

Application Type	Renewal
Facility Type	Non- Municipal
Major / Minor	Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No.	PA0086045
APS ID	341952
Authorization ID	1207039

Applicant and Facility Information

Applicant Name	Castle	Hill Mobile Home Park	Facility Name	Castle Hill Mobile Home Park
Applicant Address	20 Erford Road Suite 215		Facility Address	2581 Old Harrisburg Road
	Lemoyr	ne, PA 17043-1163		Gettysburg, PA 17325
Applicant Contact	David F	Remmel	Facility Contact	Kimberly Nicholson
Applicant Phone	(717) 79	91-1201	Facility Phone	(717) 635-2437
Client ID	148711		Site ID	258364
Ch 94 Load Status	Not Ove	erloaded	Municipality	Straban Township
Connection Status	No Limi	tation	County	Adams
Date Application Receiv	ved	October 30, 2017	EPA Waived?	Yes
Date Application Accepted		November 20, 2017	If No, Reason	
Purpose of Application		NPDES permit renewal.		

Summary of Review

Castle Hill Mobile Home Park has applied to the Pennsylvania Department of Environmental Protection (DEP) for reissuance of its National Pollutant Discharge Elimination System (NPDES) permit. The permit was issued on February 7, 2013 and became effective on March 1, 2013. The permit authorized discharge of treated sewage from the existing wastewater treatment plant (WWTP) located in Straban Township, Adams County to Unnamed Tributary to Rock Creek. The existing permit expiration date was February 28, 2018, and the permit has been administratively extended since that time.

Changes from the previous permit: Unit of Fecal Coliform changed from CFU/100 ml to No./100 ml.

Based on the review outline in this fact sheet, it is recommended that the permit be drafted and published in the Pennsylvania Bulletin for public comments for 30 days.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
Х			
		Hilary H. Le / Environmental Engineering Specialist	July 22, 2019
		Daniel W. Martin, P.E. / Environmental Engineer Manager	
		Maria D. Bebenek, P.E. / Clean Water Program Manager	

Discharge, Receiv	ing Waters and Water Supply Inform	nation	
Outfall No. <u>00</u> Latitude <u>39</u> Quad Name <u>I</u> Wastewater Dese	1 º 53' 17.18" Biglerville cription: Sewage Effluent	Design Flow (MGD) Longitude Quad Code	0.012 -77º 11' 25.94"
Receiving Waters NHD Com ID Drainage Area Q ₇₋₁₀ Flow (cfs) Elevation (ft) Watershed No. Existing Use Exceptions to Us Assessment Stat	Unnamed Tributary to Rock Creek (WWF) 53319414 0.15 mi ² See comments below 540 ft 13-D e us Attaining Use(s)	 Stream Code RMI Yield (cfs/mi²) Q₇₋₁₀ Basis Slope (ft/ft) Chapter 93 Class. Existing Use Qualifier Exceptions to Criteria 	59218 0.46 mile See comments below StreamStats WWF
Cause(s) of Impa Source(s) of Imp TMDL Status	airment	Name	
Nearest Downstr PWS Waters PWS RMI	eam Public Water Supply Intake Monocacy River NA	<u>City of Frederick, MD</u> Flow at Intake (cfs) Distance from Outfall (mi)	Approximate 48 miles

Changes Since Last Permit Issuance: none

Drainage Area

The discharge is to Unnamed Tributary 59218 to Rock Creek at RMI 0.46 mile. A drainage area upstream of the discharge is estimated to be 0.15 mi², according to USGS PA StreamStats available at <u>https://streamstats.usgs.gov/ss/</u>.

Streamflow

There are no nearby stream gages with low flow data that have extensive or recent periods of record. Since USGS PA StreamStats estimated the drainage area that is below the minimum value allowed by USGS's regression equations, the USGS gage station No. 59041 on Rock Creek watershed (at the PA/MD border) will be used to calculate the Q_{7-10} at the point of discharge using a low flow yield method. The Q_{7-10} here is 2.52 cfs and the drainage area is 63.6 mi² which results in a Q_{7-10} low flow yield of 0.04 cfs/mi². This information is used to obtain a chronic or 30-day (Q_{30-10}), and an acute or 1-day (Q_{1-10}) exposure stream flow for the discharge point as follows (Guidance No. 391-2000-023):

Low Flow Yield = $Q_{7-10gage}$ / Drainage Area_{gage} = 2.52 cfs / 63.6 mi² = 0.04 cfs/mi² $Q_{7-10discharge} = 0.04 cfs/mi² * Drainage Area_{discharge} = 0.04 cfs/mi² * 0.15 mi² = 0.006 cfs$ $Q_{30-10} = 1.36 * Q_{7-10discharge} = 1.36 * 0.006 cfs = 0.008 cfs$ $Q_{1-10} = 0.64 * Q_{7-10discharge} = 0.64 * 0.006 cfs = 0.0038 cfs$

Potable Water Supply Intake

The nearest downstream public water supply intake is the City of Frederick, MD intake on the Monocacy River, approximately 48 miles from the point of discharge. Given the nature and dilution, the discharge is not expected to significantly impact the water supply.

	Treatment Facility Summary					
Treatment Facility Na	me: Castle Hill Mobile Hom	ne Park				
WQM Permit No.	Issuance Date					
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)		
Sewage	Secondary	Extended Aeration	Chlorine With Dechlorination	0.0122		
Hydraulic Capacity	Organic Capacity			Biosolids		
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal		
0.0123		Not Overloaded	Aerobic Digestion	Other WWTP		

Changes Since Last Permit Issuance: none

The WWTP train is as follows:

The treatment process is as follows: Bar Screen (1) – Equalization Tank (1) – Aeration Tanks (2) – Settling Tank (1) – Tablet Chlorinator / Chlorine Contact Tank (1) – Tablet De-chlorinator / De-chlorination Contact Tank (1) – Post Aeration Tank (1) – Discharge (Outfall to Unnamed Tributary to Rock Creek).

Calcium hypochlorite tablets are used for chlorination and sodium sulfite tablets are used for de-chlorination. Soda ash and alum are used to control pH. A sludge holding tank is used for solids storage.

	Compliance History					
Summary of DMRs:	See Table Below.					
Summary of Inspections:	4/13/2016, Mr. Haines, DEP Water Quality Specialist, conducted a compliance evaluation inspection. The outfall area was checked and clear. The recommendations were to collect process control information regularly and document; and maintain a daily operations log. There were no identified violations during inspection.					
	10/25/2017, Mr. Bowen, DEP Water Quality Specialist, conducted a compliance evaluation inspection. The NH ₃ -N effluent limit exceedance was reported on the April 2017 DMR. There were no identified violations during inspection.					
Other Comments:	There are currently no open violations associated with the permittee or the facility.					

Compliance History

DMR Data for Outfall 001 (from June 1, 2018 to May 31, 2019)

Parameter	MAY-19	APR-19	MAR-19	FEB-19	JAN-19	DEC-18	NOV-18	OCT-18	SEP-18	AUG-18	JUL-18	JUN-18
Flow (MGD)												
Average Monthly	0.00542	0.00518	0.00545	0.00567	0.0052	0.00493	0.00496	0.00510	0.00613	0.00534	0.00588	0.00473
Flow (MGD)												
Daily Maximum	0.0057	0.00573	0.0085	0.0077	0.00745	0.00745	0.00573	0.0085	0.00835	0.00593	0.0084	0.0055
pH (S.U.)												
Minimum	6.5	6.6	6.6	6.7	6.6	6.7	6.7	6.7	6.3	6.4	6.6	6.0
pH (S.U.)												
Maximum	7.4	7.3	7.4	7.3	7.3	7.3	7.5	7.6	7.9	7.9	7.9	7.3
DO (mg/L)												
Minimum	6.6	6.0	6.2	7.9	6.4	6.2	6.1	7.1	6.4	8.3	6.0	6.6
TRC (mg/L)												
Average Monthly	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
TRC (mg/L)												
Instantaneous												
Maximum	0.02	< 0.02	0.02	0.02	< 0.02	< 0.02	< 0.02	0.02	< 0.02	0.02	< 0.02	< 0.02
CBOD₅ (mg/L)												
Average Monthly	< 3	4	9	9	4	< 3	< 3	< 3	< 3	< 3	< 3	< 3
TSS (mg/L)												
Average Monthly	3	12	27	20	4	6	5	8	3	5	4	23
Fecal Coliform												
(CFU/100 ml)												
Geometric Mean	34	37	2	3	4	< 2	< 2	< 4	105	11	71	429
Fecal Coliform												
(CFU/100 ml)												
Instantaneous												
Maximum	46	60	6	4	4	< 2	< 2	8	274	30	106	446
Ammonia (mg/L)												
Average Monthly	< 0.1	< 0.1	< 0.13	< 0.15	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.8

Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	0.012
Latitude	39º 53' 17.54		Longitude	-77º 11' 25.97"
Wastewater De	escription:	Sewage Effluent	-	

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 - 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations

Carbonaceous Biochemical Oxygen Demand (CBOD₅):

Only the minimum treatment requirements of secondary treatment will be necessary to protect water quality. The existing limits of 25 mg/L average monthly and 50 mg/L instantaneous maximum will remain in the renewal permit. Past DMRs and inspection reports show that the facility has been consistently achieving concentrations under these limits.

Ammonia (NH₃-N):

 NH_3 -N calculations were first based on the Department's Implementation Guidance of Section 93.7 Ammonia Criteria, dated 11/4/97 (ID No. 391-2000-013). The following data is necessary to determine the in-stream NH_3 -N criteria used in the attached computer model of the stream:

-	Discharge pH	=	7.0	(Default)
-	Discharge Temperature	=	21ºC	(Lower than the Default 25°C)
-	Stream pH	=	7.0	(Default)
-	Stream Temperature	=	25ºC	(Default for WWF)
-	Background NH ₃ -N	=	0	(Default)

The model input data and results are attached. The printout of the WQM 7.0 output indicates that at a discharge of 0.012 MGD, limits (rounded according to the NPDES Technical Guidance 362-0400-001) of 2.0 mg/L NH₃-N as a monthly average and 4.0 mg/L NH₃-N instantaneous maximum are necessary to protect the aquatic life from toxicity effects. These limits are slightly more stringent than those currently in place. However, the facility's recent DMRs indicate that the proposed limits are already being met consistently.

Total Suspended Solids (TSS):

The existing limits of 30 mg/L average monthly and 60 mg/L instantaneous maximum will remain in the renewal permit based on the minimum level of effluent quality attainable be secondary treatment based on 25 Pa. Code § 92a.47. Past DMRs and inspection reports show that the facility has been consistently achieving concentrations under these limits.

Dissolved Oxygen (D.O.):

A minimum D.O. of 5.0 mg/L is required per 25 Pa. Code § 93.7. This is consistent with the previous permit and current Department criteria.

pH:

The effluent discharge pH should remain above 6 and below 9 standard units according to 25 Pa. Code § 95.2(2).

NPDES Permit Fact Sheet Castle Hill MHP

Fecal Coliform:

The recent coliform guidance in 25 Pa. Code § 92a.47(a)(4) requires a summer technology limit of 200/100 ml as a geometric mean (average monthly) and not greater than 1,000/100 ml (IMAX) and 25 Pa. Code § 92a.47(a)(5) requires a winter limit of 2,000/100 ml as a geometric mean (average monthly) and not greater than 10,000/100 ml (IMAX), respectively.

Total Residual Chlorine (TRC):

Based on the attached TRC Excel Spreadsheet calculator, which uses the equations and calculations from the Department's May 1, 2003 Implementation Guidance for Total Residual Chlorine (ID No. 391-2000-015), the facility's discharge must meet a monthly average limit of 0.05 mg/L and an instantaneous maximum limit of 0.16 mg/L. Based on the DMRs from the past year, the facility has been consistently achieving this limit. Therefore, this limit will remain in the renewal permit.

Chesapeake Bay Strategy:

This facility falls in Phase 5 of the Pennsylvania's Chesapeake Bay Tributary Strategy Point Source Implementation Plan. At this time, the Department is not requiring a total maximum annual phosphorus or nitrogen loading cap. The Supplement to Phase II Watershed Implementation Plan states the following:

"For Phase 5 sewage facilities with individual permits (average annual design flow on August 29, 2005 >0.002 MGD and < 0.2 MGD), DEP will issue individual permits with monitoring and reporting for TN and TP throughout the permit term at a frequency no less than annually, unless 1) the facility has already conducted at least two years of nutrient monitoring and 2) a summary of the monitoring results are included in the next permit's fact sheet. If, however, Phase 5 facilities choose to expand, the renewed or amended permits will contain Cap Loads based on the lesser of a) existing TN/TP concentrations at existing average annual flow or b) 7,306 lbs/yr TN and 974 lbs/yr TP."

Total Nitrogen (TN) and Total Phosphorus (TP) "Monitor & Report" requirements will not be necessary since the facility has already satisfied the data criteria of the Chesapeake Bay Strategy.

Total Phosphorus (TP):

eMAP PA lists the section of Rock Creek closest to this facility's discharge point as being impaired for nutrients (without a TMDL). As per the previous protection report, an aquatic biologist from the Department concluded from his studies that phosphorus is not currently a problem in this area.

Тохіс

This is a minor sewage facility receiving domestic wastewater only and the current application does not require sampling of toxic pollutants (or heavy metals) for those facilities with design flows less than 0.1 MGD. Therefore, no reasonable potential analysis for toxic pollutants has been performed for this permit renewal.

Additional Consideration

Flow Monitoring

The requirement to monitor the volume of effluent will remain in the draft permit per 40 CFR § 122.44(i)(1)(ii).

Monitoring Frequency and Sample Type

The facility currently is required to collect daily effluent grab samples for DO, TRC, and pH; bi-monthly effluent 24-hr composite samples of CBOD₅, TSS, and ammonia-nitrogen; bi-monthly effluent grab samples of fecal coliform. Based on the best professional judgement of the author, the existing monitoring frequencies are sufficient and necessary. Therefore, the renewal permit monitoring frequencies will remain the same as those specified in the existing permit.

Antidegradation (93.4)

The effluent limits for this discharge have been developed to ensure that existing in-stream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High-Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

303d Listed Streams

This discharge is not located on a 303d listed stream segment.

Class A Wild Trout Fisheries

No Class A Wild Trout Fisheries are impacted by this discharge.

Anti-Backsliding

Unless stated otherwise in this fact sheet, all permit requirements proposed in this fact sheet are at least as stringent as existing permit requirements in accordance with 40 CFR §122.44(I)(1).

TRC results

1	TRC EVAL	UATION				
2	Input appropria	ate values ir	n A3:A9 and D3:D9			
3	0.006	= Q stream	n (cfs)	0.5	= CV Daily	
4	0.012	= Q discha	arge (MGD)	0.5	= CV Hourly	
5	30	= no. sam	oles	1	= AFC_Parti	al Mix Factor
6	0.3	= Chlorine	Demand of Stream	1	= CFC Parti	al Mix Factor
7	0	= Chlorine	Demand of Discharge	15	= AFC_Crite	ria Compliance Time (min)
8	0.05	= BAT/BP.	J Value	720	= CFC_Crite	ria Compliance Time (min)
9	0	= % Facto	r of Safety (FOS)		=Decay Coe	fficient (K)
10	Source	Reference	AFC Calculations		Reference	CFC Calculations
11	TRC	1.3.2.iii	WLA afc =	0.122	1.3.2.iii	WLA cfc = 0.112
12	PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581
13	PENTOXSD TRG	5.1b	LTA_afc=	0.045	5.1d	LTA_cfc = 0.065
14						
15	Source		Effluer	nt Limit Calcu	lations	
16	PENTOXSD TRG	5.1f		AML MULT =	1.231	
17	PENTOXSD TRG	5.1g	AVG MON L	.IMIT (mg/l) =	0.050	BAT/BPJ
18			INST MAX L	.IMIT (mg/l) =	0.164	
19						
20						
21						
22	WLA afc	(.019/e(-k*	AFC_tc)) + [(AFC_Yc*Q	s*.019/Qd*	e(-k*AFC_tc))
23		+ Xd + (/	AFC_Yc*Qs*Xs/Qd)]*(1-	FOS/100)		
24	LTAMULT afc	EXP((0.5*LN	(cvh^2+1))-2.326*LN(cvh^2	2+1)^0.5)		
25	LTA_afc	wla_afc*LTA	AMULI_afc			
26 27	WI A	10441-11		* 04410.11		
27	WLA_CIC	(.011/e(-k*		011/Qd*e	(-K-CFC_tc))
20 20			loud^2/no_complect4)\2.	26*1 N(ourlA)		1)20 5)
20 20		wla cfc*LT/	(CVG 2/no_samples+1))-2.3	SZO LIN(CVC 2	2no_samples+	1) 0.3)
31	LTA_CIC	wia_cic LTA	Amori_cic			
32		EXP(2.326*1	N((cvd^2/no_samples+1)^)	0.5)-0.5*I N(c	vd^2/no_samn	lest1))
33	AVG MON LIMIT	MIN(BAT B	PJ.MIN(LTA afe I TA efe)*		ra zno_samp	
34	INST MAX LIMIT	1.5*((av m	on limit/AML_MULT/L1	AMULT af	c)	
35						
36						

WQM 7.0 Data:

WQM 7.0 MODEL INPUT:

- 1. Outfall 001 on Trib 59218 to Rock Creek
 - a. Elevation: 540 ft
 - b. RMI: (17.13 + 0.46 = 17.59 miles) to Monocacy River located at PA & MD boundaries
 - c. Drainage Area: 0.15 mi²
 - d. Low Flow Yield: 0.04 cfs/mi²
 - e. Discharge Flow: 0.012 MGD
- 2. Just before 59041 to Rock Creek
 - a. Elevation: 516 ft
 - b. RMI: (17.13 + 0.001 = 17.131 miles) to Monocacy River located at PA & MD boundaries
 - c. Drainage Area: 0.18 mi²
 - d. Low Flow Yield: 0.04 cfs/mi²
 - e. Discharge Flow: 0.000 MGD
- 3. Just before 59195 on Rock Creek
 - a. Elevation: 490 ft
 - b. RMI: 15.36 miles to Monocacy River located at PA & MD boundaries
 - c. Drainage Area: 2.33 mi²
 - d. Low Flow Yield: 0.04 cfs/mi²
 - e. Discharge Flow: 0.000 MGD

Attachment:

Existing Effluent Limitations and Monitoring Requirements

Parameter		Monitoring Requirements						
	Mass Units (Ibs/day) ⁽¹⁾		Concentrations (mg/L)				Minimum ⁽²⁾	Required
	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	ххх	xxx	xxx	ххх	Continuous	Measured
pH (S.U.)	XXX	xxx	6.0	XXX	xxx	9.0	1/day	Grab
DO	XXX	ххх	5.0	xxx	xxx	ххх	1/day	Grab
TRC	XXX	xxx	ххх	0.05	xxx	0.16	1/day	Grab
CBOD5	xxx	XXX	XXX	25	XXX	50	2/month	24-Hr Composite
TSS	XXX	ххх	xxx	30	XXX	60	2/month	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	ххх	2,000 Geo Mean	XXX	10,000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	xxx	ххх	200 Geo Mean	xxx	1,000	2/month	Grab
Ammonia Nov 1 - Apr 30	xxx	xxx	XXX	6.0	xxx	12.0	2/month	24-Hr Composite
Ammonia May 1 - Oct 31	XXX	XXX	XXX	2.0	XXX	4.0	2/month	24-Hr Composite

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

	Effluent Limitations						Monitoring Requirements	
Parameter	Mass Units (lbs/day) ⁽¹⁾		Concentrations (mg/L)				Minimum ⁽²⁾	Required
	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	xxx	xxx	xxx	xxx	Continuous	Measured
pH (S.U.)	xxx	xxx	6.0 Daily Min	xxx	XXX	9.0	1/day	Grab
DO	xxx	xxx	5.0 Daily Min	xxx	xxx	xxx	1/day	Grab
TRC	XXX	xxx	XXX	0.05	xxx	0.16	1/day	Grab
CBOD5	xxx	xxx	xxx	25	XXX	50	2/month	24-Hr Composite
TSS	XXX	XXX	xxx	30	XXX	60	2/month	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2,000 Geo Mean	xxx	10,000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1,000	2/month	Grab
Ammonia Nov 1 - Apr 30	XXX	XXX	XXX	6.0	xxx	12.0	2/month	24-Hr Composite
Ammonia May 1 - Oct 31	XXX	XXX	XXX	2.0	XXX	4.0	2/month	24-Hr Composite

Compliance Sampling Location:

Other Comments:

Tools and References Used to Develop Permit			
\square	WOM for Windows Model (see Attachment		
	PENTOXSD for Windows Model (see Attachment)		
	TRC Model Spreadsheet (see Attachment		
	Temperature Model Spreadsheet (see Attachment		
	Toxics Screening Analysis Spreadsheet (see Attachment		
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.		
$\overline{\boxtimes}$	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.		
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.		
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.		
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.		
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.		
	Pennsylvania CSO Policy, 385-2000-011, 9/08.		
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.		
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.		
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.		
\square	Implementation Guidance Design Conditions, 391-2000-006, 9/97.		
\square	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.		
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997		
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.		
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.		
\boxtimes	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.		
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.		
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.		
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.		
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.		
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.		
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.		
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.		
\boxtimes	Design Stream Flows, 391-2000-023, 9/98.		
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.		
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.		
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.		
	SOP:		
	Other:		