

Southcentral Regional Office CLEAN WATER PROGRAM

Application Type Renewal
Facility Type Industrial
Maior / Minor Minor

NPDES PERMIT FACT SHEET INDIVIDUAL INDUSTRIAL WASTE (IW) AND IW STORMWATER

Application No.	PA0086282
APS ID	42802
Authorization ID	1275457

	Applicant and Facility Information								
Applicant Name	Texas Eastern Transmission LP	Facility Name	Texas Eastern Transmission Grantville Compressor Station						
Applicant Address	5400 Westheimer Ct	Facility Address	429 Station Road						
	Houston, TX 77056-5310	<u></u>	Grantville, PA 17028-9149						
Applicant Contact	Niti Tottempudi	Facility Contact							
Applicant Phone	(713) 627-5967	Facility Phone	(717) 540-8303						
Client ID	82786	Site ID	442935						
SIC Code	4922	Municipality	East Hanover Township						
SIC Description	Trans. & Utilities - Natural Gas Transmission	County	Dauphin						
Date Application Rece	eived May 31, 2019	EPA Waived?	Yes						
Date Application Acce	pted June 10, 2019	If No, Reason							
Purpose of Application	NPDES Renewal for discharge	s from a Groundwater Rem	nediation System (GRS)						

Summary of Review

This is a renewal application of NPDES Permit No PA0086282 for the Texas Eastern Transmission, LP (Texas Eastern) Grantville Compressor Station for the discharge of treated groundwater from a groundwater treatment system (GWTS).

Historic use of PCB lubricating oils in operations of Grantville Compressor Station has caused PCBs migrated to the groundwater. Texas Eastern in the early 1990's entered into a consent order to address the potential groundwater impact of PCBs. Nearly all requirements of the Consent Order and Adjudication (COA) have been addressed. As indicated in the August 9, 1996, waiver request letter the long-term groundwater monitoring program requirements under the COA were terminated for Grantville, leaving only the NPDES permit requirements in force.

The groundwater treatment system was installed in 1990 to treat PCB contaminated water from the compressor building floor drains, area drains in the regenerator area, and a clay tile area east of the compressor building. Since then, the treatment system has been modified and upgraded several times. Most recently, the collection and treatment of liquids from the turbine building were discontinued in June 2021. Treatment will continue for the foreseeable future. The GWTS discharges to Outfall 001.

Figure 1. Site Location Map. Location of the site on a topographic map.

<u>Figure 2</u>. Site Plan. (*Figure 1. Wastewater Treatment Unit Location and Utility Configuration*). This figure shows the locations of the wastewater treatment building, sources of contaminated groundwater being treated, Outfall 001, and the piping connecting them.

Approve	Deny	Signatures	Date
		Brenda I Fruchtl	
х		Brenda J. Fruchtl, P.G. / Licensed Professional Geologist	January 10, 2022
х		Scott M Arwood Scott M. Arwood, P.E. / Environmental Engineer Manager	1/10/2022

Summary of Review

Timeline of application

Currently, the facility is covered under NPDES Permit No PA0086282, which expired on November 30, 2019.

May 31, 2019 - The renewal application was received, which was considered timely; therefore, according to PA Code Title 25 §92a.7 (b), the terms and conditions of the expiring permit are automatically continued until a renewal can be issued.

June 10, 2019 – Application was accepted as complete.

June 27, 2021 - PADEP sent a Technical Deficiency (TD) email including the following questions / requests: inquiry if there had been any changes since the application was received on 5/31/2019; request for a table summarizing the quarterly influent and effluent data for the GWTS that discharges to Outfall 001 since the application was submitted in May 2019; questions about Outfall 001; questions about the source of contaminated groundwater; and questions about Module 2.

July 8, 2021 – Conference call with permittee and consultant regarding the requests / questions in the 6/27/2021 TD email.

July 29, 2021 - PADEP received a draft response to the 6/27/2021 TD email.

July 30, 2021 – PADEP responded to draft response with a clarifying question regarding the location of the clay tiles.

September 16, 2021 – Conducted a site visit with consultant.

October 14, 2021 - PADEP received a response to the 6/27/2021 TD email

December 13, 2021 – PADEP sent question regarding design capacity discrepancy.

December 14, 2021 – PADEP received a response stating the correct design flow is 0.173 MGD (and not 0.14 as reported in the original application received May 31, 2019). Included a revised Page 3 of the application.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Discharge, Receivi	Discharge, Receiving Waters and Water Supply Information							
Outfall No. 001 Latitude 400 Wastewater Desc	22' 44.1"	Groundwater Cleanup Disc	Design Flow (MGD) Longitude harge	.173 -76° 40' 10.2"				
Receiving Waters NHD Com ID Drainage Area			Stream Code RMI Yield (cfs/mi²)	09655 0.6* StreamStats (at point where				
Q ₇₋₁₀ Flow (cfs) Elevation (ft) Watershed No. Existing Use	0.000 7-D	915*	Q ₇₋₁₀ Basis Slope (ft/ft) Chapter 93 Class. Existing Use Qualifier	swale enters the UNT as delineated on eMapPA) WWF, MF				
Exceptions to Use Assessment Status Impaire Cause(s) of Impairment NUTRIE		Impaired NUTRIENTS, ORGANICS AGRICULTURE, SOURCE Final	Exceptions to Criteria	reek				
Nearest Downstre PWS Waters PWS RMI	eam Publi Swatara 16	c Water Supply Intake Creek	Pennsylvania American Water Flow at Intake (cfs) Distance from Outfall (mi)	r Company South Hanover Twp, Dauphin Co				

Changes Since Last Permit Issuance:

- Coordinates for Outfall 001 were revised per October 12, 2021 response email (previous coordinates incorrectly placed the outfall west of the OWG building).
- Historically the Outfall 001 location was near the treatment building and discharged to an open drainage swale
 which drained southwards offsite. In 2020, the open drainage swale was replaced with a closed 6-inch diameter
 HDPE pipe in the same path. The coordinates for Outfall 001 coordinate with the outlet of this new pipe near the
 fence line to the drainage swale (see Figure 2)

Other Comments:

- Outfall 001 is the location where the effluent enters the drainage swale (that flows to Trib 09655 to Bow Creek).
- Effluent samples are collected from valves SV3, as identified on the Treatment System Configuration (Figure 3).
- Distance from the discharge at Outfall 001 to Trib 09655 to Bow Creek (receiving water) is approximately 850 feet to the south. Basin Delineation and Receiving water information in above table is based on the location where the drainage swale enters Trib 09655 to Bow Creek at RMI 0.6.

^{*}Note: According to the streams delineated on StreamStats, it's 0.16 miles from the point of discharge at Outfall 001 to Trib 09655 to Bow Creek, the closest delineated stream to the discharge location on eMapPA.

Treatment Facility Summary

Treatment Facility Name:

Texas Eastern Transmission- Grantville Compressor Station Groundwater Treatment System (GWTS)

A WQM Permit has not been issued for the treatment facility since it is a groundwater remediation system (GRS)

Design flow for the GWTS is 0.173 MGD (per updated application page received via email on 12/14/21) **Average flow during production / operation is 0.004 MGD** (per updated application page received via email on 12/14/21).

The Maximum flow during production / operation is listed as 0.050 MGD (per updated application page received via email on 12/14/21).

Per review of DMR data from 2015 through the 3rd Quarter of 2021, the **maximum flow was found to be 0.0823 MGD** (during the 3rd quarter of 2021).

The groundwater treatment system is designed to remove contaminants from the compressor building floor drains, area drains in the regenerator area, and a clay tile area east of the compressor building. Historically liquids from the turbine building were also collected and treated, but that was discontinued in June 2021.

The water is collected in an accumulation sump (also identified as "Collection Sump" on Figure 3) and pumped to the water treatment building. The system consists of two identical filter banks. Each bank has the capacity of treating water at a flow rate of 60 gallons per minute and consists of a pump, a pre-filter to remove sediment, two flow control valves, two rotameters, four activated carbon canisters, and a post-filter to remove active carbon fines.

Details of the system components:

- The filter pump transfers the water from the accumulation sump through the treatment system components.
- The pre-filter contains one-micron filter cartridges, and removes extremely fine particles.
- The flow control valve regulates the flow through the filters.
- A flow meter indicates the rate of flow.
- Two sets of activated carbon filters remove any PCBs dissolved in the water. Both sets of carbon filters are in service at any one time.
 - The first set of activated carbon filter in the bank should remove all detectable levels of PCBs.
 - o The second set of carbon filter in the bank serves as a backup.
- The post-filter has a single 1-micron filter bag removes any activated carbon fines.

Outfall 001 is located at the final discharge from the treatment system. Influent water samples are collected from sample port SVI prior to treatment, and effluent water samples are collected from sample port SV3 after treatment. Treated water from the system is discharged to a drainage swale to Tributary 09655 to Bow Creek. Outfall 001 is the only outfall.

The method for handling and disposal of solid or liquid residue resulting from the following treatment units is to landfill: pre-filters and activated carbon filtration.

<u>Figure 3</u>. Treatment System Configuration (Figure 2. Treatment System Configuration from the 10/14/2021 response document)

<u>Figure 4</u>. Water Line Diagram for the GWTS (from the 10/14/2021 response document)

<u>Changes Since Last Permit Issuance</u>: The treatment facility underwent upgrades in December 2016 and January 2017. The upgrades included the following (per March 2, 2017 letter from Enbridge):

- Replacing the strainers on the foot valves in the collection box:
- Replacing/cleaning the rotameters;
- Replacing the piping above the discharge flow meters; and

Installing post-filters on each carbon bank with a 1-micron filter bags for sediments removal.

Proposed Changes:

During our July 8, 2021 conference call, Texas Eastern indicated changes to the treatment system at Grantville are planned in the near future.

- The treatment process will remain the same.
- They are planning to upgrade the current vessels to high pressure vessels.
- They indicated the changes should not affect the design flow.
- The conceptual design can be found in <u>Figure 5</u>

On December 14, 2021, Texas Eastern sent an email stating that these system modifications will be completed soon and they will submit a letter update.

	Compliance History							
Summary of DMRs:	eDMR results from January 2015 to October 2021							
	Flow. Daily max ranged from 0.0121 MGD to 0.0823 MGD. Average (of quarterly average) was 0.0038 MGD							
	PCBs. Reported as < 0.5 ug/L (0.0005 mg/L) for Daily Max							
	No permit limits were exceeded in the past 5 years.							
Summary of Inspections:	DEP conducted a compliance evaluation on 07/29/2015 with no violations noted; and on 9/16/2021 with no violations noted.							
Summary of Violations:	 There have been no Clean Water Program violations reported for this facility (Permit No PA0086282) since the last renewal. There are not any open Clean Water Program violations for the facility. 							

Influent and Effluent Data

Total PCBs are sampled quarterly in the influent (untreated, SV1) and effluent (treated, SV3) to the remedial system.

Summary of quarterly influent data for Total PCBs between March 2015 and March 2021, out of 26 total samples:

- The maximum Total PCBs was 28.10 ug/L, taken on 9/25/2019.
- The minimum Total PCBs was <0.5 ug/L, taken on 6/25/2018.
- The Average of Total PCBs was 5.67 ug/L

Summary of the quarterly sampling results for both the influent and effluent:

- <u>Figure 6.</u> Outfall 001 Grantville Compressor Station, Module 2 Attachment, Laboratory Analytical Results. Untreated Groundwater. (*submitted via email on 10/14/2021 as part of the final revised application package*)
- <u>Figure 7.</u> Outfall 001 Grantville Compressor Station, Module 2 Attachment, Laboratory Analytical Results. Treated Groundwater. (*submitted via email on 10/14/2021 as part of the final revised application package*)

Development of Effluent Limitations						
Outfall No.	001		Design Flow (MGD)	0.173		
Latitude	40° 22' 44.1'		Longitude	-76º 40' 10.2"		
Wastewater D	escription:	Groundwater Cleanup Discharge	_			

Chemical Additives. None reported

Development of Effluent Limitations

The treated groundwater is discharged at Outfall 001 which enters a swale to Trib 09655 to Bow Creek (receiving water) which is approximately 850 feet to the south of Outfall 001

Toxics Management Spreadsheet Version 1.3 was used to develop the limits (see Attachment A).

Discharge Information Inputs:

Discharge Pollutant Max Discharge Conc: Per Module 2 of the application, Total PCBs and Dissolved Iron (discharge concentration is > 10% WQBEL, no Reasonable Potential) are the parameters of concern present in the influent. Since the purpose of the groundwater treatment system is to treat for PCBs, limits for Total PCB will remain in the permit to evaluate the effectiveness of the treatment system. Therefore, the maximum discharge concentrations entered in the Discharge Information page of the Toxics Management Spreadsheet were taken from the maximum influent concentrations provided in the Grantville Compressor Station PCBs Data 2015 – 2021, untreated groundwater (see Figure 6).

<u>Design Flow (MGD) Inputs:</u> The Proposed limits are based on the maximum flow of 0.0823 MGD (as the design flow input in the model). This was the maximum flow reported between the 1st quarter 2015 and 3rd quarter 2021.

Note: The maximum flow of 0.0884 MGD was used in the development of the 2014 limits. In 2009, the design flow of the system, 0.14 MGD, was used in the development of limits. It was determined that the maximum flow was a more accurate input to the model since the design flow of the system has never been reached. The change from utilizing the design flow in 2009 to the maximum flow in 2014 in the model resulted in less stringent limits.

Stream / Surface Water Information Inputs: A default LFY of 0.1 cfs/mi² was utilized due to the small drainage basin.

The recommended limits for the Proposed Draft NPDES Permit are taken from the Recommended WQBELs & Monitoring Requirements as follows:

	2014 NPDES Permit Limits Renewal			Recommended NPDES Permit Limits Renewal		
Parameter	Ave Monthly	Max Daily	Inst. Maximum	Ave Quarterly*	Max Daily	Inst. Maximum
Flow (MGD)	XXX XXX		xxx	xxx	xxx	XXX
Total PCBs (ug/L)	0.000188	0.000293	0.00047	0.0002	0.0003	0.0005

^{*}changed limit from Average Monthly to Average Quarterly since the treatment system is only required to be sampled on a quarterly basis.

Note: Dissolved Iron was listed as Report under Recommended WQBELs since the QL for Dissolved Iron used in reporting on Module 2 was 0.1 mg/L, the reference QL for Dissolved Iron is 20 ug/L (or 0.02 mg/L). It was decided not to include Dissolved Iron in the effluent limits as there is no reasonable potential and this appears to be an issue with analytical method used. It is recommended that they use an analytical method with a lower QL when running samples for Dissolved Iron in the future.

Since the discharge is to a dry stream, the MCL and the WQBEL (at the location where the swale enters the UNT to Bow Creek) were compared and the more stringent of the two was used for the permit limits.

Parameter	MCL	WQBEL from model
Total PCBs	0.5 ug/L	0.0002 ug/L

Since the WQBEL is the more stringent at 0.0002 ug/L, this will be the average quarterly limit used in the permit. Daily max and instantaneous max limits can be calculated by using the standard IW multipliers (i.e. 2.0 & 2.5). The slight change in the proposed limits from the 2014 NPDES Permit limits are a result of rounding.

It must also be noted that this limit is well below the method detection limit (MDL) of 0.5 ug/l for PCBs (using method 608); consequently, language in the permit must be included for limits below detection limits.

PART C SPECIAL CONDITIONS

I. OTHER REQUIREMENTS

- A. The approval herein given is specifically made contingent upon the permittee acquiring all necessary property rights by easement or otherwise, providing for the satisfactory construction, operation, maintenance or replacement of all structures associated with the herein approved discharge in, along, or across private property, with full rights of ingress, egress and regress.
- B. Collected screenings, slurries, sludges, and other solids shall be handled, recycled and/or disposed of in compliance with the Solid Waste Management Act (35 P.S. §§ 6018.101 6018.1003), 25 Pa. Code Chapters 287, 288, 289, 291, 295, 297, and 299 (relating to requirements for landfilling, impoundments, land application, composting, processing, and storage of residual waste), Chapters 261a, 262a, 263a, and 270a (related to identification of hazardous waste, requirements for generators and transporters, and hazardous waste, requirements for generators and transporters, and hazardous waste permit programs), federal regulation 40 CFR Part 257, The Clean Streams Law, and the Federal Clean Water Act and its amendments. Screenings collected at intake structures shall be collected and managed and not be returned to the receiving waters.

The permittee is responsible to obtain or assure that contracted agents have all necessary permits and approvals for the handling, storage, transport and disposal of solid waste materials generated as a result of wastewater treatment.

C. If the applicable standard or effluent guideline limitation relating to the application for Best Available Technology (BAT) Economically Achievable or to Best Conventional Technology (BCT) is developed by DEP or EPA for this type of industry, and if such standard or limitation is more stringent than the corresponding limitations of this permit (or if it controls pollutants not covered by this permit), DEP may modify or revoke and reissue the permit to conform with that standard or limitation.

II. WQBELS BELOW QUANTITATION LIMITS

A. The parameter(s) listed below are subject to water quality-based effluent limits (WQBELs) in Part A of this permit that are necessary to comply with state water quality standards, but may be less than quantitation limits (QLs), as defined in 25 Pa. Code § 252.1, that are generally achievable by conventional analytical technology. The permittee shall analyze the parameter(s) using methods that will achieve the QL(s) as listed below. For the purpose of compliance, a statistical value reported on the DMR that is less than the QL(s) (i.e., "non-detect") will be considered to be in compliance.

Parameter Name Quantitation Limit
Total PCBs 0.5 ug/L

- B. The permittee shall, where determined to be feasible by the permittee, achieve a QL less than the QL identified above to improve the level of confidence that state water quality standards are being met in the receiving waters.
- C. The permittee shall manage non-detect values and report statistical results to DEP in accordance with published DMR guidance (3800-BK-DEP3047). Where a mixed data set exists containing non-detect results and "detected"

values (i.e., results greater than or equal to the QL), the QL shall be used for non-detect results to compute average statistical results.

III. GROUNDWATER CLEANUP

- A. Sludges and other solids shall be handled and disposed of in compliance with 25 Pa. Code, Chapters 262, 263, and 264 (related to permits and requirements for landfilling and storage of hazardous sludge) and applicable federal regulations, the Federal Clean Water Act, RCRA and their amendments. The permittee is responsible to obtain or assure that contracted agents have all necessary permits and approvals for the handling, storage, transport and disposal of solid waste materials generated as a result of wastewater treatment.
- B. Annual Report The permittee shall submit a complete Annual Report to the DEP office that issued the permit on the anniversary date of this permit using DEP's Annual Report template attached to this permit. The Annual Report shall address activities under the permit for the previous calendar year. The permittee shall submit the Annual Report electronically if notified by DEP in writing. (25 Pa. Code § 92a.61(g)).
- C. The cleanup operation shall continue until a minimum of one year's data of the untreated groundwater (samples taken at least quarterly) have documented a concentration that is protective of the environment. Written approval to terminate must be received from DEP's Clean Water Program prior to shut-down.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

	Effluent Limitations						Monitoring Requirements	
Parameter	Mass Units (lbs/day) (1)		Concentrations (ug/L)				Minimum (2)	Required
Faianietei	Average Monthly	Average Weekly	Minimum	Average Quarterly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report Avg Qrtly	Report Daily Max	XXX	XXX	XXX	XXX	1/quarter	Weir
Total PCBs (ug/L)	XXX	XXX	XXX	0.0002	0.0003	0.0005	1/quarter	Grab

Compliance Sampling Location: Discharge from GWTS

	Tools and References Used to Develop Permit
	WQM for Windows Model (see Attachment)
\boxtimes	Toxics Management Spreadsheet (see Attachment A)
	TRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
\boxtimes	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP:
	Other:

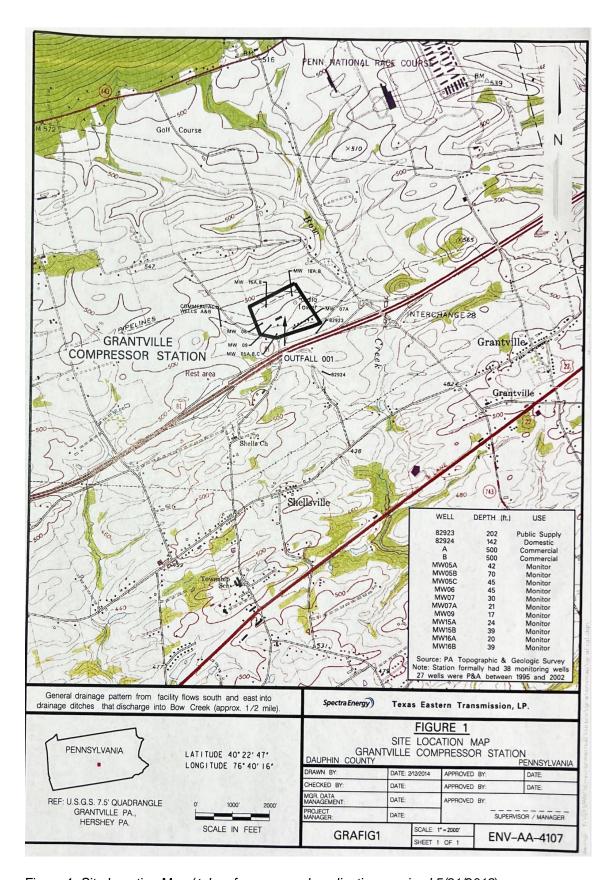


Figure 1. Site Location Map (taken from renewal application received 5/31/2019)

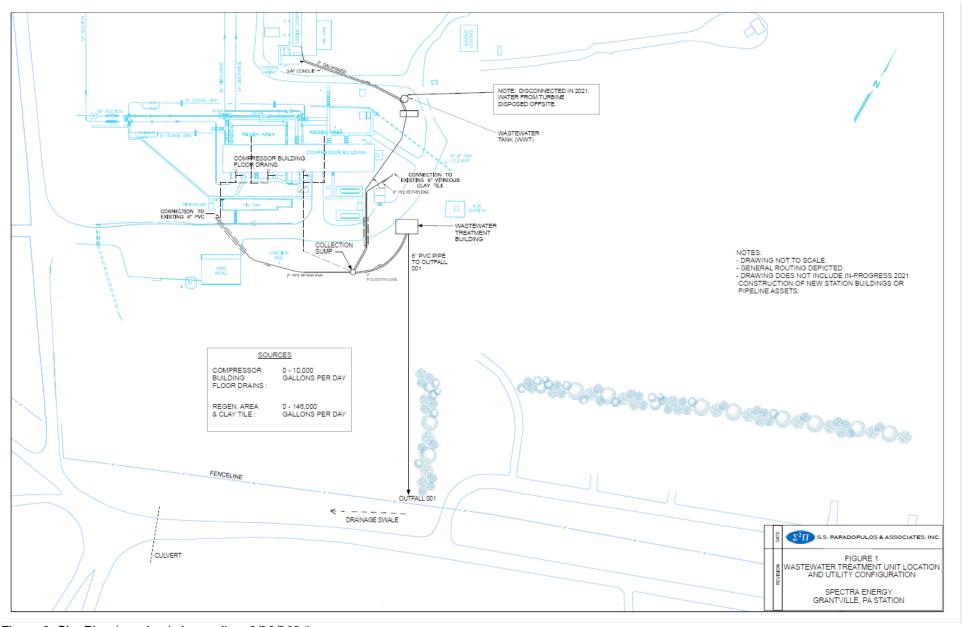


Figure 2. Site Plan (received via email on 9/23/2021)

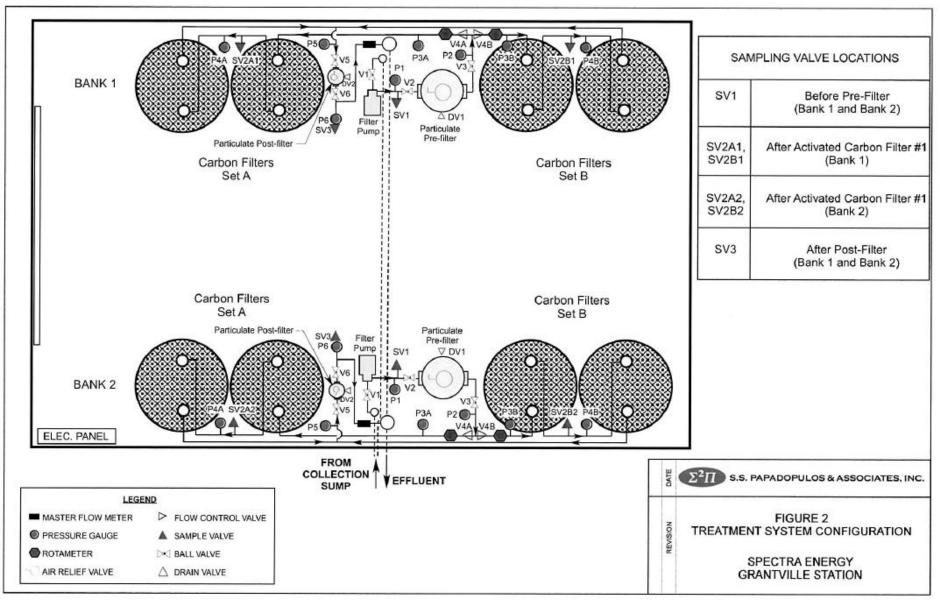


Figure 3. Treatment System Configuration (Figure 2. Treatment System Configuration from the 10/14/2021 response document)

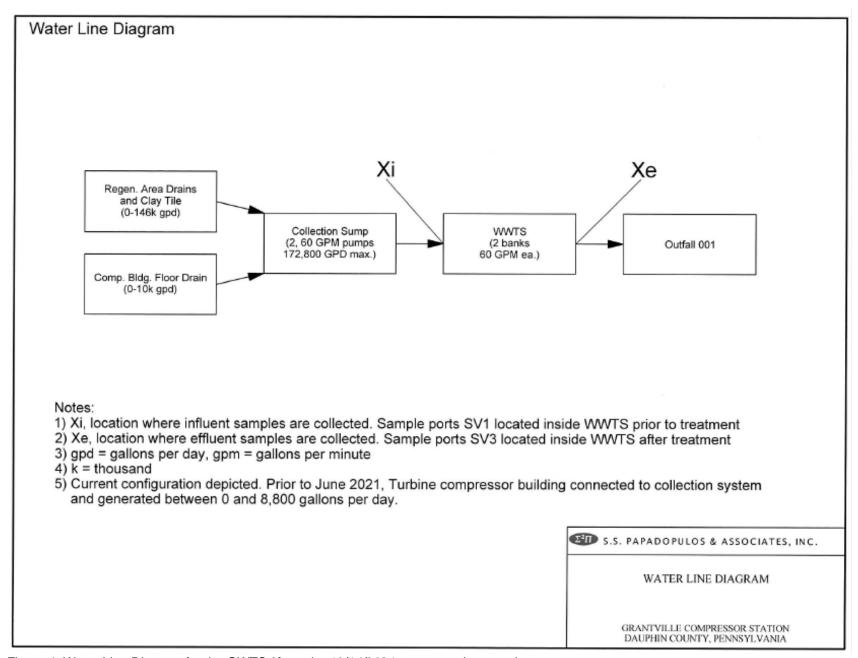


Figure 4. Water Line Diagram for the GWTS (from the 10/14/2021 response document)

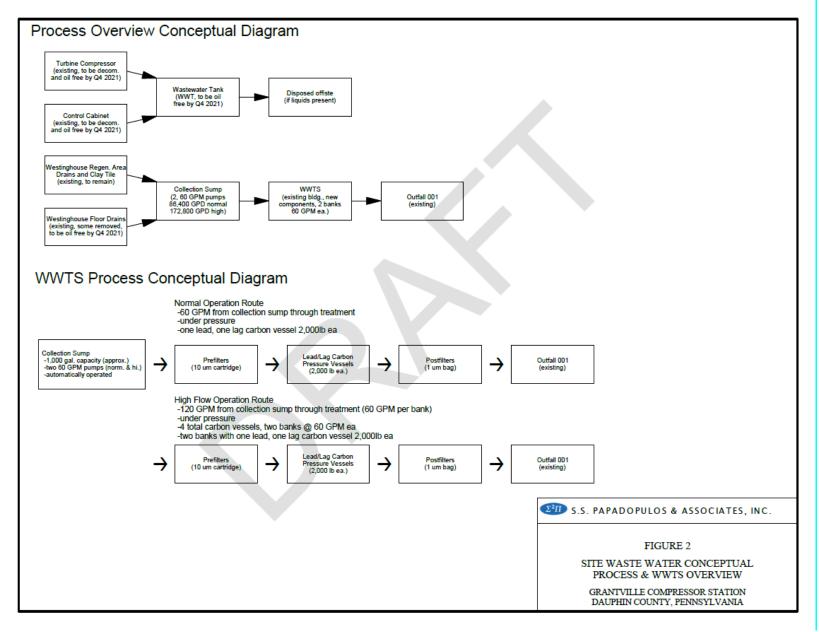


Figure 5. Conceptual Design of proposed treatment plant upgrades (received 7/8/2021 via email)

Outfall 001 Grantville Compressor Station Module 2 Attachment Laboratory Analytical Results

Applicant: Texas Eastern Transmission, LP

Sample Location	Date	рН	Total PCBs (μg/L)	TSS (mg/L)	Oil and Grease (mg/L)	Dissolved Iron (mg/L)	Dissolved Lead (mg/L)	Dissolved Mercury (mg/L)
Untreated GW	3/30/2015		7.4					
Untreated GW	6/17/2015		11.8					
Untreated GW	9/28/2015		11.5					
Untreated GW	12/17/2015		8.6					
Untreated GW	3/24/2016		11.2					
Untreated GW	6/27/2016		7.1					
Untreated GW	9/27/2016		4.4					
Untreated GW	12/22/2016		1.61					
Untreated GW	3/21/2017		1.09					
Untreated GW	6/22/2017		1.94					
Untreated GW	9/27/2017		0.859		N.			
Untreated GW	11/21/2017		0.614					
Untreated GW	2/15/2018		3.44					
Untreated GW	6/25/2018		<0.5					
Untreated GW	9/25/2018		1.81					
Untreated GW	12/20/2018		0.798					
Untreated GW	3/20/2019		1.22					
Untreated GW	4/4/2019	7.6		12.9	4.1	<0.1	<0.01	<0.0002
Untreated GW	4/11/2019	7.5		<0.5	<4	<0.1	<0.01	<0.0002
Untreated GW	4/18/2019	7.5		<0.5	<4	<0.1	<0.01	<0.0002
Untreated GW	6/24/2019		4.86					
Untreated GW	9/25/2019		28.1					
Untreated GW	12/18/2019		1.45					
Untreated GW	3/16/2020		6.05					
Untreated GW	5/12/2020		1.52				v	
Untreated GW	8/6/2020		0.832					
Untreated GW	10/29/2020		14.9					
Untreated GW	1/4/2021		4.33					
Untreated GW	3/1/2021		4.33					
Average		7.5	5.67	12.90	<4.033	<0.1	<0.01	<0.0002
Max		7.6	28.10	12.90	4.10	<0.1	<0.01	<0.0002
No. Samples		3	25	3	3	3	3	3
No. Detections		3	24	1	1	0	0	0
Quantitation Limit		0.1 SU	<0.5	<0.5	<4	<0.10	<0.01	0.0002

Notes: Sample locations are summarized below

Untreated groundwater sampled from sample port SV1, see Figure 2. Sample port located inside treatment building prior to any treatment.

Treated groundwater sampled from sample port SV3, see Figure 2. Sample port located inside treatment building after treatment.

- 2) Quarterly values presented
- 3) Samples collected in April 2019 in support of Module 2 requirements only.
- 4) Oil and Grease reported as N-Hexane Extractable Materials (HEM)
- 5) Samples analyzed by Test America or Pace Analytical.
- TSS -Total suspended solids

Figure 6. Summary of Total PCBs. Untreated Groundwater. Influent.

^{1) &}quot;c" indicates value less than laboratory reporting limit, with the reporting limit shown

Outfall 001 Grantville Compressor Station Module 2 Attachment Laboratory Analytical Results Applicant: Texas Eastern Transmission, LP

Sample Location	Date	рН	Total PCBs (μg/L)	TSS (mg/L)	Oil and Grease (mg/L)	Dissolved Iron (mg/L)	Dissolved Lead (mg/L)	Dissolved Mercury (mg/L)
Treated GW	3/30/2015		<0.5					
Treated GW	6/17/2015		<0.5					
Treated GW	9/28/2015		<0.5					
Treated GW	12/17/2015		<0.5					
Treated GW	3/24/2016		<0.5					
Treated GW	6/27/2016		<0.5					
Treated GW	9/27/2016		<0.5					
Treated GW			(200,000)					
	12/22/2016		<0.5					
Treated GW	3/21/2017		<0.5					
Treated GW	6/22/2017		<0.5					
Treated GW	9/27/2017		<0.5					
Treated GW	11/21/2017		<0.5					
Treated GW	2/15/2018		<0.5					
Treated GW	6/25/2018		<0.5					
Treated GW	9/25/2018		<0.5					
Treated GW	12/20/2018		<0.5					
Treated GW	3/20/2019		<0.5					
Treated GW	4/4/2019	8.2		<0.5	<4	<0.1	<0.01	<0.0002
Treated GW	4/11/2019	7.8		<0.5	<4	<0.1	<0.01	<0.0002
Treated GW	4/18/2019	7.7		<0.5	<4	<0.1	<0.01	<0.0002
Treated GW	6/24/2019		<0.5					
Treated GW	9/25/2019		<0.5					
Treated GW	12/18/2019		<0.5					
Treated GW	3/16/2020		<0.5					
Treated GW	5/12/2020		<0.5					
Treated GW	8/6/2020		<0.5					
Treated GW	10/29/2020		<0.5					
Treated GW Treated GW	1/4/2021		<0.5					
Average	3/1/2021	7.9	<0.5 <0.5	<0.5	<4	-0.1	-0.01	-0.000
Max	-	8.2	0.00	0.00	0.00	<0.1 <0.1	<0.01	<0.0002
No. Samples		3	25	3	4	3	<0.01	<0.0002
No. Detections		3	0	0	0	0	0	0
Quantitation Limit		0.1 SU	0.50	0.50	4.00	0.10	0.01	0.0002

Notes: Sample lo

Sample locations are summarized below:

Untreated groundwater sampled from sample port SV1, see Figure 2. Sample port located inside treatment building prior to any treatment.

Treated groundwater sampled from sample port SV3, see Figure 2. Sample port located inside treatment building after treatment.

- 1) "<" indicates value less than laboratory reporting limit, with the reporting limit shown
- 2) Quarterly values presented
- 3) Samples collected in April 2019 in support of Module 2 requirements only.
- 4) Oil and Grease reported as N-Hexane Extractable Materials (HEM)
- 5) Samples analyzed by Test America or Pace Analytical.
- TSS -Total suspended solids

Figure 7. Summary of Total PCBs. Treated Groundwater. Effluent

ATTACHMENT A

Toxics Management Spreadsheet, Version 1.3, March 21. Inputs and Results

Toxics Management Spreadsheet Version 1.3, March 2021

Discharge Information

Instructions	Discha	rge Stream			
Facility:	Texas Ea	stern Grantville		NPDES Permit No.: PA0086282	Outfall No.: 001
Evaluation T	ype: N	Major Sewage / In	dustrial Waste	Wastewater Description: GWTS	

Discharge Characteristics												
Design Flow	Handman (maill)		P	artial Mix Fa	Complete Mix Times (min)							
(MGD)*	Hardness (mg/l)*	pH (SU)*	AFC	CFC	THH	CRL	Q ₇₋₁₀	Qh				
0.0823	50	7										

Discharge Pollutant							0.11	'left	blank	0.5 If le	ft blank	0	if left blan	k	1 if left blank		
Bromide PWS mg/L			Units	Ma	•					_				FOS			
Bromide FWS mg/L			mg/L					\vdash								\rightarrow	
Fluoride (PWS) mg/L	7	Chloride (PWS)	mg/L			H	F	\perp								+	
Fluoride (PWS) mg/L	Ξ	Bromide	mg/L				L	Ţ								\vdash	
Fluoride (PWS) mg/L	5	Sulfate (PWS)	mg/L														
Total Antimony		Fluoride (PWS)															
Total Assenic μg/L		Total Aluminum	μg/L														
Total Barium		Total Antimony	μg/L				П	П									
Total Beryllium		Total Arsenic	μg/L				Π										
Total Boron		Total Barium	μg/L				Τ	T									
Total Boron		Total Beryllium	μg/L														
Total Cadmium							F										
Total Chromium (III)		Total Cadmium				H	F	H									
Hexavalent Chromium		Total Chromium (III)					F	\vdash									
Total Copper		Hexavalent Chromium															
Total Copper		Total Cobalt	µg/L														
Free Cyanide		Total Copper															
Total Cyanide							Г	Т									
Total Iron	ğ							\top									
Total Iron	ž			<	0.1												
Total Lead	٥						t	t									
Total Manganese		Total Lead						÷									
Total Mercury		Total Manganese															
Total Nickel μg/L						H	H	Ħ									
Total Phenols (Phenolics) (PWS) μg/L							Þ										
Total Selenium																	
Total Silver μg/L Total Thallium μg/L Total Zinc μg/L Total Molybdenum μg/L Acrolein μg/L Acrylamide μg/L Acrylonitrile μg/L Benzene μg/L Bromoform μg/L Carbon Tetrachloride μg/L Chlorobenzene μg/L Chlorodibromomethane μg/L Chloroethane μg/L		Total Selenium															
Total Thallium μg/L Total Zinc μg/L Total Molybdenum μg/L Acrolein μg/L Acrylamide μg/L Acrylonitrile μg/L Benzene μg/L Bromoform μg/L Carbon Tetrachloride μg/L Chlorobenzene μg/L Chlorodibromomethane μg/L Chloroethane μg/L							Г										
Total Zinc μg/L Total Molybdenum μg/L Acrolein μg/L Acrylamide μg/L Acrylonitrile μg/L Benzene μg/L Bromoform μg/L Carbon Tetrachloride μg/L Chlorobenzene μg/L Chlorodibromomethane μg/L Chloroethane μg/L																	
Total Molybdenum μg/L Acrolein μg/L Acrylamide μg/L Acrylonitrile μg/L Benzene μg/L Bromoform μg/L Carbon Tetrachloride μg/L Chlorobenzene μg/L Chlorodibromomethane μg/L Chloroethane μg/L							Т										
Acrolein μg/L Acrylamide μg/L Acrylonitrile μg/L Benzene μg/L Bromoform μg/L Carbon Tetrachloride μg/L Chlorobenzene μg/L Chlorodibromomethane μg/L Chloroethane μg/L								\top									
Acrylamide µg/L Acrylonitrile µg/L Benzene µg/L Bromoform µg/L Carbon Tetrachloride µg/L Chlorobenzene µg/L Chlorodibromomethane µg/L Chloroethane µg/L		-		<			t										
Acrylonitrile µg/L Benzene µg/L Bromoform µg/L Carbon Tetrachloride µg/L Chlorobenzene µg/L Chlorodibromomethane µg/L Chloroethane µg/L				_		⊭	H	Ħ									
Benzene μg/L Bromoform μg/L Carbon Tetrachloride μg/L Chlorobenzene μg/L Chlorodibromomethane μg/L Chloroethane μg/L				<				H									
Bromoform μg/L Carbon Tetrachloride μg/L Chlorobenzene μg/L Chlorodibromomethane μg/L Chloroethane μg/L				_													
Carbon Tetrachloride µg/L Chlorobenzene µg/L Chlorodibromomethane µg/L Chloroethane µg/L				_													
Chlorobenzene μg/L Chlorodibromomethane μg/L Chloroethane μg/L																	
Chlorodibromomethane																	
Chloroethane µg/L <				<				f									
				_				Ť									
1 17-Chloroethyl Vinyl Ether Ud/ <		2-Chloroethyl Vinyl Ether	μg/L	<													

Discharge Information 12/23/2021 Page 1

ı	Sur ,										_
	Chloroform	μg/L	<	-	\perp	Н				Н	+
	Dichlorobromomethane	μg/L	<	Ļ	Н	Н				4	+
	1,1-Dichloroethane	μg/L	<	Ļ	\vdash	Щ				Ų.	
3	1,2-Dichloroethane	μg/L	<	L	\vdash	Ш				н	+
Group	1,1-Dichloroethylene	μg/L	<							\perp	\perp
1,6	1,2-Dichloropropane	μg/L	<		\Box					Ť	\Rightarrow
٥	1,3-Dichloropropylene	μg/L	<							\Rightarrow	\Rightarrow
	1,4-Dioxane	μg/L	<	\vdash						+	\Rightarrow
	Ethylbenzene	μg/L	<	\vdash		Н				+	
	Methyl Bromide	μg/L	<	Ļ	\vdash	L				4	4
	Methyl Chloride	μg/L	<	Ļ	Ш	Ц				4	
	Methylene Chloride	μg/L	<	Щ	Щ	Ц				Щ	
	1,1,2,2-Tetrachloroethane	μg/L	<			Ш				Ш	
	Tetrachloroethylene	μg/L	<								
	Toluene	μg/L	<								
	1,2-trans-Dichloroethylene	μg/L	<	Î		П					
	1,1,1-Trichloroethane	μg/L	٧								
	1,1,2-Trichloroethane	μg/L	<								
	Trichloroethylene	μg/L	<	\vdash						+	
	Vinyl Chloride	μg/L	<	ļ.	H					4	\blacksquare
	2-Chlorophenol	μg/L	<								
	2,4-Dichlorophenol	μg/L	<								
1	2,4-Dimethylphenol	μg/L	<								
	4,6-Dinitro-o-Cresol	µg/L	<								
4	2,4-Dinitrophenol	µg/L	<								
Ě	2-Nitrophenol	µg/L	<								\neg
Group	4-Nitrophenol	µg/L	<								
ľ	p-Chloro-m-Cresol	μg/L	<			Н				÷	_
	Pentachlorophenol	μg/L	<	H		Н				÷	=
	Phenol	μg/L	<			H				1	-
	2,4,6-Trichlorophenol	μg/L	<								
\vdash	Acenaphthene	μg/L	<								
	Acenaphthylene	µg/L	<			Н			\vdash		
	Anthracene	μg/L	<			Е			_		
	Benzidine	μg/L	<			Н			_		$\overline{}$
	Benzo(a)Anthracene	µg/L	<			Н			—	+	$\overline{}$
	Benzo(a)Pyrene	µg/L	<		+	Н			_	Н	+
	3,4-Benzofluoranthene	µg/L	<	₩	+	H			_	+	+
	Benzo(ghi)Perylene	µg/L	<	+	+	H			_	+	+
	Benzo(k)Fluoranthene	μg/L	<			H			_	+	+
	Bis(2-Chloroethoxy)Methane	μg/L	<						_	+	-
	Bis(2-Chloroethyl)Ether	μg/L	<			Н			-		
	Bis(2-Chloroisopropyl)Ether		<			Н			-		+
	Bis(2-Ethylhexyl)Phthalate	μg/L	<			Н				H	$\overline{}$
	4-Bromophenyl Phenyl Ether	μg/L	<			Ε			\vdash		$\overline{}$
	Butyl Benzyl Phthalate	μg/L	<	₩		H				H	-
	2-Chloronaphthalene	μg/L	_	-	-	Н			_	+	-
		μg/L	<	⊬	\vdash	Н				₩	-
	4-Chlorophenyl Phenyl Ether	μg/L	<								-
	Chrysene Diberro(a h)Anthronocea	μg/L	_								+
	Dibenzo(a,h)Anthrancene	μg/L	<								+
	1,2-Dichlorobenzene	μg/L	<								
	1,3-Dichlorobenzene	μg/L	<								
5	1,4-Dichlorobenzene	μg/L	<								
Ĭ	3,3-Dichlorobenzidine Diethyl Phthalate Dimethyl Phthalate	μg/L	<			F					
16	Dietnyl Phthalate	μg/L	<								
<u> </u>		μg/L	<								+
	Di-n-Butyl Phthalate	μg/L	<	-						+	+
	2,4-Dinitrotoluene	μg/L	<								-
	2,6-Dinitrotoluene	μg/L	<								\perp
	Di-n-Octyl Phthalate	μg/L	<								
	1,2-Diphenylhydrazine	μg/L	<								
	Fluoranthene	μg/L	<								
	Fluorene	μg/L	<								
	Hexachlorobenzene	μg/L	<								
			<	-		Н					
	Hexachlorobutadiene	μg/L	_	-	_						
	Hexachlorobutadiene Hexachlorocyclopentadiene	μg/L μg/L	<								
	Hexachlorocyclopentadiene Hexachloroethane	μg/L	_								
	Hexachlorocyclopentadiene		<								

Discharge Information 12/23/2021 Page 2

<u> </u>		0	_										_
_	sophorone	µg/L	<		-	Н	Н					Н	+
	laphthalene	µg/L	<			Н	Н			├─	_	H	+
_	litrobenzene	μg/L	٧		Ļ	Н	Ц			├─	_	H	+
	-Nitrosodimethylamine	μg/L	٧			Н	Н					Н	+
	-Nitrosodi-n-Propylamine	μg/L	<				П					П	\perp
_	-Nitrosodiphenylamine	μg/L	٧									r	
	henanthrene	μg/L	<				Н					H	\perp
	yrene	μg/L	٧		\vdash		Н					\vdash	+
1,	,2,4-Trichlorobenzene	μg/L	٧		Ļ		H					\forall	-
Α	ldrin	μg/L	٧		ļ		Ц					Щ	
al	lpha-BHC	μg/L	<									Д	
be	eta-BHC	μg/L	٧										
g	amma-BHC	μg/L	٧									П	
de	elta BHC	μg/L	٧		П		П					П	
C	hlordane	μg/L	<				П						
4.	.4-DDT	μg/L	<				Ħ					Ħ	_
	.4-DDE	µg/L	<		H	H	H					H	+
	.4-DDD	µg/L	<				H					H	+
	ieldrin	µg/L	<							\vdash			
	lpha-Endosulfan	µg/L	<			Н	Н			 		Н	+
	eta-Endosulfan	µg/L	<				Е			-	_		
9	ndosulfan Sulfate		<		Η		Η			-	_	H	+
_		μg/L	_		⊨		H			-	_	H	+
ᅙ분	ndrin	μg/L	<		₩	H	Н					₩	+
σË	ndrin Aldehyde	μg/L	٧			Н	Н					Н	+
	leptachlor	μg/L	<		Ļ	Щ	Н					H	+
	leptachlor Epoxide	μg/L	<			Ш	Ц					Щ	
	PCB-1016	μg/L	<				Ц					Щ	\perp
_	CB-1221	μg/L	٧										
	CB-1232	μg/L	<									Ħ	
	CB-1242	μg/L	<										
	CB-1248	μg/L	<		╆		Н					\vdash	\pm
	CB-1254	μg/L	٧		\perp	Н	H					H	+
P	CB-1260	μg/L	<		Ļ							H.	_
P	CBs, Total	μg/L		28.1								Ш	
T	oxaphene	μg/L	<									П	
2	.3.7.8-TCDD	ng/L	<				П					П	
G	Pross Alpha	pCi/L					П					\sqcap	
► T	otal Beta	pCi/L	<									H	
o R	Radium 226/228	pCi/L	<		+		Н			_		+	+
	otal Strontium	µg/L	<									+	+
<u>ت</u> ا	otal Uranium	µg/L	<							-		H	+
	otal Orallium		_		-	-	Н						+
-	Semotic Proceura	mOs/ka		I	_	_							
	Smotic Pressure	mOs/kg			H	Н	Н			 			
	Smotic Pressure	mOs/kg											
	Osmotic Pressure	mOs/kg											
	Smotic Pressure	mOs/kg											
	Smotic Pressure	mOs/kg											
	Smotic Pressure	mOs/kg											
	Smotic Pressure	mOs/kg											
)smotic Pressure	mOs/kg											
)smotic Pressure	mOs/kg											
)smotic Pressure	mOs/kg											
)smotic Pressure	mOs/kg											

Discharge Information 12/23/2021 Page 3

Toxics Management Spreadsheet Version 1.3, March 2021

Stream / Surface Water Information

Texas Eastern Grantville, NPDES Permit No. PA0086282, Outfall 001

arge Stre	eam												
ater Name:	Trib 09655 t	o Bow Creel	k			No. Rea	ches to l	Model: 1			_		
Stream Coo	ie* RMI*	Elevation (ft)*	DA (mi	²)* Sk	ope (ft/ft)					RSANCO Crit	eria		
009361	0.6	457	0.21					Yes					
009361	0	416	0.39					Yes					
RMI	LFY (cfs/mi ²)*	Flow Stream	(cfs) Tributary	W/D Ratio	Width (ft)	Depth (ft)				Strea Hardness*	m pH*	Analy:	sis pH
0.6	0.1									100	7		
0	0.1									4			
	•				•							•	
DMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Travel Time	Tributary	Strea	ım	Analys	sis
POVII	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness pH	Hardness	pН	Hardness	pН
											$\overline{}$		
0.6													
	ater Name:	ater Name: Trib 09655 t Stream Code* RMI* 009361 0.6 009361 0 RMI LFY (cfs/mi²)* 0.6 0.1 0 0.1 RMI LFY (cfs/mi²)*	Stream Code*	Stream Code*	Stream Code* RMI* Elevation (ft)* DA (mi²)* Sk	Stream Code* RMI* Elevation (ft)* DA (mi²)* Slope (ft/ft)	Stream Code* RMI* Elevation DA (mi²)* Slope (ft/ft) PWS 1 (ft)* O.9381 0.6 457 0.21 O.9381 0 418 0.39 O.9381 O 418 O.39 O.8 O.8	Stream Code* RMI* Elevation DA (mi²)* Slope (ft/ft) PWS Withdraw (MGD)	Stream Code* RMI* Elevation (ft)* DA (mi²)* Slope (ft/ft) PWS Withdrawal (MGD) Criterion (MGD) Ves	Stream Code* RMI* Elevation DA (mi²)* Slope (ft/ft) PWS Withdrawal Apply Fish (MGD) Criteria*	Stream Code* RMI* Elevation (ft)* DA (mi²)* Slope (ft/ft) PWS Withdrawal Apply Fish (MGD) Criteria* ORSANCO Crite* ORSANCO Crite*	Atter Name: Trib 09655 to Bow Creek No. Reaches to Model: 1 Stream Code* RMI* Elevation (ft)* DA (mi²)* Slope (ft/ft) PWS Withdrawal (MGD) Criteria* 009361 0.6 457 0.21 Yes 009361 0 416 0.39 Yes RMI (LFY Flow (cfs) W/D Width (ft) (ft) (ft) y (fps) (days) Hardness pH Hardness* pH* 0.8 0.1	Atter Name: Trib 09655 to Bow Creek No. Reaches to Model: 1 Stream Code* RMI* Elevation (ft)* DA (mi²)* Slope (ft/ft) PWS Withdrawal (MGD) Criteria* ORSANCO Criteria ORSANCO Criteria RMI LFY Flow (cfs) W/D Width (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft)

Stream / Surface Water Information 12/23/2021 Page 4

Toxics Management Spreadsheet Version 1.3, March 2021

Page 5

Model Results

Model Results

Texas Eastern Grantville, NPDES Permit No. PA0086282, Outfall 001

Hydrodynamics ✓ Wasteload Allocations ✓ AFC CCT (min): 0.011 PMF: 1 Analysis Hardness (mg/l): 57.079 Analysis pH: 7.00 Pollutants Stream Conc CV (μg/L) Coef (μg/L) (μg/L) (μg/L) (μg/L) WQC WQ Obj (μg/L) (μg/L) (μg/L) (μg/L) WLA (μg/L) Comments Dissolved Iron 0 0 N/A N/A N/A N/A N/A N/A	
✓ AFC CCT (min): 0.011 PMF: 1 Analysis Hardness (mg/l): 57.079 Analysis pH: 7.00 Pollutants Stream Conc Stream CV Trib Conc (μg/L) Fate Coef (μg/L) WQ Obj (μg/L) WLA (μg/L) Comments	
Pollutants Stream Conc CV ($\mu g/L$) Stream ($\mu g/L$) Coef ($\mu g/L$) WQ Obj ($\mu g/L$) WLA ($\mu g/L$) Comments	
Pollutants Conc CV (µg/L) Coef (µg/L) (µg/L) WLA (µg/L) Comments	
Dissolved Iron 0 0 N/A N/A N/A	
DISSURED THE	
PCBs, Total 0 0 N/A N/A N/A N/A	
	\longrightarrow
☑ CFC CCT (min): 0.011 PMF: 1 Analysis Hardness (mg/l): 57.079 Analysis pH: 7.00	
Pollutants Stream Trib Conc CV (µg/L) Stream Trib Conc (µg/L) Coef (µg/L) WQ Obj (µg/L) WLA (µg/L) Comments	
Dissolved Iron 0 0 N/A N/A N/A N/A	
PCBs, Total 0 0 0 0.014 0.014 0.016	
✓ THH CCT (min): 0.011 PMF: 1 Analysis Hardness (mg/l): N/A Analysis pH: N/A	
Pollutants Conc CV (µg/L) Coef (µg/L) (µg/L) WQ Obj (µg/L) WLA (µg/L) Comments	
Dissolved Iron 0 0 0 300 300 349	$\overline{}$
PCBs, Total 0 0 N/A N/A N/A N/A	
☑ CRL CCT (min): 0.136 PMF: 1 Analysis Hardness (mg/l): N/A Analysis pH: N/A	
Pollutants Conc CV (µg/L) Stream Trib Conc Fate WQC WQ Obj (µg/L) WLA (µg/L) Comments	
Dissolved Iron 0 0 N/A N/A N/A N/A	

12/23/2021

PCBs, Total	0	0	0	0.000064	0.00006	0.0002	

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month:

4

	Mass	Limits		Concentra	tion Limits				
Dellutente	AML	MDL	A 8 41	AML MDL		Helie	Governing	WQBEL	Comments
Pollutants	(lbs/day)	(lbs/day)	AML	MDL	IMAX	Units	WQBEL	Basis	Comments
Dissolved Iron	Report	Report	Report	Report	Report	mg/L	0.35	THH	Discharge Conc > 10% WQBEL (no RP)
PCBs, Total	1.32E-07	2.05E-07	0.0002	0.0003	0.0005	μg/L	0.0002	CRL	Discharge Conc ≥ 50% WQBEL (RP)

☑ Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments

Model Results 12/23/2021 Page 6