	335	No./100 ml	200	No./100 ml
TRC	6/30/2022	Avg Mon	0.28	mg/L	0.18	mg/L
TRC	6/30/2022	IMAX	0.62	mg/L	0.61	mg/L
TRC	8/31/2022	Avg Mon	0.22	mg/L	0.18	mg/L
Nitrate-Nitrite as N	10/31/2022	Avg Mon	10.87	mg/L	10	mg/L
CBOD5	11/30/2022	Wkly Avg	16.5	mg/L	15	mg/L
CBOD5	12/31/2022	Avg Mon	10.5	mg/L	10	mg/L
CBOD5	12/31/2022	Wkly Avg	18	mg/L	15	mg/L
TSS	8/31/2023	Avg Mon	3.8	lbs/day	3	lbs/day

Existing Effluent Limits and Monitoring Requirements

Tables below summarize effluent limits and monitoring requirements specified in the existing permit.

			Effluent L	imitations			Monitoring Re	quirements
Borometer	Mass Units	(lbs/day) (1)		Concentrati	ions (mg/L)		Minimum (2)	Required
Parameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0 Daily Min	XXX	XXX	9.0	1/day	Grab
Dissolved Oxygen	XXX	XXX	5.0 Daily Min	XXX	XXX	XXX	1/day	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5)	3.0	4.5	XXX	10.0	15.0	20	2/month	8-Hr Composite
Biochemical Oxygen Demand (BOD5) Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	2/month	8-Hr Composite
Total Residual Chlorine (TRC) Interim	XXX	XXX	XXX	0.4	XXX	1.2	1/day	Grab
Total Residual Chlorine (TRC) Final	XXX	XXX	XXX	0.18	XXX	0.61	1/day	Grab
Total Suspended Solids	3.0	4.5	XXX	10.0	15.0	20	2/month	8-Hr Composite
Total Suspended Solids Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	2/month	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab
Nitrate-Nitrite as N Nov 1- Apr 30	XXX	XXX	XXX	Report	XXX	XXX	1/quarter (3)	8-Hr Composite
Nitrate-Nitrite as N May 1- Oct 31	XXX	XXX	XXX	10	XXX	20	2/month	8-Hr Composite
Total Nitrogen Nov 1- Apr 30	XXX	XXX	XXX	Report	XXX	XXX	1/quarter (3)	8-Hr Composite
Total Nitrogen May 1- Oct 31	XXX	XXX	XXX	Report	XXX	XXX	1/month	Calculation
Ammonia-Nitrogen Nov 1 - Apr 30	1.5	XXX	XXX	5.1	XXX	10	2/month	8-Hr Composite

NPDES Permit Fact Sheet Guest Farm Village STP

NPDES Permit No. PA0085979

			Effluent L	imitations			Monitoring Requirements		
Parameter	Mass Units	s (lbs/day) ⁽¹⁾		Concentrat	Minimum (2)	Required			
Farameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type	
Ammonia-Nitrogen								8-Hr	
May 1 - Oct 31	0.5	XXX	XXX	1.7	XXX	3.4	2/month	Composite	
Total Kjeldahl Nitrogen								8-Hr	
Nov 1- Apr 30	XXX	XXX	XXX	Report	XXX	XXX	1/quarter (3)	Composite	
Total Kjeldahl Nitrogen				·				8-Hr	
May 1- Oct 31	XXX	XXX	XXX	Report	XXX	XXX	2/month	Composite	

			Effluent L	imitations			Monitoring Re	quirements
Doromotor	Mass Uni	ts (lbs) ⁽¹⁾		Concentrat	tions (mg/L)		Minimum ⁽²⁾	Required
Parameter	Monthly	Annual	Monthly	Monthly Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
								8-Hr
AmmoniaN	Report	Report	XXX	Report	XXX	XXX	2/month	Composite
								8-Hr
KjeldahlN	Report	XXX	XXX	Report	XXX	XXX	2/month	Composite
								8-Hr
Nitrate-Nitrite as N	Report	XXX	XXX	Report	XXX	XXX	2/month	Composite
Total Nitrogen	Report	Report	XXX	Report	XXX	XXX	1/month	Calculation
								8-Hr
Total Phosphorus		Report	XXX	Report	XXX	XXX	1/quarter	Composite

		Development of Effluent Limitations	
Outfall No.	001	Design Flow (MGD)	.0372
Latitude	39° 46' 24.00"	Longitude	-77° 57' 37.00"
Wastewater D	escription: Sewage E	fluent	

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 - 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 - 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations

CBOD5, NH3-N and Dissolved Oxygen (DO)

WQM 7.0 version 1.0b is a water quality model designed to assist DEP to determine appropriate permit requirements for CBOD5, NH3-N and DO. DEP's technical guidance no. 391-2000-007 describes the technical methods contained in the model for conducting wasteload allocation analyses and for determining recommended limits for point source discharges. DEP recently updated this model (ver. 1.1) to include new ammonia criteria that has been approved by US EPA as part of the 2017 Triennial Review. The model was utilized, and the model output indicated that all existing requirements are still appropriate. Therefore, no changes are recommended.

Toxics

DEP's NPDES permit application for minor sewages (less than 1.0 MGD) does requires samples of heavy metals including Total Copper, Total Lead, and Total Zinc when the facility receives industrial or commercial contributions. The application shows no sample results. Therefore, no toxic pollutants are determined to be pollutants of concern for this facility.

Total Residual Chlorine

TRC Calc Spreadsheet is utilized to determine if existing limits are still appropriate.

Best Professional Judgment (BPJ) Limitations

Dissolved Oxygen

A minimum of 5.0 mg/L for DO is an existing effluent limit and will remain unchanged in the draft permit as recommended by DEP's SOP. This requirement has also been assigned to other major sewage facilities in the region. 5.0 mg/L is taken directly from 25 Pa. Code § 93.7(a) and it is also determined to be appropriate according to water quality modeling.

Total Phosphorus

DEP's SOP no. BPNPSM-PMT-033 recommends monitoring requirements for Total Phosphorus all sewage facilities. Therefore, the existing monitoring requirement will remain unchanged in the permit.

NPDES Permit Fact Sheet Guest Farm Village STP

Additional Considerations

Flow Monitoring

The requirement to monitor the volume of effluent will remain in the draft permit per 40 CFR § 122.44(i)(1)(ii).

Influent BOD & TSS Monitoring

As a result of negotiation with EPA, the existing influent monitoring reporting requirement for TSS and BOD5 will be maintained in the draft permit. This requirement has been consistently assigned to all municipal wastewater treatment facilities.

Local Watershed TMDL

A TMDL was approved on May 25, 2021 to address the siltation impairments identified within the Licking Creek watershed which includes the receiving stream. The TMDL lists the following annual average TSS WLA for this facility:

Sediment WLA: 1,095 lbs/yr TSS

This is a newly developed WLA for this facility (i.e., new TMDL developed after the last renewal was issued). According to the TMDL, this annual load is calculated based on the existing effluent limit of 3 lbs/day average monthly TSS limits (3*365 = 1095 lbs/yr). Past DMR since December 2019 shows the average monthly of 0.36 lbs/day (average), 3.93 lbs/day (maximum), 0.03 lbs/day (minimum), 0.185 lbs/day (median), 0.727 lbs/day (90th percentile). This would equate to the annual average (*365) of 131 lbs/yr (average), 1,434 lbs/yr (maximum), 109 lbs/yr (minimum), 67.5 lbs/yr (median), 365 lbs/yr (90th percentile). Given this data, the facility would be able to meet the new WLA without any compliance schedule. Also, the TMDL includes the daily maximum TSS WLA of 19 lbs/day. However, this daily maximum number is less stringent than the existing weekly average limit of 4.5 lbs/day. As a result, the only annual average TSS WLA will be included in the permit.

Chesapeake Bay TMDL

DEP's Phase III Watershed Implementation Plan (WIP) categorizes this facility as a phase 5 non-significant sewage facility that has a design flow less than 0.2 MGD but greater than 0.002 MGD. The WIP recommends monitoring of nutrients. Therefore, no change is recommended.

E. Coli Monitoring

DEP's SOP No. BCW-PMT-033 recommends under 25 Pa Code §92a.61 a routine monitoring for E. Coli in all new and reissued permits. Since the facility has now the annual average design flow of 0.0372 MGD, a quarterly monitoring will be included in the permit.

Monitoring Frequency and Sample Type

Existing monitoring frequency for nutrients will be changed from 1/quarter to 1/month given that very small data would be obtained if quarterly sampling is assigned to seasonal parameters (i.e., Nov-Apr would produce only 1 or 2 sample results in a year). Also, no further reporting requirements are necessary annual nutrient loading. All other existing monitoring frequencies and sample types will remain unchanged in the permit.

Mass Loading Limitations

All effluent mass loading limits will be based on the formula: design flow x concentration limit x conversion factor of 8.34.

Antidegradation Requirements

All effluent limitations and monitoring requirements have been developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing uses are maintained and protected.

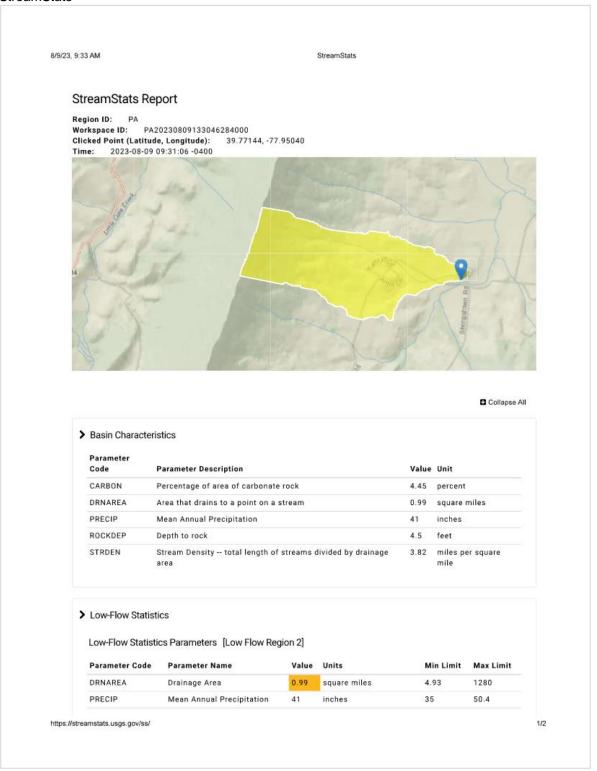
Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average	Weekly		Average	Weekly	Instant.	Measurement	Sample
	Monthly	Average	Minimum	Monthly	Average	Maximum	Frequency	Туре
		Report						
Flow (MGD)	Report	Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
			6.0					
pH (S.U.)	XXX	XXX	Daily Min	XXX	XXX	9.0	1/day	Grab
			5.0					
DO	XXX	XXX	Daily Min	XXX	XXX	XXX	1/day	Grab
								8-Hr
CBOD5	3.0	4.5	XXX	10.0	15.0	20	2/month	Composite
BOD5		Report						8-Hr
Raw Sewage Influent	Report	Daily Max	XXX	Report	XXX	XXX	2/month	Composite
TOO	2.0	4.5	VVV	40.0	45.0	00	0/	8-Hr
TSS	3.0	4.5 1095	XXX	10.0	15.0	20	2/month	Composite
TSS	XXX	Annual	xxx	XXX	xxx	XXX	1/4001	Calculation
TSS	^^^	Average Report				^^^	1/year	8-Hr
Raw Sewage Influent	Report	Daily Max	xxx	Report	xxx	XXX	2/month	Composite
Naw Sewage IIIIdent	Report	Daily Max	XXX	Report	XXX	XXX	2/111011111	Composite
Total Residual Chlorine (TRC)	XXX	XXX	XXX	0.18	XXX	0.61	1/day	Grab
Fecal Coliform (No./100 ml)				2000				
Oct 1 - Apr 30 `	XXX	XXX	XXX	Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml)				200				
May 1 - Sep 30	XXX	XXX	XXX	Geo Mean	XXX	1000	2/month	Grab
Nitrate-Nitrite								8-Hr
Nov 1 - Apr 30	XXX	XXX	XXX	Report	XXX	XXX	1/month	Composite
Nitrate-Nitrite								8-Hr
May 1 - Oct 31	XXX	XXX	XXX	10	XXX	20	2/month	Composite
	V0/0/	, , , , , , , , , , , , , , , , , , ,	V0/0/		V0/0/	2004	47 11	
Total Nitrogen	XXX	XXX	XXX	Report	XXX	XXX	1/month	Calculation

NPDES Permit Fact Sheet Guest Farm Village STP


NPDES Permit No. PA0085979

			Effluent L	imitations			Monitoring Requirements		
Parameter	Mass Units	(lbs/day) (1)		Concentrat	Minimum ⁽²⁾	Required			
Farameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type	
Ammonia								8-Hr	
Nov 1 - Apr 30	1.5	XXX	XXX	5.1	XXX	10	2/month	Composite	
Ammonia								8-Hr	
May 1 - Oct 31	0.5	XXX	XXX	1.7	XXX	3.4	2/month	Composite	
TKN								8-Hr	
May 1 - Oct 31	XXX	XXX	XXX	Report	XXX	XXX	2/month	Composite	
TKN				•				8-Hr	
Nov 1 - Apr 30	XXX	XXX	XXX	Report	XXX	XXX	1/month	Composite	
								8-Hr	
Total Phosphorus	XXX	XXX	XXX	Report	XXX	XXX	1/month	Composite	

Tools and References Used to Develop Permit
WOM for Windows Model (occ Attachment
WQM for Windows Model (see Attachment)
Toxics Management Spreadsheet (see Attachment)
TRC Model Spreadsheet (see Attachment)
Temperature Model Spreadsheet (see Attachment)
Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
Technical Guidance for the Development and Specification of Effluent Limitations, 386-0400-001, 10/97.
Policy for Permitting Surface Water Diversions, 386-2000-019, 3/98.
Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 386-2000-018, 11/96.
Technology-Based Control Requirements for Water Treatment Plant Wastes, 386-2183-001, 10/97.
Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 386-2183-002, 12/97.
Pennsylvania CSO Policy, 386-2000-002, 9/08.
Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 386-2000-008, 4/97.
Determining Water Quality-Based Effluent Limits, 386-2000-004, 12/97.
Implementation Guidance Design Conditions, 386-2000-007, 9/97.
Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 386-2000-016, 6/2004.
Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 386-2000-012, 10/1997.
Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 386-2000-009, 3/99.
Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 386-2000-015, 5/2004.
Implementation Guidance for Section 93.7 Ammonia Criteria, 386-2000-022, 11/97.
Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 386-2000-013, 4/2008.
Implementation Guidance Total Residual Chlorine (TRC) Regulation, 386-2000-011, 11/1994.
Implementation Guidance for Temperature Criteria, 386-2000-001, 4/09.
Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 386-2000-021, 10/97.
Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 386-2000-020, 10/97.
Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 386-2000-005, 3/99.
Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 386-2000-010, 3/1999.
Design Stream Flows, 386-2000-003, 9/98.
Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 386-2000-006, 10/98.
Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 386-3200-001, 6/97.
Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
SOP:
Other:

Attachments

StreamStats

8/9/23, 9:33 AM StreamStats

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
STRDEN	Stream Density	3.82	miles per square mile	0.51	3.1
ROCKDEP	Depth to Rock	4.5	feet	3.32	5.65
CARBON	Percent Carbonate	4.45	percent	0	99

Low-Flow Statistics Disclaimers [Low Flow Region 2]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Low-Flow Statistics Flow Report [Low Flow Region 2]

Statistic	Value	Unit
7 Day 2 Year Low Flow	0.0421	ft^3/s
30 Day 2 Year Low Flow	0.062	ft^3/s
7 Day 10 Year Low Flow	0.0158	ft^3/s
30 Day 10 Year Low Flow	0.023	ft^3/s
90 Day 10 Year Low Flow	0.0388	ft^3/s

Low-Flow Statistics Citations

Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.16.1 StreamStats Services Version: 1.2.22 NSS Services Version: 2.2.1

https://streamstats.usgs.gov/ss/

WQM 7.0 (summer)

Input Data WQM 7.0 SWP Stream Elevation Drainage Slope PWS Apply FC Basin Code Stream Name Withdrawal (ft/ft) (ft) (sq mi) (mgd) 13C 59481 Trib 59481 to Licking Creek 602.00 0.99 0.00000 0.570 Stream Data <u>Tributary</u> np pH Stream LFY Trib Rch Rch WD Rch Velocity Depth Temp Temp рΗ Width Design Flow Flow Trav Ratio Time Cond. (cfsm) (cfs) (cfs) (fps) (ft) (ft) (°C) (°C) (days) Q7-10 0.00 0.00 0.000 0.000 0.0 0.00 0.00 25.00 7.00 0.00 0.00 Q1-10 0.00 0.00 0.000 0.000 Q30-10 0.00 0.00 0.000 0.000 Discharge Data Existing Permitted Design Disc Disc Reserve рΗ Disc Temp Flow Flow Flow Name Permit Number Factor (°C) (mgd) (mgd) (mgd) GuestFarm PA0085979 0.0372 0.0372 0.0000 0.000 20.00 7.00 Parameter Data Fate Coef Disc Trib Stream Conc Conc Conc Parameter Name (mg/L) (mg/L) (mg/L) (1/days) CBOD5 10.00 2.00 0.00 1.50 Dissolved Oxygen 5.00 8.24 0.00 0.00 NH3-N 1.70 0.00 0.00 0.70

Wednesday, January 17, 2024 Version 1.1 Page 1 of 2

Input Data WQM 7.0

	SWF Basir			Stre	eam Name		RM	I E	evation (ft)	Drainage Area (sq mi)	Slo (ft/	Withd	rawal	Apply FC
	13C	594	481 Trib 59	9481 to Lie	cking Creek	:	0.0	000	600.00	8.8	7 0.0	0000	0.00	•
					St	ream Dat	а							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depti		<u>Tributary</u> ip pi	н	<u>Strean</u> Temp	pH	
cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10	0.100	0.00	0.00	0.000	0.000	0.0	0.00	0.	.00 2	5.00	7.00	0.00	0.00	
Q30-10		0.00	0.00	0.000	0.000									
					Di	scharge (
			Name	Per	mit Number	Existing Disc Flow (mgd)	Permit Dis- Flow (mg/	o Di v Fl	isc Res	erve T ctor	Disc emp (°C)	Disc pH		
						0.0000	0.00	000 0.	.0000	0.000	0.00	7.00		
					Pa	arameter (Data							
				Parameter	r Name		sc onc	Trib Conc	Stream Conc	Fate Coef				
						(m	g/L)	(mg/L)	(mg/L)	(1/days)				
			CBOD5			:	25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N			:	25.00	0.00	0.00	0.70				

WQM 7.0 D.O.Simulation

SWP Basin	Stream Code			Stream Name	ŧ	
13C	59481		Trib 5	9481 to Lickin	g Creek	
RMI	Total Discharge	Flow (mgd) Anal	ysis Temperatu	ıre (°C)	Analysis pH
0.570	0.03	7		23.162		7.000
Reach Width (ft)	Reach De	epth (ft)		Reach WDRa	tio	Reach Velocity (fps)
6.103	0.40	7		15.002		0.063
Reach CBOD5 (mg/L)	Reach Ko	(1/days)	R	each NH3-N (n	ig/L)	Reach Kn (1/days)
4.94	0.98	1		0.62		0.893
Reach DO (mg/L)	Reach Kr			Kr Equation		Reach DO Goal (mg/L)
7.051	19.3	79		Owens		5
Reach Travel Time (day	s)	Subreach	Doculte			
0.553	TravTime		NH3-N	D.O.		
	(days)	(mg/L)	(mg/L)	(mg/L)		
	0.055	4.65	0.59	7.75		
	0.111	4.37	0.57	7.78		
	0.166	4.11	0.54	7.78		
	0.221	3.87	0.51	7.78		
	0.276	3.64	0.49	7.78		
	0.332	3.42	0.46	7.78		
	0.387	3.22	0.44	7.78		
	0.442	3.02	0.42	7.78		
	0.497		0.40	7.78		
	0.553		0.38	7.78		

WQM 7.0 Hydrodynamic Outputs

	SW	P Basin	Strea	ım Code				Stream	<u>Name</u>			
		13C	5	9481			Trib 59	481 to L	icking Cr	eek		
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-10	0 Flow											
0.570	0.10	0.00	0.10	.0575	0.00086	.407	6.1	15	0.08	0.553	23.16	7.00
Q1-10	0 Flow											
0.570	0.08	0.00	0.08	.0575	0.00086	NA	NA	NA	0.05	0.639	22.62	7.00
Q30-	10 Flow	,										
0.570	0.13	0.00	0.13	.0575	0.00086	NA	NA	NA	0.07	0.493	23.50	7.00

WQM 7.0 Wasteload Allocations

SWP Basin		Stream Code		Stream Name								
	13C 59481			Trib 59481 to Licking Creek								
NH3-N Acute Allocations												
RMI	Discharge N	Baseline Iame Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction					
0.57	0 GuestFarm	13.49	3.4	13.49	3.4	0	0					
1H3-N (Chronic Allo	cations										
RMI	Discharge Na	Baseline me Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction					
0.570 GuestFarm		1.51	1.7	1.51	1.7	0	0					

Dissolved Oxygen Allocations

			DD5		3-N	Dissolve	d Oxygen	Cattanal	Percent	
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Mulliple	Daseille	Mulliple	Reach	Reduction	
0.57	GuestFarm	10	10	17	17	5	5	0	0	

WQM 7.0 Effluent Limits

	SWP Basin S 13C	Stream Code 59481	<u>Stream Name</u> Trib 59481 to Licking Creek							
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)		Effl. Limit Minimum (mg/L)			
0.570	GuestFarm	PA0085979	0.037	CBOD5	10					
				NH3-N	1.7	3.4				
				Dissolved Oxygen			5			

WQM 7.0 (winter)

Input Data WQM 7.0

	SWP Basir			Stre	eam Name		RMI	Elevs (ff		Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	13C	594	481 Trib 59	9481 to Lic	cking Creel	k	0.57	70 6	02.00	0.99	0.00000	0.00	•
					S	tream Da	ta						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> ip pH	Tem	<u>Stream</u> np pH	
Conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°C)	
Q7-10	0.100	0.00	0.00	0.000	0.000	0.0	0.00	0.00	2	0.00 7.0	00 (0.00 0.0)
Q1-10 Q30-10		0.00		0.000	0.000								

	Dis	charge D	ata					
Name	Permit Number	Existing Disc Flow (mgd)	Permitt Disc Flow (mgd)	Dis Flo	sc Reso ow Fac	erve Te	oisc emp °C)	Disc pH
GuestFarm	PA0085979	0.0372	0.037	72 0.0	0000	0.000	20.00	7.00
	Pai	rameter D	ata					
	arameter Name	Dis Co	_	Trib Conc	Stream Conc	Fate Coef		
-	arameter (varne	(mg	/L) (r	mg/L)	(mg/L)	(1/days)		
CBOD5		1	0.00	2.00	0.00	1.50		
Dissolved (Oxygen		5.00	8.24	0.00	0.00		
NH3-N			5.10	0.00	0.00	0.70		

Wednesday, January 17, 2024 Version 1.1 Page 1 of 2

Input Data WQM 7.0

	SWP Basir			Stre	am Name		RM	l El	evation (ft)	Drainage Area (sq mi)	Slop (ft/f	Withdr	awal	Apply FC
	13C	594	481 Trib 59	9481 to Lie	cking Creek	:	0.0	00	800.00	8.9	7 0.00	0000	0.00	✓
					St	ream Data	a.							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth		<u>Tributary</u> ip ph	4	<u>Stream</u> Temp	рН	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10	0.100	0.00	0.00	0.000	0.000	0.0	0.00	0.	00 2	0.00 7	7.00	0.00	0.00	
Q30-10		0.00	0.00	0.000	0.000									
					Di	scharge [Data							
			Name	Per	mit Number	Existing Disc r Flow (mgd)	Permit Disc Flow (mgd	Di.	sc Res	erve Te ctor	isc emp C)	Disc pH		
						0.0000	0.00	00 0.	0000	0.000	0.00	7.00		
					Pa	arameter [Data							
				Paramete	r Name	Di: Co		Trib Conc	Stream Conc	Fate Coef				
						(m	g/L) (mg/L)	(mg/L)	(1/days)				
			CBOD5			2	25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N			2	25.00	0.00	0.00	0.70				

WQM 7.0 D.O.Simulation

6.103 0.407 15.002 0.083 Reach CBOD5 (mg/L) Reach Kc (1/days) Reach NH3-N (mg/L) Reach Kn (1/days) 4.94 0.983 1.87 0.700 Reach DO (mg/L) Reach Kr (1/days) Kr Equation Reach DO Goal (mg/L) 7.051 17.979 Owens 5 Reach Travel Time (days) Subreach Results 0.553 TravTime CBOD5 NH3-N D.O. (days) (mg/L) (mg/L) (mg/L)	SWP Basin	Stream Code			Stream Name		
0.570	13C	59481		Trib 5	9481 to Licking	g Creek	
Reach Width (ft) Reach Depth (ft) Reach WDRatio Reach Velocity (fps of the part of the p	RMI	Total Discharge	e Flow (mgd) Ana	ysis Temperatu	re (°C)	Analysis pH
6.103 0.407 15.002 0.083 Reach CBOD5 (mg/L) Reach Kc (1/days) Reach NH3-N (mg/L) Reach Kn (1/days) 4.94 0.983 1.87 0.700 Reach DO (mg/L) Reach Kr (1/days) Kr Equation Reach DO Goal (mg/L) 7.051 17.979 Owens 5 Reach Travel Time (days) Subreach Results 0.553 TravTime CBOD5 NH3-N D.O. (days) (mg/L) (mg/L) (mg/L)	0.570	0.03	37		20.000		7.000
Reach CBOD5 (mg/L) Reach Kc (1/days) Reach NH3-N (mg/L) Reach Kn (1/days) 4.94 0.983 1.87 0.700 Reach DO (mg/L) Reach Kr (1/days) Kr Equation Reach DO Goal (mg/L) 7.051 17.979 Owens 5 Reach Travel Time (days) Subreach Results 0.553 TravTime CBOD5 NH3-N D.O. (days) (mg/L) (mg/L) (mg/L)	Reach Width (ft)	Reach De	epth (ft)		Reach WDRat	io	Reach Velocity (fps)
4.94 0.983 1.87 0.700 Reach DO (mg/L) Reach Kr (1/days) Kr Equation Reach DO Goal (mg 7.051 17.979 Owens 5 Reach Travel Time (days) Subreach Results 0.553 TravTime CBOD5 NH3-N D.O. (days) (mg/L) (mg/L) (mg/L)	6.103	0.40)7		15.002		0.083
Reach DO (mg/L) Reach Kr (1/days) Kr Equation Reach DO Goal (mg 7.051 17.979 Owens 5 Reach Travel Time (days) Subreach Results 0.553 TravTime (days) CBOD5 NH3-N D.O. (days) D.O. (mg/L) (mg/L)	Reach CBOD5 (mg/L)	Reach Ko	(1/days)	B	each NH3-N (m	g/L)	Reach Kn (1/days)
7.051 17.979 Owens 5 Reach Travel Time (days) Subreach Results 0.553 TravTime (days) (mg/L) (mg/L) (mg/L)	4.94	0.98	3		1.87		0.700
Reach Travel Time (days) Subreach Results	Reach DO (mg/L)						Reach DO Goal (mg/L)
0.553 TravTime CBOD5 NH3-N D.O. (days) (mg/L) (mg/L) (mg/L)	7.051	17.9	79		Owens		5
0.553 TravTime CBOD5 NH3-N D.O. (days) (mg/L) (mg/L) (mg/L)	Reach Travel Time (day	(S)	Subreach	Recults			
	0.553	TravTime			D.O.		
0.055 4.89 4.90 7.02		(days)	(mg/L)	(mg/L)	(mg/L)		
0.000 4.00 1.00 7.80		0.055	4.68	1.80	7.93		
0.111 4.43 1.74 8.24		0.111	4.43	1.74	8.24		
0.166 4.20 1.67 8.24		0.168	4.20	1.67	8.24		
0.221 3.98 1.61 8.24		0.221	3.98	1.61	8.24		
0.276 3.77 1.55 8.24		0.276	3.77	1.55	8.24		
0.332 3.57 1.49 8.24		0.332	3.57	1.49	8.24		
0.387 3.38 1.43 8.24		0.387	3.38	1.43	8.24		
0.442 3.20 1.38 8.24		0.442	3.20	1.38	8.24		
0.497 3.03 1.32 8.24		0.497					
0.553 2.87 1.27 8.24							

WQM 7.0 Hydrodynamic Outputs

	SW	P Basin	Strea	ım Code				Stream	<u>Name</u>			
		13C	5	9481			Trib 59	481 to L	icking Cr	eek		
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-10	0 Flow											
0.570	0.10	0.00	0.10	.0575	0.00086	.407	6.1	15	0.08	0.553	20.00	7.00
Q1-10	0 Flow											
0.570	0.08	0.00	0.08	.0575	0.00086	NA	NA	NA	0.05	0.639	20.00	7.00
Q30-	10 Flow	,										
0.570	0.13	0.00	0.13	.0575	0.00086	NA	NA	NA	0.07	0.493	20.00	7.00

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	•
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	•
D.O. Saturation	90.00%	Use Balanced Technology	•
D.O. Goal	5		

Percent

Reduction

0

WQM 7.0 Wasteload Allocations

(mg/L)

16.76

(mg/L)

10.2

3	SWP Basin Str 13C	<u>59481</u>		_	ream Name 1 to Licking	Creek
NH3-N A	cute Allocatio	ns				
RMI	Discharge Nam	Baseline e Criterion	Baseline WLA	Multiple Criterion	Multiple WLA	Critical Reach

(mg/L)

16.76

NH3-N Chronic Allocations

0.570 GuestFarm

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
0.57	0 GuestFarm	1.89	5.1	1.89	5.1	0	0

(mg/L)

10.2

Dissolved Oxygen Allocations

		CBC			3-N	Dissolve	d Oxygen	Cattanal	Percent	
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Mulliple	Daseillie	Mulliple	Reach	Reduction	
0.57	GuestForm	10	10	5.1	5.1	5	5	0	0	

WQM 7.0 Effluent Limits

	SWP Basin S	tream Code		Stream Name			
	13C	59481		Trib 59481 to Licking	g Creek		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
0.570	GuestFarm	PA0085979	0.037	CBOD5	10		
				NH3-N	5.1	10.2	
				Dissolved Oxygen			5

TRC_CALC

TRC_CALC

1A	В	С	D	E	F	G			
2	TRC EVALU	TRC EVALUATION							
3	Input appropri	nput appropriate values in B4:B8 and E4:E7							
4		= Q stream (,	0.5	= CV Daily				
5		= Q discharg	, , , , ,		= CV Hourly				
6		= no. sample		-	= AFC_Partial N				
7			emand of Stream		= CFC_Partial N				
8			emand of Discharge	-	_	Compliance Time (min)			
9		0.18 = BAT/BPJ Value		720		Compliance Time (min)			
10		Reference	of Safety (FOS) AFC Calculations	_	=Decay Coeffic Reference	CFC Calculations			
11	Source TRC	1.3.2.iii		0.500	1.3.2.iii				
	PENTOXSD TRO		WLA afc = LTAMULT afc =		1.3.2.III 5.1c	WLA cfc = 0.546 LTAMULT cfc = 0.581			
	PENTOXSD TRO		LTA afc=		5.1d	LTA_cfc = 0.317			
14		0.15	2	0.2.2	5	2.77_010 0.011			
15	Source	Source Effluent Limit Calculations							
-		PENTOXSD TRG 5.1f AML MULT =							
-	PENTOXSD TRO								
18		INST MAX LIMIT (mg/l) = 0.589							
	WLA afc	(.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc))							
		+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)							
	LTAMULT afc	TAMULT afc EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5)							
	LTA_afc	wla_afc*LTAMULT_afc							
	WLA_cfc	(011/e(-k*C	FC to) + I(CFC Yo*Os	* 011/Od	*e(-k*CEC to))				
	1127_010	LA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) + Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)							
	LTAMULT_cfc	EXP((0.5*LN(cvd^2/no samples+1))-2.326*LN(cvd^2/no samples+1)^0.5)							
	LTA_cfc	wla_cfc*LTAMULT_cfc							
	AML MULT AVG MON LIMIT	AML MULT EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1)) AVG MON LIMIT MIN(BAT BPJ,MIN(LTA afc,LTA cfc)*AML MULT)							
	NST MAX LIMIT 1.5*((av_mon_limit/AML_MULT)/LTAMULT_afc)								
		//a							

TMDL

Thus, before calculating the load allocations, the margins of safety and wasteload allocations must be defined.

Margin of Safety

The margin of safety (MOS) is a portion of pollutant loading that is reserved to account for uncertainties. Reserving a portion of the load as a safety factor requires further load reductions from the ALA to achieve the TMDL. For this analysis, the MOS_{avg} was explicitly designated as ten-percent of the $TMDL_{avg}$ based on professional judgment. Thus:

Sediment: 5,123,400 lbs/yr TMDL_{Avg} * 0.1 = 512,340 lbs/yr MOS_{Avg}

Wasteload Allocation

The wasteload allocation (WLA) is the pollutant loading assigned to existing permitted point sources as well as future point sources. Where relevant, wasteload allocations under average annual conditions were assigned as in Table 10. Existing wastewater treatment plants typically received sediment limits based on design flows and existing total suspended solids (TSS) concentration limits per their permits. Note that when compared with estimates of actual sediment loading per the eDMR analysis in Table 4, these WLAs were typically permissive and unlikely to create an additional burden for a facility. This was determined to be appropriate because the existing sediment loading from these point sources was virtually negligible relative to the vastly greater loading estimated for nonpoint sources and forcing load reductions from such facilities would likely be both expensive and ineffective when compared to agricultural BMPs.

In addition, a 1% bulk reserves was included as part of the wasteload allocation to allow for insignificant dischargers, such as small flow (design flow <2,000 gpd) wastewater treatment facilities, and minor increases from point sources as a result of future growth of existing or new sources.

Table 10. Annual Average Wasteload Allocations for Existing NPDES Permitted Discharges in the Licking Creek Subwatershed						
		Sediment Load				
Permit No.	Facility Name	lb/yr				
PAG123849	Herbruck Poultry Ranch, Inc.	Bulk Reserve				
PA0085979	Guest Farm Village WWTP	1,095				
PAM417009	McCulloh Long Farm Quarry	Bulk Reserve				
PA0085278	Deerwood Mtn Estates WWTP	12,024				

33

PA0087050	Valley Creek Estates	1,142
PAG043919	Tonia Metcalf SFS	Bulk Reserve
PAG043917	Jason Petre SFTF	Bulk Reserve
PA0080608	Camp Tohiglo WWTP	1,096
PA0080501	Montgomery Elem WWTP	Bulk Reserve
PAG043903	Twin Hill Meadows Phase II	Bulk Reserve

Herbruck Poultry Ranch Inc. In Pennsylvania, routine, dry-weather discharges from concentrated animal feeding operations (CAFOs) are not allowed. Wet weather discharges are controlled through best management practices (BMPs), which result in infrequent discharges from production areas and reduced sediment loadings from lands under the control of CAFOs owner or operators, such as croplands where manure is applied. Although not quantified in this table, pollutant loading from CAFOs is accounted for as nonpoint source pollution in the modeling of land uses within the watershed, with the assumption of no additional CAFO-related BMPs.

Guest Farm Village WWTP. The WLA was derived from the permit-based value in Table 4.

McCulloh Long Farm Quarry. Pollutant loading from this facility occurs via stormwater runoff, and thus would be accounted for in nonpoint source modelling of land uses within the watershed. Plus, given the small-scale nature of this operation relative to the overall watershed, the capacity available in the bulk reserves likely far exceeds the pollutant loading from this facility.

Deerwood MTN Estates WWTP. This facility was previously approved for a large expansion to accommodate future residential development. The WLA was derived from the future expansion permit based value in Table 4.

Valley Creek Estates. The WLA derived from the permit-based value in Table 4.

Tonia Metcalf SFS. Given that this is a small flow wastewater treatment facility (<2,000 gpd) the pollutant loading will be covered under the bulk reserve, which has more than enough capacity for this and the other small flow treatment facilities.

Jason Petre SFTF. Given that this is a small flow wastewater treatment facility (<2,000 gpd) the pollutant loading will be covered under the bulk reserve, which has more than enough capacity for this and the other small flow treatment facilities.

Camp Tohiglo WWTP. The WLA was derived from the permit-based value in Table 4.

Montgomery Elementary WWTP. Given that this is a small flow wastewater treatment facility (<2,000 gpd) the pollutant loading will be covered under the bulk reserve, which has more than enough capacity for this and the other small flow treatment facilities.

Twin Hill Meadows Phase II. Given that this is a small flow wastewater treatment facility (<2,000 gpd) the pollutant loading will be covered under the bulk reserve, which has more than enough capacity for this and the other small flow treatment facilities.

Therefore, WLAs were calculated as follows:

5,123,400 lbs/yr TMDL_{Avg} * 0.01 = 51,234 lbs/yr bulk reserve_{Avg} + 15,357 lb/yr permitted loads = 66,591 lbs/yr WLA_{Avg}

34