

Southcentral Regional Office CLEAN WATER PROGRAM

Application Type

Facility Type

Major / Minor

Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0087581

 APS ID
 602152

 Authorization ID
 1247795

Applicant Name	Cont	e Township Municipal Authority	Facility Name	Jordan Crossings STP
• •		•	,	
Applicant Address	449 E	ucks Hill Road	Facility Address	449 Bucks Hill Road
	Mohr	sville, PA 19541-9340		Mohrsville, PA 19541
Applicant Contact	David	Phillips	Facility Contact	David Phillips
Applicant Phone	(610)	926-8833	Facility Phone	(610) 926-8833
Client ID	9310	1	Site ID	481469
Ch 94 Load Status	Not C	verloaded	Municipality	Centre Township
Connection Status			County	Berks
Date Application Rece	eived	September 27, 2018	EPA Waived?	Yes
Date Application Accepted October 16, 2018		If No, Reason		

Summary of Review

1.0 General Discussion

This fact sheet supports the re-issuance of an existing NPDES permit for discharge of treated domestic wastewater from Centre Township Municipal Authority(Authority)-Jordan Crossings wastewater treatment plant. The Authority owns, operates, and maintains the wastewater treatment plant. The facility is located in Centre Township, Berks County and serves Centre Township. The sewer collection system is not combined and there is no bypasses or overflows approved in the collection system. The treatment plant is an activated sludge treatment facility with a hydraulic design capacity of 0.016 MGD and an organic design capacity of 32 lbs/day- BOD₅. The discharge goes to unnamed tributary(UNT) to UNT to Irish Creek, which is classified for Warm Water Fishery(WWF). Previous factsheet document that, when a point of first used (POFU) survey was conducted by DEP biologists in February 1995, the receiving stream was intermittent at the point of discharge and the POFU was approximately 1100 feet downstream from the discharge point prior to joining UNT 02154. The previous factsheet also indicated that the current dry stream limits were not applied to the permit because DEP Sewage Planning Program gave approval to this project already, at its initiation, and because this facility was constructed before the Technical Guidance document was written. The existing NPDES permit was issued on March 6, 2014 with an effective date of April 1, 2014 and expiration date of March 31, 2019. The applicant submitted a timely NPDES renewal application to the Department and is currently operating under the terms and conditions in the existing permit under administrative extension provisions pending DEP action on the renewal application. A topographic map showing the discharge location is presented in attachment A.

1.1 Sludge use and disposal description and location(s)

Sludge is wasted to a holding tank and hauled off site periodically to Exeter Township wastewater treatment plant for further processing and disposal.

Approve	Deny	Signatures	Date
Х		J. Pascal KwedzaJ. Pascal Kwedza, P.E. / Environmental Engineer	February 16, 2021
х		Maria D. Bebenek for Daniel W. Martin Daniel W. Martin, P.E. / Environmental Engineer Manager	February 26, 2021
х		Maria D. Bebenek Maria D. Bebenek, P.E. / Program Manager	February 26, 2021

Summary of Review

1.2 Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

1.3 Changes to the existing permit

No change was made to the existing permit.

1.3.1 Existing Permit Limits and Monitoring Requirements

	DISCHARGE LIMITATIONS								
	Ma	ass Units Ibs	s/day		Concer				
Discharge Parameter	Average Monthly	Average Weekly	Maximum Daily	Average Monthly	Average Weekly	Maximum Daily	Inst. Maximum	Monitoring Frequency	Sample Type
Flow (mgd)	Monitor & Report	XXX	Monitor & Report	xxx	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	XXX		From 6.0	to 9.0 inclusiv	е	1/day	Grab
D.O.	XXX	XXX	XXX	М	inimum of 5	1/day	Grab		
Total Residual Chlorine	XXX	XXX	XXX	0.29	XXX	xxx	0.97	1/day	Grab
TSS	4	XXX	XXX	30	XXX	XXX	60	2/month	8-hour comp
CBOD₅	3.3	XXX	XXX	25	XXX	XXX	50	2/month	8-hour comp
Ammonia Nov 1 - Apr 30	1.8	XXX	XXX	13.5	XXX	XXX	27	2/month	8-hour comp
Ammonia May 1 - Oct 31	0.6	XXX	XXX	4.5	XXX	XXX	9	2/month	8-hour comp
Fecal Col. (5/1 to 9/30)	XXX	XXX	XXX	200	XXX	XXX	1,000	2/month	Grab
Fecal Col. (10/1 to 4/30)	XXX	XXX	XXX	800	XXX	XXX	10,000	2/month	Grab
Total Phosphorus	XXX	XXX	XXX	Report	XXX	XXX	XXX	1/year	Grab
Total Nitrogen	XXX	XXX	XXX	Report	XXX	XXX	XXX	1/year	Grab

Discharge, Receiving V	Vaters and Water Supply Informat	tion				
Outfall No. 001	Design Flow (MGD)	0.016				
Latitude 40° 27' 32.00"	Longitude	76° 00' 01"				
Quad Name Bernville	Quad Code	1537				
Wastewater Description: Sewage Effluent						
Receiving Waters UNT to UNT to Irish Creek	Stream Code	No Code				
NHD Com ID 26000316	RMI	1.25 (on UNT 02154)				
Drainage Area 0.30 sq. mi.	Yield (cfs/mi²)	1.25 (011 0111 02154)				
Q ₇₋₁₀ Flow (cfs) 0.07		USGS Gage Station				
Elevation (ft) 310	Slope (ft/ft)	USGS Gage Station				
Watershed No. 3-B	Chapter 93 Class.	WWF				
Existing Use	Existing Use Qualifier	VVVVF				
Exceptions to Use	Exceptions to Criteria					
Assessment Status Impaired	Exceptions to Criteria					
Cause(s) of Impairment Siltation						
Source(s) of Impairment Agriculture, Erosion fro	om Dorolist Land					
TMDL Status Tentative	· · · ·					
Tenative Tenative	Name Irish Creek					
Background/Ambient Data	Data Source					
pH (SU)	2 a.a. 2001/00					
Temperature (°F)	-					
Hardness (mg/L)						
Other:						
Nearest Downstream Public Water Supply Intake	Borough of Pottstown Water a	and Sewer Authority				
PWS Waters Schuylkill River	Flow at Intake (cfs)					
PWS RMI	Distance from Outfall (mi)	>34 miles				

Changes Since Last Permit Issuance: None

1.4.1 Water Supply Intake

The nearest downstream water supply intake is approximately 34 miles downstream by Borough of Pottstown Water and Sewer Authority on Schuylkill River in West Pottsgrove Township, Chester County. No impact is expected from this discharge.

	Tre	atment Facility Summa	ary	
Treatment Facility Na	me: Centre Township Muni	cipal Authority - Jordan Cro	ossing STP	
WQM Permit No.	Issuance Date			
0696412 T-1	02/16/2007			
	Degree of			Avg Annual
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)
Sewage	Secondary	Activated Sludge	Hypochlorite	0.016
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal
0.016	32	Not Overloaded		Other WWTP

Changes Since Last Permit Issuance: None

2.1 Facility description

The treatment system consists of a manual bar screen, an aerated equalization (EQ) tank with 2 submersible pumps, 1 aeration tank and 1 clarification tank, 1 chlorine contact tank with de-chlorination and aerated sludge holding tank. Ultrasonic flow meter is used for measuring effluent.

2.2 Chemicals

- Lime is used for pH adjustment
- Calcium hypochlorite (CaOCl)₂ is used for disinfection.
- Sodium bisulfite for de-chlorination

3.0 Compliance History

3.1 DMR Data for Outfall 001 (from January 1, 2020 to December 31, 2020)

Parameter	DEC-20	NOV-20	OCT-20	SEP-20	AUG-20	JUL-20	JUN-20	MAY-20	APR-20	MAR-20	FEB-20	JAN-20
Flow (MGD)			0.00613									
Average Monthly	0.00627	0.00567	8	0.00655	0.00839	0.00707	0.00736	0.00612	0.0052	0.00482	0.00448	0.0046
Flow (MGD)												
Daily Maximum	0.01334	0.00855	0.0085	0.01264	0.02885	0.01059	0.01	0.009	0.00761	0.00624	0.00658	0.01023
pH (S.U.)												
Minimum	6.73	6.74	6.65	6.1	6.03	6.38	6.51	6.31	6.27	6.76	6.86	6.73
pH (S.U.)												
Instant. Maximum	8.02	7.85	7.86	7.71	7.73	7.62	7.83	7.82	8.21	7.89	7.9	7.68
DO (mg/L)												
Minimum	6.93	6.26	5.56	5.2	5.01	5.77	6.02	5.06	6.84	6.15	6.19	5.45
TRC (mg/L)												
Average Monthly	< 0.03	< 0.04	0.04	0.04	< 0.04	< 0.04	0.04	0.05	0.08	< 0.06	< 0.06	< 0.05
TRC (mg/L)												
Instant. Maximum	0.13	0.28	0.36	0.09	0.16	0.08	0.09	0.26	0.61	0.22	0.20	0.13
CBOD5 (lbs/day)	0.4	0.4	0.4	0.4	0.4	0.4	0.0	0.0	0.0		0.4	0.0
Average Monthly	0.1	< 0.1	0.1	0.1	< 0.1	< 0.1	0.2	0.2	0.2	0.3	0.4	0.2
CBOD5 (mg/L)	3.2	.0.4	0.4	3.3	< 2.2	. 0	2.0	2.0	2.0	8.3	44	5.3
Average Monthly	3.2	< 2.4	3.1	3.3	< 2.2	< 2	3.6	3.9	3.9	8.3	11	5.3
BOD5 (lbs/day)												
Raw Sewage Influent Ave. Monthly	8	8	5	< 4	9	8	9	15	22	8	17	5
BOD5 (lbs/day)	0	0	5	< 4	9	0	9	15	22	0	17	5
Raw Sewage Influent												
 dwage mildent dr/> Daily Maximum	8	10	6	5	10	9	9	19	39	8	26	6
BOD5 (mg/L)		10	Ŭ		10	Ŭ	Ŭ	10	00	Ŭ		Ŭ
Raw Sewage Influent												
 Ave. Monthly	188	139	115	< 106	149	137	198	368	405	206	442	155
TSS (lbs/day)												
Average Monthly	< 0.2	< 0.2	< 0.2	< 0.1	< 0.2	< 0.2	< 0.2	0.2	0.2	< 0.3	0.6	0.1
TSS (lbs/day)												
Raw Sewage Influent												
 br/> Ave. Monthly	3	5	4	4	3	3	10	4	16	2	6	4
TSS (lbs/day)												
Raw Sewage Influent												
 br/> Daily Maximum	3	5	4	5	3	4	11	4	28	3	10	6
TSS (mg/L)												
Average Monthly	< 4	< 4	4	< 4	< 4	< 4	< 4	4.2	4	< 7.3	15.3	4.2

TSS (mg/L) Raw Sewage Influent												
 br/> Ave. Monthly	71.8	80	87.8	119	46	58	223	85.8	291	62	158.9	109
Fecal Coliform (CFU/100 ml)												
Geometric Mean	43	4	15	48	88	13	< 1	6	33	67	13	59
Fecal Coliform (CFU/100 ml)												
Instant. Maximum	66	6	39	156	193	55	1	41	40	1500	18	79
Ammonia (lbs/day)				0.004				0.004		2 22 4	0.04	
Average Monthly	< 0.004	< 0.006	< 0.005	< 0.004	< 0.006	< 0.006	< 0.005	< 0.004	< 0.005	< 0.004	< 0.04	< 0.02
Ammonia (mg/L)	. 0.4	. 0.4	. 0.44	. 0.4	.04	.04	.0.40	. 0.4	.0.4	.04	.4.00	. 0. 5
Average Monthly	< 0.1	< 0.1	< 0.11	< 0.1	< 0.1	< 0.1	< 0.12	< 0.1	< 0.1	< 0.1	< 1.38	< 0.5

DMR summary for the past 12-month of operation is attached in section 3.1. No DMR violation noted for the past 12 months of operation. The facility's compliance record is good.

3.2 Summary of Inspections:

The facility has been inspected several times during the previous permit cycle. No effluent violation noted during plant inspections.

4.0 Development of Effluent Limitations						
Outfall No.	001	Design Flow (MGD)	.016			
Latitude	40° 27' 32.00"	Longitude	-76° 0' 1.00"			
Wastewater Description: Sewage Effluent						

4.1 Basis for Effluent Limitations

In general, the CWA requires that the effluent limits for a particular pollutant be the more stringent of either technology-based limits or water quality-based limits. Technology-based limits are set according to the level of treatment that is achievable using available technology. A water quality-based effluent limit is designed to ensure that the water quality standards applicable to a waterbody are being met and may be more stringent than technology-based effluent limits.

4.1.1 Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 - 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 - 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Comments: Weekly average limits for Total Suspended Solids and CBOD₅ are not applicable to this discharge because sampling frequency is less than weekly.

4.2 Mass-Based Limits

The federal regulation at 40 CFR 122.45(f) requires that effluent limits be expressed in terms of mass, if possible. The regulation at 40 CFR 122.45(b) requires that effluent limitations for POTWs be calculated based on the design flow of the facility. The mass-based limits are expressed in pounds per day and are calculated as follows:

Mass based limit (lb/day) = concentration limit (mg/L) \times design flow (mgd) \times 8.34

4.3 Water Quality-Based Limitations

4.3.1 Receiving Stream

The receiving waterbody is UNT to UNT to Irish Creek. According to 25 PA § 93.9f, the UNT is protected for warm water fishes (WWF) It is located in Drainage List F and State Watershed 3-B. The UNT has no stream code. The secondary receiving UNT has a stream code of 02154. According to the Department's Integrated Water Quality Monitoring and Assessment Report, The UNT is impaired for Aquatic life caused by siltation from Agriculture and erosion. Irish Creek Total Maximum Daily Load (TMDL) for sediment was completed and public participation completed in 2012, but the final TMDL approval is tentative. See TMDL Requirement section of the report for further discussion on TMDL and wasteload allocation for this facility.

4.3.2 Stream flows

The Technical Support Document for Water Quality-Based Toxics Control (TSD) (EPA, 1991) and the Pennsylvania Water Quality Standards PA WQS) recommend the flow conditions to use in calculating water quality-based effluent limits (WQBELs) using steady-state modeling. The TSD and the PA WQS state that WQBELs intended to protect aquatic life uses should be based on the lowest seven-day average flow rate expected to occur once every ten years (Q_{7-10}) for chronic criteria and the lowest one-day average flow rate expected to occur once every ten years (Q_{1-10}) for acute criteria. However, because the chronic criterion for ammonia is a 30-day average concentration not to be exceeded more than once every three years, EPA has used the Q_{30-10} for the chronic ammonia criterion instead of the Q_{7-10} . The Q_{30-10} is a biologically based design flow intended to ensure an excursion frequency of once every three years for a 30-day average flow rate. These flows were determined by correlating with the yield of USGS gage No. 01470500 on Schuylkill River near Berne. The Q_{7-10} and drainage area at the gage is 82. 3 ft³/s) and 355mi² respectively. The resulting yields are as follows:

- $Q_{7-10} = (82.3 \text{ft}^3/\text{s})/355 \text{ mi}^2 = 0.23 \text{ft}^3/\text{s}/\text{ mi}^2$
- $Q_{30-10} / Q_{7-10} = 1.23$
- \bullet Q₁₋₁₀ / Q₇₋₁₀ = 0.84

The drainage area at the point of discharge taken from the previous factsheet = 0.3 mi^2 .

The Q_{7-10} at discharge = 0.3 mi² x 0.23 ft³/s/mi² = 0.07 ft³/s.

4.3.3 NH₃N Calculations

NH₃N calculations will be based on the Department's Implementation Guidance of Section 93.7 Ammonia Criteria, dated 11/4/97 (ID No. 391-2000-013). The following data is necessary to determine the instream NH₃N criteria used in the attached model of the stream:

Discharge pH
 Discharge Temperature
 Stream pH
 Stream Temperature
 Background NH₃-N
 = 6.38 (DMR median)
 = 25 ° C (Default)
 = 7.0 (Default)
 = 20 °C (Default)
 = 0.0 (default)

4.3.4 CBOD₅ & NH₃-N

There are no point source discharges close to this discharge that will interact with it significantly, therefore only this discharge was modelled using WQM 7.0 stream model. The WQM 7.0 stream model results presented in attachment B indicate a limit of 25 mg/l for CBOD₅ is adequate to protect the water quality of the stream. This limit is consistent with the existing permit and the facility has been consistently achieving below this limitation. Therefore, a limit of 25mg/l average monthly limit(AML) and 50 mg/l IMAX is recommended for this permit cycle. Mass limit calculation follows the equation presented in section 4.2.

The attached WQM 7.0 stream model result also indicate a summer limit of 8.99 mg/l for NH₃-N is necessary to protect aquatic life from toxicity effects. The recommended limit is less stringent than the existing limit and will not be written in the permit due to anti-backsliding restrictions. The existing summer limit of 4.5 mg/l for NH₃-N as AML and 7 mg/l IMAX will remain in the permit in addition to the existing winter limit of 13.5 mg/l as AML and 27 mg/l IMAX. The facility is complying with the limitation. Mass limit calculation follows the equation presented in section 4.2.

4.3.5 Dissolved Oxygen

The existing permit contains a limit of 5 mg/l for Dissolved Oxygen (DO). DEP's Technical Guidance for the Development and Specification of Effluent Limitations (362-0400-001, 10/97) suggests that either the adopted minimum stream D.O. criteria for the receiving stream or the effluent level determined through water quality modeling be used for the limit. Since the WQM 7.0 model was run using a minimum D.O. of 5.0 mg/l, this limit will be continued in the renewed permit with a daily monitoring requirement per DEP guidance.

4.3.6 Total Residual Chlorine

The results presented in attachment C utilizes the equations and calculations presented in the Department's May 1, 2003 Implementation Guidance for Total Residual Chlorine (TRC) (ID No. 391-2000-015) for developing chlorine limitations. The Guidance References Chapter 92a, Section 92a.48(b) which establishes a standard BAT limit of 0.5 mg/l unless a facility-specific BAT has been developed. The calculation was done with acute PMF of 1 taken from running DEP's Toxic Management Spreadsheet. The attached result indicates that a water quality-based limit of 0.422 mg/l as AML and 1.38 mg/l as IMAX would be needed to prevent toxicity concerns. The recommended limits are less stringent than the existing limits and will not be written in the permit due to ant-backsliding restrictions. The existing limit of 0.29 mg/l as AML and 0.97 mg/l IMAX will remain in the permit. The facility is complying with the limitation.

4.3.7 Toxics

There are no parameters of concern associated with this discharge. Therefore, no reasonable potential analysis was conducted for toxic parameters.

4.3.8 Fecal Coliform

The existing winter Fecal Coliform limit of 800 CFU/100 mL, as a geometric mean, is more stringent than the 2000 CFU/100 mL technology limit recommended in 92a.47(a)(5) and will remain in the permit due to anti-backsliding restrictions. The facility has consistently been meeting the 800 CFU/100 mL limit according to their DMRs and inspection reports. The existing summer limit is consistent with the technology limit of 200 CFU /100 mL recommended in 92a.47(a)(4)

4.3.9 Delaware River Basin Commission (DRBC) Requirements

DRBC regulations and policies are applicable to NPDES permits for all facilities within the Delaware River basin. A copy of the draft permit will be forwarded to the DRBC because the facility is designed to discharge a flow of 0.050 MGD to UNT to UNT to Irish Creek within the jurisdiction of the DRBC. However, since the actual average flow is less than 0.05MGD and the discharge is not located in "Special Protection Waters" the Department will proceed to renew this NPDES permit without waiting for any review by the DRBC. Sewage dischargers that are not in DRBC's "Special Protection Waters" and do not discharge more than 0.05MGD do not trigger DRBC project reviews and do not qualify as docket items for future DRBC hearings.

4.3.10 Influent BOD and TSS Monitoring

The existing permit has influent CBOD5 and TSS monitoring at the same frequency as is done for effluent in order to implement Chapter 94.12 and assess percent removal requirements. The influent CBOD5 and TSS monitoring requirement will remain in the permit.

4.3.11 Industrial Users

The application indicated the wastewater treatment plant receives no industrial or commercial wastewater.

4.3.12 Pretreatment Requirements

The design annual average flow of the treatment plant is 0.016 MGD and the facility receives no industrial or commercial wastewater and does not require compliance with pretreatment standards. However, the permit contains standard conditions requiring the permittee to monitor and control industrial users if applicable.

4.3.13 Nutrient Monitoring

The existing annual monitoring of Total Phosphorus and Total Nitrogen following DEP's SOP will remain in the current permit to continue to collect nutrient data for discharges to waterbodies. This discharge is located outside of the Chesapeake Bay watershed; therefore no Chesapeake Bay TMDL requirement was considered.

4.3.14 Stormwater Monitoring

No stormwater outfall is associated with this facility

4.3.15 Total Suspended Solids(TSS):

There is no water quality criterion for TSS. The existing limits of 30 mg/L based on the minimum level of effluent quality attainable by secondary treatment. will remain in the permit. The facility is meeting the limitation. Mass limit calculation follows the equation presented in section 4.2.

4.3.16 TMDL

The completed Irish Creek TMDL allocated a waste load of 4 lb/day TSS for this facility. It appears the wasteload was based on the design capacity of 0.016MGD and a concentration of 30mg/l. The facility has been complying with the proposed wasteload allocation.

5.0 Other Requirements

5.1 The permit contains the following special conditions:

1. Stormwater Prohibition. 2. Approval Contingencies, 3. Proper Waste/solids Management, 4. Restriction on receipt of hauled in waste under certain conditions. 5. Chlorine Minimization

5.2 Flow Monitoring

Monitoring of effluent flow volume required in the existing permit will be continued per 40 CFR § 122.44(i)(1)(ii).

5.3 Anti-backsliding

Not applicable to this permit

5.4 Anti-Degradation (93.4)

The effluent limits for this discharge have been developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

5.5 Class A Wild Trout Fisheries

No Class A Wild Trout Fisheries are impacted by this discharge.

5.6 303d Listed Streams

The discharge is located on a stream segment that is designated on the 303(d) list as impaired for aquatic life, and the impairment is due to siltation from Agriculture and erosion. Irish Creek TMDL for sediment was completed and public participation completed in 2012, but it appears the final TMDL was not approved by EPA. However, the wasteload allocated to this discharge in the TMDL is in the permit and the facility is in compliance with it. Nothing further is warranted at this time.

5.7 Basis for Effluent and Surface Water Monitoring

Section 308 of the CWA and federal regulation 40 CFR 122.44(i) require monitoring in permits to determine compliance with effluent limitations. Monitoring may also be required to gather effluent and surface water data to determine if additional effluent limitations are required and/or to monitor effluent impacts on receiving water quality. The permittee is responsible for conducting the monitoring and for reporting results on Discharge Monitoring Reports (DMRs).

5.8 Effluent Monitoring

Monitoring frequencies are based on the nature and effect of the pollutant, as well as a determination of the minimum sampling necessary to adequately monitor the facility's performance. Permittees have the option of taking more frequent samples than are required under the permit. These samples can be used for averaging if they are conducted using EPA-approved test methods (generally found in 40 CFR 136) and if the Method Detection Limits are less than the effluent limits. The sampling location must be after the last treatment unit and prior to discharge to the receiving water. If no discharge occurs during the reporting period, "no discharge"

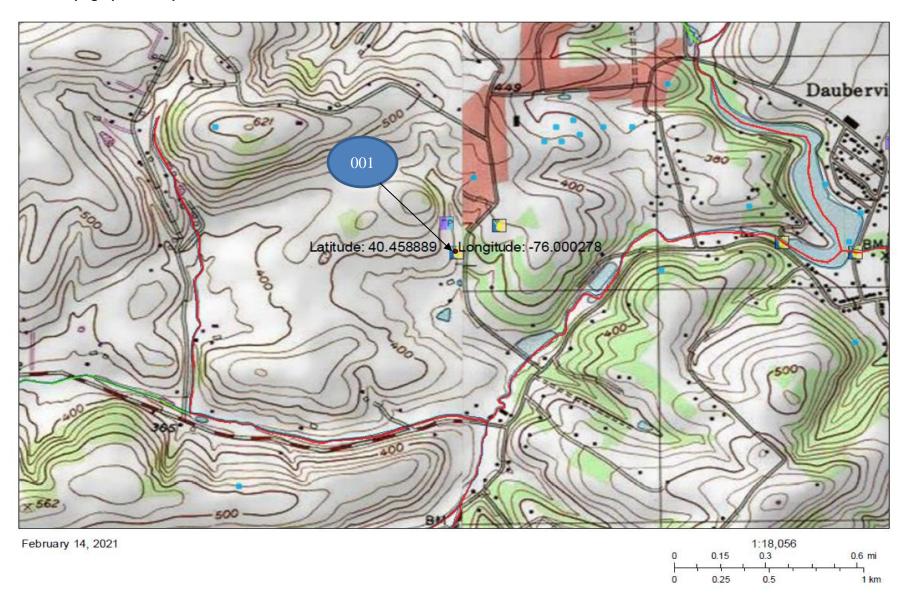
6.0 Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Monitoring Re	quirements				
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum (2)	Required
Farameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	5.0 Daily Min	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.29	XXX	0.97	1/day	Grab
CBOD5	3.3	XXX	XXX	25	XXX	50	2/month	8-Hr Composite
BOD5 Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	2/month	8-Hr Composite
TSS	4	XXX	XXX	30	XXX	60	2/month	8-Hr Composite
TSS Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	2/month	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	xxx	800 Geo Mean	XXX	10,000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1,000	2/month	Grab
Total Nitrogen	Report Annl Avg	XXX	XXX	Report Annl Avg	XXX	XXX	1/year	Grab
Ammonia Nov 1 - Apr 30	1.8	XXX	XXX	13.5	XXX	27	2/month	8-Hr Composite
Ammonia May 1 - Oct 31	0.6	XXX	XXX	4.5	XXX	9	2/month	8-Hr Composite

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)


		Monitoring Requirements						
Mass Units (lbs/day) (1) Concentrations (mg/L)					Concentrations (mg/L)			Required
Parameter Average Daily Average Ins				Instant.	Measurement	Sample		
	Monthly	Maximum	Minimum	Monthly	Maximum	Maximum	Frequency	Type
	Report			Report				
Total Phosphorus	Anni Avg	XXX	XXX	Annl Avg	XXX	XXX	1/year	Grab

Compliance Sampling Location: At Outfall 001

	7.0 Tools and References Used to Develop Permit
\square	TWOMAN WELL AND LOOP
	WQM for Windows Model (see Attachment B)
	Toxics Management Spreadsheet (see Attachment)
	TRC Model Spreadsheet (see Attachment C)
	Temperature Model Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
\boxtimes	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
\boxtimes	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
\boxtimes	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
\boxtimes	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
\boxtimes	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
\boxtimes	SOP: Establishing Effluent Limitations in Individual NPDES Permits for Sewage Dischargers.
	Other:

8. Attachments

A. Topographical Map

B. WQM Model Results

WQM 7.0 Effluent Limits

	am Code		Stream Name	•		
03B	2154		Trib 02154 to Irish	Creek		
Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	
Jordan Crossing	PA0087581	0.016	CBOD5	25		
			NH3-N	8.99	17.98	
			Dissolved Oxygen			5
	Name	Name Permit Number	Name Permit Flow Number (mgd)	Name Permit Flow Parameter Number (mgd) Jordan Crossing PA0087581 0.016 CBOD5 NH3-N	Name Permit Number Disc Flow (mgd) Parameter Effl. Limit 30-day Ave. (mg/L) Jordan Crossing PA0087581 0.016 CBOD5 25 NH3-N 8.99	Name Permit Number Disc Flow (mgd) Parameter Effl. Limit 30-day Ave. (mg/L) Effl. Limit Maximum (mg/L) Jordan Crossing PA0087581 0.016 CBOD5 25 NH3-N 8.99 17.98

Sunday, February 14, 2021 Version 1.0b Page 1 of 1

Input Data WOM 7.0

					p	ar Duc	a WQN							
	SWP Basin			Stre	am Name		RMI	Eleva (fi		Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdra (mgd	wal	Apply FC
	03B	2154	Trib 02	154 to Iris	sh Creek		1.25	50 3	315.00	0.30	0.00000		0.00	V
					St	ream Da	ta							
Design Cond.	LFY		ream Flow	Rch Trav Time	Rch Velocity	W D Ratio	Rch Width	Rch Depth	Tem	Tributary p pH	Ten	Stream ip	pН	
Colla.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C	()		
Q7-10 Q1-10 Q30-10	0.230	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	20).00 7.0	00	0.00	0.00	
					Di	scharge	Data							
		,	Name	Per	mit Numbe	Disc	Permitte Disc Flow (mgd)	Disc Flow	Res Fac		р р	sc H		
		Jordan C	Crossing	PAG	087581	0.016	0.016	0.01	60 0	.000 2	5.00	6.38		
					Pa	ra me ter	Data							
				Parameter	Name	_			tream Conc	Fate Coef				
						(n	ng/L) (n	ng/L) (mg/L)	(1/days)				
		CE	OD5				25.00	2.00	0.00	1.50				
		Dis	ssolved (Oxygen			5.00	8.24	0.00	0.00				
		NE	13-N				25.00	0.00	0.00	0.70				

Sunday, February 14, 2021 Version 1.0b Page 1 of 2

Input Data WQM 7.0 SWP PWS Stream RMI Elevation Drainage Slope Apply FC Stream Name Withdrawal Basin Code Area (ft) (sq mi) (ft/ft) (mgd) V 03B 2154 Trib 02154 to Irish Creek 0.500 284.00 1.50 0.00000 0.00 Stream Data LFY Trib Stream Rch Rch WD Rch Rch Tributary Temp Trav Temp Design Flow Flow Velocity Ratio Width Depth Time Cond. (cfsm) (cfs) (cfs) (days) (fps) (ft) (ft) (°C) (°C) Q7-10 0.230 0.00 0.00 0.000 0.000 0.0 0.00 0.00 20.00 7.00 0.00 0.00 Q1-10 0.000 0.000 0.00 0.00 Q30-10 0.00 0.00 0.000 0.000 Discharge Data Existing Permitted Design Disc Disc Disc Disc Disc Flow Reserve рΗ Temp Permit Number Flow Flow (mgd) (mgd) (mgd) (°C) 0.0000 0.0000 0.0000 0.000 25.00 7.00 Parameter Data Disc Trib Fate Stream Canc Canc Conc Coef Parameter Name (mg/L) (mg/L) (mg/L) (1/days) CBOD5 25.00 2.00 0.00 1.50 Dissolved Oxygen 5.00 8.24 0.00 0.00

25.00

0.00

0.00

0.70

NH3-N

Sunday, February 14, 2021 Version 1.0b Page 2 of 2

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name
03 B	2154	Trib 02154 to Irish Creek

NH3-N Acute Allocations Baseline Baseline Baseline WI A

RM	II Discharge Name	Criterion (mg/L)	WLA (mg/L)	Criterion (mg/L)	WLA (mg/L)	Reach	Reduction
1	250 Jordan Crossing	10.09	33.71	10.09	33.71	1	0

NH3-N Chronic Allocations

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
1.25	O Jordan Crossing	2.03	8.99	2.03	8.99	0	0

Dissolved Oxygen Allocations

			CBO			3-N	Dissolve	i Oxygen	California	Percent
	RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Mulippe	baseline	Mulipie	Reach	Reduction
_	1.25 J	ordan Crossing	25	25	8.99	8.99	5	5	0	0

Sunday, February 14, 2021 Version 1.0b

Page 1 of 1

WQM 7.0 D.O. Simulation

SWP Basin Str	eam Code			Stream Nam	0	
03B	2154		Trib	02154 to Irish	Creek	
RMI	Total Discharge) Ana	lysis Temperat	ure (°C)	Analysis pH
1.250	0.01	6		21.320		6.736
Reach Width (ft)	Reach De			Reach WDR:	ito	Reach Velocity (fps)
3.468	0.35	8		9.683		0.075
Reach CBOD5 (mg/L)	Reach Ko		R	each NH3-N (r	mg/L)	Reach Kn (1/days)
8.07	1.09			2.37		0.775
Reach DO (mg/L)	Reach Kr (Kr Equation	1	Reach DO Goal (mg/L)
7.387	26.50	13		Owens		5
Reach Travel Time (days)		Subreact	Results			
0.607	TravTime (days)		NH3-N (mg/L)	D.O. (mg/L)		
	0.061	7.52	2.26	7.97		
	0.121	7.01	2.16	8.04		
	0.182	6.53	2.08	8.04		
	0.243	6.08	1.97	8.04		
	0.304	5.67	1.88	8.04		
	0.364	5.28	1.79	8.04		
	0.425	4.92	1.71	8.04		
	0.486	4.58	1.63	8.04		
	0.546	4.27	1.55	8.04		
	0.607	3.98	1.48	8.04		

Sunday, February 14, 2021 Version 1.0b Page 1 of 1

<u> </u>	NO Modelir	ng Specifications	
Parameters WLA Method Q1-10/Q7-10 Ratio	Both EMPR 0.84	Use Inputted Q1-10 and Q30-10 Flows Use Inputted W/D Ratio Use Inputted Reach Travel Times	5
Q30-10/Q7-10 Ratio D.O. Saturation D.O. Goal	1.23 90.00% 5	Temperature Adjust Kr Use Balanced Technology	☑ ☑

WQM 7.0 Hydrodynamic Outputs

		P Basin 03B		am Code 2154				<u>stream</u> 2154 to	<u>Name</u> Irlah Cre	ek		
RMI	Stream Flow (cfs)	PWS With (cfs)	Net Stream Flow (cfs)	Disc Analysis Flow (cfs)	Reach Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Reach Trav Time (days)	Analysis Temp (°C)	Analysis pH
Q7-10	0 Flow											
1.250	0.07	0.00	0.07	.0248	0.00783	.358	3.47	9.68	80.0	0.607	21.32	6.74
Q1-10	0 Flow											
1.250	0.06	0.00	0.06	.0248	0.00783	NA	NA	NA	0.07	0.651	21.50	6.71
Q30-1	10 Flow	,										
1.250	0.08	0.00	0.08	.0248	0.00783	NA	NA	NA	0.08	0.556	21.13	6.77

Sunday, February 14, 2021 Version 1.0b Page 1 of 1

C. TRC Calculations

		A3:A9 and D3:D9	0.5	- OV D 3	
	= Q stream			= CV Daily	
	= Q discha			= CV Hourly	
	= no. samp				al Mix Factor
		Demand of Stream		_	al Mix Factor
		Demand of Discharge		_	ria Compliance Time (min
0.5	= BAT/BPJ			_	ria Compliance Time (min
- 0		of Safety (FOS)	0	=Decay Coe	
Source	Reference	AFC Calculations		Reference	CFC Calculations
TRC	1.3.2.iii	WLA afc =		1.3.2.iii	WLA cfc = 0.891
PENTOXSD TRG		LTAMULT afc =		5.1c	LTAMULT cfc = 0.581
PENTOXSD TRG	5.1b	LTA_afc=	0.343	5.1d	LTA_cfc = 0.518
P=		E/O	-11:3.C-I	I_E	
Source PENTOXSD TRG	5.1f		nt Limit Calcu AML MULT =		
PENTOXSD TRG			AML MULT = .IMIT (mg/l) =		AFC
				0.422	AFC
WLA afc	(.019/e(-k* + Xd + (/	INST MAX L AFC_tc)) + [(AFC_Yc*Q AFC_Yc*Qs*Xs/Qd)]*(1-	FOS/100))
WLA afc LTAMULT afc	(.019/e(-k* + Xd + (/	INST MAX L AFC_tc)) + [(AFC_Yc*Q AFC_Yc*Qs*Xs/Qd)]*(1- (cvh^2+1))-2.326*LN(cvh^2	s*.019/Qd* FOS/100))
	(.019/e(-k* + Xd + (/ EXP((0.5*LN wla_afc*LT/ (.011/e(-k*	INST MAX L AFC_tc)) + [(AFC_Yc*Q AFC_Yc*Qs*Xs/Qd)]*(1- (cvh^2+1))-2.326*LN(cvh^2	s*.019/Qd*(FOS/100) 2+1)^0.5) s*.011/Qd*e	e(-k*AFC_tc)	
WLA afc LTAMULT afc LTA_afc	(.019/e(-k* + Xd + (/ EXP((0.5*LN wla_afc*LTA (.011/e(-k* + Xd + (0	INST MAX L AFC_tc)) + [(AFC_Yc*Q AFC_Yc*Qs*Xs/Qd)]*(1-(cvh^2+1))-2.326*LN(cvh^2 MULT_afc CFC_tc) + [(CFC_Yc*Qs	s*.019/Qd*6 FOS/100) 2+1)^0.5) s*.011/Qd*e FOS/100)	e(-k*AFC_tc) (-k*CFC_tc))
WLA afc LTAMULT afc LTA_afc WLA_cfc	(.019/e(-k* + Xd + (/ EXP((0.5*LN wla_afc*LTA (.011/e(-k* + Xd + (0	INST MAX L AFC_tc)) + [(AFC_Yc*Q AFC_Yc*Qs*Xs/Qd)]*(1-(cvh^2+1))-2.326*LN(cvh^2 MULT_afc CFC_tc) + [(CFC_Yc*Qs CFC_Yc*Qs*Xs/Qd)]*(1-(cvd^2/no_samples+1))-2.3	s*.019/Qd*6 FOS/100) 2+1)^0.5) s*.011/Qd*e FOS/100)	e(-k*AFC_tc) (-k*CFC_tc))
WLA afc LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc LTA_cfc	(.019/e(-k* + Xd + (/ EXP((0.5*LN wla_afc*LTA (.011/e(-k* + Xd + ((EXP((0.5*LN wla_cfc*LTA	AFC_tc)) + [(AFC_Yc*Q AFC_Yc*Qs*Xs/Qd)]*(1- (cvh^2+1))-2.326*LN(cvh^2 MULT_afc CFC_tc) + [(CFC_Yc*Qs CFC_Yc*Qs*Xs/Qd)]*(1- (cvd^2/no_samples+1))-2.3	s*.019/Qd*6 FOS/100) 2+1)^0.5) s*.011/Qd*e FOS/100) 326*LN(cvd^2	e(-k*AFC_tc) (-k*CFC_tc)) 1)^0.5)
WLA afc LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc LTA_cfc AML MULT	(.019/e(-k* + Xd + (/ EXP((0.5*LN wla_afc*LTA (.011/e(-k* + Xd + (/ EXP((0.5*LN wla_cfc*LTA EXP(2.326*L	AFC_tc)) + [(AFC_Yc*Q AFC_Yc*Qs*Xs/Qd)]*(1- (cvh^2+1))-2.326*LN(cvh^2 MULT_afc CFC_tc) + [(CFC_Yc*Qs CFC_Yc*Qs*Xs/Qd)]*(1- (cvd^2/no_samples+1))-2.3 MULT_cfc N((cvd^2/no_samples+1)^4	s*.019/Qd*6 FOS/100) 2+1)^0.5) s*.011/Qd*e FOS/100) 326*LN(cvd^2	e(-k*AFC_tc) (-k*CFC_tc)) 1)^0.5)
WLA afc LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc LTA_cfc AML MULT AVG MON LIMIT	(.019/e(-k* + Xd + (/ EXP((0.5*LN wla_afc*LTA (.011/e(-k* + Xd + (/ EXP((0.5*LN wla_cfc*LTA EXP(2.326*L MIN(BAT_BI	AFC_tc)) + [(AFC_Yc*QAFC_Yc*QAFC_Yc*Qs*Xs/Qd)]*(1-(cvh^2+1))-2.326*LN(cvh^2-4), MULT_afc CFC_tc) + [(CFC_Yc*Qs*Xs/Qd)]*(1-(cvd^2/no_samples+1))-2.34MULT_cfc N((cvd^2/no_samples+1)^-2.34MIN(LTA_afc,LTA_cfc)*	s*.019/Qd*6 FOS/100) 2+1)^0.5) s*.011/Qd*e FOS/100) 326*LN(cvd^2	e(-k*AFC_tc) (-k*CFC_tc) } 2/no_samples+ vd^2/no_samp) 1)^0.5)
WLA afc LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc LTA_cfc AML MULT	(.019/e(-k* + Xd + (/ EXP((0.5*LN wla_afc*LTA (.011/e(-k* + Xd + (/ EXP((0.5*LN wla_cfc*LTA EXP(2.326*L MIN(BAT_BI	AFC_tc)) + [(AFC_Yc*Q AFC_Yc*Qs*Xs/Qd)]*(1- (cvh^2+1))-2.326*LN(cvh^2 MULT_afc CFC_tc) + [(CFC_Yc*Qs CFC_Yc*Qs*Xs/Qd)]*(1- (cvd^2/no_samples+1))-2.3 MULT_cfc N((cvd^2/no_samples+1)^4	s*.019/Qd*6 FOS/100) 2+1)^0.5) s*.011/Qd*e FOS/100) 326*LN(cvd^2	e(-k*AFC_tc) (-k*CFC_tc) } 2/no_samples+ vd^2/no_samp) 1)^0.5)
WLA afc LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc LTA_cfc AML MULT AVG MON LIMIT	(.019/e(-k* + Xd + (/ EXP((0.5*LN wla_afc*LTA (.011/e(-k* + Xd + (/ EXP((0.5*LN wla_cfc*LTA EXP(2.326*L MIN(BAT_BI	AFC_tc)) + [(AFC_Yc*QAFC_Yc*QAFC_Yc*Qs*Xs/Qd)]*(1-(cvh^2+1))-2.326*LN(cvh^2-4), MULT_afc CFC_tc) + [(CFC_Yc*Qs*Xs/Qd)]*(1-(cvd^2/no_samples+1))-2.34MULT_cfc N((cvd^2/no_samples+1)^-2.34MIN(LTA_afc,LTA_cfc)*	s*.019/Qd*6 FOS/100) 2+1)^0.5) s*.011/Qd*e FOS/100) 326*LN(cvd^2	e(-k*AFC_tc) (-k*CFC_tc) } 2/no_samples+ vd^2/no_samp) 1)^0.5)
WLA afc LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc LTA_cfc AML MULT AVG MON LIMIT	(.019/e(-k* + Xd + (/ EXP((0.5*LN wla_afc*LTA (.011/e(-k* + Xd + (/ EXP((0.5*LN wla_cfc*LTA EXP(2.326*L MIN(BAT_BI	AFC_tc)) + [(AFC_Yc*QAFC_Yc*QAFC_Yc*Qs*Xs/Qd)]*(1-(cvh^2+1))-2.326*LN(cvh^2-4), MULT_afc CFC_tc) + [(CFC_Yc*Qs*Xs/Qd)]*(1-(cvd^2/no_samples+1))-2.34MULT_cfc N((cvd^2/no_samples+1)^-2.34MIN(LTA_afc,LTA_cfc)*	s*.019/Qd*6 FOS/100) 2+1)^0.5) s*.011/Qd*e FOS/100) 326*LN(cvd^2	e(-k*AFC_tc) (-k*CFC_tc) } 2/no_samples+ vd^2/no_samp) 1)^0.5)
WLA afc LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc LTA_cfc AML MULT AVG MON LIMIT	(.019/e(-k* + Xd + (/ EXP((0.5*LN wla_afc*LTA (.011/e(-k* + Xd + (/ EXP((0.5*LN wla_cfc*LTA EXP(2.326*L MIN(BAT_BI	AFC_tc)) + [(AFC_Yc*QAFC_Yc*QAFC_Yc*Qs*Xs/Qd)]*(1-(cvh^2+1))-2.326*LN(cvh^2-4), MULT_afc CFC_tc) + [(CFC_Yc*Qs*Xs/Qd)]*(1-(cvd^2/no_samples+1))-2.34MULT_cfc N((cvd^2/no_samples+1)^-2.34MIN(LTA_afc,LTA_cfc)*	s*.019/Qd*6 FOS/100) 2+1)^0.5) s*.011/Qd*e FOS/100) 326*LN(cvd^2	e(-k*AFC_tc) (-k*CFC_tc) } 2/no_samples+ vd^2/no_samp) 1)^0.5)
WLA afc LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc LTA_cfc AML MULT AVG MON LIMIT	(.019/e(-k* + Xd + (/ EXP((0.5*LN wla_afc*LTA (.011/e(-k* + Xd + (/ EXP((0.5*LN wla_cfc*LTA EXP(2.326*L MIN(BAT_BI	AFC_tc)) + [(AFC_Yc*QAFC_Yc*QAFC_Yc*Qs*Xs/Qd)]*(1-(cvh^2+1))-2.326*LN(cvh^2-4), MULT_afc CFC_tc) + [(CFC_Yc*Qs*Xs/Qd)]*(1-(cvd^2/no_samples+1))-2.34MULT_cfc N((cvd^2/no_samples+1)^-2.34MIN(LTA_afc,LTA_cfc)*	s*.019/Qd*6 FOS/100) 2+1)^0.5) s*.011/Qd*e FOS/100) 326*LN(cvd^2	e(-k*AFC_tc) (-k*CFC_tc) } 2/no_samples+ vd^2/no_samp) 1)^0.5)
WLA afc LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc LTA_cfc AML MULT AVG MON LIMIT	(.019/e(-k* + Xd + (/ EXP((0.5*LN wla_afc*LTA (.011/e(-k* + Xd + (/ EXP((0.5*LN wla_cfc*LTA EXP(2.326*L MIN(BAT_BI	AFC_tc)) + [(AFC_Yc*QAFC_Yc*QAFC_Yc*Qs*Xs/Qd)]*(1-(cvh^2+1))-2.326*LN(cvh^2-4), MULT_afc CFC_tc) + [(CFC_Yc*Qs*Xs/Qd)]*(1-(cvd^2/no_samples+1))-2.34MULT_cfc N((cvd^2/no_samples+1)^-2.34MIN(LTA_afc,LTA_cfc)*	s*.019/Qd*6 FOS/100) 2+1)^0.5) s*.011/Qd*e FOS/100) 326*LN(cvd^2	e(-k*AFC_tc) (-k*CFC_tc) } 2/no_samples+ vd^2/no_samp) 1)^0.5)