

Application Type Renewal
Facility Type Municipal
Major / Minor Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0088510

 APS ID
 328459

 Authorization ID
 1423275

Applicant and Facility Information

Applicant Name	Tulpehocken Township Berks County	Facility Name	Tulpehocken Township Mt Aetna STP
Applicant Address	PO Box 272	Facility Address	33 East Market Street
	Rehrersburg, PA 19550-0272		Mt Aetna, PA 19544
Applicant Contact	Lester Feick, Vice Chairman	Facility Contact	Lester Feick
Applicant Phone	(717) 933-5747 tulpysewer@comcast.net	Facility Phone	(610) 587-6917
Client ID	142968	Site ID	537087 (PF ID #558100)
Ch 94 Load Status		Municipality	Tulpehocken Township
Connection Status		County	Berks
Date Application Receiv	ved January 3, 2023	EPA Waived?	YES. (No change to TMDL loads)
Date Application Accep	ted January 17, 2023	If No, Reason	
Purpose of Application	Permit renewal for treated sewage		

Summary of Review

The facility's existing permit was issued June 29, 2018 with an effective date of July 1, 2018 and an expiration date of June 30, 2023. The existing permit's limits and conditions have been administratively extended. A (paper) permit renewal application was submitted January 3, 2023.

The application represents that:

- there are no hauled-in wastes accepted and none anticipated for the next five years; and
- there is one commercial contributor, Dutch Valley Foods, which contributes 0.002 MGD on average but only domestic wastewater, no industrial wastewater

Design flow:

DEP's Standard Operating Procedure (SOP) Establishing Effluent Limitations for Individual Sewage Permits recommends basing effluent limits in sewage permits on the Annual Average Design Flow. The renewal application included an Annual Average Design Flow of 0.055 MGD, which is the same as the flow used in the existing NPDES permit for developing effluent limitations. DEP's eFacts database also shows the Annual Average Flow as 0.055 MGD for this facility.

According to DEP Sewage Planning staff, the facility's 2022 Chapter 94 Annual Municipal Wasteload Report did not project flows over their design flow of 0.055 MGD and did not project organic overloads for the next five years.

Therefore, the renewal permit effluent limits continue to be based on a design flow of 0.055 MGD.

Approve	Deny	Signatures	Date
x		<i>Bonnie Boylan</i> Bonnie Boylan / Environmental Engineering Specialist	January 11, 2024
x		<i>Maria D. Bebenek for</i> Daniel W. Martin, P.E. / Environmental Engineer Manager	February 1, 2024
x		<i>Maria D. Bebenek</i> Maria D. Bebenek, P.E. / Environmental Program Manager	February 1, 2024

A review of the facility's electronic Discharge Monitoring Report (eDMR) data from January 1, 2021 through November 30, 2023 indicates that there were no months in the reviewed period where the monthly average exceeded the design flow of 0.055 MGD. The Maximum Monthly Average flow reported in these eDMRs was 0.038 MGD. (See **attached**.)

Hauled-in Wastes: None

Sludge use and disposal description and location(s):

According to their application, sewage sludge is hauled to Lehigh County Authority WWTP and to Capital Region Water AWTF.

Combined Sewers Outfalls: Not Applicable

Unresolved Violations:

There are no unresolved violations for this facility according to DEP's eFacts Clean Water Program database.

Public Participation:

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion). Comments received will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

	Discharge, Receiving W	Vaters and Water Supply Information			
Outfall No. 001		Design Flow (MGD)0.055			
Latitude 40° 2	5' 3"	Longitude 76º 17' 28"			
Quad Name		Quad Code			
Wastewater Descrip	otion: Sewage Effluent				
	Unnamed Tributary (UNT) of L	Little			
Receiving Waters	Swatara Creek (CWF)	Stream Code 09939			
NHD Com ID	56396087	River Mile Index (RMI) 0.95			
Drainage Area	0.62 sq.mi. (Pa Stream Stats)	Yield (cfs/mi²) 0.02			
Q7-10 Flow (cfs)	0.0114	Q7-10 Basis PA Stream Stats			
Elevation (ft)	540	Slope (ft/ft)			
Watershed No.	7-D	Cold Water Fish (CWF)			
Existing Use	-	Existing Use Qualifier			
Exceptions to Use	-	Exceptions to Criteria -			
Assessment Status	Impaired for Aquatic Lif	fe (assess. #23062)			
Cause(s) of Impairn		· · ·			
Source(s) of Impair					
	Final, 7/4/2010	Little Swatara Crk Phosphorus TMDL			
	Final, 6/22/2011	Little Swatara Crk Sediment TMDL			
TMDL Status	Final, 12/29/2010	Name Chesapeake Bay TMDL, nutrients			
Background/Ambier	nt Data – Not Available	Data Source – N/A			
Nearest Downstrea	m Public Water Supply Intake	PA American – Hanover Twp			
	Swatara Creek	Flow at Intake (cfs)			
	16.4	Distance from Outfall (mi) approx. 40 miles			

Secondary Receiving Water:

09939 empties into UNT 09938 at 1.43 RMI (CWF, also impaired, same) which empties into Little Swatara Creek at 14.35 (CWF at this point but Warm Water Fish (WWF) farther downstream; not impaired at this point but impaired for pathogens farther downstream) which empties into Swatara Creek (WWF) at 38.6 RMI which empties in the Susquehanna River (WWF) at 46 RMI.

None of these waterways are shown as Class A Trout or Trout Natural Reproduction on DEP's eMapPA.

Changes Since Last Permit Issuance:

This Fact Sheet used a smaller estimated Q7-10, from PA Stream Stats online tool, and smaller LFY. Last Fact Sheet estimated the Q7-10 using gage correlation but the gage used (01573560) is located 39 miles downstream which does not yield the best estimate. (There are no upstream gages and no downstream gages located closeby.)

Other Comments:

Qs:Qd ratio = 1:7

	Trea	atment Facility Summa	ry	
Freatment Facility Na	ame: Tulpehocken Township	Mt Aetna STP		
WQM Permit No.	Issuance Date			
0604412	12/16/2004 (New)			
0604408	09/08/2004 (New)			
	Degree of			Avg Annual
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)
	Secondary With	21		
	Ammonia And			
Sewage	Phosphorus Reduction	Extended Aeration	Ultraviolet (UV)	0.055
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposa
0.066	144		Aerobic Digestion	Other WWTP

According to the WQM permit's Internal Review and Recommendations (IRR), the system is a modified NORWECO extended aeration package plant.

DEP Inspection Report:

Muffin Monster Grinder
 Equalization Tanks
 Splitter Box
 Train 1 - 4 aeration tanks and one clarifier
 Train 2 - 4 aeration tanks and one clarifier
 UV disinfection unit, 6 lamps total
 Post-UV Aerated Chamber
 Aerobic digestors

NPDES Permit Fact Sheet Tulpehocken Township Mt Aetna STP

EXISTING PERMIT LIMITS, OUTFALL 001:

			Monitoring Requirements					
Parameter	Mass Uni	ts (Ibs/day)		Concentratio	ons (mg/L)		Minimum	Required
Faiametei	Average Monthly	Daily Maximum	Instantaneous Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	ххх	XXX	xxx	xxx	1/day	Measured
pH (S.U.)	XXX	xxx	6.0	XXX	xxx	9.0	1/day	Grab
Dissolved Oxygen	XXX	xxx	5.0	XXX	XXX	xxx	1/day	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5)	11.5	XXX	XXX	25.0	XXX	50	2/month	8-Hr Composite
Biochemical Oxygen Demand (BOD5) Raw Sewage Influent	Report	Report	xxx	Report	ххх	xxx	2/month	8-Hr Composite
Total Suspended Solids	13.8	XXX	xxx	30.0	XXX	60	2/month	8-Hr Composite
Total Suspended Solids Raw Sewage Influent	Report	Report	xxx	Report	xxx	XXX	2/month	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	xxx	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	xxx	xxx	200 Geo Mean	xxx	1000	2/month	Grab
Total Nitrogen	Report	xxx	XXX	Report	xxx	xxx	2/month	8-Hr Composite
Ammonia-Nitrogen Nov 1 - Apr 30	4.5	xxx	xxx	9.9	xxx	19.8	2/month	8-Hr Composite
Ammonia-Nitrogen May 1 - Oct 31	1.5	xxx	xxx	3.3	xxx	6.6	2/month	8-Hr Composite
Total Phosphorus	0.92	xxx	xxx	2.0	XXX	4	2/month	8-Hr Composite
Ultraviolet light dosage (mjoules/cm ²)	XXX	xxx	Report	XXX	XXX	xxx	1/day	Measured

*units of mjoules/cm² are the equivalent of me/cm² for this UV system; the treatment plant's UV system displays as me/cm²

Compliance History

DMR Data for Outfall 001 (from December 1, 2022 to November 30, 2023)

Parameter	NOV-23	OCT-23	SEP-23	AUG-23	JUL-23	JUN-23	MAY-23	APR-23	MAR-23	FEB-23	JAN-23	DEC-22
Flow (MGD)												
Average Monthly	0.022	0.023	0.024	0.023	0.025	0.024	0.031	0.029	0.029	0.027	0.019	0.009
Flow (MGD)												
Daily Maximum	0.029	0.031	0.031	0.028	0.051	0.038	0.045	0.041	0.041	0.041	0.041	0.05
pH (S.U.)												
Instantaneous												
Minimum	6.52	6.48	6.6	6.7	7.11	7.12	7.14	6.97	6.79	6.87	6.85	6.71
pH (S.U.)												
Instantaneous												
Maximum	8.0	7.92	8.06	7.97	7.97	8.26	7.71	7.64	7.39	7.43	7.39	7.32
DO (mg/L)												
Instantaneous												
Minimum	7.28	6.56	6.14	7.08	5.15	7.24	5.1	6.68	7.67	7.59	5.68	7.09
CBOD5 (lbs/day)												
Average Monthly	0.8	0.7	0.6	0.4	0.5	0.9	0.9	0.9	1.1	1.0	0.6	0.2
CBOD5 (mg/L)												
Average Monthly	4.7	3.5	3.4	2.7	2.9	3.3	3.4	3.2	4.6	3.1	3.5	3.8
BOD5 (lbs/day)												
Raw Sewage Influent												
 Average												
Monthly	38	58	45	28	35	85	80	92	76	110	81	15
BOD5 (lbs/day)												
Raw Sewage Influent												
 br/> Daily Maximum	50	64	64	34	46	99	100	106	76	115	153	17
BOD5 (mg/L)												
Raw Sewage Influent												
 Average	0.17			100						o (=	100	
Monthly	247	301	223	189	210	329	318	319	325	345	402	336
TSS (lbs/day)	07				0.7	<u> </u>		4.5		4.0		0.5
Average Monthly	0.7	< 1.4	< 0.8	< 0.6	< 0.7	2.4	1.4	1.5	2.0	1.8	0.8	0.5
TSS (lbs/day)												
Raw Sewage Influent												
 Average		60	70	04	07	00	05		64	110	F 4	40
Monthly	44	62	73	21	37	88	65	92	61	116	51	13
TSS (lbs/day)												
Raw Sewage Influent	61	64	96	25	FC	110	04	104	61	100	0.1	45
 br/> Daily Maximum	61	64	86	25	56	110	94	104	61	130	94	15

NPDES Permit Fact Sheet Tulpehocken Township Mt Aetna STP

NPDES Permit No. PA0088510

TSS (mg/L)												
Average Monthly	4.6	< 7.8	< 4.0	< 5.0	< 4.0	8.8	5.4	5.2	8.1	5.7	5.2	10.7
TSS (mg/L)												
Raw Sewage Influent												
 Average	005	000	000	4.47	005	005	000	040	000	005	004	000
Monthly Fecal Coliform	285	323	369	147	205	335	263	319	260	365	284	289
(No./100 ml) Geometric Mean	237	37	11	37	27	79	200	14	46	4.0	1	8
Fecal Coliform	237	- 37	11	- 37	21	79	200	14	40	4.0	1	0
(No./100 ml)												
Instantaneous												
Maximum	300	75	32	51	27	281	400	21	56	15	2	15
Total Nitrogen												
(lbs/day)												
Average Monthly	4	4	4	3.0	3	5	6	< 5	6	7.0	3	1
Total Nitrogen (mg/L)												
Average Monthly	25.2	22.4	21.5	18.8	17.6	19.7	23.5	< 14.4	24.6	23.0	13.15	23.5
Ammonia (lbs/day)												
Average Monthly	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.03	< 0.7	< 0.03	< 0.2	< 0.03	< 0.02	< 0.005
Ammonia (mg/L)												
Average Monthly	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 2.49	< 0.1	< 0.97	< 0.1	< 0.1	< 0.1
Total Phosphorus												
(lbs/day)												
Average Monthly	0.04	0.08	0.07	0.06	0.08	0.20	0.09	0.08	0.08	0.08	0.05	0.01
Total Phosphorus												
(mg/L)		0.45			0.54	0.04			0.04		0.00	
Average Monthly	0.3	0.45	0.38	0.4	0.51	0.61	0.36	0.26	0.34	0.26	0.28	0.3
UV Dosage												
(mjoules/cm ²) Instantaneous												
Minimum	1.5	6.5	7.3	7.6	0.4	00	0.0	4.9	3.6	4.1	5.3	4.8
wiiniiniuni	1.0	0.0	1.5	1.0	0.4	00	0.0	4.9	5.0	4.1	5.5	4.0

Compliance History

From December 1, 2021 through November 30, 2023:

No permit exceedances or violations.

DEP Inspections:

8/7/2023 – No Violations noted.

- 9/28/2020 Administrative File Review (during Covid pandemic when site visits were suspended). DEP inspector discussed with operator 2019 and 2020 effluent violations that had occurred for Fecal Coliform and Ammonia. Operator said UV bulbs were replaced and UV tank was cleaned after September 2019 exceedances of limits. After April 2020 exceedances, facility began to pump the UV tank quarterly and has had no exceedances since. Composite samples are collected from the small UV tank.
- 4/10/2020 Administrative File Review (during Covid pandemic when site visits were suspended). No violations noted.
- 5/30/2018 No violations noted. One train in operation. Sludge holding tank is decanting, to EQ tank. Ultrasonic flow meter post-UV tank, and 7-day chart. Samples were collected by inspector; analysis results were within permitted limits.

Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	.055
Latitude	40º 25' 3"		Longitude	-76º 17' 28"
Wastewater De	escription:	Sewage Effluent		

Technology-Based Effluent Limitations (TBELs)

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40*	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids (TSS)	45*	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)
Total Phosphorus**	2.0**	Average Monthly		96.5(c)

*applied to sewage facilities for which monitoring frequency is at least once per week

** this TBEL is applicable when the received water is impaired for Total Phosphorus. Because the receiving water is impaired for Total Phosphorus in this case, a TBEL of 2.0 mg/l as a monthly average was imposed in previous permits and has been carried forward.

Best Professional Judgment (BPJ) Limitations

Dissolved Oxygen (DO)

A minimum effluent limit of 5.0 mg/L for DO is derived from state water quality criteria found in 25 Pa. Code §93.7(a). The existing permit included a minimum effluent limit for DO of 5.0 mg/l and no change is recommended.

Intermittent and Ephemeral Streams, Drainage Channels and Swales

Although the stream low-flow to discharge flow ratio (Qs:Qd) is less than 3:1, the recommended effluent limits based on treatment standards (TBELs) provided in DEP's 'Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers' [Technical Guidance document 386-2000-013] were not imposed in their previous NDPES permits. The original NPDES permit was issued in 2004. The document 386-2000-013 was published in 2008. DEP's Standard Operating Procedure (SOP) for Establishing Effluent Limitations for Individual Sewage Permits was developed later. This SOP recommends applying the more stringent treatment requirements in document 386-2000-013 when the Qs:Qd ratio is less than 3:1. If the facility expands in the future, stricter permit limits may be imposed. The following condition has been added to Part C of the draft renewal permit:

"The attention of the permittee is directed to the fact that effluent is discharged to a location with little or no assimilative capacity or dilution during critical periods. If the effluent creates a health hazard or nuisance, the permittee shall, upon notice from DEP, provide such additional treatment as may be required by DEP."

Water Quality-Based Effluent Limitations (WQBELs)

CBOD₅, Ammonia (NH₃-N), and Dissolved Oxygen (DO)

DEP uses a model, WQM 7.0, to determine appropriate permit requirements for CBOD₅, NH₃-N and DO. The model results will show calculated WQBELs if they are more stringent or will default to the TBELs if the TBELs are protective enough of the receiving waterway. For more explanation of the WQM 7.0 model, see Technical Reference Guide WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, document 386-2000-016. The NH3 calculations used in the model are based on the DEP's Implementation Guidance of Section 93.7 Ammonia Criteria, 391-2000-013.

The model input values and output values are **attached**. The River Mile Indices (RMI's) and elevations that were used came from DEP's eMapPA while the Drainage Areas and stream design low-flows (Q7-10) came from USGS PA Stream Stats online tool. Low Flow Yield (LFY) is calculated as stream low-flow, Q7-10, divided by Drainage Area of the stream at the outfall location. Some model input values were default values because background data was not available at this location and no site-specific data was forwarded with the application.

The model results for CBOD₅ and DO are the same as the existing permit limits: the model defaulted to the TBELs.

The NH3 criterion, an equation, changed in the 2020 amendments to the Pa Water Quality Standards, Pa Code Chapter 93. The model incorporates the new NH3 criterion. Also, the Q7-10 used as a model input was smaller than what was used for the previous permit (See page 3 of the Fact Sheet where this was explained.) The model calculated more stringent warm weather NH3 limits: 1.7 mg/l as a monthly average and 3.5 mg/l as a maximum for the months of May through October. As was done in the previous permit (and many other NPDES permits), the cool weather NH3 limits were allowed to be less stringent, recognizing that NH3 is less toxic in colder water. As was done in the previous permit, a multiplier of 3 was applied to the warm weather NH3 limits resulting in cool weather NH3 limits of 5.1 mg/l as a monthly average and 10.2 mg/l as a maximum for the months of November through April.

The facility's eDMRs from January 1, 2021 through November 30, 2023 indicate that they can meet the more stringent NH3 limits without the need for a compliance schedule (consistent with DEP's SOP New and Reissuance Sewage Individual NPDES Permit Applications). In the 35 months reviewed, there was one warm weather month when the effluent exceeded 1.7 mg/l as a monthly average, the proposed new NH3 limit for warm weather months. However the average concentration for the period of eDMR data reviewed was 0.26 mg/l and the 90th percentile of the monthly averages reported was 0.30 mg/l, well under the proposed limit of 1.7 mg/l. There were no cool weather months when the effluent exceeded 5.1 mg/l as a monthly average, the proposed cool weather NH3 limit. There were no months of the 35 reviewed when the monthly average NH3 mass load would have exceeded the proposed new mass load limits, either during warm or cool weather months. (A summary of NH3 results from their eDMRs is **attached**.)

DEP's SOP New and Reissuance Sewage Individual NPDES Permit Applications recommends as follows:

IV.G.2. For WQBELs and other TBELs in which the permittee has demonstrated its ability to comply by meeting the proposed limit at least 75% of the time considering existing performance data, no compliance schedule should be established in the draft permit.

Total Residual Chlorine (TRC)

It was confirmed with the permittee by phone, January 10, 2024, that they have not been using chlorine for any purpose and do not plan to use chlorine in the next 5 years, the term of the NPDES permit. This permit writer cautioned them that chlorine was not recommended even for intermittent cleaning purposes because DEP's TRC model calculated low WQBELs of 0.03 mg/l as a monthly average and 0.09 mg/l as a maximum. For this reason, the Part C condition found in many STPs' NPDES permits for chlorine use was not included.

Toxics

There are no industrial contributors nor were there any sample results in the application for toxic parameters.

Little Swatara Creek Total Maximum Daily Load (TMDL)

The Little Swatara Creek TMDLs were developed as a result of the creek's impairment assessment: Sediment and nutrients were identified as problems, with phosphorus the limiting nutrient. According to the (2011) TMDL: "There are no point sources addressed in these TMDL segments." (The original NPDES permit and WQM permit for the Mt. Aetna STP were issued in 2004). The TMDL does not include any point source Waste Load Allocations (WLAs) that need to be incorporated into this permit. The necessary reductions in loadings were intended to be achieved "through reductions in current sediment and phosphorus loadings from cropland, from hay/pasture, developed areas, and streambanks" using Best Management Practices (BMPs).

Because the receiving water is impaired for Total Phosphorus (TP), a TBEL of 2.0 mg/l as a monthly average was imposed in previous permits and has been carried forward.

The facility's eDMR data from January 1, 2021 through November 30, 2023 were summarized: Average monthly TP load was 0.11 lbs/day and average monthly TP concentration was 0.5 mg/l; Average monthly Total Nitrogen (TN) load was 4.0 lbs/day and average monthly TN concentration was 21.0 mg/l. Average monthly TSS load was 1.5 lbs/day and average monthly TSS concentration was 7.5 mg/l.

Chesapeake Bay Strategy/TMDL

In the Chesapeake Bay strategy to reduce nutrient loading, prior to the TMDL being adopted, PADEP categorized facilities contributing nutrients and ranked them according to their discharge flow. Phase 5 facilities are those existing sewage plants with discharge flows > 0.002 MGD and < 0.2 MGD. They must monitor for Total Phosphorus (TP) and Total Nitrogen (TN), at a minimum, but cap loads have not been imposed. However, any Phase 5 facility that undergoes an expansion would be subject to an immediate cap load [Phase 3 Watershed Implementation Plan Wastewater Supplement, July 29, 2022]. (Cap load refers to total allowed loadings, in Ibs/year, after any applicable credits and/or offsets).

Besides the regulatory standard of 2.0 mg/l for **TP** cited above and in the TBEL section of this Fact Sheet, DEP assesses the potential impact of TP on the impaired downstream Chesapeake Bay thus:

Total P @ Y = Total P x 0.99^{Y} , where Y=stream miles to the PA-MD line and Total P is the lbs/day TP loading. (This equation was documented in the EPA's Chesapeake Bay Management Report.) Total P (at outfall) = 2.0 mg/l x 0.055 MGD x 8.34 c.f., or 0.92 lb/day TP loading. Y= approximately 101 miles in this case. $0.99^{\text{Y}} = 0.366$ Total P @ Y = $0.92 \times 0.366 = 0.34 \text{ lbs/day}$

The loading to the critical part of the Susquehanna River is estimated as 0.34 lbs/day. Given that 3814 lbs/day was previously identified as the Total Phosphorus loading of all discharges in the Lower Susquehanna River Basin, 0.34 lbs/day comprises <0.01% of that total. According to the DEP's phosphorus guidance [Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, document 386-2000-021, paragraph IV.B.], a stricter TP limit than the 2.0 mg/l TBEL would be appropriate if the load percentage was > 0.25%. Therefore, more stringent phosphorus limitations will not be required to protect the Lower Susquehanna River.

For this facility, the renewal permit carries forward from the previous permit their same monitoring requirement for TN. (TN for both concentration and mass loads is the sum of Total Kjeldahl-N (TKN) plus Nitrite-Nitrate as N (NO₂+NO₃-N), where TKN and NO₂+NO₃-N are measured in the same sample.)

The facility's eDMR data from January 1, 2021 through November 30, 2023 were summarized: Average monthly TP load was 0.11 lbs/day and average monthly TP concentration was 0.5 mg/l; Average monthly TN load was 4.0 lbs/day and average monthly TN concentration was 21.0 mg/l. Average monthly TSS load was 1.5 lbs/day and average monthly TSS concentration was 7.5 mg/l.

Additional Considerations

Anti-Backsliding:

No permit limitations have been made less stringent.

Antidegradation Requirements:

All effluent limitations and monitoring requirements have been developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing uses are maintained and protected.

Flow Monitoring:

The requirement to monitor the volume of effluent will remain in the draft permit per 40 CFR § 122.44(i)(1)(ii).

Influent BOD & TSS Monitoring:

The existing influent monitoring reporting requirement for TSS and BOD5 will be maintained in the draft permit. This requirement has been consistently assigned to all municipal wastewater treatment facilities and is necessary to verify the 85% removal permit requirement as well as to ensure process control.

Mass Loading Limitations:

All effluent mass loading limits have been based on the formula: design flow x concentration limit x conversion factor of 8.34.

Monitoring Frequency and Sample Type:

Monitoring frequencies have been carried forward from the existing permit consistent with DEP's SOP New and Reissuance Sewage Individual NPDES Permit Applications, except for E.Coli. For E.Coli, the monitoring frequency of once per quarter is consistent with DEP's SOP Establishing Effluent Limitations for Individual Sewage Permits.

The sample types have been carried forward from the existing permit except that '8-hour composite' was changed to '24-hour composite' after discussions with the permittee: their sampling equipment can handle 24-hour composite sampling.

Rounding of Limits

Limits were expressed with number of decimal points recommended in DEP's Technical Guidance Document (TGD) 386-04000-001 unless the DEP software introduced since the date of the TGD required differently.

Total Dissolved Solids (TDS) Baseline

In order to implement the regulations at Chapter 95.10 relevant to imposing TDS limits if increased loads trigger this requirement in the future, a TDS Baseline should be documented. A future increase of TDS loads is measured against existing mass loads, described in Chapter 95.10(a)(1) as "maximum daily discharge loads of TDS...that were authorized by the Department prior to August 21, 2010". However, the facility's previous NPDES permits did not require TDS sampling nor does the permit application for Minor Sewage facilities of this size. There is not enough information to calculate a TDS baseline.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, BPJ, and water quality as needed. Instantaneous Maximum (IMAX) limits are generally determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

		Monitoring Re	quirements					
Parameter	Mass Unit	ts (lbs/day)		Concentrati	ons (mg/L)		Minimum	Required
Parameter	Average Monthly	Daily Maximum	Instantaneous Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	xxx	ххх	1/day	Measured
pH (S.U.)	XXX	ххх	6.0	XXX	xxx	9.0	1/day	Grab
DO	XXX	xxx	5.0	XXX	xxx	ххх	1/day	Grab
UV Light Intensity (mW/cm ²)	XXX	xxx	Report	XXX	xxx	ххх	1/day	Measured
CBOD5	11.5	xxx	XXX	25.0	xxx	50	2/month	24-Hr Composite
BOD5 Raw Sewage Influent	Report	Report	XXX	Report	xxx	ххх	2/month	24-Hr Composite
TSS	13.8	xxx	XXX	30.0	XXX	60	2/month	24-Hr Composite
TSS Raw Sewage Influent	Report	Report	XXX	Report	XXX	xxx	2/month	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	xxx	xxx	XXX	2000 Geo Mean	xxx	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	xxx	XXX	200 Geo Mean	xxx	1000	2/month	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/quarter	Grab
Ammonia Nov 1 - Apr 30	2.3	xxx	XXX	5.1	XXX	10.2	2/month	24-Hr Composite
Ammonia May 1 - Oct 31	0.8	xxx	XXX	1.7	xxx	3.5	2/month	24-Hr Composite
Total Nitrogen	Report	xxx	XXX	Report	xxx	ххх	2/month	24-Hr Composite
Total Phosphorus	0.9	xxx	XXX	2.0	xxx	4	2/month	24-Hr Composite

Compliance Sampling Location: at discharge from facility

	Tools and References Used to Develop Permit
	WQM for Windows Model (see Attachment)
	Toxics Management Spreadsheet (see Attachment)
	TRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
\square	Technical Guidance for the Development and Specification of Effluent Limitations, 386-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 386-2000-019, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 386-2000-018, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 386-2183-001, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 386-2183-002, 12/97.
	Pennsylvania CSO Policy, 386-2000-002, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 386-2000-008, 4/97.
	Determining Water Quality-Based Effluent Limits, 386-2000-004, 12/97.
	Implementation Guidance Design Conditions, 386-2000-007, 9/97.
\square	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 386-2000-016, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 386-2000-012, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 386-2000-009, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 386-2000-015, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 386-2000-022, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 386-2000-013, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 386-2000-011, 11/1994.
	Implementation Guidance for Temperature Criteria, 386-2000-001, 4/09.
	 Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 386-2000-021, 10/97. Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 386-2000-020, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 386-2000-005, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 386-2000-010, 3/1999.
\square	Design Stream Flows, 386-2000-003, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 386-2000-006, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 386-3200-001, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP New and Reissuance Sewage Individual NPDES Permit Applications, BCW-PMT-002, Version 2.0
	SOP: Establishing Effluent Limitations for Individual Sewage Permits, BCW-PMT-033, Version 1.9.
	SOP: Establishing WQBELs and Permit Conditions for Toxic Pollutants in NPDES Permits for Existing Dischargers, BCW-PMT-037, Version 1.5.
\boxtimes	Other: Phase 3 Watershed Implementation Plan Wastewater Supplement for Chesapeake Bay , revised July 29, 2022

	-	-	_	-		-			-		-
PERMIT	MONITORIN	MONITORIN	VERSION	PARAM	UNITS	LOAD_1_V	LOAD_1	LOAD_1_SBO	LOAD_2_\	LOAD_2	LOAD_2_SB
PA0088510	1/1/2021	1/31/2021	1	Flow	MGD	0.017	Monitor	Average Mo	0.028	Monitor	Daily Max
PA0088510	2/1/2021	2/28/2021	1	Flow	MGD	0.017	Monitor	Average Mo	0.029	Monitor	Daily Max
PA0088510	3/1/2021	3/31/2021	1	Flow	MGD	0.02	Monitor	Average Mo	0.035	Monitor	Daily Max
PA0088510	4/1/2021	4/30/2021	2	Flow	MGD	0.018	Monitor	Average Mo	0.029	Monitor	Daily Max
PA0088510	5/1/2021	5/31/2021	1	Flow	MGD	0.02	Monitor	Average Mo	0.035	Monitor	Daily Max
PA0088510	6/1/2021	6/30/2021	2	Flow	MGD	0.021	Monitor	Average Mo	0.036	Monitor	Daily Max
PA0088510	7/1/2021	7/31/2021	1	Flow	MGD	0.032	Monitor	Average Mo	0.078	Monitor	Daily Max
PA0088510	8/1/2021	8/31/2021	1	Flow	MGD	0.023	Monitor	Average Mo	0.04	Monitor	Daily Max
PA0088510	9/1/2021	9/30/2021	1	Flow	MGD	0.038	Monitor	Average Mo	0.179	Monitor	Daily Max
PA0088510	10/1/2021	10/31/2021	1	Flow	MGD	0.022	Monitor	Average Mo	0.035	Monitor	Daily Max
PA0088510	11/1/2021	11/30/2021	1	Flow	MGD	0.019	Monitor	Average Mo	0.032	Monitor	Daily Max
PA0088510	12/1/2021	12/31/2021	1	Flow	MGD	0.019	Monitor	Average Mo	0.029	Monitor	Daily Max
PA0088510	1/1/2022	1/31/2022	1	Flow	MGD	0.019	Monitor	Average Mo	0.029	Monitor	Daily Max
PA0088510	2/1/2022	2/28/2022	1	Flow	MGD	0.021	Monitor	Average Mo	0.042	Monitor	Daily Max
PA0088510	3/1/2022	3/31/2022	1	Flow	MGD	0.011	Monitor	Average Mo	0.022	Monitor	Daily Max
PA0088510	4/1/2022			Flow	MGD			Average Mo			Daily Max
PA0088510	5/1/2022	5/31/2022		Flow	MGD			Average Mo			Daily Max
PA0088510	6/1/2022	6/30/2022		Flow	MGD			Average Mo			Daily Max
PA0088510	7/1/2022	7/31/2022		Flow	MGD	0.017	Monitor	Average Mo			Daily Max
PA0088510	8/1/2022			Flow	MGD			Average Mo			, Daily Max
PA0088510	9/1/2022			Flow	MGD			Average Mo			Daily Max
PA0088510	10/1/2022			Flow	MGD			Average Mo			Daily Max
PA0088510	11/1/2022			Flow	MGD			Average Mo			, Daily Max
PA0088510	12/1/2022			Flow	MGD			Average Mo			Daily Max
PA0088510	1/1/2023	1/31/2023		Flow	MGD			Average Mo			Daily Max
PA0088510	2/1/2023			Flow	MGD			Average Mo			Daily Max
PA0088510	3/1/2023			Flow	MGD			Average Mo			Daily Max
PA0088510	4/1/2023			Flow	MGD			Average Mo			Daily Max
PA0088510	5/1/2023	5/31/2023		Flow	MGD			Average Mo			Daily Max
PA0088510	6/1/2023	6/30/2023		Flow	MGD			Average Mo			Daily Max
PA0088510	7/1/2023			Flow	MGD			Average Mo			Daily Max
PA0088510	8/1/2023			Flow	MGD			Average Mo			Daily Max
PA0088510	9/1/2023			Flow	MGD			Average Mo			Daily Max
PA0088510	10/1/2023			Flow	MGD			Average Mo			Daily Max
PA0088510	11/1/2023			Flow	MGD			Average Mo			Daily Max
- A0000010	11/1/2025	11/30/2023	1	TOW	WIGD	0.022		Average 100	0.029		Darry Wax
							MMA		0.040	_	
						0.058	WIWA				rentil -
									0.0506	90th pe	rcentile

StreamStats Output Rep	ort-MtAetr	na STP 001			
State/Region ID	PA				
Workspace ID	PA202401	070141048	55000		
Latitude	40.41791				
Longitude	-76.2911				
Low-Flow Statistics Para	100.0 Perc	ent Low Fl	ow Region	2	
Parameter Code	Paramete	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage /	0.62	square mi	4.93	1280
PRECIP	Mean Ann	43	inches	35	50.4
STRDEN	Stream De	0.98	miles per	0.51	3.1
ROCKDEP	Depth to F	3	feet	3.32	5.65
CARBON	Percent Ca	0	percent	0	99
Low-Flow Statistics Flow	100.0 Perc	ent Low Fl	ow Region	2	
Statistic	Value	Unit			
7 Day 2 Year Low Flow	0.0464	ft^3/s			
30 Day 2 Year Low Flow	0.0756	ft^3/s			
7 Day 10 Year Low Flow	0.0114	ft^3/s			
30 Day 10 Year Low Flow	0.0204	ft^3/s			
90 Day 10 Year Low Flow	0.0459	ft^3/s			
USGS Data Disclaimor: U			al all data		

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related USGS Software Disclaimer: This software has been approved for release by the USGS Product Names Disclaimer: Any use of trade, firm, or product names is fo

Application Version: 4.19	9.3			
StreamStats Services Ve	rsion: 1.2.2	22		
NSS Services Version: 2.2	2.1			

Low Flow Yield = 0.0114 cfs / 0.62 sq.mi. = 0.018

StreamStats Output Repo	ort-at confl w/	09938			
State/Region ID	PA				
Workspace ID	PA2024010701	454912400	0		
Latitude	40.42777				
Longitude	-76.28241				
Low-Flow Statistics Para	100.0 Percent	Low Flow F	Region 2		
Parameter Code	Parameter Na	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	1.31	square mi	4.93	1280
PRECIP	Mean Annual	43	inches	35	50.4
STRDEN	Stream Densit	1.15	miles per	0.51	3.1
ROCKDEP	Depth to Rock	3.3	feet	3.32	5.65
CARBON	Percent Carbo	0.19	percent	0	99
Low-Flow Statistics Flow	100.0 Percent	Low Flow F	Region 2		
Statistic	Value	Unit			
7 Day 2 Year Low Flow	0.109	ft^3/s			
30 Day 2 Year Low Flow	0.171	ft^3/s			
7 Day 10 Year Low Flow	0.0313	ft^3/s			
30 Day 10 Year Low Flow	0.0523	ft^3/s			
90 Day 10 Year Low Flow	0.108	ft^3/s			
USGS Data Disclaimer: Ur	less otherwise	e stated, al	l data, met	tadata and	related ma
USGS Software Disclaime					
USGS Product Names Dis	claimer: Any u	se of trade	, firm, or p	roduct nar	nes is for d
Application Version: 4.19).3				
StreamStats Services Ver	sion: 1.2.22				
NSS Services Version: 2.2	2.1				

Low Flow Yield = 0.0313 cfs / 1.31 sq. mi. = 0.024

Hydrodynamics	NH3-N Allocations	D.O. Allocations	D.O. Simulation	Effluent Lin	nitations	
Г	RMI Discharge		umber Disc Flow (mgd)		-	
Ī	0.95 MtAetnaSTP	V PA008			-	
	Parameter	Effluent Limit 30 Day Averag (mg/L)	Effluent Limit Effluen e Maximum Minir (mg/L) (mg	num		
	CBOD5 NH3-N Dissolved Oxygen	25 1.73	3.46	5		

Stream Code 9939 9939		r ream n Drainage LFY Area (sq.mi) (ofsm) 0.62 0.02	Discharge and Pa Slope PWS A With (ft/ft) (mgd)	Apply FC	Ad	dd <u>R</u> ecord
Code 9939	(ft) 0.950 545	Area (sq.mi) (cfsm)	With (ft/ft) (mgd)		Ad	ld <u>R</u> ecord
		1.31 0.02		>	- <u>D</u> ele	ete Record
17.0					_	
I	Sti	ream	Discharge and Pa	rameters		
n Condition	@ Q7-10	C Q1-10	∩ Q30-10			
ow Stream Flow I (cfs)	Rch Rch Trav Velocity Time (days) (fps)	WD Ratio Rch Width (ft)	Rch <u>Tribu</u> Depth Temp (ft) (ºC)	pH 1		рH
.00 0.00	0.000 0.0	<u> </u>	<u> </u>	7.00	0.000	0.00
	n Condition ow Stream Flow (cfs)	n Condition r Condition r Condition r Q7-10 r Q7-10	Stream Data Image: Condition Stream Image: Condition Image: Condition Image: Condition Image: Condition Image: Condition Image: Condition Image: Condition Rch Rch Rch VD Ratio Rch Velocity Time (cfs) Image: Condition Image: Condition	Stream Data I Stream Discharge and Pa In Condition Image: Condition of the stream of	Stream Data I Stream Discharge and Parameters In Condition Image: Colspan="3">C Q7-10 C Q1-10 Image: Condition Image: Colspan="3">C Q7-10 C Q1-10 Image: Condition Rch Rch WD Ratio Rch Rch Image: Colspan="3">Image: Colspan="3" Image: Colspan="3	Stream Data I Stream Discharge and Parameters In Condition Image: Colspan="4">C Q7-10 C Q1-10 Image: Condition Image: Colspan="4">C Q7-10 C Q1-10 Image: Condition Rch Rch Rch Rch Stream Image: Colspan="4">Stream Rch Rch Rch Stream Image: Colspan="4">C Q7-10 C Q1-10 C Q30-10 Image: Colspan="4">Stream Rch Image: Colspan="4">Stream Image: Colspan="4">Stream Stream Image: Colspan="4">(days) (ftps) (ft) (ft)

Data WQM 7									
		Discharge a	nd Paran						
General		Stream	n	Dis	scharge a	nd Parar	neters		
				D .					
BMI	Name	L Permit Number)ischarge Existing F Disc Flow [(mgd)	Permitted)isc Flow F	leserve Factor	Disc Temp (ªC)	Disc pH	
	aba CTD	DA0000510		0.0550	0.0000	0.000		7.00	
0.950 MtA	vetnas i P	PA0088510	0.0000	0.0550	0.0000	0.000	25.00	7.00	
		Pa	arameter C						
	P.	arameter Name	Disc Conc (mg/L)	Trib Conc (mg/L)		Fate Coef (1/day)			
	► CBOD5		25.00	2.00		1.50			
	NH3-N		25.00	0.00 8.24	0.00	0.70			
		ed Oxygen	5.00	0.24	0.00	0.00			
	Dissolve	a Uxygen	<u>5.00</u>	0.24	0.00	0.00	_		
Data WQM		a uxygen	1 5.00	0.24	0.00	0.00	_	_	
Data WQM						0.00		_	
		Discharge a	and Para	meter D)ata		meters	_	
Data WQM General			and Para	meter D			meters	_	
		Discharge a Strea	and Parai m	meter D Di)ata		meters	-	
		Discharge a Strea	and Para m Discharge Existing	meter D Di Data Permitted	D ata ischarge a	and Para	Disc	 Disc	
General	7.0	Discharge a Strea	and Para m Discharge Existing Disc Flow	meter D Di Data Permitted Disc Flow	D ata ischarge a Design Disc Flow I	and Para		— Disc pH	
		Discharge a Strea	and Para m Discharge Existing Disc Flow	meter D Di Data Permitted	D ata ischarge a	and Para	Disc		
General RMI	7.0 Name	Discharge a Strea	and Para m Discharge Existing Disc Flow r (mgd)	meter D Di Data Permitted Disc Flow (mgd)	D ata ischarge a Design Disc Flow I (mgd)	and Para Reserve Factor	Disc Temp (ªC)	pН	
General RMI	7.0	Discharge a Strea	and Para m Discharge Existing Disc Flow r (mgd) 0.0000	meter D Di Data Permitted Disc Flow (mgd)	D ata ischarge a Design Disc Flow I (mgd)	and Para	Disc Temp		C
General RMI	7.0 Name	Discharge a Strea	and Para m Discharge Existing Disc Flow r (mgd) 0.0000	meter D Di Data Permitted Disc Flow (mgd) 0.0000 Data	Design Disc Flow I (mgd)	and Para Reserve Factor 0.000	Disc Temp (ªC)	pН	
General	7.0 Name nfl w/09938	Discharge a Strea Permit Number	and Para m Discharge Disc Flow r (mgd) 0.0000 arameter I Disc Conc (mg/L)	meter D Disc Flow (mgd) 0.0000 Data Trib Conc (mg/L)	Design Disc Flow I (mgd) 0.0000	and Para Reserve Factor 0.000 Fate Coef (1/day)	Disc Temp (ªC)	pН	
General	7.0 Name nfl w/09938	Discharge a Strea Permit Number	and Para m Discharge Disc Flow r (mgd) 0.0000 arameter Disc Conc (mg/L) 2500	meter D Diata Permitted Disc Flow (mgd) 0.0000 Data Trib Conc (mg/L)	Design Disc Flow I (mgd) 0.0000 Stream Conc (mg/L)	and Para Reserve Factor 0.000 Fate Coef (1/day)	Disc Temp (ªC)	pН	
General	7.0 Name nfl w/09938 F P CB0D5 NH3-N	Discharge a Strea Permit Number	and Para m Discharge Disc Flow r (mgd) 0.0000 arameter I Disc Conc (mg/L)	Data Permitted Disc Flow (mgd) 0.0000 Data Trib Conc (mg/L) 2.00 0.000	Design Disc Flow I (mgd) 0.0000 Stream Conc (mg/L) 0.00	and Para Reserve Factor 0.000 Fate Coef (1/day) 1.50 0.70	Disc Temp (ªC)	pН	

Record: II 4 2 of 2 > > > > > > > Search

NPDES Permit Fact Sheet Tulpehocken Township Mt Aetna STP

NPDES Permit No. PA0088510

ONITORING	MONITORING	PARAMETE	UNITS	1_VALUE	1_LIMIT	1_SBC	UNITS	2_VALUE 2		2_SBC	winter		summer	
1/1/2021	1/31/2021	Ammonia-I	lbs/day	0.1	4.5	Avg.Mo.	mg/L	0.65	9.9	Avg.Mo.	0.65			
2/1/2021	2/28/2021	Ammonia-I	lbs/day	0.8	4.5	Avg.Mo.	mg/L	4.69	9.9	Avg.Mo.	4.69			
3/1/2021	3/31/2021	Ammonia-I	lbs/day	< 0.02	4.5	Avg.Mo.	mg/L	< 0.14	9.9	Avg.Mo.	0.14			
4/1/2021	4/30/2021	Ammonia-I	lbs/day	< 0.008	4.5	Avg.Mo.	mg/L	< 0.1	9.9	Avg.Mo.	0.1			
5/1/2021	5/31/2021	Ammonia-I	lbs/day	< 0.01	1.5	Avg.Mo.	mg/L	< 0.27	3.3	Avg.Mo.			0.27	
6/1/2021	6/30/2021	Ammonia-I	lbs/day	< 0.03	1.5	Avg.Mo.	mg/L	< 0.15	3.3	Avg.Mo.			0.15	
7/1/2021	7/31/2021	Ammonia-I	lbs/day	< 0.03	1.5	Avg.Mo.	mg/L	< 0.1	3.3	Avg.Mo.			0.1	
8/1/2021	8/31/2021	Ammonia-I	lbs/day	< 0.02	1.5	Avg.Mo.	mg/L	< 0.1	3.3	Avg.Mo.			0.1	
9/1/2021	9/30/2021	Ammonia-I	lbs/day	< 0.4	1.5	Avg.Mo.	mg/L	< 0.36	3.3	Avg.Mo.			0.36	
10/1/2021	10/31/2021	Ammonia-I	lbs/day	< 0.02	1.5	Avg.Mo.	mg/L	< 0.1	3.3	Avg.Mo.			0.1	
11/1/2021	11/30/2021	Ammonia-I	lbs/day	< 0.04	4.5	Avg.Mo.	mg/L	< 0.27	9.9	Avg.Mo.	0.27			
12/1/2021	12/31/2021	Ammonia-I	lbs/day	< 0.03	4.5	Avg.Mo.	mg/L	< 0.14	9.9	Avg.Mo.	0.14			
1/1/2022	1/31/2022	Ammonia-I	lbs/day	< 0.02	4.5	Avg.Mo.	mg/L	< 0.1	9.9	Avg.Mo.	0.1			
2/1/2022	2/28/2022	Ammonia-I	lbs/day	0.3	4.5	Avg.Mo.	mg/L	0.85	9.9	Avg.Mo.	0.85			
3/1/2022	3/31/2022	Ammonia-I	lbs/day	< 0.03	4.5	Avg.Mo.	mg/L	< 0.27	9.9	Avg.Mo.	0.27			
4/1/2022	4/30/2022	Ammonia-I	lbs/day	< 0.02	4.5	Avg.Mo.	mg/L	< 0.1	9.9	Avg.Mo.	0.1			
5/1/2022	5/31/2022	Ammonia-I	lbs/day	< 0.01	1.5	Avg.Mo.	mg/L	< 0.1	3.3	Avg.Mo.			0.1	
6/1/2022	6/30/2022	Ammonia-I	lbs/day	< 0.01	1.5	Avg.Mo.	mg/L	< 0.1	3.3	Avg.Mo.			0.1	
7/1/2022	7/31/2022	Ammonia-I	lbs/day	< 0.02	1.5	Avg.Mo.	mg/L	< 0.1	3.3	Avg.Mo.			0.1	
8/1/2022	8/31/2022	Ammonia-I	lbs/day	< 0.007	1.5	Avg.Mo.	mg/L	< 0.1	3.3	Avg.Mo.			0.1	
9/1/2022	9/30/2022	Ammonia-I	lbs/day	< 0.01	1.5	Avg.Mo.	mg/L	< 0.1	3.3	Avg.Mo.			0.1	
10/1/2022	10/31/2022					Avg.Mo.	mg/L	< 0.1	3.3	Avg.Mo.			0.1	
11/1/2022	11/30/2022	Ammonia-I	lbs/day	0.01		Avg.Mo.	mg/L	0.1		Avg.Mo.	0.1			
	12/31/2022			< 0.005	4.5	Avg.Mo.	mg/L	< 0.1		Avg.Mo.	0.1			
1/1/2023	1/31/2023				4.5	Avg.Mo.	mg/L	< 0.1		Avg.Mo.	0.1			
2/1/2023	2/28/2023	Ammonia-I	lbs/day	< 0.03	4.5	Avg.Mo.	mg/L	< 0.1		Avg.Mo.	0.1			
3/1/2023	3/31/2023	Ammonia-I	lbs/day	< 0.2	4.5	Avg.Mo.	mg/L	< 0.97	9.9	Avg.Mo.	0.97			
4/1/2023	4/30/2023				4.5	Avg.Mo.	mg/L	< 0.1		Avg.Mo.	0.1			
5/1/2023	5/31/2023					Avg.Mo.	mg/L	< 2.49		Avg.Mo.			2.49	
6/1/2023						Avg.Mo.	mg/L	< 0.1		Avg.Mo.			0.1	
7/1/2023	7/31/2023					Avg.Mo.	mg/L	< 0.1		Avg.Mo.			0.1	
8/1/2023	8/31/2023					Avg.Mo.	mg/L	< 0.1		Avg.Mo.			0.1	
9/1/2023	9/30/2023					Avg.Mo.	mg/L	< 0.1		Avg.Mo.			0.1	
	10/31/2023					Avg.Mo.	mg/L	< 0.1		Avg.Mo.			0.1	
	11/30/2023					Avg.Mo.	mg/L	< 0.1		Avg.Mo.	0.1			
-, -,	-,,				MAX,wir						0.52	Avg	0.26	Avg
					MAX, su							Max		Max
					, 24							90th percentil		90th percentile

TRC EVAL					
	_	in A3:A9 and D3:D9	0.5		
	= Q stream			= CV Daily	
	i = Q discha	_		= CV Hourly	
) = no. sam				ial Mix Factor
		Demand of Stream			ial Mix Factor
		Demand of Discharge			eria Compliance Time (min)
0.5	= BAT/BP				eria Compliance Time (min)
) = 😕 Facto	or of Safety (FOS)		=Decay Coe	efficient (K)
Source	Reference	AFC Calculations		Reference	CFC Calculations
TRC	1.3.2.iii	WLA afo =	0.062	1.3.2.iii	WLA efe = 0.053
PENTOXSD TRO		LTAMULT afc =	0.373	5.1c	LTAMULT of c = 0.581
PENTOXSD TRO	6 5.1b	LTA_afc=	0.023	5.1d	LTA_cfc = 0.031
Source		Efflue	nt Limit Calcula		
PENTOXSD TRO	6 5.1f		AML MULT =	1.231	
PENTOXSD TRO	6 5.1g	AVG MON	LIMIT (mg/l) =	0.028	AFC
		INST MAY	LINALT COULD -	0.000	
VLA afo LTAMULT afo	+ Xd + ("AFC_te)) + [(AFC_Ye"(AFC_Ye"Qs"Xs/Qd)]"(1- i(evh^2+1))-2.326"LN(evh^2-	-FOS/100)		c))
LTAMULT afc LTA_afc ∀LA_cfc LTAMULT_cfc	+ Xd + (EXP((0.5'LM wla_afo'LT/ (.011/e(-k' + Xd + (EXP((0.5'LM	"AFC_tc)) + [(AFC_Yc"(AFC_Yc"Qs"Xs/Qd)]"(1- M(cvh^2+1))-2.326"LN(cvh^2- MULT_afc "CFC_tc) + [(CFC_Yc"Q CFC_Yc"Qs"Xs/Qd)]"(1- M(cvd"2/no_samples+1))-2.3	Qs".019/Qd" -FOS/100) +1)°0.5) s".011/Qd" el -FOS/100)	e(-k"AFC_to (-k"CFC_to)	D
LTAMULT afc LTA_afc VLA_ofc LTAMULT_ofc LTA_ofc AML MULT AVG MON LIMIT	+ Xd + (EXP((0.5'LM wla_afo'LT/ (.011/e(-k' + Xd + () EXP((0.5'LM wla_ofo'LT/ EXP(2.326' MIN(BAT_B)	"AFC_te)) + [(AFC_Ye"(AFC_Ye"Qs"Xs/Qd)]"(1- MULT_afc "CFC_te) + [(CFC_Ye"Q CFC_Ye"Qs"Xs/Qd)]"(1- MULT_efc MULT_efc LN((cvd"2/no_samples+1))-2.3 MULT_efc LN((cvd"2/no_samples+1)"0.	Qs".019/Qd" -FOS/100) +1)°0.5) s".011/Qd" el -FOS/100) 26"LN(evd"2/r 5)-0.5"LN(evd	e(-k*AFC_to (-k*CFC_to) ho_samples+1) f*2/no_sample	1) r0.5)
LTAMULT afc LTA_afc VLA_ofc LTAMULT_ofc LTA_ofc AML MULT AVG MON LIMIT	+ Xd + (EXP((0.5'LM wla_afo'LT/ (.011/e(-k' + Xd + () EXP((0.5'LM wla_ofo'LT/ EXP(2.326' MIN(BAT_B)	"AFC_te)) + [(AFC_Ye"(AFC_Ye"Qs"Xs/Qd)]"(1- MULT_afc "CFC_te) + [(CFC_Ye"Q CFC_Ye"Qs"Xs/Qd)]"(1- MULT_ofc MULT_ofc LN((cvd"2/no_samples+1))-2.3	Qs".019/Qd" -FOS/100) +1)°0.5) s".011/Qd" el -FOS/100) 26"LN(evd"2/r 5)-0.5"LN(evd	e(-k*AFC_to (-k*CFC_to) ho_samples+1) f*2/no_sample	1) r0.5)
LTAMULT afc LTA_afc VLA_ofc LTAMULT_ofc LTA_ofc AML MULT AVG MON LIMIT	+ Xd + (EXP((0.5'LM wla_afo'LT/ (.011/e(-k' + Xd + () EXP((0.5'LM wla_ofo'LT/ EXP(2.326' MIN(BAT_B)	"AFC_te)) + [(AFC_Ye"(AFC_Ye"Qs"Xs/Qd)]"(1- MULT_afc "CFC_te) + [(CFC_Ye"Q CFC_Ye"Qs"Xs/Qd)]"(1- MULT_efc MULT_efc LN((cvd"2/no_samples+1))-2.3 MULT_efc LN((cvd"2/no_samples+1)"0.	Qs".019/Qd" -FOS/100) +1)°0.5) s".011/Qd" el -FOS/100) 26"LN(evd"2/r 5)-0.5"LN(evd	e(-k*AFC_to (-k*CFC_to) ho_samples+1) f*2/no_sample	1) r0.5)
LTAMULT afc LTA_afc VLA_ofc LTAMULT_ofc LTA_ofc AML MULT AVG MON LIMIT	+ Xd + (EXP((0.5'LM wla_afo'LT/ (.011/e(-k' + Xd + () EXP((0.5'LM wla_ofo'LT/ EXP(2.326' MIN(BAT_B)	"AFC_te)) + [(AFC_Ye"(AFC_Ye"Qs"Xs/Qd)]"(1- MULT_afc "CFC_te) + [(CFC_Ye"Q CFC_Ye"Qs"Xs/Qd)]"(1- MULT_efc MULT_efc LN((cvd"2/no_samples+1))-2.3 MULT_efc LN((cvd"2/no_samples+1)"0.	Qs".019/Qd" -FOS/100) +1)°0.5) s".011/Qd" el -FOS/100) 26"LN(evd"2/r 5)-0.5"LN(evd	e(-k*AFC_to (-k*CFC_to) ho_samples+1) f*2/no_sample	1) r0.5)
LTAMULT afc LTA_afc VLA_cfc LTAMULT_cfc LTA_cfc AML MULT	+ Xd + (EXP((0.5'LM wla_afo'LT/ (.011/e(-k' + Xd + () EXP((0.5'LM wla_ofo'LT/ EXP(2.326' MIN(BAT_B)	"AFC_te)) + [(AFC_Ye"(AFC_Ye"Qs"Xs/Qd)]"(1- MULT_afc "CFC_te) + [(CFC_Ye"Q CFC_Ye"Qs"Xs/Qd)]"(1- MULT_efc MULT_efc LN((cvd"2/no_samples+1))-2.3 MULT_efc LN((cvd"2/no_samples+1)"0.	Qs".019/Qd" -FOS/100) +1)°0.5) s".011/Qd" el -FOS/100) 26"LN(evd"2/r 5)-0.5"LN(evd	e(-k*AFC_to (-k*CFC_to) ho_samples+1) f*2/no_sample	1) r0.5)
LTAMULT afe LTA_afe VLA_ofe LTAMULT_ofe LTA_ofe AML MULT AVG MON LIMIT INST MAX LIMIT	+ Xd + (EXP((0.5'LN wla_afe'LT/ (.011/e(-k' + Xd + (EXP((0.5'LN wla_ofe'LT/ EXP(2.326'I MIN(BAT_B) 1.5''((av_n	"AFC_tc)) + [(AFC_Yc"(AFC_Yc"Qs"Xs/Qd)]"(1- I(cvh°2+1))-2.326"LN(cvh°2- MULT_afc "CFC_tc) + [(CFC_Yc"Q CFC_Yc"Qs"Xs/Qd)]"(1- I(cvd°2/no_samples+1))-2.3 MULT_cfc LN((cvd°2/no_samples+1))-2.3 MULT_cfc LN((cvd°2/no_samples+1)°0. PJ,MIN(LTA_afc,LTA_cfc)"A	Qs".019/Qd" -FOS/100) +1)°0.5) s".011/Qd"el -FOS/100) 26"LN(ovd"2/r 5)-0.5"LN(ovd ML_MULT) TAMULT_af	e(-k"AFC_to (-k"CFC_to) no_samples+1) f"2/no_sample c)	1) r0.5)
LTAMULT afc LTA_afc VLA_cfc LTAMULT_cfc LTA_cfc AML MULT AVG MON LIMIT INST MAX LIMIT INST MAX LIMIT	+ Xd + (EXP((0.5'LN wla_afe'LT/ (.011/e(-k' + Xd + () EXP((0.5'LN wla_efe'LT/ EXP(2.326'I MIN(BAT_BI 1.5''((av_n	"AFC_te)) + [(AFC_Ye"(AFC_Ye"Qs"Xs/Qd)]"(1- MULT_afc "CFC_te) + [(CFC_Ye"Q CFC_Ye"Qs"Xs/Qd)]"(1- MULT_efc MULT_efc LN((cvd"2/no_samples+1))-2.3 MULT_efc LN((cvd"2/no_samples+1)"0.	Qs".019/Qd" -FOS/100) +1)°0.5) s".011/Qd" el -FOS/100) 26"LN(evd"2/r 5)-0.5"LN(evd ML_MULT) TAMULT_af	e(-k*AFC_to (-k*CFC_to) no_samples+1) f*2/no_sample c) Qd)	<pre>) r0.5) *s+1)) </pre>