

Application Type Facility Type Major / Minor	Renewal Industrial Minor	INDIVIDUAL INDUS	IT FACT SHEET STRIAL WASTE ORMWATER	(IW)	Application No. APS ID Authorization ID	PA0086878 105 1373930
		Applicant and Fa	acility Information			
Applicant Name	Hamburg M County	Iunicipal Authority - Berks	Facility Name		urg Municipal Auth ion Plant	ority Water
Applicant Address	61 North 3r	d Street	Facility Address	Reser	voir Road	
	Hamburg F	PA 19526-1501		Hamb	ura PA 19526	

	(Kdu	n Dunn, Superintendent nn.hma@hamburgboro.com) d Fink, authority vice-chair		Alfred (Ty) Leinneweber, Authority Engr
Applicant Contact		afink@msn.com)	Facility Contact	SDEI
Applicant Phone	(610)	406-7355	Facility Phone	(610) 916-8500 leinneweber@sdei.net
Client ID	6464	8	Site ID	237982
SIC Code	4941	(NAICS 221310)	Municipality	Windsor Township
SIC Description	Trans	s. & Utilities - Water Supply	County	Berks
Date Application Rec	eived	October 22, 2021, with additional info received Dec 6 & 9, 2022	EPA Waived?	Yes
Date Application Accepted		November 4, 2021	If No, Reason	

Summary of Review

The previous NPDES permit was issued April 27, 2017 and was administratively extended past its expiration date of April 30, 2022. The NPDES renewal application was received timely, via DEP's OnBase upload system (Reference ID #35029). Additional sampling results, using DEP's Target Quantitation Levels (TQLs) were submitted December 6 and December 9, 2022.

The facility treats water for drinking water distribution. Clarifier supernatant, wastewater from backwash cycles, and any wastewater from a chemical feed area drain are conveyed to a clarifier for settling and then discharged through outfall 001 into Furnace Creek. Sludge from the clarifier is disposed off-site. There is an onlot disposal system for sewage and a 5000gallon holding tank for floor drain and sink wastewater: no domestic wastewater is discharged from outfall 001.

Design Flow

A review of the application and the flow reported in their Discharge Monitoring Reports from January 1, 2019 through October 31, 2022 indicates no reason to change the design flow: the previous permit and the renewal permit used a design flow of 0.13 MGD. The Maximum Monthly Average flow from the reviewed DMRs was 0.13 MGD. The average of their Daily Maximums was also 0.13 MGD. (See the attached.)

Obsolete Outfall

Approve	Deny	Signatures	Date
x		<i>Bonnie Boylan</i> Bonnie Boylan / Permit Writer	December 15, 2022
х		<i>Maria D. Bebenek for</i> Daniel W. Martin, P.E. / Environmental Engineer Manager	January 25, 2023
х		<i>Maria D. Bebenek</i> Maria D. Bebenek, P.E. / Environmental Program Manager	January 25, 2023

The permit application's topo map showed an emergency overflow discharge location as well as outfall 001. When the permittee was questioned, they said that emergency overflow, outfall 002, no longer exists: it existed when the old finished water storage reservoir was used but that reservoir was abandoned and filled when the new finished water storage tank was constructed and put into service in 2012. They sent a corrected topo map. Only outfall 001 is therefore included in the renewal permit. The permittee's consultant also supplied a corrected latitude and longitude for outfall 001 (slightly different from the previous permit).

Anti-Degradation

This discharge is to a High Quality (HQ) waterway. An antidegradation analysis was conducted for the previous NPDES permit when the design flow was increased. The previous flow of 0.03 MGD is "grandfathered" as existing before the stream designation was changed to HQ. Increases in flow after the HQ designation are subject to the requirements for discharges to an HQ water, such as to not cause degradation of the existing water quality. The 2022 renewal application did not include an Anti-Degradation Module because they are not proposing a new or increased discharge or increased loading of pollutants. The concentrations determined in 2017 for the grandfathered flow plus the non-grandfathered flow were compared to the discharge concentrations reported in their renewal application and in their Discharge Monitoring Reports (DMRs) to ensure continued protection of the HQ waterway.

For documentation purposes, the 2017 Fact Sheet stated:

An "Expanded Discharge Evaluation" was conducted to satisfy the DEP's antidegradation policy for discharges to waters designated as "High Quality" and in accordance with State regulations pertaining to antidegradation. The more stringent of ABACT technology-based limits [Antidegradation Best Available Combination of Technologies], site-specific limits that prevent degradation of HQ/EV waters from new or increased flows, and WQBELs should be imposed in NPDES permits in order to satisfy the antidegradation requirements. The resulting spreadsheets are attached.

The 2017 antidegradation spreadsheets are also attached to this Fact Sheet.

Outstanding Violations

None according to DEP's WMS database: Open Violations by Client report.

PA Fish and Boat Commission

Because the receiving water is designated as Class A Wild Trout, a copy of the draft permit will be forwarded to the PA Fish and Boat Commission.

Delaware River Basin Commission

As per an Interagency Agreement and State regulations, a copy of the draft permit will also be forwarded to the Delaware River Basin Commission (DRBC). Furnace Creek is within the DE River watershed. The following standard Part C Condition will be added in the permit: this discharge may be subject to other DRBC requirements.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

		Discharge, Receiving Wat	ers and Water Supply Informa	tion					
Outfall No. 001			Design Flow (MGD)	0.13					
Latitude <u>40° 3</u> Quad Name	84' 58"		Longitude <u>-75° 56' 27"</u> Quad Code						
Wastewater Descri	ption:	IW Process Effluent witho	ut ELG (Water Treatment Plant	Filter Backwash)					
Receiving Waters	-	ce Creek (HQ-CWF)	Stream Code	02080					
NHD Com ID	25975		RMI	3.4					
Drainage Area	1.7 sc	ą. miles	Yield (cfs/mi ²)	0.1 cfs/sq.mi. *					
Q ₇₋₁₀ Flow (cfs)		ofs * estimated	Q7-10 Basis	Estimation using USGS data*					
Elevation (ft)	Appr	oximately 725 (topo layer)	Slope (ft/ft)	HO CW/F MF (designated					
Watershed No.	3-B		Chapter 93 Class.	HQ-CWF, MF (designated uses ID # 4086)					
Existing Use	-		Existing Use Qualifier	-					
Exceptions to Use	-		Exceptions to Criteria	-					
Assessment Status Cause(s) of Impairr			nogens and downstream Lake Ontelaunee is impaired and num Daily Load for (TMDL) for Nutrients (specifically Total Suspended Solids						
Source(s) of Impair		-							
TMDL Status		Final 8/9/2004	Name Lake Ontela	unee					
			to Maiden Creek (Stream Code to the Schuylkill River (Stream C						
Background/Ambie	nt Data		Data Source						
pH (SU)									
Temperature (°F)									
Hardness (mg/L)									
Other:									
Nearest Downstrea	ım Publi	c Water Supply Intake	Reading Area Water Authority	/					
PWS Waters	Maiden	Creek	Flow at Intake (cfs)						
PWS RMI	1, appro	ximately	Distance from Outfall (mi)	18					

Class A Wild Trout Classification and Trout Natural Reproduction designation on this segment of Furnace Creek: from headwaters at 5.9 RMI to lower limit at 3.1 RMI

According to eMapPA....

-No dischargers to Furnace Run upstream of facility

-Only discharger to Furnace Run downstream of facility is Lenhartsville Boro STP PA0246921

*PA Stream Stats online tool yielded a Q7-10 of 0.1 cfs whereas the last permit's Fact Sheet used a Q7-10 of 0.16 cfs. The online tool may be using regression equations and not taking into account the reservoir and dam that would affect stream flow. The closest downstream gage was on Maidencreek at Virginville, 01470756, which would have accounted for releases from the reservoir: it had a low flow yield of 0.11 cfs/mi² using USGS historical data [the 2011 USGS Stuckey and Roland Report titled Selected Streamflow Statistics for Streamgage Locations in and near Pennsylvania] but the period of record stopped in 1995 and it is almost 9 miles downstream and there are tributaries contributing before the

gage location. This information would result in 0.19 cfs : LFY gage x Drainage Area of site = $0.11 \text{ cfs/mi}^2 \text{ x } 1.7 \text{ mi}^2 = 0.19$ cfs. The estimated Q7-10 at the stream location of 001 is therefore between 0.1 cfs (PA Stream Stats online estimate without considering dam releases) and 0.19 cfs including dam releases but an overestimate since the data was derived from a location 8.8 miles downstream after other tributaries fed into Maiden Creek (notably Sacony Creek) and including the drainage into Maiden Creek above its confluence with Furnace Creek. The Q7-10 used in the last Fact Sheet for the discharge location is considered reasonable and was carried forward: 0.16 cfs.

Treatment Facility Summary									
Treatment Facility Na	ame: Hamburg Munici	pal Authority Water Filtration Plant							
WQM Permit No.	Issuance Date								
none	-								

The water treatment plant consists of two upflow clarifiers, two mixed media filters, an air stripper, and a finished water tank. Backwash water from the clarifiers and filters is conveyed to a separate clarifier/thickening tank, which also collects any wastewater from the chemical addition area drains.

DEP previously approved, by letter, the addition of de-chlorination equipment to achieve TRC limits in the NPDES permit.

Sludge is trucked to Hamburg Borough Sewage Treatment Plant's Belt Filter Press

2017 DEP Clean Water Inspection Report:

-1 air stripper, used when drawing raw water from wells (but air stripper not shown in renewal permit application diagram) -outfall 002 to Furnace Creek was abandoned with demolition of old clear well at filter plant.

EXISTING PERMIT LIMITS, OUTFALL 001:

			Effluent Lin	nitations			Monitoring Re	equirements
Parameter	Mass Uni	ts (Ibs/day)		Concentrat	tions (mg/L)		Minimum	Required
Farameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	xxx	xxx	xxx	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	xxx	9.0	1/day	Grab
Total Residual Chlorine (TRC)	XXX	xxx	xxx	0.12	xxx	0.41	1/day	Grab
Total Suspended Solids (Ibs)	Report Total Monthly	2739 Total Annual	xxx	14.0	28.0	35	1/week	24-Hr Composite
Total Phosphorus (lbs)	Report Total Monthly	91 Total Annual	xxx	Report	xxx	XXX	1/week	24-Hr Composite
Aluminum, Total	Report	Report	xxx	1.0	1.6	2.5	1/week	24-Hr Composite
Iron, Total	Report	Report	xxx	1.4	2.8	3.5	1/week	24-Hr Composite
Manganese, Total	Report	Report	xxx	1.0	2.0	2.5	1/week	24-Hr Composite
				Report Avg				24-Hr
Total Dissolved Solids	XXX	XXX	XXX	Quarterly	XXX	XXX	1/quarter	Composite

Compliance History

DMR Data for Outfall 001 (from September 1, 2021 to August 31, 2022)

Parameter	AUG-22	JUL-22	JUN-22	MAY-22	APR-22	MAR-22	FEB-22	JAN-22	DEC-21	NOV-21	OCT-21	SEP-21
Flow (MGD)												
Average Monthly	0.027	0.116	0.114	0.033	0.059	0.094	0.072	0.033	0.132	0.125	0.102	0.031
Flow (MGD)												
Daily Maximum	0.213	0.156	0.180	0.148	0.161	0.169	0.174	0.165	0.176	0.170	0.238	0.128
pH (S.U.)												
Minimum	6.69	6.36	6.65	6.17	6.51	6.53	6.43	6.39	6.41	6.47	6.4	6.43
pH (S.U.)												
Instantaneous												
Maximum	7.58	7.15	7.46	8.97	7.47	7.60	7.57	7.45	7.54	7.66	7.4	8.63
TRC (mg/L)												
Average Monthly	< 0.03	< 0.04	< 0.03	< 0.03	< 0.04	< 0.07	< 0.04	< 0.07	0.04	0.03	0.04	< 0.03
TRC (mg/L)												
Instantaneous		0.00	0.40	0.00	0.40	0.04		0.00	0.40	0.40	0.40	0.45
Maximum	0.04	0.38	0.16	0.08	0.18	0.21	0.14	0.32	0.16	0.19	0.19	0.15
TSS (mg/L)	. 1.0	5.0		. 1.0	. 1.0		. 1.0	. 1.0	<u> </u>	6.0	<u> </u>	10
Average Monthly	< 4.0	5.0	< 5.0	< 4.0	< 4.0	< 5.0	< 4.0	< 4.0	6.0	6.0	6.0	< 1.0
TSS (mg/L)	1.0	6.0	6.5	4.0	4.8	6.5	4.0	5.2	11.0	7.5	9.5	1.0
Daily Maximum Total Suspended	4.0	0.0	0.0	4.0	4.8	0.0	4.0	5.2	11.0	7.5	9.5	1.0
Solids (lbs)												
Total Monthly	< 41	158	< 154	< 30	< 78	< 125	< 85	< 65	< 186	172	< 197	< 14
Total Suspended	< 41	150	< 154	< 30	< 70	< 125	< 05	< 05	< 100	172	< 197	< 14
Solids (lbs)												
Total Annual									909			
Total Dissolved Solids									000			
(mg/L)												
Average Quarterly			26			37			< 25			29
Total Phosphorus						0.						
(mg/L)												
Average Monthly	< 0.1	< 0.12	< 0.11	< 0.11	< 0.11	< 0.1	< 0.1	< 0.11	< 0.11	< 0.09	< 0.1	< 0.036
Total Phosphorus (lbs)												
Total Monthly	< 0.03	< 3	< 3	< 0.8	< 2	< 3	< 2	< 1	< 3	< 3	< 3	< 0.2
Total Phosphorus (lbs)												
Total Annual									14.65			
Total Aluminum												
(lbs/day)												
Average Monthly	0.1	0.5	0.6	< 0.09	< 0.4	< 0.4	< 0.2	< 0.2	0.5	0.7	16	0.08

NPDES Permit No. PA0086878

Total Aluminum												
(lbs/day)												
Daily Maximum	0.4	0.6	1	0.4	0.9	1	0.5	0.8	0.5	1	0.7	0.2
Total Aluminum												
(mg/L)												
Average Monthly	0.3	0.5	0.6	< 0.2	< 0.4	< 0.4	< 0.2	< 0.2	0.5	0.8	0.5	0.1
Total Aluminum												
(mg/L)												
Daily Maximum	0.172	0.555	0.831	0.457	0.715	0.729	0.399	0.13	0.569	0.85	0.702	0.19
Total Iron (lbs/day)												
Average Monthly	0.09	0.2	0.2	< 0.03	< 0.08	< 0.09	< 0.08	< 0.04	0.2	0.3	< 0.3	0.03
Total Iron (lbs/day)												
Daily Maximum	0.2	0.2	0.2	0.1	0.2	0.2	< 0.1	0.1	0.2	0.5	0.4	0.07
Total Iron (mg/L)												
Average Monthly	0.3	0.2	0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.3	0.2	0.3	< 0.3	0.1
Total Iron (mg/L)												
Daily Maximum	0.255	0.231	0.202	0.138	0.172	0.127	< 0.1	0.548	0.219	0.48	0.404	0.16
Total Manganese												
(lbs/day)												
Average Monthly	0.03	0.05	0.03	< 0.007	0.01	0.01	0.01	0.01	0.02	0.06	0.1	0.02
Total Manganese												
(lbs/day)	0.07	0.00	0.05	0.00	0.00	0.00	0.00					0.05
Daily Maximum	0.07	0.06	0.05	0.02	0.02	0.02	0.02	0.04	0.02	0.1	0.1	0.05
Total Manganese												
(mg/L)	0.4	0.1	0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.4	0.4	0.04
Average Monthly	0.1	0.1	0.03	< 0.04	0.03	0.02	0.02	0.03	0.02	0.1	0.1	0.04
Total Manganese												
(mg/L)	0.047	0.067	0.020	.01	0.024	0.024	0.005	0.05	0.004	0.11	0.15	0.040
Daily Maximum	0.047	0.067	0.039	< 0.1	0.034	0.031	0.025	0.05	0.024	0.11	0.15	0.049

Compliance History

NC ID													
12086 4	08/01/2020	08/31/2020	рН	Instantane ous Maximum	9.1	>	9	S.U.	Final Effluent (001)	1/day	Grab	See attached comments	Other

10241 6	11/01/2019	11/30/2019	рН	Minimum	5.6	<	6	S.U.	Final Effluent (001)	1/day	Grab		
91345	06/01/2019	06/30/2019	рН	Instantane ous Maximum	9.4	>	9	S.U.	Final Effluent (001)	1/day	Grab	See attached comments	Added supplemen tal alkalinity

INSPECTIONS

The most recent inspection according to DEP's WMS database was April 26, 2017:

All treatment units are online and records are up to date. Clarifier supernatant and effluent are clear. Inspector measured pH as 7.54 s.u., DO as 9.97 mg/l, Temperature as 16°C

Development of Effluent Limits

Technology-Based Effluent Limitations (TBELs)

DEP's guidance document "Technology-Based Control Requirements for Water Treatment Plant Wastes" [362-2183-003] identifies pollutants of concern in this type of wastewater and prescribes the following minimum* limits which are considered Best Practicable Control Technology Currently Available (BPT):

Parameter	Monthly Average (mg/L)	Daily Maximum (mg/L)
TSS	30	60
Total Iron	2	4
Total Aluminum	4	8
Total Manganese	1	2
рН	6.0	- 9.0
Total Residual Chlorine (TRC)	0.5	1.0

*The guidance document also notes: "These technology-based effluent control requirements are only applicable where the WTP's wastewater discharge will not result in water quality standards violations in the receiving stream."

While the above limits are still applicable, they are not the most stringent limits in the case of TSS, Total Iron, Total Aluminum, and Total Residual Chlorine.

For TSS and Total Iron, the previous permit's limits were based on the 2017 anti-degradation evaluation and have been carried forward. (No more stringent WQBELs are applicable.)

For Total Aluminum, and Total Residual Chlorine, the TBELs shown above are less stringent than the WQBELs discussed later in this fact sheet.

The previous permit's limits for pH and Total Manganese were the same as the TBELs shown above and have been imposed in the draft renewal permit.

Regulatory limits:

Parameter	Limit (mg/l)	SBC	State	DRBC
			Regulation 25 Pa Code	Regulation
		Instant Min Instant Max		
рН	6.0 – 9.0 S.U.	Instant. Min – Instant. Max	Ch. 95.2(1)	
Total Residual Chlorine	0.5	Average Monthly	25 Pa Code	
			Chapter 95.2	
			25 Pa Code	
	15	Average Monthly	Ch. 95.2(2)(ii)	
			25 Pa Code	
Oil and Grease	30	Instant. Maximum	Ch. 95.2(2)(ii)	
			25 Pa Code	
Dissolved Iron	7	Daily Maximum	Ch. 95.2(4)	
Total Suspended	100	Augusta and Magathiu		18 CFR Part
Solids	100	Average Monthly		410, 3.10.4.D.
				18 CFR Part
Ammonia	20	Average Monthly		410, 4.30.5.D.
	2000,			
	if existing discharges			
	increase loading by			
	>5000 lbs/day from			
	August 2010 baseline		25 Pa Code	
Total Dissolved Solids	unless variance granted	Average Monthly	Ch. 95.10	

	1000 mg/l (unless not causing in-stream exceedance of the lesser		
	of 133% over		18 CFR
Total Dissolved Solids	background or 500 mg/l)	Average Monthly	Part 410

While there are State regulatory limits for **pH** and **TRC**, they are the same as the TBELs shown in Table 1.

While there are State regulatory limits for **Oil and Grease** and **for Dissolved Iron**, there was no reasonable potential to exceed those limits according to the concentrations reported in the permit application (a maximum concentration of <5 mg/l for Oil and Grease and a maximum concentration of 0.16 mg/l for Dissolved Iron based on 3 data points each). No permit limits have been added.

While there are DRBC regulatory limits for **TSS**, they are less stringent than the TBELs shown in Table 1.

While there are DRBC regulatory limits for **Ammonia**, there was no reasonable potential to exceed those limits according to the concentrations reported in the permit application (a maximum of <0.1 mg/l based on 3 data points). No permit limits have been added.

The State regulatory limits for **TDS** are not applicable because the facility has not increased their TDS loading by more than 5000 lbs/day since August 2010.

While there is a DRBC regulatory limit of 1000 mg/l for **TDS**, there was no reasonable potential to exceed 1000 mg/l as a monthly average according to the concentrations reported in the permit application and the reviewed DMRs (a maximum of 170 mg/l and an average of 28.9). TDS is also discussed in the WQBEL section of the Fact Sheet.

Water Quality-Based Effluent Limitations (WQBELs)

TMDL:

The Lake Ontelaunee TMDL established Waste Load Allocations for existing dischargers for **TSS** and **Total Phosphorus** (TP). Because their discharge flow at the time was 0.03 MGD, they were assigned permit mass load limits of 2739 lbs/year for TSS and 91 lbs/year for TP.

TSS: 2,739 lbs/year = 0.03 MGD x 30.0 mg/L x 8.34 x 365 TP: 91 lbs/year = 0.03 MGD x 1.0 mg/L x 8.34 x 365

These mass limits were included in the previous permit and are included in this renewal permit. The mass limits would normally only change if the TMDL is revised. They would not be altered due to a change in design flow. The permittee has been reporting annual loads well under their mass load limits:

	1/1/2019-12/31/2019	1/1/2020-12/31/2020	1/1/2021-12/31/2021
TSS	<1056 lbs	<423 lbs	909 lbs
TP	5.6 lbs	<18.3 lbs	14.65 lbs

The 2017 antidegradation evaluation included 14.0 mg/l as the concentration WQBEL for TSS and 0.46 mg/l as the concentration WQBEL for TP (allowing average discharge flow rather than design flow). The TP concentration of 0.46 mg/l included in the antidegradation evaluation is more stringent than the 2 mg/l monthly average concentration required as a minimum in the State Water Quality Standards [Pa Code § 96.5(c)] for waters impaired with phosphorous and will be imposed in the draft renewal permit. The limit 0.46 mg/l will be rounded to 0.5 mg/l as a monthly average and 1.0 mg/l as a Daily Maximum in conformance with DEP's guidance document 362-0400-001, Chapter 5 [Technical Guidance for the Development and specification of Effluent Limitations].

The most recent two years of DMRs (11/1/2020-10/31/2022) reported an average TSS concentration of 3.7 mg/l and a maximum TSS concentration of 6 mg/l for TSS. The existing permit limits of 14.0 mg/l as a monthly average and 28.0 mg/l as a daily maximum will be carried forward.

The most recent two years of DMRs (11/1/2020-10/31/2022) reported an average TP concentration of 0.085 mg/l and a maximum average concentration of 0.2 mg/l for TP, consistently below the proposed new limit of 0.46 mg/l. Reviewing DMRs from 1/1/2019 through 10/31/2022 gives nearly the same results: an average concentration of 0.082 mg/l and a maximum average concentration of 0.2 mg/l. The permittee was not required to report daily maximum concentrations for TP. Based on the DMR data, the permittee is expected to be able to meet the newly imposed permit limits of 0.46 mg/l as a monthly average and 0.92 mg/l as a daily maximum without the need for a compliance schedule.

Total Dissolved Solids:

DRBC regulations include a slightly different water quality criteria for TDS than the State regulations. Their regulations [18 CFR Part 410] specify that discharges must not cause an instream TDS exceedance of the lesser of a) 133% over background TDS concentration or b) 500 mg/l. Based on mean stream concentrations that were previously provided by DEP's Water Quality Program staff for the antidegradation analysis, background TDS is estimated to be 101 mg/l. 133% of background = 134 mg/l, which is more stringent than 500 mg/l.

CsQs + CdQd = CtQt(101 mg/l)(0.16 cfs) + (Cd)(0.13 MGD)(1.547 conversion of MGD to cfs)=(134 mg/l)[0.16+(0.13 x 1.547) cfs]

Cd represents the TDS concentration that would be allowable in the discharge without causing an in-stream exceedance of 133% over background. Solving for Cd:

Cd = (48.4 - 16.16) / 0.2011 = 160.3 mg/l

The average TDS in the discharge according to DMRs from January 1, 2019 through October 31, 2022 was 28.9 mg/l, well below 160.3 mg/l. No permit limit for TDS has been added. The quarterly monitoring requirement has not been changed (28.9 mg/l / 160.3 mg/l = 18%).

Total Residual Chlorine (TRC):

Based on the attached TRC Excel spreadsheet calculator, which uses the equations and calculations from the Department's May 1, 2003 Implementation Guidance for Total Residual Chlorine (ID No. 391-2000-015), the facility's discharge must meet a monthly average limit of 0.12 mg/L and an instantaneous maximum limit of 0.41 mg/L, the same limits as in the previous permit. The WQBELs are more stringent than the TBELs for TRC.

Other WQBELS:

WQBELs are developed based on the designated and existing use of the particular receiving water, Water Quality Standards including water quality criteria [25 Pa Code Chapter 93 and 96], and an analysis of the reasonable potential to cause an in-stream exceedance of water quality criteria.

DEP uses 1) the WQM 7.0 model, when applicable, and 2) the Toxics Management Spreadsheet/model (TMS), when applicable.

The downstream point used in the models was as follows:

RMI 0 (in Lenhartsville) = elev 370' approx. Lat/long = 40.574941 / -75.887015 D.A. = 3.6 sq. miles Q7-10 = 0.22 cfs LFY = 0.06 cfs/sq.mi.

The stream low-flow, the Drainage areas, and the Low Flow Yield values used in both models are from USGS PA Stream Stats data. (See page 3 of the Fact Sheet.)

Because this discharge has very low **Ammonia** concentrations and **CBOD**₅ concentrations per their application and as would be expected from such operations, the WQM 7.0 model would not normally be run, consistent with DEP Standard Operating Procedures for Individual Industrial NPDES Permits. Because the receiving stream is an HQ water and

because the water quality criteria for Ammonia changed with the last Water Quality Standards regulatory amendments, however, the WQM 7.0 model was run. Background concentrations that were provided by DEP Water Quality Program staff at the time of the antidegradation evaluation were used as model inputs. See the attached. The result was a WQBEL of 3.5 mg/l for Ammonia, almost the same as the WQBEL calculated at the time of the 2017 antidegradation analysis (3.4 mg/l). The effluent concentration for Ammonia reported in the application was <0.1 mg/l, well below 3.5 mg/l. No permit limit or monitoring requirement is proposed for Ammonia. The effluent concentration for BOD₅ in the application was 2.6 mg/l as a maximum with 2 out of 3 samples resulting in "non-detect". A BOD5 concentration of 2.6 mg/l is well below the calculated concentration for CBOD5 in the 2017 antidegradation evaluation. No permit limit or monitoring requirement is proposed for Amtonia evaluation evaluation. No permit limit or monitoring requirement is proposed for Section evaluation evaluation.

For other parameters, the TMS was used. [The TMS is an Excel version of the former PENTOX model with the same logic and calculations incorporated but which analyzes each parameter for which there is available data instead of select parameters as done in the former PENTOX model.] The TMS model also performs the reasonable potential (RP) analysis and recommends limits or monitoring requirements accordingly. In general, the TMS will recommend limits in the draft permit where the discharge concentration equals or exceeds 50% of the WQBEL (i.e., RP is demonstrated). The TMS will recommend a monitoring requirement for the draft permit where the discharge concentration is between 25% and 50% of the WQBEL in the case of non-conservative pollutants. The TMS will recommend a monitoring requirement for the draft permit where the discharge concentration is between 10% and 50% of the WQBEL in the case of conservative pollutants. These determinations are consistent with DEP's Standard Operating Procedure (SOP) Establishing Water Quality-Based Effluent Limitations (WQBELs) and Permit Conditions for Toxic Pollutants in NPDES Permits for Existing Dischargers.

For those parameters reported on the permittee's DMRs, the average concentration reported on the DMRs from January 1, 2019 through October 31, 2022 were used as the discharge concentrations in the first column of the TMS. DEP's Toxics Management Strategy Technical Guidance Document [361-0100-003] recommends using average concentrations when there is sufficient data, for example more than ten data points. For the other parameters, the *maximum* effluent concentrations per the application were used because there were only three sample results. The TMS model pages are attached, with input values and results.

Exception: the Dissolved Iron concentration in the application was 160 ug/l whereas the Total Iron average concentration from the past 47 DMRs was 109 ug/l. Because Dissolved Iron concentrations cannot be greater than Total Iron concentrations, 109 ug/l was entered as the discharge concentration in the model for both Dissolved Iron and Total Iron.

The model input values for Hardness came from the application: 13.3 mg/l as the upstream Hardness and 51.3 mg/l as the maximum discharge Hardness. In the absence of site-specific data, DEP default values are used for other inputs: stream pH (7.0 s.u.), discharge pH (7.0 s.u.), background concentrations in the stream (0 mg/l), coefficient of variation (0.5), chemical translators for converting between 'total' metal and 'dissolved' metal (varies per metal).

The following limitations and monitoring requirements were determined through water quality modeling (output files attached):

Parameter	Calculated WQBEL (units)	SBC	Model	Recommendation
Total Aluminum	0.86 mg/l	Monthly Average	TMS	Monitor and Report (no RP)
Total Aluminum	1.35 mg/l	Daily Maximum	TMS	Monitor and Report (no RP)
Total Aluminum	2.16 mg/l	Instant. Maximum	TMS	Monitor and Report (no RP)
Total Copper	0.01 mg/l	Monthly Average	TMS	Monitor and Report (no RP)
Dissolved Iron	0.54 mg/l	Monthly Average	TMS	Monitor and Report (no RP)
Total Zinc	0.06	Monthly Average	TMS	Monitor and Report (no RP)

DEP's Technical Guidance document 361-0400-001, Chapter 5, instructs that limits should be rounded to the nearest 0.01 for toxic pollutants.

Total Aluminum is a pollutant of concern at water treatment plants and was included in the list of pollutants needing a TBEL, at a minimum. The above WQBELs for Total Aluminum are more stringent than the TBELs or the existing permit limits (1.0 mg/l as a monthly average and 2.0 as a daily maximum) and will be imposed in the draft renewal permit. The DMR data reviewed from January 1, 2019 through October 31, 2022 indicate an average concentration of 0.36 mg/l and a Daily maximum of 1.37 mg/l for Total Aluminum. The permittee is expected to be able to meet the new limits.

The model-calculated WQBEL for **Total Iron**, another pollutant of concern with a TBEL required at a minimum, was 2.69 mg/l as a monthly average (see attached TMS), less stringent than the TBEL or the previous permit limit. The previous permit's limits for Total Iron will be carried forward: 1.4 mg/l as a monthly average and 2.8 mg/l as a daily maximum.

The model-calculated WQBEL for **Total Manganese**, another pollutant of concern with a TBEL required at a minimum, was 1.80 mg/l as a monthly average (see attached TMS), less stringent than the TBEL or the previous permit limit. The previous permit's limits for Total Manganese will be carried forward: 1.0 mg/l as a monthly average and 2.0 mg/l as a daily maximum.

Consistent with how DEP is writing NPDES permits and gathering information to be sure reasonable potential to exceed an in-stream criteria does not exist, monitoring will be required in the draft renewal permit for **Total Copper**, **Dissolved Iron, and Total Zinc,** as recommended by the TMS model. Because the Copper and Zinc criteria are hardnessdependent, and therefore the WQBELs are hardness-dependent, monitoring for discharge hardness will also be required.

All units are in mg/l

Parameter	Prev. Permit Limit: Mo. Avg/ Max	TBEL: Mo. Avg/ Max	WQBEL:TMDL Mo. Avg/ Max	WQBEL: Mo. Avg/ Max	Draft Renewal Permit Limit	Discharge Conc. per appl.
рН	6.0 - 9.0	6.0-9.0		6.0-9.0	6.0-9.0	6.2-9.1
TRC	0.12 / 0.41	0.5 / 1.0		0.12 / 0.41	0.12 / 0.41	0.07 (max.mo.avg., 16 analyses)
TSS	14.0 / 28.0	30 / 60	14.0 / 28.0		14.0 / 28.0	4 (max.mo.avg., 16 analyses)
TP	-	2.0 / -	0.46 / 0.92		0.5 / 1.0	0.12 (max.mo.avg., 16 analyses)
TDS	Monitor	1000 / -		160	Monitor	170 (max.mo.avg., 12 analyses)*
Aluminum, Total	1.0 / 1.6	4.0 / 8.0		0.86 / 1.35*	0.86 / 1.35	1.12 (max., 16 analyses) **
Copper, Total	-			0.01 / not calc.'d	Monitor	0.002 (max., 3 analyses)
Iron, Dissolved	-	- / 7.0		0.54 / not calc.'d	Monitor	0.160 (max., 3 analyses)
Iron, Total	1.4 / 2.8	2.0 / 4.0		2.69 / not calc.'d	1.4 / 2.8	0.150 (max.mo.avg., 16 analyses)
						0.041 (max.mo.avg., 16 analyses)
Manganese, Total	1.0 / 2.0	1.0 / 2.0		1.80 / not calc.'d	1.0 / 2.0	
Zinc, Total	-			0.06 / not calc'd	Monitor	0.012 (max., 3 analyses)

All units are in lbs/year

TSS	2739	2739	2739	
TP	91	91	91	

*but DMRs from January 1, 2019 through October 31, 2022 yield an average TDS concentration of 28.9 mg/l

**but DMRs from January 1, 2019 through October 31, 2022 yield an average Total Aluminum concentration of 0.36 mg/l

Stormwater:

No stormwater discharges were shown in the application, the previous permit, the previous Fact Sheet, or Inspection reports. No limits have been imposed for stormwater.

Mass Load Limits:

Mass Load Limits are included for TSS and TP in conformance with the TMDL. Mass load limits were not included for the other parameters in the previous permit and have not been added in the draft renewal permit given that the discharge is intermittent rather than continuous [Reference Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001].

Anti-Backsliding:

No limits are less stringent in the draft renewal permit than in their previous permit.

Other

TDS BASELINE:

In order to implement the regulations at Chapter 95.10 relevant to imposing TDS limits if increased loads trigger this requirement in the future, a TDS Baseline is being documented. The increase of TDS loads is measured against existing mass loads, described in Chapter 95.10(a)(1) as "maximum daily discharge loads of TDS...that were authorized by the Department prior to August 21, 2010".

TDS was not routinely monitored in the facility's discharge as of August 2010 but the previous permit's fact sheet cited the TDS concentration in their March 2013 application as 21 mg/l, as an average. The design flow as of August 2010 was 0.03 MGD. Their estimated TDS baseline load therefore is 7.3 lbs/day:

21 mg/l x 0.03 MGD x 8.34 conversion factor = 5.3 lbs/day

CLASS A and WILD TROUT FISHERIES:

This discharge is to a stream segment designated as a Class A Wild Trout Fishery. The permit limits have been developed to protect HQ waters which would also protect Class A Wild Trout.

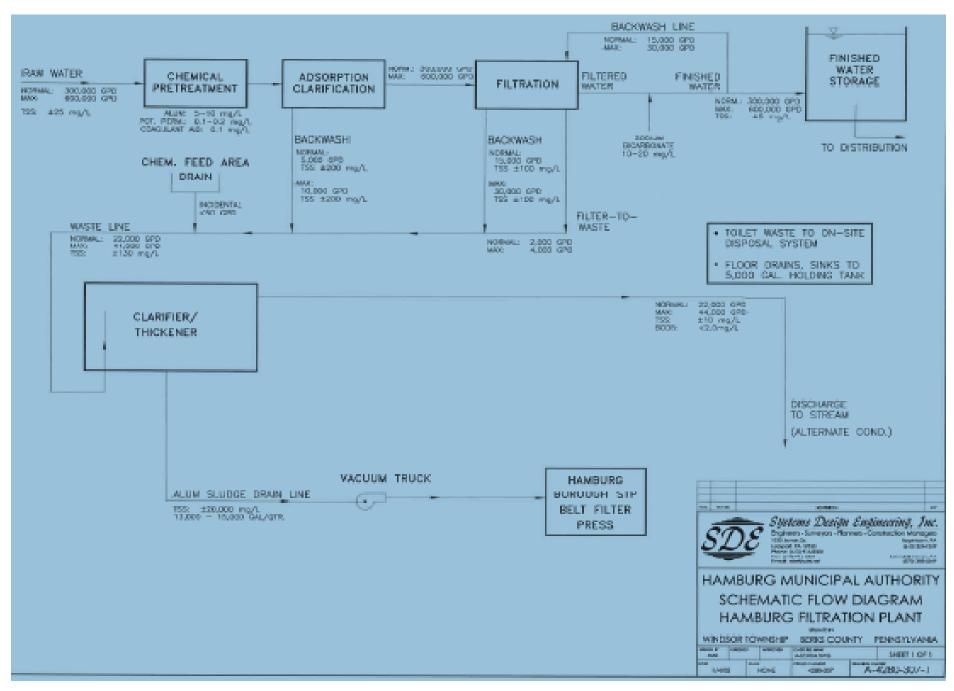
IMPAIRED WATERS:

The receiving water is not impaired but the downstream Lake Ontelaunee is impaired with a TMDL in place restricting loading of TSS and TP, as previously discussed. The permit limits are consistent with the TMDL. No increase in flow or loading for TSS or TP have been allowed in this renewal permit.

ANTIDEGRADATION (93.4):

The effluent limits for this discharge have been developed to ensure that existing instream water uses(HQ and TSF and Class A Trout) and the level of water quality necessary to protect the existing uses are maintained and protected. The permit limits are the more stringent of: TBELs, WQBELs, concentrations calculated to be non-degrading in the 2017 antidegradation evaluation, and concentrations calculated to attain the TMDL waste load allocations. No Exceptional Value Waters are impacted by this discharge.

Proposed Effluent Limitations and Monitoring Requirements


The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality as needed and BPJ. Instantaneous Maximum (IMAX) limits are generally determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001:

			Effluent Lim	nitations			Monitoring Re	quirements
Parameter	Mass Units	s (Ibs/day)		Concentrat	Minimum	Required		
Farameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	xxx	xxx	xxx	xxx	Continuous	Measured
рН (S.U.)	ХХХ	XXX	6.0	ххх	ххх	9.0	1/day	Grab
Total Residual Chlorine (TRC)	ххх	XXX	xxx	0.12	xxx	0.41	1/day	Grab
Total Suspended Solids	Report	Report	xxx	14.0	28.0	35	1/week	24-Hr Composite
Total Suspended Solids (lbs)	Report Total Monthly	XXX	xxx	xxx	xxx	XXX	1/month	Calculation
Total Suspended Solids (lbs)	ХХХ	2739 Total Annual	xxx	XXX	xxx	XXX	1/year	Calculation
Total Dissolved Solids	XXX	xxx	xxx	Report Avg Qrtrly	xxx	XXX	1/quarter	24-Hr Composite
Total Phosphorus	Report	Report	xxx	0.5	1.0	1.5	1/week	24-Hr Composite
Total Phosphorus (lbs)	Report Total Monthly	XXX	xxx	xxx	xxx	XXX	1/month	Calculation
Total Phosphorus (lbs)	ххх	91 Total Annual	xxx	xxx	xxx	XXX	1/year	Calculation
Aluminum, Total	Report	Report	xxx	0.86	1.35	2.2	1/week	24-Hr Composite
Copper, Total	ХХХ	Report	xxx	xxx	Report	XXX	1/month	24-Hr Composite
Iron, Dissolved	ХХХ	Report	xxx	xxx	Report	XXX	1/month	24-Hr Composite
Iron, Total	Report	Report	xxx	1.4	2.8	3.5	1/week	24-Hr Composite
Manganese, Total	Report	Report	xxx	1.0	2.0	2.5	1/week	24-Hr Composite
Zinc, Total	xxx	Report	xxx	xxx	Report	XXX	1/month	24-Hr Composite
Hardness as CaCO3	XXX	xxx	xxx	XXX	Report	xxx	1/month	24-Hr Composite

	Tools and References Used to Develop Permit
	WQM for Windows Model (see Attachment)
	Toxics Management Spreadsheet (see Attachment)
	TRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
\square	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07. SOP: Establishing Water Quality-Based Effluent Limitations (WQBELs) and Permit Conditions for Toxic Pollutants in
	NPDES Permits for Existing Dischargers, SOP No. BCW-PMT-037, 5/20/2021, Vsn 1.5
	SOP: Establishing Effluent Limitations for Individual Industrial Permits, SOP No. BCW-PMT-032, 10/1/2020, Version 1.6

NPDES Permit No. PA0086878

PA0086878	1/1/2019	1/31/2019	Monthly	1	Flow	MGD	0.085	Monitor	Average Mo	0.187	Monitor	Daily Maximum
PA0086878	2/1/2019	2/28/2019	Monthly	1	Flow	MGD	0.005	Monitor	Average Mo	0.021	Monitor	Daily Maximum
PA0086878	3/1/2019	3/31/2019	Monthly	1	Flow	MGD	0.007	Monitor	Average Mo	0.014	Monitor	Daily Maximum
PA0086878	4/1/2019	4/30/2019	Monthly	1	Flow	MGD	0.007	Monitor	Average Mo	0.015	Monitor	Daily Maximum
PA0086878	5/1/2019	5/31/2019	Monthly	1	Flow	MGD	0.008	Monitor	Average Mo	0.01	Monitor	Daily Maximum
PA0086878	6/1/2019	6/30/2019	Monthly	1	Flow	MGD	0.008	Monitor	Average Mo	0.009	Monitor	Daily Maximum
PA0086878	7/1/2019	7/31/2019	Monthly	1	Flow	MGD	0.009	Monitor	Average Mo	0.016	Monitor	Daily Maximum
PA0086878	8/1/2019	8/31/2019	Monthly	1	Flow	MGD	0.008	Monitor	Average Mo	0.023	Monitor	Daily Maximum
PA0086878	9/1/2019	9/30/2019	Monthly	1	Flow	MGD	0.055	Monitor	Average Mo	0.139	Monitor	Daily Maximum
PA0086878	10/1/2019	10/31/2019	Monthly	1	Flow	MGD	0.107	Monitor	Average Mo	0.162	Monitor	Daily Maximum
PA0086878	11/1/2019	11/30/2019	Monthly	1	Flow	MGD	0.098	Monitor	Average Mo	0.192	Monitor	Daily Maximum
PA0086878	12/1/2019	12/31/2019	Monthly	1	Flow	MGD	0.103	Monitor	Average Mo	0.113	Monitor	Daily Maximum
PA0086878	1/1/2020	1/31/2020	Monthly	1	Flow	MGD	0.098	Monitor	Average Mo	0.167	Monitor	Daily Maximum
PA0086878	2/1/2020	2/29/2020	Monthly	1	Flow	MGD	0.008	Monitor	Average Mo	0.05	Monitor	Daily Maximum
PA0086878	3/1/2020	3/31/2020	Monthly	1	Flow	MGD	0.024	Monitor	Average Mo	0.143	Monitor	Daily Maximum
PA0086878	4/1/2020	4/30/2020	Monthly	1	Flow	MGD	0.05	Monitor	Average Mo	0.189	Monitor	Daily Maximum
PA0086878	5/1/2020	5/31/2020	Monthly	1	Flow	MGD	0.035	Monitor	Average Mo	0.151	Monitor	Daily Maximum
PA0086878	6/1/2020	6/30/2020	Monthly	1	Flow	MGD	0.018	Monitor	Average Mo	0.155	Monitor	Daily Maximum
PA0086878	7/1/2020	7/31/2020	Monthly	1	Flow	MGD	0.014	Monitor	Average Mo	0.098	Monitor	Daily Maximum
PA0086878	8/1/2020	8/31/2020	Monthly	1	Flow	MGD	0.02	Monitor	Average Mo	0.082	Monitor	Daily Maximum
PA0086878	9/1/2020	9/30/2020	Monthly	1	Flow	MGD	0.05	Monitor	Average Mo	0.15	Monitor	Daily Maximum
PA0086878	10/1/2020	10/31/2020	Monthly	1	Flow	MGD	0.099	Monitor	Average Mo	0.147	Monitor	Daily Maximum
PA0086878	11/1/2020	11/30/2020	Monthly	1	Flow	MGD	0.102	Monitor	Average Mo	0.152	Monitor	Dailv Maximum

NPDES Permit No. PA0086878

PA0086878	12/1/2020	12/31/2020	Monthly	1	Flow	MGD	0.081	Monitor	Average Mo	0.138	Monitor	Daily Maximum
PA0086878	1/1/2021	1/31/2021	Monthly	1	Flow	MGD	0.1	Monitor	Average Mo	0.18	Monitor	Daily Maximum
PA0086878	2/1/2021	2/28/2021	Monthly	1	Flow	MGD	0.109	Monitor	Average Mo	0.222	Monitor	Daily Maximum
PA0086878	3/1/2021	3/31/2021	Monthly	1	Flow	MGD	0.105	Monitor	Average Mo	0.143	Monitor	Daily Maximum
PA0086878	4/1/2021	4/30/2021	Monthly	1	Flow	MGD	0.092	Monitor	Average Mo	0.149	Monitor	Daily Maximum
PA0086878	5/1/2021	5/31/2021	Monthly	1	Flow	MGD	0.09	Monitor	Average Mo	0.177	Monitor	Daily Maximum
PA0086878	6/1/2021	6/30/2021	Monthly	1	Flow	MGD	0.015	Monitor	Average Mo	0.06	Monitor	Daily Maximum
PA0086878	7/1/2021	7/31/2021	Monthly	1	Flow	MGD	0.029	Monitor	Average Mo	0.087	Monitor	Daily Maximum
PA0086878	8/1/2021	8/31/2021	Monthly	1	Flow	MGD	0.006	Monitor	Average Mo	0.045	Monitor	Daily Maximum
PA0086878	9/1/2021	9/30/2021	Monthly	1	Flow	MGD	0.031	Monitor	Average Mo	0.128	Monitor	Daily Maximum
PA0086878	10/1/2021	10/31/2021	Monthly	1	Flow	MGD	0.102	Monitor	Average Mo	0.238	Monitor	Daily Maximum
PA0086878	11/1/2021	11/30/2021	Monthly	1	Flow	MGD	0.125	Monitor	Average Mo	0.17	Monitor	Daily Maximum
PA0086878	12/1/2021	12/31/2021	Monthly	1	Flow	MGD	0.132	Monitor	Average Mo	0.176	Monitor	Daily Maximum
PA0086878	1/1/2022	1/31/2022	Monthly	1	Flow	MGD	0.033	Monitor	Average Mo	0.165	Monitor	Daily Maximum
PA0086878	2/1/2022	2/28/2022	Monthly	1	Flow	MGD	0.072	Monitor	Average Mo	0.174	Monitor	Daily Maximum
PA0086878	3/1/2022	3/31/2022	Monthly	1	Flow	MGD	0.094	Monitor	Average Mo	0.169	Monitor	Daily Maximum
PA0086878	4/1/2022	4/30/2022	Monthly	1	Flow	MGD	0.059	Monitor	Average Mo	0.161	Monitor	Daily Maximum
PA0086878	5/1/2022	5/31/2022	Monthly	1	Flow	MGD	0.033	Monitor	Average Mo	0.148	Monitor	Daily Maximum
PA0086878	5/1/2022	5/31/2022	Monthly	1	Flow	MGD	0.033	Monitor	Average Mo	0.148	Monitor	Daily Maximum
PA0086878	6/1/2022	6/30/2022	Monthly	1	Flow	MGD	0.114	Monitor	Average Mo	0.18	Monitor	Daily Maximum
PA0086878	7/1/2022	7/31/2022	Monthly	1	Flow	MGD	0.116	Monitor	Average Mo	0.156	Monitor	Daily Maximum
PA0086878	8/1/2022	8/31/2022	Monthly	1	Flow	MGD	0.027	Monitor	Average Mo	0.213	Monitor	Daily Maximum
PA0086878	9/1/2022	9/30/2022	Monthly	1	Flow	MGD	0.001	Monitor	Average Mo	0.004	Monitor	Daily Maximum
PA0086878	10/1/2022	10/31/2022	Monthly	1	Flow	MGD	0.005	Monitor	Average Mo	0.011	Monitor	Daily Maximum
							0.05579	Avg		0.12398	Avg	
							0.1320	Max Mo	Avg	0.238	Max	

USGS Pennsylvania Stream Stats online tool:

StreamStats Output Report - Fu					
State/Region ID	PA				
Workspace ID	PA20221004191716357000				
Latitude	40.58349				
Longitude	-75.94104				
Time	10/4/2022	3:17:38 PM	N		
Low-Flow Statistics Parameters	100.0 Percent Low Flow Region 2				
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	1.66	square mi	4.93	1280
PRECIP	Mean Annual Precipitation	49	inches	35	50.4
Low-Flow Statistics Flow Repor	100.0 Percent Low Flow Region 2				
Statistic	Value	Unit			
7 Day 2 Year Low Flow	0.252	ft^3/s			
30 Day 2 Year Low Flow	0.358	ft^3/s			
7 Day 10 Year Low Flow	0.0926	ft^3/s			
30 Day 10 Year Low Flow	0.134	ft^3/s			
Version: 4.10.1					
StreamStats Services Version: 1	.2.22				
NSS Services Version: 2.2.1					

USGS Pennsylvania Stream Stats online tool:

State/Region ID	ort-confl Furnace Run & Maiden Crk		
Workspace ID	PA20221004192730731000		
Latitude	40.57477		
Longitude	-75.88677		
Time	10/4/2022	3:27:51 PM	N
Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
CARBON	Percentage of area of carbonate rock	0	percent
PRECIP	Mean Annual Precipitation	48	inches
ROCKDEP	Depth to rock	4.1	feet
DRNAREA	Drainage Area	3.63	square miles
Low-Flow Statistics Flow	100.0 Percent Low Flow Region 2		
Statistic	Value	Unit	
7 Day 2 Year Low Flow	0.546	ft^3/s	
30 Day 2 Year Low Flow	0.763	ft^3/s	
7 Day 10 Year Low Flow	0.215	ft^3/s	
30 Day 10 Year Low Flow	0.304	ft^3/s	
		-	
Application Version: 4.10	.1		
StreamStats Services Ver	sion: 1.2.22		
NSS Sonvicor Vorsion: 2.7	1		

			General	Data					
Gen	eral	St	ream		Discha	rge and I	Parameters		
	Stream Code 2080	(ft) 3.400 725	Drainage Area (sq mi) 1.7	LFY (cfsm) 0.1	Slope (ft/ft) 0	PWS With (mgd)	Apply FC	_	d <u>R</u> ecord ete Record
	▶ 2080	0.000 370	3.6	0.1	0	0			
	Record: 14 4	2 of 2	14 K.	No Filter	Search				
	J Record. II I	2012	X X	to rinter	Jearen				
int	< <u>B</u> ack	<u>N</u> ext >		ave	403	alyze	Cancel	1	Export

						5	Stream [Data					
		G	eneral			Stre	am		Discharg	e and Para	ameters		
			Design C	ondition	c Q7	-10	C Q1	-10	C Q30	-10			
	R	МΙ	Trib Flow	Stream Flow		Rch Velocity	WD Ratio	Rch Width	Rch Depth	<u>Tributa</u> Temp	<u>иv</u> pH	<u>Strear</u> Temp	n pH
			(cfs)	(cfs)	Time (days)	(fps)		(ft)	(ft)	(ºC)		(ºC)	
▶	:	3.400	0.00	0.00	0.000	0.00	0	0.00	0.00	20.00	7.00	0.000	0.00
		0.000	0.00	0.00	0.000	0.00	0	0.00	0.00	20.00	7.00	0.000	0.00
Re	ecord	: 14	1 of 2		* 5	No Filter	Search						

					St	tream D	Data					
	G	eneral			Strea	m		Discharg	e and Par	ameters		
		Design C	ondition	@ Q	7-10	C Q1	-10	C Q30	-10			
	BMI	Trib Flow (cfs)	Stream Flow	Rch Trav Time	Rch V Velocity	VD Ratio	Rch Width	Rch Depth	<u>Tributa</u> Temp	<u>əry</u> pH	<u>Strear</u> Temp	n pH
			(cfs)	(days)	(fps)		(ft)	(ft)	(ºC)		(ºC)	
	3.400		0.00	0.000	0.00	0	0.00	0.00	20.00	7.00	0.000	0.00
ľ	0.000	0.00	0.00	0.000	0.00	0	0.00	0.00	20.00	7.00	0.000	0.00
e	cord: M	4 2 of 2	→ H	** 🖏	No Filter	Search						
								Analy				

		Discharge a	nd Paran						
General		Stream	n	Dis	scharge a	nd Parar	neters		
		r)ischarge	Data					
BMI	Name		Existing F Disc Flow D	ermitted)isc Flow R	eserve Factor	Disc Temp	Disc pH	
			(3-)	(((ºC)		
3.400 Han	iburg WTP	PA0086878	0.0000	0.1300	0.0000	0.000	25.00	7.00	
		Pa	arameter D	Jata					
	Pa	rameter Name	Disc Conc (mg/L)	Trib Conc (mg/L)		ate Coef (1/day)			
	CBOD5		25.00	1.25	0.00	1.50			
	NH3-N Dissolved	d Oxvaen	20.00	0.03 8.24	0.00	0.70 0.00			
Record: 14		► ► ► ► ► ►		Search					
<	<u>B</u> ack	<u>N</u> ext >	<u>S</u> ave		<u>A</u> nalyze		<u>C</u> ancel	E	хро

	-						
Hydrodynamics	NH3-N Allocations	D.O. Allocations	D.O. Simula	ation E	ffluent Limita	tions	
-							
	RMI Discharg		umber Disc Flow	,			
	nmi Dischargi	e Name	(mgd)				
				1			
IL IL	3.40 Hamburg WTP	V PA008	6878 0.0000				
	Parameter	30 Day Averag	Effluent Limit I e Maximum	Effluent Lin Minimum			
		(mg/L)	(mg/L)	(mg/L)			
	CBOD5	25					
	NH3-N	3.46	6.92				
	Dissolved Oxygen			6			
F	Record: I I of 1	🕨 🕨 🕨 🧏 No Filte	Search				
	,						
Print	< Back	Next >	Ar	chive	C	Cancel	

Input appropria										
	ate values in A	3:A9 and D3:D9								
0.16	े = Q stream (c	fs)	0.5	= CV Daily						
0.13	3 = Q discharge	∍ (MGD)	0.5	= CV Hourly						
30	= no. samples	;	1	= AFC_Partial M	lix Factor					
0.3	= Chlorine De	mand of Stream	1	= CFC_Partial I						
0	= Chlorine De	mand of Discharge	15	= AFC_Criteria Compliance Time (min)						
0.5	5 = BAT/BPJ Va	lue	720	= CFC_Criteria	Compliance Time (min)					
0	= % Factor of	Safety (FOS)	=Decay Coefficient (K)							
Source	Reference	AFC Calculations		Reference	CFC Calculations					
TRC	1.3.2.iii	WLA afc =	0.273	1.3.2.iii	WLA cfc = 0.258					
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581					
PENTOXSD TRG	5.1b	LTA_afc=	0.102	5.1d	LTA_cfc = 0.150					
Source		Efflue	nt Limit Calcu	lations						
PENTOXSD TRG			AML MULT =							
PENTOXSD TRG	5.1g		MON LIMIT (mg/l) = 0.125 AFC MAX LIMIT (mg/l) = 0.409							
	+ Xd + (AFC	C_tc)) + [(AFC_Yc*Qs*.019 _Yc*Qs*Xs/Qd)]*(1-FOS/10)0)	C_tc))						
LTAMULT afc	+ Xd + (AFC EXP((0.5*LN(c	_ Yc*Qs*Xs/Qd)]*(1-FOS/1(cvh^2+1))-2.326*LN(cvh^2-)0)	C_tc))						
WLA afc LTAMULT afc LTA_afc	+ Xd + (AFC	_ Yc*Qs*Xs/Qd)]*(1-FOS/1(cvh^2+1))-2.326*LN(cvh^2-)0)	S_tc))						
LTAMULT afc	+ Xd + (AFC EXP((0.5*LN(c wla_afc*LTAN (.011/e(-k*CFc	_ Yc*Qs*Xs/Qd)]*(1-FOS/1(cvh^2+1))-2.326*LN(cvh^2-	00) +1)^0.5) /Qd*e(-k*CFC							
LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc	+ Xd + (AFC EXP((0.5*LN(c wla_afc*LTAM (.011/e(-k*CFC + Xd + (CFC EXP((0.5*LN(c	_Yc*Qs*Xs/Qd)]*(1-FOS/10 cvh^2+1))-2.326*LN(cvh^2- IULT_afc C_tc) + [(CFC_Yc*Qs*.011 _Yc*Qs*Xs/Qd)]*(1-FOS/10 cvd^2/no_samples+1))-2.32	00) +1)^0.5) /Qd*e(-k*CFC 00)	_tc))	9.5)					
LTAMULT afc LTA_afc	+ Xd + (AFC EXP((0.5*LN(c wla_afc*LTAM (.011/e(-k*CFC + Xd + (CFC	_Yc*Qs*Xs/Qd)]*(1-FOS/10 cvh^2+1))-2.326*LN(cvh^2- IULT_afc C_tc) + [(CFC_Yc*Qs*.011 _Yc*Qs*Xs/Qd)]*(1-FOS/10 cvd^2/no_samples+1))-2.32	00) +1)^0.5) /Qd*e(-k*CFC 00)	_tc))	0.5)					
LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc LTA_cfc AML MULT	+ Xd + (AFC EXP((0.5*LN(c wla_afc*LTAM (.011/e(-k*CFC + Xd + (CFC EXP((0.5*LN(c wla_cfc*LTAM EXP(2.326*LN	_Yc*Qs*Xs/Qd)]*(1-FOS/1(cvh^2+1))-2.326*LN(cvh^2- IULT_afc C_tc) + [(CFC_Yc*Qs*.011) cyc*Qs*Xs/Qd)]*(1-FOS/1(cvd^2/no_samples+1))-2.32 IULT_cfc I((cvd^2/no_samples+1)^0.	00) +1)^0.5) /Qd*e(-k*CFC 00) 26*LN(cvd^2/n 5)-0.5*LN(cvd	_ tc)) lo_samples+1)^(
LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc LTA_cfc	+ Xd + (AFC EXP((0.5*LN(c wla_afc*LTAM (.011/e(-k*CFC + Xd + (CFC EXP((0.5*LN(c wla_cfc*LTAM EXP(2.326*LN MIN(BAT_BPJ	_Yc*Qs*Xs/Qd)]*(1-FOS/10 cvh^2+1))-2.326*LN(cvh^2- IULT_afc C_tc) + [(CFC_Yc*Qs*.011 c_Yc*Qs*Xs/Qd)]*(1-FOS/10 cvd^2/no_samples+1))-2.32 IULT_cfc	00) +1)^0.5) /Qd*e(-k*CFC 00) 26*LN(cvd^2/n .5)-0.5*LN(cvd ML_MULT)	_ tc)) lo_samples+1)^(

(0.011/EXP(-K*CFC_tc/1440))+(((CFC_Yc*Qs*0.011)/(1.547*Qd)....*EXP(-K*CFC_tc/1440)))+Xd+(CFC_Yc*Qs*Xs/1.547*Qd))*(1-FOS/100)

Toxics Management Spreadsheet Version 1.3, March 2021

Discharge Information

Instructions Di	scharge Stream			
Facility: Ham	burg WTP		NPDES Permit No.: PA0086878	Outfall No.: 001
Evaluation Type:	Major Sewage	Industrial Waste	Wastewater Description: backwash	
		Disch	arge Characteristics	

Design Flow	Hardness (mo/l)*	pH (SU)*	P	artial Mix Fa	actors (PMF:	5)	Complete Mix Times (min)			
(MGD)*	naroness (mgn)-	pn (au)-	AFC	CFC	THH	CRL	Q ₇₋₁₀	ď		
0.13	51.3	7								

					0 If lef	t blank	0.5 M k	nt blank	6) if left blan	k	1 If lef	blank
	Discharge Pollutant	Units	Ma	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L		28.9									
5	Chloride (PWS)	mg/L		3.66									
Group	Bromide	mg/L	۷	1									
5	Sulfate (PWS)	mg/L		16									
	Fluoride (PWS)	mg/L	<	0.5									
	Total Aluminum	µg/L		364									
L	Total Antimony	µg/L	<	0.4									
L	Total Arsenic	µg/L	<	1									
L	Total Barlum	µg/L		41									
L	Total Beryllium	µg/L	<	1									
I 1	Total Boron	µg/L	<	200									
L	Total Cadmium	µg/L	<	0.1									
L	Total Chromium (III)	µg/L	<	1									
I 1	Hexavalent Chromium	µg/L	<	0.1									
L	Total Cobalt	µg/L	<	1									
I 1	Total Copper	µg/L		2									
2	Free Cyanide	µg/L											
Group	Total Cyanide	µg/L		6									
5	Dissolved Iron	µg/L		109									
I	Total Iron	µg/L		109									
L	Total Lead	µg/L	<	1									
I 1	Total Manganese	µg/L	<	32.2									
I 1	Total Mercury	µg/L	<	0.2									
I 1	Total Nickel	µg/L		2.4									
I 1	Total Phenois (Phenolics) (PWS)	µg/L	<	2									
L	Total Selenium	µg/L	<	1									
I 1	Total Silver	µg/L	<	0.2									
I 1	Total Thailium	µg/L	<	0.4									
L	Total Zinc	µg/L		13									
1	Total Molybdenum	µg/L	<	3									
	Acrolein	µg/L	<										
1	Acrylamide	µg/L	<										
1	Acrylonitrile	µg/L	<										
1	Benzene	µg/L	<										
1	Bromoform	µg/L	<										

Discharge Information

12/12/2022

Page 1

Discharge Information

Discharge

Stream

Instructions

Toxics Management Spreadsheet Version 1.3, March 2021

Facility: Hamburg WTP NPDES Permit No.: PA0086878 Outfall No.: 001												
Evaluation Type	Major Sewage /	Industrial Wast	e	Wastewater	Description:	backwash						
	Discharge Characteristics											
Design Flow	Hardness (mg/l)*	pH (SU)*	F	Partial Mix Fa	Complete Mix	x Times (min)						
(MGD)*	naruness (ing/i)	рн (30)	AFC	CFC	THH	CRL	Q ₇₋₁₀	Q _h				
0.13	51.3	7										

					0 if lef	blank	0.5 if le	ft blank	0) if left blani	k	1 if left	blank
	Discharge Pollutant	Units	Ма	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L		28.9									
1	Chloride (PWS)	mg/L		3.66									
dno	Bromide	mg/L	٨	1									
	Sulfate (PWS)	mg/L		16									
	Fluoride (PWS)	mg/L	<	0.5									
				0.04									

Total Antimony µg/L <		Total Aluminum	uall		364					
Total Arsenic µg/L 1			µg/L							
Total Barlum µg/L 41							 			
Total Beryllium µg/L < 1 I				<	-					
Total Boron µg/L < 200										
Total Cadmium µg/L < 0.1 <td></td>										
Total Chromium (III) µg/L < 1 <th< th=""> <th<< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<<></th<>										
Hexavalent Chromium µg/L < 0.1 </td <td></td> <td></td> <td></td> <td></td> <td>0.1</td> <td></td> <td></td> <td></td> <td></td> <td></td>					0.1					
Total Cobalt µg/L < 1				<	-					
Total Copper µg/L 2 <t< td=""><td></td><td>Hexavalent Chromium</td><td>µg/L</td><td><</td><td>0.1</td><td></td><td></td><td></td><td></td><td></td></t<>		Hexavalent Chromium	µg/L	<	0.1					
Free Cyanide µg/L Image: Constraint of the second		Total Cobalt	µg/L	۷	1					
Prec Cyanice µg/L 6		Total Copper	µg/L		2					
Total Iron µg/L 109 Image: Constraint of the state of the s			µg/L							
Total Iron µg/L 109 Image: Constraint of the state of the s	l a	Total Cyanide	µg/L		6					
Total Lead $\mu g/L$ < 1	δ	Dissolved Iron	µg/L		109					
Total Manganese µg/L < 32.2 <th< th=""></th<>		Total Iron	µg/L		109					
Total Mercury µg/L < 0.2 <td></td> <td>Total Lead</td> <td>µg/L</td> <td><</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td>		Total Lead	µg/L	<	1					
Total Nickel µg/L 2.4		Total Manganese	µg/L	<	32.2					
Total Phenols (Phenolics) (PWS) μ g/L<2Total Selenium μ g/L<		Total Mercury	µg/L	<	0.2					
Total Phenols (Phenolics) (PWS) µg/L < 2 <th< th=""></th<>		Total Nickel	µg/L		2.4					
Total Selenium µg/L < 1 I		Total Phenols (Phenolics) (PWS)	µg/L	<	2					
Total Thallium μg/L < 0.4 <th< th=""></th<>		Total Selenium		<	1					
Total Thallium μg/L < 0.4 <th< th=""> <th< th=""> </th<><td></td><td>Total Silver</td><td>µg/L</td><td><</td><td>0.2</td><td></td><td></td><td></td><td></td><td></td></th<>		Total Silver	µg/L	<	0.2					
Total Zinc μg/L 13 Image: Constraint of the system Image: Constrated of the system		Total Thallium		<	0.4					
Total Molybdenum μg/L < 3 I		Total Zinc			13					
Acrolein μg/L < Image: Constraint of the state		Total Molybdenum		<	3					
Acrylamide µg/L < Image: Constraint of the state				<						
Acrylonitrile μg/L <		Acrylamide		<						
Benzene µg/L <				<						
				<						
Divinionin PU/L S		Bromoform	µg/L	<						

Discharge Information

12/12/2022

Page 1

Above discharge concentrations for Total Aluminum, Total Iron, and Total Manganese are averages based on DMRs from January 1, 2019 through October 31, 2022. For each of these parameters, most of the sample results reported were detected concentrations but some were reported as < values. (The model results are not different if < signs are input or not for these parameters.)

1

Stream / Surface Water Information

Hamburg WTP, NPDES Permit No. PA0086878, Outfall 001

Instructions Discharge Stream

Receiving Surface Water Name: Furnace Creek

No. Reaches to Model:

Location	Stream Code*	RMI*	Elevation (ft)*	DA (mi ²)*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*
Point of Discharge	002080	3.4	725	1.7			Yes
End of Reach 1	002080	0	370	3.6			Yes

Great Lakes Criteria

ORSANCO Criteria

|--|

Location	RMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time	Tributa	ary	Stream	m	Analys	sis
Location	TSIVII	(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(dave)	Hardness	pН	Hardness*	pH*	Hardness	pН
Point of Discharge	3.4	0.1	0.16									13.2	7		
End of Reach 1	0	0.1													

Q_h

Location	RMI	LFY	Flow	/ (cfs)	W/D	Width	Depth	Velocit	Time	Tributa	ary	Stream	m	Analys	sis
Location	TSIVII	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(dave)	Hardness	pН	Hardness	рН	Hardness	pН
Point of Discharge	3.4														
End of Reach 1	0														

Statewide Criteria

Vasteload Allocations								
✓ AFC CO	CT (min): 0.	335	PMF:	1	Ana	lysis Hardne	ess (mg/l):	34.419 Analysis pH: 7.00
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	750	750	1,347	
Total Antimony	0	0		0	1,100	1,100	1,975	
Total Arsenic	0	0		0	340	340	610	Chem Translator of 1 applied
Total Barium	0	0		0	21,000	21,000	37,707	
Total Boron	0	0		0	8,100	8,100	14,544	
Total Cadmium	0	0		0	0.713	0.72	1.3	Chem Translator of 0.989 applied
Total Chromium (III)	0	0		0	237.864	753	1,352	Chem Translator of 0.316 applied
Hexavalent Chromium	0	0		0	16	16.3	29.3	Chem Translator of 0.982 applied
Total Cobalt	0	0		0	95	95.0	171	
Total Copper	0	0		0	4.920	5.12	9.2	Chem Translator of 0.96 applied
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	19.877	21.0	37.7	Chem Translator of 0.946 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	1.400	1.65	2.96	Chem Translator of 0.85 applied
Total Nickel	0	0		0	189.930	190	342	Chem Translator of 0.998 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	Chem Translator of 0.922 applied
Total Silver	0	0		0	0.514	0.6	1.09	Chem Translator of 0.85 applied
Total Thallium	0	0		0	65	65.0	117	
Total Zinc	0	0		0	47.466	48.5	87.1	Chem Translator of 0.978 applied

NPDES Permit No. PA0086878

✓ CFC CC	CT (min): 0.3	335	PMF:	1	Ana	alysis Hardne	ess (mg/l):	34.419 Analysis pH: 7.00
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	220	220	395	
Total Arsenic	0	0		0	150	150	269	Chem Translator of 1 applied
Total Barium	0	0		0	4,100	4,100	7,362	
Total Boron	0	0		0	1,600	1,600	2,873	
Total Cadmium	0	0		0	0.117	0.12	0.22	Chem Translator of 0.954 applied
Total Chromium (III)	0	0		0	30.941	36.0	64.6	Chem Translator of 0.86 applied
Hexavalent Chromium	0	0		0	10	10.4	18.7	Chem Translator of 0.962 applied
Total Cobalt	0	0		0	19	19.0	34.1	
Total Copper	0	0		0	3.600	3.75	6.73	Chem Translator of 0.96 applied
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	1,500	1,500	2,693	WQC = 30 day average; PMF = 1
Total Lead	0	0		0	0.775	0.82	1.47	Chem Translator of 0.946 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	0.770	0.91	1.63	Chem Translator of 0.85 applied
Total Nickel	0	0		0	21.095	21.2	38.0	Chem Translator of 0.997 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	4.600	4.99	8.96	Chem Translator of 0.922 applied
Total Silver	0	0		0	N/A	N/A	N/A	Chem Translator of 1 applied
Total Thallium	0	0		0	13	13.0	23.3	
Total Zinc	0	0		0	47.854	48.5	87.1	Chem Translator of 0.986 applied

THH: CCT = 0.335 minutes PMFa = 1

Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A	
Chloride (PWS)	0	0		0	250,000	250,000	N/A	
Sulfate (PWS)	0	0		0	250,000	250,000	N/A	
Fluoride (PWS)	0	0		0	2,000	2,000	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	5.6	5.6	10.1	
Total Arsenic	0	0		0	10	10.0	18.0	
Total Barium	0	0		0	2,400	2,400	4,309	
Total Boron	0	0		0	3,100	3,100	5,566	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	

Vodel Results

12/12/2022

Page 6

				-			-
Hexavalent Chromium	0	0	0	N/A	N/A	N/A	
Total Cobalt	0	0	0	N/A	N/A	N/A	
Total Copper	0	0	0	N/A	N/A	N/A	
Dissolved Iron	0	0	0	300	300	539	
Total Iron	0	0	0	N/A	N/A	N/A	
Total Lead	0	0	0	N/A	N/A	N/A	
Total Manganese	0	0	0	1,000	1,000	1,796	
Total Mercury	0	0	0	0.050	0.05	0.09	
Total Nickel	0	0	0	610	610	1,095	
Total Phenols (Phenolics) (PWS)	0	0	0	5	5.0	N/A	
Total Selenium	0	0	0	N/A	N/A	N/A	
Total Silver	0	0	0	N/A	N/A	N/A	
Total Thallium	0	0	0	0.24	0.24	0.43	
Total Zinc	0	0	0	N/A	N/A	N/A	

NPDES Permit No. PA0086878

☑ CRL 0	CT (min): 0.4	477	PMF:	1	Ana	alysis Hardne	ess (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc (ug/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	N/A	N/A	N/A	
Total Arsenic	0	0		0	N/A	N/A	N/A	
Total Barium	0	0		0	N/A	N/A	N/A	
Total Boron	0	0		0	N/A	N/A	N/A	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	N/A	N/A	N/A	
Total Nickel	0	0		0	N/A	N/A	N/A	
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits		Concentra	tion Limits				
Pollutants	AML (Ibs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Aluminum	Report	Report	Report	Report	Report	µg/L	863	AFC	Discharge Conc > 10% WQBEL (no RP)
Total Copper	Report	Report	Report	Report	Report	µg/L	5.9	AFC	Discharge Conc > 10% WQBEL (no RP)
Dissolved Iron	Report	Report	Report	Report	Report	µg/L	539	THH	Discharge Conc > 10% WQBEL (no RP)
Total Zinc	Report	Report	Report	Report	Report	µg/L	55.9	AFC	Discharge Conc > 10% WQBEL (no RP)

NPDES Permit No. PA0086878

☑ Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Fluoride (PWS)	N/A	N/A	PWS Not Applicable
Total Antimony	N/A	N/A	Discharge Conc < TQL
Total Arsenic	N/A	N/A	Discharge Conc < TQL
Total Barium	4,309	µg/L	Discharge Conc ≤ 10% WQBEL
Total Beryllium	N/A	N/A	No WQS
Total Boron	2,873	µg/L	Discharge Conc < TQL
Total Cadmium	0.22	µg/L	Discharge Conc < TQL
Total Chromium (III)	64.6	µg/L	Discharge Conc < TQL
Hexavalent Chromium	18.7	µg/L	Discharge Conc < TQL
Total Cobalt	34.1	µg/L	Discharge Conc < TQL
Total Cyanide	N/A	N/A	No WQS
Total Iron	2,693	µg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	1.47	µg/L	Discharge Conc < TQL
Total Manganese	1,796	µg/L	Discharge Conc ≤ 10% WQBEL
Total Mercury	0.09	µg/L	Discharge Conc < TQL
Total Nickel	38.0	µg/L	Discharge Conc ≤ 10% WQBEL
Total Phenols (Phenolics) (PWS)		µg/L	Discharge Conc < TQL
Total Selenium	8.96	µg/L	Discharge Conc < TQL
Total Silver	0.7	µg/L	Discharge Conc < TQL
Total Thallium	0.43	µg/L	Discharge Conc < TQL
Total Molybdenum	N/A	N/A	No WQS

To obtain the Daily Max and IMAX WQBELs for Total Aluminum.....

Discharge Information

Instructions Disc	harge Stream		
Facility: Hambu	urg WTP	NPDES Permit No.: PA0086878	Outfall No.: 001
Evaluation Type:	Major Sewage / Industrial Waste	Wastewater Description: backwash	

Discharge Characteristics												
Design Flow	Hardness (mg/l)*		P	Partial Mix Fa	Complete Mix Times (min)							
(MGD)*	Hardness (mg/l)	pH (SU)*	AFC	CFC	THH	CRL	Q ₇₋₁₀	Qh				
0.13	51.3	7										

) if left blan	1 if left blank		
	Discharge Pollutant	linits		x Discharge Conc	Trib Stream Conc Conc		Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L											
5	Chloride (PWS)	mg/L											
dno	Bromide	mg/L	۷										
	Sulfate (PWS)	mg/L											
	Fluoride (PWS)	mg/L	۷										
<u> </u>	Total Aluminum	µg/L		9999999									
1	Total Antimony	µg/L	۷										

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits		Concentra					
Pollutants	AML (Ibs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	
Total Aluminum	0.94	1.46	863	1,347	2,158	µg/L	863	AFC	C

Excerpt from 2017 Fact Sheet.....

See next pages

PA0086878

						A	II units in mg/	I (except pH)						
Parameter	Existing Permit	TBEL	WQBEL (Hardness of 100, pH of 7, and Qd of 0.13 MGD)(b)	R.P. (compares actual max conc, to WQBEL)	Non-Deg, Blended (Uses Avg Qd of 0.065 MGD & Qstrm= Qharmonic) (c)	ABACT, Blended (Uses Qd of 0.13 MGD)	Recom- mended Limit before rounding (a)	Existing Conc. (Avg.)	RP?	Existing Conc (Avg) New DMRs	RP?	Existing Conc. (Max (Mo.Avg) New DMRs	RP?	Updated Proposed Limit	Basis
Aluminum, Total	2.1	4.0	0.87	Yes	1.2	2.1	0.9	0.41	N	0.66 3	Y	1.08 ³	Y	1.0	WQBEL
Ammonia Nitrogen	-	-	3.4		9.9	-	3.4	< 0.12	N					-	Not a poc
CBOD₅	-	-	-		24.6	-	24.6	<2 ²	N	******				-	Not a poc
Copper, Total	-	-	0.016	No	0.12	-	0.02	< 0.01 ²	N					-	Not a poc
Iron, Total	2.0	2.0	2.7	No	1.35	2.0	1.35	0.091	N	0.11 ³	N	0.23 ³	N	1,4	Non- degrad.
Lead, Total	-	-	0.006	Unknown	0.088	-	0.006	<0.01 ²	Un- known					-	Not a poc
Manganese, Total	1.0	1.0	1.8	No	0.51	1.0	0.51	0.031	N	0.03 ³	N	0.072 ³	N	1.0 (d)	Non- degrad/ TBEL.
Nitrate-Nitrite Nitrogen	-	-	-		7.6	-	7.6	<1 2	N					-	Not a poc
Phosphorus	Report conc. / & mass load limit		0.46 (to achieve lb/year līmit) (c)		0.61	0.62	-	0.08	N	<0.05	N	<0.06	N	Report conc. / & same mass load limit	TMDL
Sulfate	-	-	-	No	26.3	-	26.3	4 ²	N					-	Not a poc
TDS	-	-	-	No	379	-	379	21 ²	N					-	Not a poc
TSS	30 / & mass load limit	30	13.8 (to achieve Ib/year Iimit) (c)		2571	30	13.8	31	N	3.4 ^{\$}	N	6 ³	N	14.0 / and same mass load limit	TMDL
TRC	0.5	0.5	0.125	Yes	0.23	0.12	0.12	0.11	Y	0.2 ³	Y	0.4 ³	Y	0.12	WQBEL / ABACT
Zinc, Total	•	-	0.14	No	0.22	-	0.14	< 0.005 ²	N					-	Not a poc
pH (S.U.)	6.0-9.0	6.0- 9.0	-		-	-	6.0-9.0	•						6.0-9.0	TBEL

Table 4. Comparison of TBEL, WQBEL, ABACT, and Antidegradation Limits:

1. Existing concentration taken from DMR data, October 2011-Sept 2015, 46-48 data points.

2. Existing concentration taken from 2012 application data- 3 effluent samples, all in Nov. 2012.

nanarnati actaria in man un menerari

3. Existing concentrations taken from eDMR data for October 2015 through November 2016

poc = parameter of concern TMDL = Total maximum daily load

Footnotes:

(a) Where there is a permit limit, it should be the most stringent of TBEL, WQBEL, ABACT, or Non-degrading per DEP's Antidegradation. Technical Guidance Where there is no TBEL or Reasonable Potential (RP) to exceed WQBEL/ABACT/Non-degrading limits, no permit limit is needed (i.e. not a pollutant of concern)

Continued from above (2017 Fact Sheet)......

PA0086878

- (b) model defaults are 100 for stream and discharge Hardness; model defaults are 7 for stream and discharge pH. There were not enough effluent sampling results to justify a deviation of the default value for discharge Hardness. In the models, the typical defaults for pH and Hardness were used. [Using lower Hardness values and higher pH values can cause more stringent WQBELs for some parameters.]
- (c) Because the non-degradation evaluation was a long-term average approach, a median/ average discharge flow was allowed similar to using the harmonic (long-term average) stream flow.
 A median/average discharge flow was similarly used for back-calculating the average concentration to achieve established TMDL loads.
- (d) The current DEP software (WMS) rounds up to 1.0 mg/l from 0.5 mg/l. (permit writer overwrite not available)

Hamburg WTF - PA0086878 Expanded Discharge Evaluation

			Spreads	heet to evaluat	e Non-Degra	dation of wat	er Quanty									
Parameter	Existing	ABACT		Discharge	WQ	Stream	Меал	Combined	LTA Discharge		Expansion	i		Blended	Aiustmt If	Pollutant
	Permit	Limits	Blended	Flow	Objective	Flow	Concentration	Flow	Concentration		AML			Non	no existina	of Concern
	Limits	C ABACT	ABACT	Q expansion	C total	Q upstream	C upstream	Q total	Expansion	Multiplier		Units		Degrading	permit limit	
CBOD5	0	0	0	0.0541	1.7	1.4976	1.25	1.5517	14.15	1.72	24.33	mg/L	CBOD5	13,10	24.64	No
TSS	30	30	30	0.0541	106	1.4976	10	1.5517	2761.23	1.72	4749.32	mg/L	TSS	2571.17		
NH3-N	0	0	0	0.0541	0.05	1.4976	0.025	1.5517	0.74	1.72	1.28	mg/L	NH3-N	0.69	9.92	No
NO2/NO3-N	0	0	0	0.0541	0.76	1.4976	0.67	1.5517	3.25	1.72	5,59	mg/L	NO2/NO3-N	3.01	7.62	No
Phosphorus	1 1	0.5	0.7307692	0.0541	0.024	1.4976	0.019	1.5517	0.16	1.72	0.28	mg/L	Phosphorus	0.61		-
TRC	0,5	0	0.2307692	0.0541	0	1.4976	D	1.5517	0.00	1.72	0.00	ma/L	TRC	0.23		
Lead, Total	0	0	0	0.0541	4.56	1.4976	1.9	1.5517	78.13	1.72	134.39	ug/L	Lead Total	72.36		No
Copper, Total	0	0	0	0.0541	8,5	1.4976	4,75	1.5517	112.22	1.72	193.02	ug/L	Copper Total	103,93	122.39	No
Iron, Total	2000	2000	2000	0,0541	100	1.4976	87	1,5517	459.56	1.72	790.45	ug/L	Iron Total	1348.70	122.00	
Sulfate	0	0	0	0.0541	11.41	1.4976	11.2075	1.5517	17.01	1.72	29.26	mg/L	Sulfate	15.75	26.29	No
Aluminum, Total	2100	2100	2100	0.0541	40,45	1.4976	34.5	1.5517	205.02	1.72	352.63	ua/L	Aluminum Total	1159,11	10.20	
TDS	0	0	0	0.0541	108	1.4976	101	1.5517	301.61	1.72	518.77	mg/L	TDS	279.34	379.03	No
Zinc, Total	0	0	0.00	0.0541	9.07	1.4976	8.1	1,5517	35.90	1.72	61,75	ug/L	Zinc Total	33,25	217.86	No
Manganese,Total	1000	1000	1000.00	0.0541	6,94	1.4976	5.25	1.5517	53.68	1.72	92.34	ug/L	Manganese, Total	511,26		
	-			CFS		Qhm-CFS		ĊFS								
ABA	CT Tech L	imits-Sewa	age cases	-												
			2000 to			· 0	Discharge Existi	na	0.03	mgd	=	0.0464	cfs	Od represent as	a and not may m	
		<2000 gpd	50,000 gpd	>50,000gpd			Discharge Expans	-	0.035	mad		0.0541		Qd represent avg and not max m for antideg calcs		
Parameter	· ·	Limit	Limit	Limit			Q Upstream Q _{7.10}		0.16	cfs	=		Q _{hent} cfs	ior armoeg cales		
CBOD5	5/1 to 10/31	10	10	10									wind			<u>.</u>
CBODS	11/1 to 4/30	20	20	10												
TSS		20	10	10					Source of inform	nation:						<u>}</u>
NH3-N	5/1 to 10/31	5	3	1.5					WQ Objective: T							
NH3-N	11/1 to 4/30	15	9	4.5					Upstream Conce		21 = 2					+
Disinfection	1 1 1 1 1 1 1 1 1 1	UV/ND	UV/ND	UV/ND					Multiplier from L				2000 C 4			- <u></u>
		••	••						$Q_{hm} = 7.43 \times (C$		200 01 0.0 1	ABLE OIL	1 page 64			
	· .															+
				L			arameter of con									