

Application Type	Renewal
Facility Type	Municipal
Maior / Minor	Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No.	PA0086142
APS ID	857287
Authorization ID	1397637

Applicant and Facility Information

Applicant Name	Washington Township Berks County	Facility Name	Washington Township STP
Applicant Address	120 Barto Road	Facility Address	567 Niantic Road
	Barto, PA 19504-8746		Barto, PA 19504
Applicant Contact	Richard Sichler, Township Manager (610) 845-7760	Facility Contact	Gary Kellon, Operator (610) 845-7760
Applicant Phone	rsichlerwashtwp@comcast.net	Facility Phone	gkellon@washtwpberks.org
Client ID	24191	Site ID	249587 / PF ID 256812
Ch 94 Load Status		Municipality	Washington Township
Connection Status		County	Berks
Date Application Recei	ved May 25, 2022	EPA Waived?	Yes (unless change in limits subject to TMDL which did not occur)
Date Application Accep	uted June 9, 2022	If No, Reason	
Purpose of Application	Renewal of NPDES permit for treat	ted sewage	

Summary of Review

The facility's existing permit was issued November 8, 2017 with an effective date of December 1, 2017 and an expiration date of November 30, 2022. The existing permit's limits and conditions have been administratively extended. A permit renewal application was submitted May 25, 2022 via DEP's electronic upload system, OnBase (Reference ID # 58591). An application addendum was submitted via OnBase (Ref. ID # 130531) on November 21, 2023 with information about indirect users as requested by DEP.

The application addendum states that "the WWTP provides public sewer service to the area bounded by Old Route 100 to the West, Bally Borough to the North, County Line Road to the East, and Bechtelsville Borough to the South."

The application identified one industrial user: Longacre's Modern Dairy. The application addendum represented that an average of 1350 gpd is contributed from this indirect user which is a mixture of pre-aerated process wastewater, non-contact cooling water, and sanitary wastewater. There are federal Effluent Limitation Guidelines (ELGs) applicable to Dairy Processors but they do not include Pretreatment Standard limitations. The ELGs identify pollutants of concern as: pH, BOD5, and TSS. These parameters are already included in this facility's NPDES permit, with limits (although CBOD5 is included in the permit in place of BOD5, consistent with State regulations that allow for either parameter). In this case, the facility's compliance history has not included exceedances of pH, CBOD5, or TSS. Interference and/or pass through in the treatment plant has not been in evidence. In addition, the application addendum stated that an Industrial User permit had been issued to Longacre's Dairy by the Township and that effluent monitoring is conducted quarterly.

Design flow:

DEP's Standard Operating Procedure (SOP) Establishing Effluent Limitations for Individual Sewage Permits instructs to base the effluent limits in sewage permits on the average annual design flow. The renewal application indicates the facility's average annual design flow as 0.25 MGD as does the facility's WQM permit. The existing NPDES permit's effluent

Approve	Deny	Signatures	Date
x		<i>Bonnie Boylan</i> Bonnie Boylan / Environmental Engineering Specialist	December 21, 2023
x		<i>Maria D. Bebenek for</i> Daniel W. Martin, P.E. / Environmental Engineer Manager	January 26, 2024
x		<i>Maria D. Bebenek</i> Maria D. Bebenek, P.E./ Environmental Program Manager	January 26, 2024

limitations were based on 0.25 MGD. A review of the facility's eDMR data from January 1, 2021 through October 31, 2023 indicates that their average flow has been 0.18 MGD. The monthly average flow exceeded 0.25 MGD two months out of the 34 months of eDMRs summarized, but the 95th percentile of the monthly average flows reported was 0.245 MGD.

The NPDES permit application, submitted in May 2022, and the application addendum submitted in November 21, 2023 included this information:

It was reported in the Township's 2020 Chapter 94 Report that the Township anticipated an expansion of the WWTP within the next few years. The proposed expansion of the WWTP would increase the hydraulic design capacity of the plant from 0.275 MGD to 0.550 MGD. The WWTP expansion project has been halted due to financial limitations of the current Developer. If an Agreement is made with the Developer and Washington Township, a PA DEP Planning Special Study will be completed and submitted to DEP. At this time, any future connections to the sanitary sewer system will be determined by the Township based on available capacity at the WWTP.

However, the facility's Chapter 94 Municipal Wasteload Annual Report for 2022, received on March 27, 2023 (OnBase Ref ID #99130), did project hydraulic overloads and included plans for an expansion in Appendix 10:

A WWTP upgrade/ expansion is proposed that would double the existing hydraulic design capacity of the plant from 0.275 MGD to 0.550 MGD by adding two (2) SBRs and two (2) aerated sludge holding tanks. See the attached As-Built schematic showing a potential location for the SBRs and aerated sludge holding tank additions. The Sewer Agreement was signed by the Developer. As of 3/23/23, the Developer is in the process of securing the necessary funds to allow SDE to begin the design and permitting process. Once the Developer secures the necessary funds, SDE can provide DEP a proposed schedule for the WWTP Expansion Project if desired.

While the 2022 Chapter 94 Municipal Wasteload report proposed a future WWTP expansion for future development, (1) the NPDES application and November 2023 application addendum did not indicate an increase in flow, nor include their Sewage Planning Approval letter which is required for increases in flow, and (2) a WQM permit for expanding the TP has not been received.

Therefore, the renewal permit effluent limits continue to be based on a design flow of 0.25 MGD. If the facility does move forward with an expansion of the WWTP, both a NPDES permit amendment application and a WQM permit application will be necessary, after DEP Sewage Planning approval has been secured.

Note:

Because the 2019 AAF reported on the NPDES permit application (0.2563 MGD) was over the design flow of 0.25 MGD and because the projected AAF for 2027 (0.2535 MGD) shown in the facility's 2022 Chapter 94 Report spreadsheet (see attached) is over 0.25 MGD, permit limits using an alternative discharge flow of 0.275 MGD (the hydraulic capacity of the existing treatment plant) were also considered—in case the permittee physically allowed increased influent flows before expanding the WWTP or amending their NPDES permit as required. Assuming no regulatory changes and no changes in receiving stream designated uses or downstream designated uses were to occur, the limits in this draft renewal permit would still be protective of the receiving water although the DEP model would recommend a monitoring requirement for Total Copper in that case whereas the model did not recommend a monitoring requirement for a discharge flow of 0.25 MGD.

Hauled-In Wastes:

The facility indicated in their application that they do not anticipate accepting hauled-in wastes over the next five years.

Sludge use and disposal description and location(s):

According to their application, sewage sludge is hauled to Pottstown WWTP

Combined Sewers Outfalls: Not Applicable.

Unresolved Violations:

There are no unresolved violations for this facility according to DEP's eFacts Clean Water Program database and DEP's WMS 'Open Violations per Client' Report.

Delaware River Basin Commission:

The facility discharges to a stream within the Delaware River watershed and is thus subject to the Delaware River Basin Commission (DRBC)'s requirements. A copy of the draft permit and Fact Sheet will therefore be sent to the DRBC for their review in accordance with State regulations and an interagency agreement. Any comments from DRBC will be considered. The most recent DRBC docket D-1994-042 CP-3 was approved for this facility on March 9, 2022 with an expiration date of November 30, 2027. *The docket approved a discharge of 0.25 MGD.*

Public Participation:

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Existing permit limits, outfall 001:

			Effluent	Limitations	Monitoring Requirements			
Parameter	Mass Unit	s (lbs/day)		Concentrat	tions (mg/L)		Minimum	Required
Falameter	Average	Weekly		Average	Weekly	Instant.	Measurement	Sample
	Monthly	Average	Minimum	Monthly	Average	Maximum	Frequency	Туре
		Report						
Flow (MGD)	Report	Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
					9.0			
pH (S.U.)	XXX	XXX	6.0	XXX	Max	XXX	1/day	Grab
Dissolved Oxygen	xxx	XXX	5.0	XXX	xxx	XXX	1/day	Grab
Total Residual Chlorine								
(TRC)	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
							,	8-Hr
CBOD5	52	83	XXX	25.0	40.0	50	2/month	Composite
BOD5		Report						8-Hr
Raw Sewage Influent	Report	Daily Max	XXX	Report	XXX	XXX	2/month	Composite
¥		, i i i i i i i i i i i i i i i i i i i		•				8-Hr
Total Suspended Solids	63	94	XXX	30.0	45.0	60	2/month	Composite
Total Suspended Solids		Report						8-Hr
Raw Sewage Influent	Report	Daily Max	XXX	Report	XXX	XXX	2/month	Composite
Fecal Coliform (No./100 ml)				200				
May 1 - Sep 30	XXX	XXX	XXX	Geo Mean	XXX	1000	2/month	Grab
Fecal Coliform (No./100 ml)				2000				
Oct 1 - Apr 30	XXX	XXX	XXX	Geo Mean	XXX	10000	2/month	Grab
Ammonia-Nitrogen								8-Hr
May 1 - Oct 31	15	XXX	XXX	7.5	XXX	15	2/month	Composite
Ammonia-Nitrogen								8-Hr
Nov 1 - Apr 30	41	XXX	XXX	20.0	XXX	40	2/month	Composite
								8-Hr
Total Phosphorus	1.04	XXX	XXX	0.5	XXX	1.0	2/month	Composite
		Report			Report			8-Hr
Copper, Total	Report	Daily Max	XXX	Report	Daily Max	XXX	1/month	Composite
		Report			Report			8-Hr
Total Dissolved Solids	XXX	Daily Max	XXX	XXX	Daily Max	XXX	1/quarter	Composite

			Discharge, Receiving Wate	ers and Water Supply	Informat	tion			
Outfall N	lo. <u>001</u>			Design Flow	(MGD)	0.25	(Qs : Qd = 7:1)		
Latitude	40°	23' 9"		Longitude		-75º 35' 27"			
Quad Na	ame			Quad Code					
Wastew	ater Descr	ription:	Sewage Effluent						
Receivir	ng Waters	West	Branch Perkiomen Creek	Stream Code		01439			
NHD Co	m ID	2597	1332	RMI			er eMapPA & RBC docket)		
Drainage			sq.mi. per PA Stream Stats	Yield (cfs/mi ²)		0.187			
Q ₇₋₁₀ Flo			sing gage correlation	Q ₇₋₁₀ Basis		Correla	ation w/ downstream gage 01472199*		
Elevatio	n (ft)	420 p	per eMapPA	Slope (ft/ft)					
Watersh	ed No.	3-E		Chapter 93 Clas	SS.	CWF,	MF		
Existing	Use	None	9	Existing Use Qu	ualifier	Not applicable			
Exceptio	ons to Use	Not a	applicable	Exceptions to C	riteria	Not ap	plicable		
Assessn	nent Statu	S	impaired for aquatic life						
Cause(s) of Impaii	rment	urban runoff, flow regime	modification, agriculture	e, siltatior	n (assess	sment # 22462)		
Source(s) of Impai	irment	potentially agriculture						
TMDL S	tatus		TMDL approved 10/9/200	3 Name Green Lane Reservoir, downstream					
-	-		Perkiomen Creek and then - Not available	into Schuylkill River Data Source- Not ava	ailable				
Nearest	Downstre	am Publ	lic Water Supply Intake	Aqua PA, Norristown					
PWS Wa	aters	Perkion	nen Creek	Flow at Intake (cfs)				
PWS RM	ЛІ	Approx.	<u>. 0.9</u>	Distance from Out	fall (mi)	<u>Approx</u>	<u>k. 29 miles</u>		
v Flow Yield Y gage x D.	using 26 y d = Q7-10 A. for poin	/ D.A. = t on stre	historic date=4.3 cfs, Draina 0.187 cfs/sq.mi. eam at outfall 001 location = omen Creek is Trout Natural	0.187 cfs/sq.mi. x 14.4 s	sq.mi. = 2				
ire length of wning seas		h Perkic	omen Creek is Trout Natural	Reproduction (DC) leve) levels need to) levels need to be prot		

Upstream, West Branch Perkiomen Creek is designated as 'EV', Exceptional Value. The EV designation terminates at River Mile Index (RMI) 8.0, Old Route 100.

Downstream at 4.7 RMI is Bally Boro STPshould be included in WQM 7 modeling. PA0022543. Permitted flow of 0.50 MGD, Elev 385 per eMapPA, RMI 4.6 per permit Location: 40.38995 / -75.5656 per eMapPA; Permit limits = 25.0 mg/I BOD, 30 TSS, 6 NH3 summer and 12 winter Mo.Avg Per last Fact Sheet, DA=16.3 mi2, Q7-10 = 3.1 cfs, LFY = 0.19; elev 395'

Downstream approximately 6 river miles is a USGS stream gage, 01472199, at 1.2 RMI on West Branch Perkiomen Creek. No gages upstream

¹ Stuckey, M.H., and Roland, M.A., 2011, Selected streamflow statistics for streamgage locations in and near Pennsylvania: U.S. Geological Survey Scientific Investigations Report 2011 – 1070, 88p.

¹ The 2016 Integrated Report available at <u>http://www.depgis.state.pa.us/integratedreport/index.html</u>

Treatment Facility Summary Treatment Facility Name: Washington Township STP WQM Permit No. **Issuance Date** 0609402 A-1 12/30/2021 0609402 T-1 9/30/2013 0694415 T-1 9/30/2013 0694415 10/28/1994 Degree of Avg Annual Waste Type Treatment Process Type Disinfection Flow (MGD) Secondary With Chemical and Sequencing Sewage Phosphorus Reduction **Batch Reactor** Hypochlorite 0.25 Hydraulic Capacity **Organic Capacity Biosolids** Use/Disposal (MGD) (lbs/day) Load Status **Biosolids Treatment** 0.275 Aerobic Digestion Other WWTP 625

The 2022 application included the following description of the treatment plant:

Influent wastewater flows through one (1) comminutor followed by one (1) influent pump station, two (2) Sequence Batch Reactors (SBRs), one (1) flash mix tank, two (2) chlorine contact tanks, one (1) reaeration/ flow measuring channel, and two (2) aerated sludge holding tanks.

SBRs are the limiting treatment unit at the STP: 0.275 MGD Hydraulic Capacity as average monthly

Changes Since Last Permit Issuance:

The WQM permit was amended in 2021 after receiving a re-rate application: the amendment increased the Design Hydraulic Capacity from 0.25 MGD to 0.275 MGD. (No amendment of the NPDES permit occurred.)

DMR Data for Outfall 001 (from November 1, 2022 to October 31, 2023)

Parameter	OCT-23	SEP-23	AUG-23	JUL-23	JUN-23	MAY-23	APR-23	MAR-23	FEB-23	JAN-23	DEC-22	NOV-22
Flow (MGD)												
Average Monthly	0.1613	0.1733	0.1606	0.1670	0.1528	0.1648	0.1723	0.1883	0.1673	0.2079	0.2026	0.1681
Flow (MGD)												
Daily Maximum	0.2209	0.3319	0.2148	0.3049	0.2099	0.2234	0.3431	0.292	0.2380	0.4036	0.393	0.2354
pH (S.U.)												
Minimum	7.44	7.3	7.28	7.13	7.22	7.18	7.13	7.18	7.14	7.04	7.18	7.23
pH (S.U.)												
Maximum	7.65	7.68	7.69	7.76	7.58	7.57	7.42	7.61	7.59	7.74	7.75	8.04
DO (mg/L)												
Daily Minimum	8.04	7.46	6.91	6.9	7.59	8.32	7.96	8.38	8.8	8.49	8.22	7.32
TRC (mg/L)												
Average Monthly	0.41	0.37	0.33	0.39	0.4	0.41	0.41	0.43	0.38	0.42	0.36	0.43
TRC (mg/L)												
Instantaneous												
Maximum	0.51	0.6	0.49	0.64	0.62	0.51	0.63	0.79	0.78	0.77	0.75	1.36
CBOD5 (lbs/day)												
Average Monthly	2.7	2.1	3.0	3.2	3.4	2.7	3.4	4.6	3.7	2.7	3.7	5.3
CBOD5 (lbs/day)												
Weekly Average	3.0	2.2	3.7	4.1	3.9	2.7	3.6	5.4	4.0	3.4	5.2	6.9
CBOD5 (mg/L)												
Average Monthly	2.0	2.5	2.9	2.5	2.9	2.2	2.6	2.5	3.0	2.0	2.4	3.6
CBOD5 (mg/L)												
Weekly Average	2.0	2.6	3.8	3.0	3.3	2.4	3.0	2.7	3.5	2.0	2.8	5.1
BOD5 (lbs/day)												
Raw Sewage Influent	100	400	400	040	407	450	007				005	100
Average Monthly	122	122	126	213	167	153	267	386	236	300	235	490
BOD5 (lbs/day)												
Raw Sewage Influent	450	100	139	255	474	405	205	400	045	200	200	F 4 7
Daily Maximum	152	130	139	200	171	185	325	496	245	360	296	517
BOD5 (mg/L) Raw Sewage Influent												
Average Monthly	95	144	118	146	144	123	207	206	201	245	160	370
TSS (lbs/day)	90	144	110	140	144	123	207	200	201	240	100	370
Average Monthly	1	0.9	4	1	1	2	1	7	2	6	9	2
TSS (lbs/day)	1	0.9	4	1	1			1		0	3	<u> </u>
Raw Sewage Influent												
Average Monthly	142	159	144	274	206	192	259	323	147	312	120	504
TSS (lbs/day)	142	155	144	214	200	132	233	525	147	512	120	504
Raw Sewage Influent												
Daily Maximum	235	163	177	322	274	251	266	397	168	352	171	650

NPDES Permit No. PA0086142

TSS (lbs/day)												
Weekly Average	2	0.9	4	1	1	2	1	12	3	7	11	4
TSS (mg/L)												
Average Monthly	1.0	1.0	3.5	1.0	1.0	1.5	1.0	3.5	2.0	4.5	6.0	1.5
TSS (mg/L)												
Raw Sewage Influent												
Average Monthly	115	188	133	189	177	153	196	173	128	251	78	416
TSS (mg/L)												
Weekly Average	1.0	1.0	4.0	1.0	1.0	2.0	1.0	6.0	3.0	5.0	6.0	2.0
Total Dissolved Solids												
(lbs/day)												
Daily Maximum		719			595			637			624	
Total Dissolved Solids												
(mg/L)												
Daily Maximum		613			495			379			388	
Fecal Coliform												
(No./100 ml)												
Geometric Mean	< 4	6	3	6.0	5	< 2	< 2	4	2	< 2	9	43
Fecal Coliform												
(No./100 ml)												
Instantaneous												
Maximum	7	13	3	8	8	3	< 2	8	3	< 2	26	183
Ammonia (lbs/day)												
Average Monthly	0.1	0.04	0.04	0.1	0.1	0.08	0.1	0.1	0.03	0.09	0.5	0.1
Ammonia (mg/L)												
Average Monthly	0.08	0.05	0.04	0.1	0.12	0.07	0.1	0.08	0.03	0.07	0.49	0.1
Total Phosphorus												
(lbs/day)												
Average Monthly	0.30	0.20	0.20	0.30	1.11	0.20	0.40	0.40	0.50	0.30	0.30	0.80
Total Phosphorus												
(mg/L)												
Average Monthly	0.25	0.27	0.19	0.23	0.89	0.16	0.3	0.21	0.35	0.27	0.20	0.56
Total Copper (lbs/day)												
Average Monthly	0.004	0.002	0.004	0.004	0.004	0.003	0.006	0.007	0.004	0.004	0.007	0.2
Total Copper (lbs/day)												
Daily Maximum	0.004	0.002	0.004	0.004	0.004	0.003	0.006	0.007	0.004	0.004	0.007	0.2
Total Copper (mg/L)												
Average Monthly	0.003	0.003	0.004	0.003	0.003	0.003	0.004	0.004	0.004	0.004	0.004	0.137
Total Copper (mg/L)												
Daily Maximum	0.003	0.003	0.004	0.003	0.003	0.003	0.004	0.004	0.004	0.004	0.004	0.137

Compliance History

Effluent Violations for Outfall 001, from: December 1, 2022 To: October 31, 2023

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
Total Phosphorus	06/30/23	Avg Mo	1.11	lbs/day	1.04	lbs/day
Total Phosphorus	06/30/23	Avg Mo	1.11	lbs/day	1.04	lbs/day
Total Phosphorus	06/30/23	Avg Mo	0.89	mg/L	.5	mg/L
Total Phosphorus	06/30/23	Avg Mo	0.89	mg/L	.5	mg/L

Sanitary Sewer Overflow (SSO) on April 23, 2020 at Manhole at County Line Road

Inspections:

April 27, 2020 - Administrative File Review. No violations noted.

- January 30, 2019 (Kevin Buss) No Violations noted. Observations: all treatment units operating normally, records appear up to date, good aeration in aerobic digesters and SBR tanks, approximately 10% of SBR tanks have orange greasy foam with carryover into Chlorine Contact tanks, no foam in post-aeration, no discharge during inspection, influent sampling location prior to any treatment, effluent sampling location after disinfection and adequate for representative samples, effluent samples are flow-proportional, weir and ultrasonic flow meter and 7-day chart with flow meter in post-aeration tank, have an emergency generator which is exercised routinely, sludge disposal records available (sludge being disposed at Pottstown WWTP).
- December 5, 2017 (Kevin Buss) No Violations noted. All treatment units online and records appear up to date. Record review was conducted in township office. Samples were collected by inspector: lab analyses indicated no permit exceedances.

Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	0.25
Latitude	40º 23' 9"		Longitude	-75º 35' 27"
Wastewater De	escription:	Sewage Effluent		

Technology-Based Effluent Limitations (TBELs)

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal	State	DRBC
		Average	Regulation	Regulation	Requirement
	25	Monthly	133.102(a)(4)(i)	92a.47(a)(1)	
CBOD ₅	23	Average	133.102(d)(4)(l)	52a.47(a)(1)	
	40	Weekly	133.102(a)(4)(ii)	92a.47(a)(2)	
	10	Average			
CBOD₅	85% removal	Monthly		92a.47(a)(3)	
BOD ₅	85% removal	-			18 CFR Part 410
		Average			18 CFR Part 410
	30	Monthly	133.102(b)(1)	92a.47(a)(1)	
		Average			18 CFR Part 410
Total Suspended Solids (TSS)	45	Weekly	133.102(b)(2)	92a.47(a)(2)	
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)	18 CFR Part 410
Fecal Coliform					
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)	18 CFR Part 410
Fecal Coliform					
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)	
Fecal Coliform					
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)	
Fecal Coliform					
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)	
		Average		92a.47(a)(8) &	
Total Residual Chlorine (TRC)	0.5	Monthly	-	92a.48(b)	
		Average			18 CFR Part 410
Ammonia (NH ₃ -N)	20	Monthly			
	1000	Average			18 CFR Part 410
Total Dissolved Solids (TDS)	1000*	Monthly			

*Or a concentration established by the Commission which is compatible with designated water uses and stream quality objectives and recognizes the need for reserve capacity to serve future dischargers (i.e. limit based on a TDS Determination submitted to DRBC proving that the discharge will not cause the TDS in the receiving water to exceed the lesser of 500 mg/l or 133% of background). Their DRBC docket [D-1994-042 CP-3] includes 1000 mg/l limit for TDS.

Narrative limits are imposed in NPDES permits in Part A following the limits tables. The narrative limits include: "The monthly average percent removal of BOD₅ or CBOD₅ and TSS must be at least 85% for WWTP facilities on a concentration basis...." Because all Chapter 94 Municipal Wasteload Annual reporting for sewage is in terms of BOD₅, the influent monitoring has continued to be required as BOD₅, as requested by DEP's regional office Sewage Planning staff. Because DEP's WQM 7.0 model uses CBOD₅, most NPDES permits for sewage treatment plants (STPs) include effluent limits in terms of CBOD₅ rather than as BOD₅.

Best Professional Judgment (BPJ) Limitations

Dissolved Oxygen

A minimum effluent limit of 5.0 mg/L for DO is derived from a state water quality criteria found in 25 Pa. Code §93.7(a). The effluent limit of 5.0 mg/L has been assigned to other sewage facilities throughout the state. The existing permit included a minimum effluent limit for DO of 5.0 mg/l and no change is recommended.

Water Quality-Based Effluent Limitations (WQBELs)

CBOD₅, NH₃-N and Dissolved Oxygen (DO)

DEP uses a model, WQM 7.0, to determine appropriate permit requirements for CBOD₅, NH₃-N and DO. A multiple discharge analysis was performed because Bally Boro Sewage Treatment Plant (STP) (NPDES Permit # PA0022543, with design flow of 0.5 MGD) is located approximately 2.0 miles downstream from Washington Twp WWTP's discharge. (See attached). The first model simulation was for summer months and used an in-stream DO target of 5.0 mg/l as a minimum. The model was re-run for salmonid early life stages protection and winter conditions (using Technical Guidance document: Implementation of Temperature Criteria) by adjusting the Q7-10 (and resultant LFY model input value) by a factor of 1.6 to estimate stream flow during November and decreasing the in-stream temperature to 7.2°C to approximate the stream temperature during November, and using an in-stream DO target of 8 mg/l, appropriate for 'Trout Natural Reproduction' streams whose early life stages occur during October through May [Pa Code Chapter 93.7(b)]. The model output indicates that the existing permit's limits for CBOD₅, NH3-N, and DO are still protective of water quality. No changes are therefore recommended.

Total Residual Chlorine

DEP's TRC_CALC worksheet was utilized to determine if the TBEL of 0.5 mg/L is protective of the stream (See attached). The worksheet indicated that the existing limits (TBELs), 0.5 mg/l as a Monthly Average and 1.6 mg/l as a Daily Maximum, are appropriate to protect water quality standards. No change is therefore recommended.

Toxics

DEP uses a model to calculate WQBELs and evaluate Reasonable Potential for parameters to cause in-stream exceedances of water quality criteria found in 25 Pa Code §93.8c. The model is called 'Toxics Management Spreadsheet' (TMS) and is an Excel version of the previously used model known as PENTOX. (See the attached for model inputs and outputs. Note: when there is no available data for Hardness, DEP typically uses a default value of 100 mg/l in the model. The Hardness default value was used in this case. The permittee supplied no Hardness data and there is no DEP WQN monitoring station on the waterway.)

DEP's NPDES permit application for minor sewage facilities (i.e. less than 1.0 MGD) requires at least one sample of Total Copper, Total Lead and Total Zinc if there are any industrial or commercial contributors. The application reported the result of one effluent sample for Lead and Zinc and 25 effluent samples for Total Copper. Because of the limited number of effluent sample results, the *maximum* concentrations reported in the application were input into the TMS model for Total Lead and for Total Zinc.

For Total Copper, the application represented that the average concentration of 25 samples was 0.005 mg/l and the maximum concentration was 0.009 mg/l. For this evaluation, the facility's eDMR data—which included Total Copper-- were also reviewed. From the period between January 1, 2018 and October 31, 2023, the average concentration for Total Copper was 0.0075 mg/l and the median value was 0.005 mg/l. Removing an outlier data point of 0.137 mg/l, reported for November 2022, still yielded an average of 0.0056 mg/l. DEP's SOP Establishing WQBELs and Permit Conditions for Toxic Pollutants in NPDES Permits instructs to use the median value of sample results instead of the average calculated by DEP's TOXCONC spreadsheet when there are outliers in the data. Using either 0.0056 mg/l or 0.005 mg/l as the discharge concentration in the TMS model results in no limit or monitoring requirement being recommended for Total Copper.

The TMS model did recommend a monitoring requirement for Total Zinc and it has been added to the draft renewal permit. Because the Total Zinc discharge concentration was less than 50% of the calculated WQBEL, no 'Reasonable Potential' for the discharge to cause an in-stream exceedance of water quality criteria was indicated such that no permit limit was deemed needed. Because the Total Zinc discharge concentration reported was more than 10% of the calculated WQBEL, a monitoring requirement was recommended. More sample results will allow a better Reasonable Potential evaluation.

The logic used in the model is further described in DEP's SOP Establishing WQBELs and Permit Conditions for Toxic Pollutants in NPDES Permits for Existing Dischargers and in the Technical Reference Guide (TRG) PENTOXSD for Windows [386-2000-015].

Total Maximum Daily Load (TMDL)

The facility is identified as an existing point source in the Green Lane Reservoir TMDL. The Green Lane Reservoir was listed as impaired in 1996. The TMDL was approved by EPA in 2003. The nutrient of concern in the TMDL is Total Phosphorus (TP). The TP Waste Load Allocation for Washington Township's WWTP 1.04 lbs/day and 31.27 lbs/month, based on the technologically achievable concentration of 0.5 mg/L and a design flow of 0.25 MGD (See attached).

Note: EPA has previously agreed with DEP that the cumulative monthly mass limit is redundant if the average monthly mass limit is included in the permit. The existing permit did not include a lbs./month limit for TP and this renewal permit similarly does not.

A review of the facility's eDMRs from January 1, 2021 through October 31, 2023 indicates their TP average load has been 0.40 lbs/day. For the 34 months of DMR data reviewed, there were two months in which the facility exceeded the TP average monthly load limit of 1.04 lbs/day and two months in which the facility exceeded the monthly average concentration limit of 0.5 mg/l.

Because there have been no changes to the permit limits for the parameters identified in the applicable TMDL, the draft renewal permit does not have to be reviewed by EPA.

Additional Considerations

Flow Monitoring:

The requirement to monitor the volume of effluent will remain in the draft permit per 40 CFR § 122.44(i)(1)(ii).

Influent BOD & TSS Monitoring:

The existing influent monitoring reporting requirement for TSS and BOD5 will be maintained in the draft permit. This requirement has been consistently assigned to all municipal wastewater treatment facilities and is necessary to verify the 85% removal permit requirement as well as to ensure process control.

Total Nitrogen Monitoring:

A monitoring requirement for Total Nitrogen has been included, consistent with DEP's SOP Establishing Effluent Limitations for Individual Sewage Permits. (Total Phosphorus monitoring is already included in the permit.)

Mass Loading Limitations:

All effluent mass loading limits have been based on the formula: design flow x concentration limit x conversion factor of 8.34.

Monitoring Frequency and Sample Type:

Monitoring frequencies have been carried forward from the existing permit consistent with DEP's SOP New and Reissuance Sewage Individual NPDES Permit Applications, except for TDS and E.Coli. For TDS, the monitoring frequency of once per quarter is consistent with the DRBC docket. For E.Coli, the monitoring frequency of once per quarter is consistent with DEP's SOP Effluent Limitations for Individual Sewage Permits.

The sample types are derived from the "NPDES Permit Writer's Manual" (362-0400-001).

Antidegradation Requirements:

All effluent limitations and monitoring requirements have been developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing uses are maintained and protected.

Anti-Backsliding:

No permit limitations have been made less stringent.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Unit	s (lbs/day)		Concentrati	ions (mg/L)		Minimum	Required
Farameter	Average Monthly	Weekly Average	Instant. Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	xxx	xxx	xxx	xxx	Continuous	Measured
pH (S.U.)	ххх	XXX	6.0	xxx	XXX	9.0	1/day	Grab
DO	ххх	xxx	5.0	xxx	XXX	ххх	1/day	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
CBOD5	52	83	xxx	25.0	40.0	50	2/month	8-Hr Composite
BOD5 Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	2/month	8-Hr Composite
TSS	63	94	XXX	30.0	45.0	60	2/month	8-Hr Composite
TSS Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	xxx	2/month	8-Hr Composite
Total Dissolved Solids	Report Qrtrly Avg	XXX	XXX	1000.0 Qrtrly Avg	XXX	XXX	1/quarter	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10,000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	ХХХ	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab
E. Coli (No./100 ml)	ххх	xxx	xxx	xxx	XXX	Report	1/quarter	Grab
Ammonia Nov 1 - Apr 30	41	XXX	xxx	20.0	XXX	40	2/month	8-Hr Composite
Ammonia May 1 - Oct 31	15	XXX	XXX	7.5	XXX	15	2/month	8-Hr Composite

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Unit	s (lbs/day)		Concentrat	ions (mg/L)		Minimum	Required
Farameter	Average Monthly	Weekly Average	Instant. Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
								8-Hr
Total Phosphorus	1.04	XXX	XXX	0.5	XXX	1.0	2/month	Composite
								8-Hr
Total Nitrogen	Report	XXX	XXX	Report	XXX	XXX	2/month	Composite
		Report			Report			8-Hr
Total Zinc	XXX	Daily Max	XXX	XXX	Daily Max	XXX	1/month	Composite

Compliance Sampling Location: after treatment

	Tools and References Used to Develop Permit
	WQM for Windows Model (see Attachment)
	Toxics Management Spreadsheet (see Attachment)
	TRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 386-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 386-2000-019, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 386-2000-018, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 386-2183-001, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 386-2183-002, 12/97.
	Pennsylvania CSO Policy, 386-2000-002, 9/08.
\boxtimes	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 386-2000-008, 4/97.
	Determining Water Quality-Based Effluent Limits, 386-2000-004, 12/97.
\boxtimes	Implementation Guidance Design Conditions, 386-2000-007, 9/97.
\square	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 386-2000-016, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 386-2000-012, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 386-2000-009, 3/99.
\square	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 386-2000-015, 5/2004.
\boxtimes	Implementation Guidance for Section 93.7 Ammonia Criteria, 386-2000-022, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 386-2000-013, 4/2008.
\boxtimes	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 386-2000-011, 11/1994.
	Implementation Guidance for Temperature Criteria, 386-2000-001, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 386-2000-021, 10/97. Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved
	Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 386-2000-020, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 386-2000-005, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 386-2000-010, 3/1999.
\square	Design Stream Flows, 386-2000-003, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 386-2000-006, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 386-3200-001, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP New and Reissuance Sewage Individual NPDES Permit Applications, BCW-PMT-002, Version 2.0
\square	SOP: Establishing Effluent Limitations for Individual Sewage Permits, BCW-PMT-033, Version 1.9.
	SOP: Establishing WQBELs and Permit Conditions for Toxic Pollutants in NPDES Permits for Existing Dischargers, BCW-PMT-037, Version 1.5.
\boxtimes	Other: DRBC docket D-1994-042 CP-3.

Total Maximum Daily Load of Nutrients for Green Lane Reservoir

			f total phosphorus f		
Point Source	NPDES permit no.	Design Flow (mgd)	Total Phosphorus concentration (mg/l)	WLA (lbs/day)	WLA (lbs/month)
	Main B	ranch Perki	omen Subwatershee	1	
Brown Printing	PA0051802	0.0116	0.5	0.048	1.45
East Greenville Filtration	PA0050644	0	0	0	0
Hereford Mobile Home Park	PA0041505	0.125	0.5	0.52	15.63
Knoll, Inc.	PA0011070	0.0279	0.5	0.116	3.49
Mountain Village Mobile Home Park	PA0041491	0.064	0.5	0.27	8
TTT Realty	PA0012891	0.0088	0.5	0.037	1.1
	Main B	ranch Perkiom	en subwatershed total		29.7
	West B	ranch Perkie	omen Subwatershed	I	
Bally Borough	PA0055123	0.5	0.5	2.08	62.55
Strawberry Family Restaurant	PA0053376	0.0015	0.5	0.006	0.19
Washington Township.	PA0086142	0.25	0.5	1.04	31.27
Woodland Mobile Home Park	PA0055352	0.014	0.5	0.059	1.75
	West	Branch Perkion	nen subwatershed total		95.8
	Dir	rect Drainag	e Subwatershed		
Green Hills Mobile Home Park	PA0031887	0.03	0.5	0.13	3.75
Upper Perkiomen School District	PA0050911	0.004	0.5	0.017	0.5
		Direct Drain	age subwatershed total		4.25
	Direct	Drainage (Ui	rban) Subwatershee	1	
Edmund Optics	PA0053864	0	0	0	0
Upper Montgomery Joint Authority	PA0020532	2	0.5	8.34	250.2
	L	Direct Drainage	(urban) subwatershed		250.2

Table 4-5. Individual Wasteload allocations of total phosphorus for Green Lane Reservoir

	oort-at 001 Washington STP				
State/Region ID	PA				
Workspace ID	PA20231219200616178000				
Latitude	40.38565				
Longitude	-75.59062				
Time	12/19/2023	3:06:37 PI	N		
Basin Characteristics					
Parameter Code	Parameter Description	Value	Unit		
BSLOPD	Mean basin slope measured	6.3423	degrees		
DRNAREA	Area that drains to a point of	14.4	square mi	les	
ROCKDEP	Depth to rock	5.1	feet		
URBAN	Percentage of basin with ur	0.557	percent		
Low-Flow Statistics Flow	100.0 Percent Low Flow Reg	jion 1			
Statistic	Value	Unit	SE	ASEp	
7 Day 2 Year Low Flow	5.8	ft^3/s	46	46	
30 Day 2 Year Low Flow	6.7	ft^3/s	38	38	
7 Day 10 Year Low Flow	3.27	ft^3/s	51	51	
30 Day 10 Year Low Flow	3.82	ft^3/s	46	46	
90 Day 10 Year Low Flow	4.82	ft^3/s	41	41	
USGS Data Disclaimer: U	Inless otherwise stated, all o	data, meta	data and re	elated mate	eria
USGS Software Disclaim	er: This software has been a	pproved f	or release	by the U.S.	Ge
USGS Product Names Di	sclaimer: Any use of trade, f	irm, or pro	duct name	es is for des	cri
Application Version: 4.1	9.2				
StreamStats Services Ve	ersion: 1.2.22				
NSS Services Version: 2	3.0				

StreemState Output Bor	aart at Pally Para outfall			· · · · · · · · · · · · · · · · · · ·	1		
StreamStats Output Rep	port-at Bally Boro outfall	<u> </u> '			[]		(
State/Region ID	ΡΑ	[]			/		
	PA20231219202845394000	/	,		/	1	
Latitude	40.39016	, The second sec	,	ļj	1	1	
Longitude	-75.56564	/	,]		1	
Time	12/19/2023	3:29:07 PI	М			/	
Basin Characteristics						/	
Parameter Code	Parameter Description	Value	Unit				
BSLOPD	Mean basin slope measured in degrees	5.9388	degrees			/	
DRNAREA	Area that drains to a point on a stream	16.4	square mi	iles			
ROCKDEP	Depth to rock	5	i feet				
URBAN	Percentage of basin with urban develo	0.7007	/ percent				
Low-Flow Statistics Flow	100.0 Percent Low Flow Region 1						
Statistic	Value	Unit	SE	ASEp			
7 Day 2 Year Low Flow	5.61	. ft^3/s	46	i 46			
30 Day 2 Year Low Flow	6.64	ft^3/s	38	38			
7 Day 10 Year Low Flow	3.05	ft^3/s	51	. 51			
30 Day 10 Year Low Flow	3.66	i ft^3/s	46	i 46			
90 Day 10 Year Low Flow	4.82	ft^3/s	41	. 41			
USGS Data Disclaimer: U	Jnless otherwise stated, all data, metada	ata and rel	ated mate	rials are co	nsidered t	o satisfy th	ie qualif
USGS Software Disclaim	ner: This software has been approved for	r release b	y the U.S. C	Geological (Survey (US	GS). Altho	ugh the
USGS Product Names Dir	isclaimer: Any use of trade, firm, or prod	luct names	is for desc	criptive pur	poses only	y and does	not im
Application Version: 4.19	.9.2		[]			/	
StreamStats Services Ve	arsion: 1.2.22	1	ļ!	[]	[]	<u> </u>	
NSS Services Version: 2.	.3.2	1	ļ!	[]	[]	<u> </u>	
		1	1				

NSS Services Version: 2.3.2

	1	4			4	
StreamStats Output Report-co	onfl UNT01443, RMI 4.3					
State/Region ID	PA					
Workspace ID	PA20231219203540537000					
Latitude	40.39068					
Longitude	-75.55905					
Time	12/19/2023	3:36:03 F	PM			
Basin Characteristics						
Parameter Code	Parameter Description	Value	Unit			
BSLOPD	Mean basin slope measured in degree	5.4862	degrees			
DRNAREA	Area that drains to a point on a strear	19.5	square m	iles		
ROCKDEP	Depth to rock	4.9	feet			
URBAN	Percentage of basin with urban develo	2.848	percent			
Low-Flow Statistics Flow Repo	100.0 Percent Low Flow Region 1					
Statistic	Value	Unit	SE	ASEp		
7 Day 2 Year Low Flow	5.78	ft^3/s	46	6 46		
30 Day 2 Year Low Flow	7.04	ft^3/s	38	38		
7 Day 10 Year Low Flow	3.06	ft^3/s	51	51		
30 Day 10 Year Low Flow	3.78	ft^3/s	46	6 46		
90 Day 10 Year Low Flow	5.21	ft^3/s	41	. 41		
USGS Data Disclaimer: Unless	s otherwise stated, all data, metadata a	and relate	ad materia	als are con	sidered to	satis
USGS Software Disclaimer: Thi	is software has been approved for relea	ase by the	U.S. Geole	ogical Surv	/ey (USGS).	Altho
USGS Product Names Disclaim	ner: Any use of trade, firm, or product na	ames is fo	r descripti	ive purpos	es only an	d doe
Application Version: 4.19.2	//	/			/	
StreamStats Services Version:	:1.2.22				1	
	/ /	'		'	'	<u> </u>

Discharge and Parameters General Stream Discharge Data RMI Name Permit Number Existing Permitted Design Disc Flow Disc F			Discharge a	nd Parar	neter D	ata				
RMI Name Permit Number Existing Permitted Design Disc Disc Disc Disc Temp pH 6.800 Washington STP PA0086142 0.0000 0.2500 0.0000 0.0000 25.00 7.00 Parameter Data Disc Trib Conc Stream Fate Coef Parameter Name Disc Trib Conc Stream Fate Coef MI CB0D5 25.00 2.00 0.00 1.50 NH3·N 7.50 0.00 0.00 0.70	General		Stream	m	Di	scharge	and Parai	meters		
([®] C) 6.800 Washington STP PA0086142 0.0000 0.2500 0.0000 0.000 25.00 7.00 Parameter Data Disc Trib Conc Stream Fate Coef Conc (mg/L) Conc (1/day) (mg/L) (mg/L) ▶ CB0D5 2500 2.00 0.00 1.50 NH3·N 7.50 0.00 0.00 0.70				Existing F Disc Flow [^p ermitted Disc Flow [Disc Flow				
Parameter Data Disc Trib Conc Stream Fate Coef Parameter Name Conc (mg/L) Conc (1/day) ▶ CB0D5 2500 2.00 0.00 1.50 NH3-N 7.50 0.00 0.00 0.70										
Disc Trib Conc Stream Fate Coef Parameter Name Conc (mg/L) Conc (1/day) ▶ CB0D5 25.00 2.00 0.00 1.50 NH3-N 7.50 0.00 0.00 0.70	6.800 Wa	shington STP	PA0086142	0.0000	0.2500	0.0000	0.000	25.00	7.00	
		CBOD5		Conc (mg/L) 25.00 7.50	(mg/L) 2.00 0.00	Conc (mg/L) 0.00	(1/day) 1.50 0.70			

General Stream Discharge and Parameters RMI Name Permit Number Existing Permitted Design Disc Flow Dis	Discharge Data Existing Permitted Design Disc Flow Disc Flow Disc Flow Reserve (mgd) (mgd) Factor Disc Temp ("C) Disc Disc Temp Disc PH 4.600 Bally STP PA0022543 0.0000 0.5000 0.0000 25.00 7.00 Parameter Data Disc Trib Conc Stream Fate Coef Parameter Name Disc Trib Conc Stream Fate Coef Conc (mg/L) Conc (1/day) (mg/L) Image: Disc Disc Disc Disc Disc Disc Disc Disc			Discharge a	nd Parai	neter D	ata				
Existing Permitted Design Disc Disc Disc Disc Disc Disc Disc Disc Temp pH Temp pH [%] </th <th>RMI Name Permit Number Cmgd) (mgd) (mgd) Cmgd) Disc Flow Disc Flow Reserve (mgd) Disc Temp Disc Temp Disc Temp Disc Disc Flow D</th> <th>General</th> <th></th> <th>Stream</th> <th>n</th> <th>Di</th> <th>scharge</th> <th>and Para</th> <th>neters</th> <th></th> <th></th>	RMI Name Permit Number Cmgd) (mgd) (mgd) Cmgd) Disc Flow Disc Flow Reserve (mgd) Disc Temp Disc Temp Disc Temp Disc Disc Flow D	General		Stream	n	Di	scharge	and Para	neters		
Existing Permitted Design Disc Disc Disc Disc Disc Disc Disc Disc Temp pH Temp pH [%] </td <td>RMI Name Permit Number Existing Permit d Design Disc Flow Disc Flow Disc Flow Reserve (mgd) Disc (mgd) Disc Temp Disc pH 4.600 Bally STP PA0022543 0.0000 0.5000 0.0000 25.00 7.00 Parameter Data Disc Trib Conc Stream Fate Coef Conc (mg/L) Parameter Name Disc Trib Conc Stream Fate Coef Conc (mg/L) Conc (1/day) (mg/L) NH3-N 6.00 0.00 0.00 Dissolved Oxygen 5.00 8.24 0.00 0.00</td> <td></td> <td></td> <td></td> <td>Visabaraa</td> <td>Data</td> <td></td> <td></td> <td></td> <td></td> <td></td>	RMI Name Permit Number Existing Permit d Design Disc Flow Disc Flow Disc Flow Reserve (mgd) Disc (mgd) Disc Temp Disc pH 4.600 Bally STP PA0022543 0.0000 0.5000 0.0000 25.00 7.00 Parameter Data Disc Trib Conc Stream Fate Coef Conc (mg/L) Parameter Name Disc Trib Conc Stream Fate Coef Conc (mg/L) Conc (1/day) (mg/L) NH3-N 6.00 0.00 0.00 Dissolved Oxygen 5.00 8.24 0.00 0.00				Visabaraa	Data					
CB0D5 25.00 0.000 0.000 0.000 0.000 0.000 25.00 7.00 Image: Parameter Name Parameter Data Disc Trib Conc Stream Fate Coef Parameter Name Conc (mg/L) Conc (1/day) Image: Parameter Name 2.00 0.00 1.50 Image: Parameter Name 0.00 0.00 0.00	4.600 Bally STP PA0022543 0.0000 0.5000 0.0000 25.00 7.00 Parameter Data Disc Trib Conc Stream Fate Coef Parameter Name Conc (mg/L) Conc (1/day) ▶ CB0D5 25.00 2.00 0.00 1.50 NH3·N 6.00 0.00 0.00 0.00 0.00 Dissolved Oxygen 5.00 8.24 0.00 0.00	PMI	Name		Existing I Disc Flow I	Permitted Disc Flow [Disc Flow				
Parameter Data Disc Trib Conc Stream Fate Coef Parameter Name Conc (mg/L) Conc (1/day) M CB0D5 2500 2.00 0.00 1.50 NH3·N 6.00 0.00 0.00 0.70	Parameter Data Disc Trib Conc Stream Fate Coef Parameter Name Conc (mg/L) Conc (1/day) ▶ CB0D5 25.00 2.00 0.00 1.50 NH3-N 6.00 0.00 0.00 0.70 Dissolved Oxygen 5.00 8.24 0.00 0.00	11191	Name	r ennichtainbei	(ingo)	(inga)	(inga)		(ºC)		
Disc Trib Conc Stream Fate Coef Parameter Name Conc (mg/L) Conc (1/day) ▶ CB0D5 25.00 2.00 0.00 1.50 NH3·N 6.00 0.00 0.00 0.70	Disc Trib Conc Stream Fate Coef Parameter Name Conc (mg/L) Conc (1/day) ▶ CB0D5 2500 2.00 0.00 1.50 NH3·N 6.00 0.00 0.00 0.70 Discolved Oxygen 5.00 8.24 0.00 0.00	4.600 Bally	STP	PA0022543	0.0000	0.5000	0.0000	0.000	25.00	7.00	
Disc Trib Conc Stream Fate Coef Parameter Name Conc (mg/L) Conc (1/day) ▶ CB0D5 25.00 2.00 0.00 1.50 NH3·N 6.00 0.00 0.00 0.70	Disc Trib Conc Stream Fate Coef Parameter Name Conc (mg/L) Conc (1/day) ▶ CB0D5 2500 2.00 0.00 1.50 NH3·N 6.00 0.00 0.00 0.70 Discolved Oxygen 5.00 8.24 0.00 0.00			Pa	arameter I	Data					
(mg/L) (mg/L) ▶ CB0D5 25.00 2.00 0.00 1.50 NH3·N 6.00 0.00 0.00 0.70	(mg/L) (mg/L) ▶ CBOD5 25.00 2.00 0.00 1.50 NH3·N 6.00 0.00 0.00 0.70 Dissolved Oxygen 5.00 8.24 0.00 0.00						Stream	Fate Coef			
CBOD5 25.00 2.00 0.00 1.50 NH3·N 6.00 0.00 0.70	CBOD5 25.00 2.00 0.00 1.50 NH3-N 6.00 0.00 0.00 0.70 Dissolved Oxygen 5.00 8.24 0.00 0.00		Pa	arameter Name	Conc		Conc				
NH3-N 6.00 0.00 0.70	NH3-N 6.00 0.00 0.70 Dissolved Oxygen 5.00 8.24 0.00 0.00					2.00		1 1 5 0			
	Dissolved Oxygen 5.00 8.24 0.00 0.00		· ·								
				ed Oxvaen							
	Record: I4 4 2 of 3 Filter Search										
	Record: H 4 2 of 3 FILER No Filter Search										
		Record: I4	4 2 of 3	N N	o Filter	Search					
Record: II 4 2 of 3 I II II III III IIII IIII IIII IIII											
Record: I4 4 2 of 3 F FI F No Filter Search											

General Stream Discharge and Parameters Discharge Data RMI Name Permit Number Existing Permitted Design Disc Disc Disc RMI Name Permit Number (mgd) (mgd) Factor Temp ("C) pH 4.300 confl 01443 0.0000 0.0000 0.0000 0.0000 20.00 7.00 Parameter Data Disc Parameter Name Disc Trib Conc Stream Fate Coef (mg/L) CB0D5 2500 2.00 0.00 1.50 NH3-N 20.00 0.00 0.000 0.000
Existing Permitted Design Disc Flow Disc Flow Disc Flow Reserve (mgd) (mgd) (mgd) Factor Disc Disc Temp pH (€C) 4.300 confl 01443 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000
Parameter Data Disc Trib Conc Stream Fate Coef Parameter Name Conc (mg/L) Conc (1/day) ▶ CB0D5 25,00 2.00 0.00 1.50 NH3-N 20.00 0.00 0.70 0.70
Disc Trib Conc Stream Fate Coef Parameter Name Conc (mg/L) Conc (1/day) ▶ CB0D5 25.00 2.00 0.00 1.50 NH3-N 20.00 0.00 0.70 0.70
Dissolved Oxygen 5.00 8.24 0.00 0.00

	General Data		
General	Stream	Discharge and Parameters	
Stream Code 1439 1439 1439	RMI Elevation Drainage LFY Area (sq mi) (cfsm) 6.800 420 14.4 0.187 4.600 385 16.4 0.187 4.300 375 19.5 0.187	Slope PWS Apply With FC (ft/ft) (mgd) 0 0 V 0 0 V	Add <u>R</u> ecord

]	nput Data	WQM 7.	0								_		>
					5	Stream D	Data						
	G	eneral			Stre	am		Discharg	ge and Pai	rameters			
		Design (ondition	@ Q	7-10	C Q1	-10	C Q30	-10				
	RMI	Trib Flow (cfs)	Stream Flow (cfs)	Rch Trav Time (days)	Rch Velocity (fps)	WD Ratio	Rch Width (ft)	Rch Depth (ft)	<u>Tribut</u> Temp (ºC)	ary pH	<u>Stream</u> Temp (ºC)	рH	
Þ	6.800	0.00		0.000	0.00	0	0.00		20.00	7.00	0.000	0.00	
	4.600	0.00	0.00	0.000	0.00	0	0.00	0.00	20.00	7.00	0.000	0.00	
	4.300	0.00	0.00	0.000	0.00	0	0.00	0.00	20.00	7.00	0.000	0.00	
Re	cord: I4	4 1 of 3	• •	* 5	No Filter	Search							
P	rint	< [Back	Nex	t >	Sav	/e	<u>A</u> naly	/ze	<u>C</u> ancel		Export	1

Hydrodynamics	NH3-N Alloca	tions	D.O. Alloc	ations	D.O. Sir	nulation	Effluent Li	mitations	
<u>RMI</u>	Total Discharge	Flow (mgd)	Analy	sis Temper	ature (ºC)	Ana	lysis pH		
6.800	0.250			20.628			.000		
Reach Width (ft)	<u>Reach De</u>		<u> </u>	<u>each WD I</u>		_	<u>/elocity (fps)</u>		
23.997 Deeele C DODE (****/11	0.610 <u> Reach Ko (</u>	-	Baa	39.326 ich NH3-N			.210 (n (1/days)		
<u>Reach C-BOD5 (mg/L)</u> 4.89	0.78		<u>nea</u>	0.94	<u>IIIIq/L</u>]		<u>.735</u>		
4.05 Reach DO (mg/L)	Beach Kr (1			Kr Equatio	on		. 755) Goal (mg/L)		
7.836	6.112	2		Tsivoglo	u		5		
Reach Travel Time (d	ays)		Subreach						
0.639		TravTime (days)	CBOD5 (mg/L)	NH3-N (mg/L)	D.O. (mg/L)				
			· - ·						
		0.064	4.64	0.90	7.76				
		0.128	4.41	0.86	7.73				
		0.192	4.19	0.82	7.74				
		0.256	3.98 3.78	0.78 0.74	7.76 7.79				
		0.320	3.70	0.74	7.84				
		0.447	3.41	0.68	7.88				
		0.511	3.24	0.65	7.93				
		0.575	3.07	0.62	7.98				
		0.639	2.92	0.59	8.03				
Record: I4 4 1 of 2		🕵 No Fil	ter Sear	ch					
		A	11- 444						
Print	< Back	1	Nex	d >		Archive	1	Cancel	1

DO is recovering

Analysis Results V	- Contraction					
Hydrodynamics	NH3-N Allocations	D.O. Allocations	D.O. Simulation	Effluent Li	mitations	
Г			lumber Disc Flow		-	
	RMI Discharg	e Name	(mgd)			
ŀ					_	
IL IL	6.80 Washington STP	V PA008	6142 0.0000			
	Parameter		Effluent Limit Efflue			
	Falallietei	30 Day Averag (mg/L)		nimum ng/L)		
	CBOD5	25				
	NH3-N	7.5	15			
	Dissolved Oxygen			5		
	Record: I4 🔸 1 of 2	► ►I ► K No Filte	Search			
J.		X				
1	,			1	_	
Print	< <u>B</u> ack	Next >	Archive		<u>C</u> ancel	

Re-run of WQM 7.0 model for salmonid spawning season and winter conditions by adjusting the Q7-10 (and resultant LFY model input value) by a factor of 1.6 to estimate stream flow during November (0.187 LFY x 1.6 = 0.3 LFY) and decreasing the in-stream temperature to an estimated 7.2°C (using Technical Guidance document: Implementation of Temperature Criteria), and running the model with a target DO of 8 mg/l, appropriate for 'Trout Natural Reproduction' streams whose early life stages occur during October through May [Pa Code Chapter 93.7(b)]:

🗄 Input Data W	QM 7.0			- 🗆 🛛
		General [Data	
Gene	eral	Stream	Discharge and Parameters	
				-
	Stream Code	RMI Elevation Drainage Area (ft) (sq.mi)	LFY Slope PWS Apply With FC (cfsm) (ft/ft) (mgd)	Add <u>R</u> ecord
	1439	6.800 420 14.4	0.3 0 0 🔽	Delete Record
	1439	4.600 385 16.4	0.3 0 0 🗹	-
	1439	4.300 375 19.5	0.3 0 0 🔽	
	Record: 14 4	1 of 3 ► ► ► ► 🔀 No	Filter	
Print	< <u>B</u> ack	Next > Sav	e <u>A</u> nalyze <u>C</u> ancel	Export

					5	Stream [)ata					
General Stream Discharge and Parameters												
Design Condition © Q7-10 © Q1-10 © Q30-10												
	RMI	Trib Flow (cfs)	Stream Flow (cfs)	Rch Trav Time (days)	Rch Velocity (fps)	WD Ratio	Rch Width (ft)	Rch Depth (ft)	<u>Tribut</u> Temp (ºC)	t <u>ary</u> pH	<u>Strear</u> Temp (ªC)	n pH
Ы	6.800	0.00	0.00	0.000	0.00	0	0.00	0.00	7.20	7.00	0.000	0.00
Ŧ	4.600		0.00	0.000	0.00		0.00	0.00	7.20	7.00	0.000	0.00
f	4.300	0.00	0.00	0.000	0.00	0	0.00	0.00	7.20	7.00	0.000	0.00
e	cord: I4	4 1 of 3	+	* 5	No Filter	Search						

General Stream Discharge and Parameters RMI Name Permit Number Existing Permitted Design Disc Flow Disc Flow Disc Flow Disc Flow Reserve (mgd) Disc Temp Disc PH 6.800 Washington STP PA0086142 0.0000 0.2500 0.0000 25.00 7.00 6.800 Washington STP PA0086142 0.0000 0.2500 0.0000 25.00 7.00 Parameter Name Disc Conc Trib Conc Stream Fate Coef 7.00 Parameter Name Disc Trib Conc Stream Fate Coef 7.00 NH3·N 20.00 0.00 0.00 0.70 1.50 NH3·N 20.00 0.00 0.00 0.70 Dissolved Oxygen 5.00 8.24 0.00 0.00	Discharge Data Existing Permitted Design Disc Flow Disc Flow Disc Flow Reserve (mgd) (mgd) Factor Disc Temp Disc Temp Disc PH 6.800 Washington STP PA0086142 0.0000 0.2500 0.0000 25.00 7.00 Parameter Data Disc Trib Conc Stream Fate Coef Conc (mg/L) CB0D5 25.00 2.00 0.00 1.50 NH3·N 20.00 0.00 0.00 0.70			Discharge a	nd Parai	neter D	ata				
Existing Permitted Design Disc Disc Disc Temp Disc Temp pH (*C) 6.800 Washington STP PA0086142 0.0000 0.2500 0.0000 0.0000 25.00 7.00 (*C) 7.00 7	BMI Name Permit Number Cmgd) (mgd) (mgd) Cmgd) Disc Flow Disc Flow Disc Flow Reserve (mgd) Disc Temp Dis	General		Stream	n	Di	scharge	and Para	meters		
([®] C) 6.800 Washington STP PA0086142 0.0000 0.2500 0.0000 0.000 25.00 7.00 Parameter Data Disc Trib Conc Stream Fate Coef Conc (mg/L) Conc (1/day) (mg/L) (mg/L) NH3-N 20.00 0.00 0.00 0.70 ([®] C)	([®] C) 6.800 Washington STP PA0086142 0.0000 0.2500 0.0000 0.000 25.00 7.00 Parameter Data Disc Trib Conc Stream Fate Coef Conc (mg/L) Conc (1/day) (mg/L) ► CB0D5 25.00 2.00 0.00 1.50 NH3-N 20.00 0.00 0.00 0.70 Dissolved Oxygen 5.00 8.24 0.00 0.00	BMI	Name		Existing I Disc Flow I	Permitted Disc Flow D	isc Flow F				
Disc Trib Conc Stream Fate Coef Parameter Name Conc (mg/L) Conc (1/day) ▶ CB0D5 25.00 2.00 0.00 1.50 NH3·N 20.00 0.00 0.70 0.70	Parameter Name Disc Conc (mg/L) Trib Conc (mg/L) Stream Conc (mg/L) Fate Coef Conc (mg/L) ▶ CB0D5 25.00 2.00 0.00 1.50 NH3·N 20.00 0.00 0.00 0.70 Dissolved 0xygen 5.00 8.24 0.00 0.00	6.800 Wash	ington STP	PA0086142	0.0000	0.2500	0.0000	0.000		7.00	
NH3-N 20.00 0.00 0.70	NH3-N 20.00 0.00 0.70 Dissolved Oxygen 5.00 8.24 0.00 0.00		Pa		Disc Conc	Trib Conc	Conc				
			NH3-N	i Oxygen	20.00	0.00	0.00	0.70			

		Discharge a	nd Parar	neter Da	ata				
General		Stream	m	Di	scharge a	nd Para	meters		
		[Discharge Existing f	Permitted	Design		Disc	Disc	
RMI	Name	Permit Number	Disc Flow ((mgd)	Disc Flow D (mgd)		leserve Factor	Temp (ºC)	рH	
4.600 Bally	, STP	PA0022543	0.0000	0.5000	0.0000	0.000	25.00	7.00	
	CBOD5	arameter Name	Disc Conc (mg/L) 25.00 12.00	(mg/L) 2.00 0.00	Stream F Conc (mg/L) 0.00	ate Coef (1/day) 1.50 0.70			
Record: M		ed Oxygen	5.00	8.24 Search	0.00	0.00			
	Back	Next >	Save		Analyze	1	<u>C</u> ancel	E	Expo

== Input										
			Discharge	and Parar	neter D	ata				
	General		Stre	am	Di	scharge	and Para	meters		
				<u> </u>	D .					
	BMI	Name	Permit Numbe	Disc Flow [Permitted		Reserve Factor	Disc Temp (ªC)	Disc pH	
	4.300 dow	instrm		0.0000	0.0000	0.0000	0.000	7.00	7.00	
				Parameter [0.0000	0.000		1.00	
			Parameter Name		Trib Conc (mg/L)	Stream Conc (mg/L)	Fate Coef (1/day)			
		CBOD NH3-N Dissol		25.00 20.00 5.00		0.00 0.00 0.00	1.50 0.70 0.00			
Print	<	 ▲ 3 of 3 <u>B</u>ack 	Next >	No Filter		<u>A</u> nalyze		<u>C</u> ancel		Expo <u>r</u> t
	<	Back				<u>A</u> nalyze		Cancel		Export
	pecifications	Back		Save				_	_ ×	Expo <u>r</u> t
	pecifications	Back	Next >	Save	Q1-10) and Q3	:0-10 Da	_	×	Export
Modeling S elect Para	Specifications	Back	Next >	Save	Q1-10) and Q3	:0-10 Da 10 and Q	ta	×	Export
Modeling S elect Para NH3-N Dissolved	Specifications	Back	Next > Select WLA Me C Uniform Treat	Save thod tment	Q1-10 ↓ Use in Q1-10/0) and Q3	:0-10 Da 10 and Q	ta 30-10 dat	×	Export
Modeling S elect Para NH3-N Dissolved Both	Specifications	Back	Next > Select WLA Me C Uniform Treat EMPR	Save thod tment	Q1-10 ✓ Use in Q1-10/0 Q30-10/0) and Q3 nput Q1- Q7-10 ratio	:0-10 Da 10 and Q 5: io:	ita 30-10 dat	×	Expo <u>r</u> t
Modeling S elect Para NH3-N Dissolved Both	Specifications meters Oxygen Comparison	Back	Next > Select WLA Me C Uniform Treat EMPR	<u>Save</u>	Q1-10 ✓ Use in Q1-10/0 Q30-10/0) and Q3 nput Q1- 27-10 ratio /Q7-10 ratio ved Oxy	:0-10 Da 10 and Q 5: io:	ita 30-10 dat	×	Export
Modeling S lect Para NH3-N Dissolved Both QAM 6.3 nput reach	Specifications meters Oxygen Comparison	Back	Next > Select WLA Me C Uniform Treat C EMPR C D.O. Simulation	<u>Save</u>	Q1-10 ✓ Use in Q1-10/0 Q30-10/0 Dissol DO Goal) and Q3 nput Q1- 27-10 ratio /Q7-10 ratio ved Oxy	30-10 Da 10 and Q 5: 5: 5: 5: 5: 5: 5: 5: 5: 5: 5: 5: 5:	ta 30-10 dat 0.64 1.36	×	Expo <u>r</u> t
Modeling S elect Para NH3-N Dissolved Both VQAM 6.3 Input reach Temperatur * Check	Oxygen Comparison	Back	Next > Select WLA Me C Uniform Treat EMPR C D.O. Simulation ut reach travel timesults	<u>Save</u>	Q1-10 Vise in Q1-10/0 Q30-10/0 Dissol DO Goal DO Satu) and Q3 nput Q1- 27-10 ratio /Q7-10 ration ved Oxy i: iration Po	30-10 Da 10 and Q 5: 5: 5: 5: 5: 5: 5: 5: 5: 5: 5: 5: 5:	ta 30-10 dat 0.64 1.36 8.00 90.0%	×	Export
Modeling S elect Para NH3-N Dissolved Both VQAM 6.3 Input reach Temperatur * Check	Oxygen Comparison NV/D ratios re Adjust Kr* to duplicate W	Back	Next > Select WLA Me C Uniform Treat EMPR C D.O. Simulation ut reach travel timesults	<u>Save</u>	Q1-10 Vise in Q1-10/0 Q30-10/0 Dissol DO Goal DO Satu) and Q3 nput Q1- 27-10 ratio /Q7-10 ration ved Oxy i: iration Po	30-10 Da 10 and Q b: io: gen ercent:	ta 30-10 dat 0.64 1.36 8.00 90.0%	×	Export

Analysis Results V						
Hydrodynamics	NH3-N Allocations	D.O. Allocations	D.O. Simula	tion Eff	luent Limitations	
_						
	RMI Discharg		umber Disc Flow			
	RMI Discharg	e Name	(mgd)			
F	3.80 Washington STP	PA008	6142 0.0000			
L L				l		
	Parameter	30 Day Averag	Effluent Limit E e Maximum	Minimum		
		(mg/L)	(mg/L)	(mg/L)		
	CBOD5 NH3-N	25	40			
	Dissolved Oxygen	20	40	6	<u> </u>	
	,.					
ļ	Record: I4 4 1 of 2	▶ ▶ ▶ ▶ ▼ No Filte	Search			
Print	< <u>B</u> ack	Next >	Are	chive	<u>C</u> ancel	

mput appi opi i					
27	= Q stream	n A3:A9 and D3:D9	0.5	= CV Daily	
	= Q discha			= CV Daily = CV Hourly	
	= a discha			-	al Mix Factor
		Demand of Stream		_	al Mix Factor
		Demand of Discharge		_	ria Compliance Time (min
	= BAT/BP.				ria Compliance Time (min
		r of Safety (FOS)	120	= Decay Coe	
Source	Reference	AFC Calculations		Reference	CFC Calculations
TRC	1.3.2.iii	WLA afc =	2.246	1.3.2.iii	WLA cfc = 2.182
PENTOXSD TRO		LTAMULT afc =		5.1c	LTAMULT cfc = 0.581
PENTOXSD TRO		LTA_afc=		5.1d	LTA_cfc = 1.269
I ENTOXOD THE	,	LTA_alt-	0.001	5.10	ETA_00 = 1.205
Source		Effluer	nt Limit Calcu	lations	
PENTOXSD TRO	5.1f		AML MULT =		
PENTOXSD TRO			_IMIT (mg/l) =		BAT/BPJ
			_IMIT (mg/l) =		
WLA afc LTAMULT afc	+ Xd + (/	* AFC_tc)) + [(AFC_Yc*Q AFC_Yc*Qs*Xs/Qd)]*(1 - I(cvh^2+1))-2.326*LN(cvh^2	FOS/100)	e(-k*AFC_tc))
LTAMULT afc LTA_afc	+ Xd + (/ EXP((0.5*LN wla_afc*LT/	AFC_Yc*Qs*Xs/Qd)]*(1- l(cvh^2+1))-2.326*LN(cvh^2 AMULT_afc	F OS/100) 2+1)^0.5)		
LTAMULT afc	+ Xd + (A EXP((0.5*LN wla_afc*LTA (.011/e(-k*	AFC_Yc*Qs*Xs/Qd)]*(1- ((cvh^2+1))-2.326*LN(cvh^2 AMULT_afc *CFC_tc) + [(CFC_Yc*Qs	FOS/100) 2+1)^0.5) s*.011/Qd*e		
LTAMULT afc LTA_afc WLA_cfc	+ Xd + (A EXP((0.5*LN wla_afc*LTA (.011/e(-k* + Xd + (0	AFC_Yc*Qs*Xs/Qd)]*(1- ((cvh^2+1))-2.326*LN(cvh^2 AMULT_afc *CFC_tc) + [(CFC_Yc*Qs CFC_Yc*Qs*Xs/Qd)]*(1-	FOS/100) 2+1)^0.5) s*.011/Qd*e FOS/100)	(-k*CFC_tc)))
LTAMULT afc LTA_afc	+ Xd + (A EXP((0.5*LN wla_afc*LTA (.011/e(-k* + Xd + (0	AFC_Yc*Qs*Xs/Qd)]*(1- ((cvh^2+1))-2.326*LN(cvh^2 AMULT_afc CFC_tc) + [(CFC_Yc*Qs CFC_Yc*Qs*Xs/Qd)]*(1- ((cvd^2/no_samples+1))-2.3	FOS/100) 2+1)^0.5) s*.011/Qd*e FOS/100)	(-k*CFC_tc)))
LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc LTA_cfc	+ Xd + (A EXP((0.5*LN wla_afc*LTA (.011/e(-k* + Xd + (A EXP((0.5*LN wla_cfc*LTA	AFC_Yc*Qs*Xs/Qd)]*(1- ((cvh^2+1))-2.326*LN(cvh^2 AMULT_afc CFC_tc) + [(CFC_Yc*Qs CFC_Yc*Qs*Xs/Qd)]*(1- ((cvd^2/no_samples+1))-2.3 AMULT_cfc	FOS/100) 2+1)^0.5) s*.011/Qd*e FOS/100) 326*LN(cvd^2	(- k*CFC_tc)) 2/no_samples+) 1)^0.5)
LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc LTA_cfc AML MULT	+ Xd + (A EXP((0.5*LN wla_afc*LTA (.011/e(-k* + Xd + (A EXP((0.5*LN wla_cfc*LTA EXP(2.326*L	AFC_Yc*Qs*Xs/Qd)]*(1- ((cvh^2+1))-2.326*LN(cvh^2 AMULT_afc CFC_tc) + [(CFC_Yc*Qs CFC_Yc*Qs*Xs/Qd)]*(1- ((cvd^2/no_samples+1))-2.3 AMULT_cfc .N((cvd^2/no_samples+1)^4	FOS/100) 2+1)^0.5) s*.011/Qd*e FOS/100) 326*LN(cvd^2 0.5)-0.5*LN(c	(- k*CFC_tc)) 2/no_samples+) 1)^0.5)
LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc LTA_cfc AML MULT AVG MON LIMIT	+ Xd + (A EXP((0.5*LN wla_afc*LTA (.011/e(-k* + Xd + (A EXP((0.5*LN wla_cfc*LTA EXP(2.326*L MIN(BAT_B	AFC_Yc*Qs*Xs/Qd)]*(1- ((cvh^2+1))-2.326*LN(cvh^2 AMULT_afc CFC_tc) + [(CFC_Yc*Qs CFC_Yc*Qs*Xs/Qd)]*(1- ((cvd^2/no_samples+1))-2.3 AMULT_cfc	FOS/100) 2+1)^0.5) s*.011/Qd*e FOS/100) 326*LN(cvd^2 0.5)-0.5*LN(c AML_MULT)	2/no_samples+ vd^2/no_samp) 1)^0.5)

DEP's TMS model for Toxic parameters, version 1.4.....

Instruction	s Discha	arge Stream			
Facility:	Washing	gton STP		NPDES Permit No.: PA0086142	Outfall No.: 001
Evaluation 1	Гуре:	Major Sewage / Ind	ustrial Waste	Wastewater Description: Sewage	

	Discharge Characteristics												
Design Flow	Hardness (mg/l)*	pH (SU)*	P	artial Mix Fa	ctors (PMF	s)	Complete Miz	x Times (min)					
(MGD)*	Hardness (mg/l)*	рн (30)	AFC	CFC	THH	CRL	Q ₇₋₁₀	Q _h					
0.25	100	7											

					0 if lef	t blank	0.5 if le	ft blank	() if left blan	k	1 if lef	t blank
	Discharge Pollutant	Units	Ma	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L		556									
5	Chloride (PWS)	mg/L		191									
Group	Bromide	mg/L	<	0.1									
δ	Sulfate (PWS)	mg/L		44.9									
	Fluoride (PWS)	mg/L											
	Total Aluminum	µg/L											
1	Total Antimony	µg/L											
1	Total Arsenic	µg/L											
1	Total Barium	µg/L											
L	Total Beryllium	µg/L											
1	Total Boron	µg/L											
1	Total Cadmium	µg/L											
1	Total Chromium (III)	µg/L											
1	Hexavalent Chromium	µg/L											
L	Total Cobalt	µg/L											
1	Total Copper	mg/L		0.0056									
N	Free Cyanide	µg/L											
Group	Total Cyanide	µg/L											
ĕ	Dissolved Iron	µg/L											
-	Total Iron	µg/L											
1	Total Lead	µg/L	<	1									
L	Total Manganese	µg/L											
L	Total Mercury	µg/L											
L	Total Nickel	µg/L											
L	Total Phenols (Phenolics) (PWS)	µg/L											
L	Total Selenium	µg/L											
	Total Silver	µg/L											
1	Total Thallium	µg/L											
1	Total Zinc	mg/L		0.053									
1	Total Molybdenum	µg/L		0.000									
\vdash	Acrolein	µg/L	<										
1	Acrylamide	µg/L	<										
1	Acrylonitrile	µg/L	<										
1	Benzene	µg/L	<										
1	Bromoform	µg/L	<										

Discharge Information

12/21/2023

Page 1

No other toxic parameters in application....

PROTECTION

pennsylvania DEPARTMENT OF ENVIRONMENTAL

Toxics Management Spreadsheet Version 1.4, May 2023

Stream / Surface Water Information

Instructions Discharge Stream

Receiving Surface Water Name: W.Branch Perkiomen Crk

No. Reaches to Model: 1

PWS Withdrawal Elevation Apply Fish DA (mi²)* Stream Code* Location RMI* Slope (ft/ft) (ft)* (MGD) Criteria* Point of Discharge 001439 6.8 420 14.4 Yes End of Reach 1 001439 4.6 385 16.4 Yes

Q 7-10

Location	RMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time	Tributa	ry	Stream	n	Analys	sis
Location	P.IVII	(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(dave)	Hardness	pН	Hardness*	pH*	Hardness	pН
Point of Discharge	6.8	0.187	2.7									100	7		
End of Reach 1	4.6	0.187													

Q_h

Location	RMI	PMI	DMI	PMI	DMI	PMI	DMI	DMI	DMI	DMI	DMI	PMI	LFY LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time	Tributa	ry	Stream	m	Analys	sis
Location		(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness	pН	Hardness	pН											
Point of Discharge	6.8																									
End of Reach 1	4.6																									

Washington STP, NPDES Permit No. PA0086142, Outfall 001

Statewide Criteria

O Great Lakes Criteria

ORSANCO Criteria

Toxics Management Spreadsheet Version 1.4, May 2023

Washington STP, NPDES Permit No. PA0086142, Outfall 001

Model Results

Instructions Results	RETURN	TO INPU	TS (SAVE AS	PDF	PRINT	r) 🖲 A	All 🔿 Inputs 🔿 Results 🔿 Limits			
Hydrodynamics											
	Hydrodynamics										
Wasteload Allocations											
AFC CCT (min): 15 PMF: 0.806 Analysis Hardness (mg/l): 100 Analysis pH: 7.00											
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments			
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A				
Chloride (PWS)	0	0		0	N/A	N/A	N/A				
Sulfate (PWS)	0	0		0	N/A	N/A	N/A				
Total Copper	0	0		0	13.439	14.0	92.7	Chem Translator of 0.96 applied			
Total Lead	0	0		0	64.581	81.6	541	Chem Translator of 0.791 applied			
Total Zinc	0	0		0	117.180	120	794	Chem Translator of 0.978 applied			
CFC CC	T (min): 23.		PMF:	1		alysis Hardne	ess (mg/l):	100 Analysis pH: 7.00			
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments			
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A				
Chloride (PWS)	0	0		0	N/A	N/A	N/A				
Sulfate (PWS)	0	0		0	N/A	N/A	N/A				
Total Copper	0	0		0	8.956	9.33	74.5	Chem Translator of 0.96 applied			
Total Lead	0	0		0	2.517	3.18	25.4	Chem Translator of 0.791 applied			
Total Zinc	0	0		0	118.139	120	956	Chem Translator of 0.986 applied			
THH CC											
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments			
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A				
Chloride (PWS)	0	0		0	250,000	250,000	N/A				
Sulfate (PWS)	0	0		0	250,000	250,000	N/A				

Total Copper	0	0		0	N/A	N/A	N/A					
Total Lead	0	0		0	N/A	N/A	N/A					
Total Zinc	0	0		0	N/A	N/A	N/A					
CCT (min): 9.003 PMF: 1 Analysis Hardness (mg/l): N/A Analysis pH: N/A												
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments				
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A					
Chloride (PWS)	0	0		0	N/A	N/A	N/A					
Sulfate (PWS)	0	0		0	N/A	N/A	N/A					
Total Copper	0	0		0	N/A	N/A	N/A					
Total Lead	0	0		0	N/A	N/A	N/A					
Total Zinc	0	0		0	N/A	N/A	N/A					

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits	Concentration Limits						
Pollutants	AML (lbs/day)	MDL (Ibs/day)	AML	AML MDL		Units	Governing WQBEL	WQBEL Basis	Comments
Total Zinc	Report	Report	Report	Report	Report	mg/L	0.51	AFC	Discharge Conc > 10% WQBEL (no RP)

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Total Copper	0.059	mg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	N/A	N/A	Discharge Conc < TQL

NPDES Permit Fact Sheet Washington Township STP

	sylvania					Chapter 94 Spread					
DEPARTME PROTECTIO	NT OF ENVIRONI	MENTAL			Sew	age Treatment Pla	F	Reporting Year:	2022		
Facility Name:	Washington 1	ownship WW	TP			Permit No.: P	A0086142	т		Persons/EDU:	2.4
	and an							1			
Existing Hydraulic	Design Capa	city:	0.275 M	GD		Existing Organic D	esign Capaci	ity:	625	lbs BOD5/day	
Upgrade Planned	in Next 5 Year	\$?	YES	Year:		Upgrade Planned i	n Next 5 Year	\$?	YES	Year:	
Future Hydraulic D	Design Capaci	ty:	0.55 M	GD		Future Organic De	sign Capacity	r:		lbs BOD5/day	
			-								
			Flows for Pas		-		-	-		Past Five Year	
Month	2018	2019	2020	2021	2022	Month	2018	2019	2020	2021	2022
January	0.169	0.2408	0.2376	0.1807	0.154	January	197 325	240 267	269 233	354	199 275
February		0.2514				February					
March	0.234	0.272	0.2529	0.261	0.1727	March	268 332	284	382	327	235 465
April	0.23	0.2697	0.2423	0.165	0.2422	April	332		283	289	400
May June	0.212	0.3495	0.2422	0.165	0.2352	May June	300	310 254	443	263	180
	0.109	0.3049	0.1910	0.1658	0.1718		202	268	368	249	276
July August	0.209	0.2199	0.1929	0.1048	0.1567	July August	379	353	183	231	2/6
September	0.306	0.2007	0.2413	0.2511	0.1435	September	256	188	335	170	171
October	0.203	0.2007	0.1922	0.2511	0.1927	October	200	301	350	170	218
November	0.294	0.2139	0.2281	0.1726	0.1681	November	372	313	266	208	490
December	0.249	0.2341	0.2276	0.1547	0.2026	December	474	320	381	236	235
	0.240	0.2011	0.2270	0.1011	0.2020					200	200
Annual Avg	0.237	0.2563	0.2238	0.1907	0.1817	Annual Avg	302	285	329	255	269
Max 3-Mo Avg	0.277	0.3153	0.2458	0.2167	0.2167	Max Mo Avg	474	353	450	354	490
Max : Avg Ratio	1.17	1.23	1.10	1.14	1.19	Max : Avg Ratio	1.57	1.24	1.37	1.39	1.82
Existing EDUs	905.0	959.0	992.0	1,031.0	1,045.0	Existing EDUs	905	959	992	1,031	1,045
Flow/EDU (GPD)	261.9	267.3	225.6	185.0	173.9	Load/EDU	0.334	0.297	0.331	0.247	0.258
Flow/Capita (GPD)	109.1	111.4	94.0	77.1	72.4	Load/Capita	0.139	0.124	0.138	0.103	0.107
Exist. Overload?	NO	YES	NO	NO	NO	Exist. Overload?	NO	NO	NO	NO	NO
		rojected Elo	ws for Next Fi	Voter (MG	0)		Proje	cted BODS I	orde for No	xt Five Years (Ib	he (day)
	2023	2024	2025	2026	2027		2023	2024	2025	2026	2027
New EDUs	18.0	27.0	32.0	42.0	41.0	New EDUs	18	27	32	42	41
Con CDOS	10.0	21.0		-4.0	41.9					74	

	2023	2024	2025	2026	2027
New EDUs	18	27	32	42	41
New EDU Load	5.281	7.921	9.388	12.322	12.028
Proj. Annual Avg	293	301	311	323	335
Proj. Max Avg	433	445	459	477	495
Proj. Overload?	NO	NO	NO	NO	NO

Show Precipitation Data on Hydraulic Graph?

0.004

0.2219

0.2586

NO

New EDU Flow

Proj. Annual Avg

Proj. Max 3-Mo Avg

Proj. Overload?

	Total	Monthly Precip	pitation for Pa	st Five Years	(Inches)	
Month	2018	2019	2020	2021	2022	
January	2 75	5.9	4.0	37	1 79	

0.0071

0.235

0.2738

NO

0.0094

0.2444

0.2848

YES

0.0091

0.2535

0.2954

YES

0.006

0.2279

0.2656

NO

→ WWTP Expansion Anticipated in 2024-2025