

Southcentral Regional Office CLEAN WATER PROGRAM

Application Type Renewal
Facility Type Municipal
Major / Minor Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0088609

 APS ID
 334470

 Authorization ID
 1453681

Applicant Name	Broa	d Top Township Bedford County	Facility Name	Six Mile Run STP
Applicant Address	РО В	ox 57 187 Municipal Road	Facility Address	Municipal Loop PO Box 57
	Defia	nce, PA 16633-0057		Defiance, PA 16633
Applicant Contact	Stacy	Woomer	Facility Contact	Stacy Woomer
Applicant Phone	(814)	928-5253	Facility Phone	(814) 928-5253
Client ID	3501	3	Site ID	540530
Ch 94 Load Status	Not C	verloaded	Municipality	Broad Top Township
Connection Status	No Li	mitations	County	Bedford
Date Application Rece	eived	September 1, 2023	EPA Waived?	Yes
Date Application Acce	epted	September 6, 2023	If No, Reason	

Approve	Deny	Signatures	Date
х		Nicholas Hong, P.E. / Environmental Engineer Nick Hong (via electronic signature)	November 29, 2023
х		Daniel W. Martin, P.E. / Environmental Engineer Manager Maria D. Bebenek for Daniel W. Martin	December 7, 2023
х		Maria D. Bebenek, P.E. / Environmental Program Manager Maria D. Bebenek	December 7, 2023

Summary of Review

The application submitted by the applicant requests a NPDES renewal permit for the Six Mile Run located at Municipal Loop, Defiance, PA 16633 in Bedford County, municipality of Broad Top Township. The existing permit became effective on April 1, 2019 and expires(d) on March 31, 2024. The application for renewal was received by DEP Southcentral Regional Office (SCRO) on September 1, 2023.

The purpose of this Fact Sheet is to present the basis of information used for establishing the proposed NPDES permit effluent limitations. The Fact Sheet includes a description of the facility, a description of the facility's receiving waters, a description of the facility's receiving waters attainment/non-attainment assessment status, and a description of any changes to the proposed monitoring/sampling frequency. Section 6 provides the justification for the proposed NPDES effluent limits derived from technology based effluent limits (TBEL), water quality based effluent limits (WQBEL), total maximum daily loading (TMDL), antidegradation, anti-backsliding, and/or whole effluent toxicity (WET). A brief summary of the outlined descriptions has been included in the Summary of Review section.

The subject facility is a 0.0833 MGD treatment facility. The applicant does not anticipate any proposed upgrades to the treatment facility in the next five years. The NPDES application has been processed as a Minor Sewage Facility (Level 2) due to the type of sewage and the design flow rate for the facility. The applicant disclosed the Act 14 requirement to Bedford County Board of Commissioners and Broad Top Township and the notice was received by the parties on August 25, 2023 and August 27, 2023. A planning approval letter was not necessary as the facility is neither new or expanding.

Utilizing the DEP's web-based Emap-PA information system, the receiving waters has been determined to be Raystown Branch Juniata River. The sequence of receiving streams that the Raystown Branch Juniata River discharges into are Juniata River and the Susquehanna River which eventually drains into the Chesapeake Bay. The subject site is subject to the Chesapeake Bay implementation requirements. The receiving water has protected water usage for trout stocking fish (TSF) and migratory fish (MF). No Class A Wild Trout fisheries are impacted by this discharge. The absence of high quality and/or exceptional value surface waters removes the need for an additional evaluation of anti-degradation requirements.

The Raystown Branch Juniata River is a Category 2 stream listed in the 2022 Integrated List of All Waters (formerly 303d Listed Streams). This stream is an attaining stream that supports aquatic life / fish consumption / potable water supply. The receiving waters is subject to the Six Mile Run Watershed total maximum daily load (TMDL) plan to improve water quality in the subject facility's watershed.

The existing permit and proposed permit differ as follows:

Due to the EPA triennial review, monitoring shall be required for E. coli.

Sludge use and disposal description and location(s): The facility did not report any solids disposal from January 2023 to September 2023. The wastewater is treated with lagoons.

The proposed permit will expire five (5) years from the effective date.

Based on the review in this report, it is recommended that the permit be drafted. DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Any additional information or public review of documents associated with the discharge or facility may be available at PA DEP Southcentral Regional Office (SCRO), 909 Elmerton Avenue, Harrisburg, PA 17110. To make an appointment for file review, contact the SCRO File Review Coordinator at 717.705.4700.

1.0 Applicant

1.1 General Information

This fact sheet summarizes PA Department of Environmental Protection's review for the NPDES renewal for the following subject facility.

Facility Name: Six Mile Run

NPDES Permit # PA0088609

Physical Address: Municipal Loop

Defiance, PA 16633

Mailing Address: 124 Hitchens Road / PO Box 57

Defiance, PA 16633

Contact: Stacy Woomer

Township Secretary / Treasurer

broadtop@comcast.net

Consultant: There was not a consultant utilized for this NPDES renewal.

1.2 Permit History

Permit submittal included the following information.

- NPDES Application
- Effluent Sample Data

2.0 Treatment Facility Summary

2.1.1 Site location

The physical address for the facility is Municipal Loop, Defiance, PA 16633. A topographical and an aerial photograph of the facility are depicted as Figure 1 and Figure 2.

Figure 1: Topographical map of the subject facility

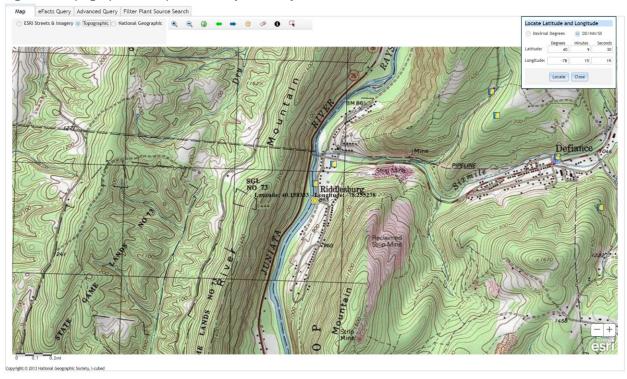
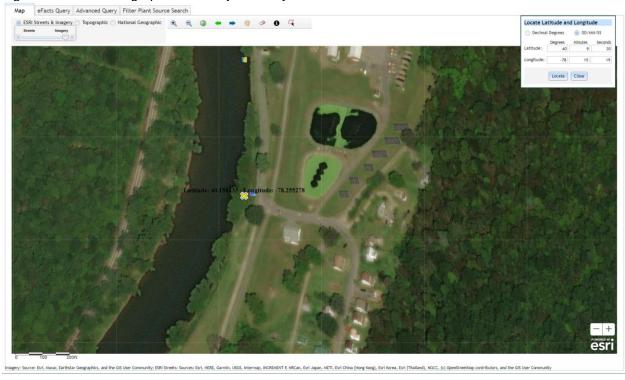



Figure 2: Aerial Photograph of the subject facility

2.1.2 Sources of Wastewater/Stormwater

The facility received hauled-in wastes within the past three years. The annual average volume received in the past three years was 5,967 gallons.

The facility anticipates accepting hauled-in wastes over the next five years.

2.2 Description of Wastewater Treatment Process

Six Mile Run WWTP provides sewage service to approximately 500 existing residential dwellings located in Broad Top Township, Coaldale Borough, and the villages of Defiance and Riddlesburg.

The subject facility is a 0.0833 MGD design flow facility. The subject facility treats wastewater using an aerated lagoon suspended growth system with filtration and UV disinfection prior to discharge to the Raystown Branch Juniata River. The facility is being evaluated for flow, dissolved oxygen, CBOD5, TSS, fecal coliform, uv measurement, nitrogen species, and phosphorus. The existing permits limits for the facility is summarized in Section 2.4.

The treatment process is summarized in the table.

	Treatment Facility Summary											
Treatment Facility Nar	me: Six Mile Run STP											
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)								
Sewage	Secondary	Aerated Lagoon	Ultraviolet	0.0833								
Hydraulic Capacity	Organic Capacity			Biosolids								
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal								
0.0833	152.84	Not Overloaded		Combination of methods								

2.3 Facility Outfall Information

The facility has the following outfall information for wastewater.

Outfall No.	001		Design Flow (MGD)	.0833
Latitude	40° 9' 35.00	"	Longitude	-78° 15' 19.00"
Wastewater De	escription:	Sewage Effluent		

The subject facility outfall is within the vicinity of another sewage/wastewater outfall. The upstream outfall is Hopewell Borough STP (PA0082341) which is about 2 miles from the subject facility.

2.3.1 Operational Considerations- Chemical Additives

Chemical additives are chemical products introduced into a waste stream that is used for cleaning, disinfecting, or maintenance and which may be detected in effluent discharged to waters of the Commonwealth. Chemicals excluded are those used for neutralization of waste streams, the production of goods, and treatment of wastewater.

The subject facility utilizes the following chemicals as part of their treatment process.

 The NPDES application did not report any chemicals utilized for the wastewater treatment process.

2.4 Existing NPDES Permits Limits

The existing NPDES permit limits are summarized in the table.

PART	PART A - EFFLUENT LIMITATIONS, MONITORING, RECORDKEEPING AND REPORTING REQUIREMENTS										
I. A.	For Outfall 001	_, Latitude 40° 9' 35.00", Longitude 78° 15' 19.00", River Mile Index 46, Stream Code 13349									
	Receiving Waters:	Sixmile Run									
	Type of Effluent:	Sewage Effluent									

^{1.} The permittee is authorized to discharge during the period from April 1, 2019 through March 31, 2024.

^{2.} Based on the anticipated wastewater characteristics and flows described in the permit application and its supporting documents and/or amendments, the following effluent limitations and monitoring requirements apply (see also Additional Requirements and Footnotes).

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum (2)	Required
Parameter	Average Monthly	Weekly Average	Daily Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	xxx	XXX	XXX	xxx	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
Dissolved Oxygen	XXX	XXX	5.0 Inst Min	XXX	XXX	XXX	1/day	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5)	17	27	XXX	25	40	50	2/month	24-Hr Composite
Biochemical Oxygen Demand (BOD5)		Report						24-Hr
Raw Sewage Influent	Report	Daily Max	XXX	Report	XXX	XXX	2/month	Composite
Total Suspended Solids Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	2/month	24-Hr Composite
Total Suspended Solids	20	31	XXX	30	45	60	2/month	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	xxx	XXX	200 Geo Mean	XXX	1000	2/month	Grab
Ultraviolet light intensity (µw/cm²)	XXX	XXX	Report	XXX	XXX	XXX	1/day	Recorded

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

		Effluent Limitations											
D	Mass Units	(lbs/day) (1)		Concentrat	Minimum (2)	Required							
Parameter	Average Monthly	Weekly Average	Daily Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type					
	Report			Report				24-Hr					
Nitrate-Nitrite as N	SEMİ AVG	XXX	XXX	SEMİ AVG	XXX	XXX	1/6 months	Composite					
	Report			Report									
Total Nitrogen	SEMI AVG	XXX	XXX	SEMİ AVG	XXX	XXX	1/6 months	Calculation					
•	Report			Report				24-Hr					
Ammonia-Nitrogen	SEMİ AVG	XXX	XXX	SEMİ AVG	XXX	XXX	1/6 months	Composite					
	Report			Report				24-Hr					
Total Kjeldahl Nitrogen	SEMİ AVG	XXX	XXX	SEMİ AVG	XXX	XXX	1/6 months	Composite					
	Report			Report				24-Hr					
Total Phosphorus	SEMI AVG	XXX	XXX	SEMÍ AVG	XXX	XXX	1/6 months	Composite					

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

at Outfall 001

3.0 Facility NPDES Compliance History

3.1 Summary of Inspections

A summary of the most recent inspections during the existing permit review cycle is as follows.

The DEP inspector noted the following during the inspection.

12/13/2018:

- High level alarm for headworks was repaired.
- The sludge level was checked in the lagoons on October 31, 2018. Sludge depth was below 18" on average.

12/24/2019:

- A new NPDES permit became effective April 1, 2019 and now requires nutrient testing twice per vear.
- The Lab Accreditation Supplemental form needed to be updated to include the nutrient testing requirements.
- The Hauled-in Waste supplemental form needed to include the pounds of BOD for the septage received.
- The fine screen unit was repaired this year. The brush was replaced and the unit was rebuilt.
- The sludge level was checked in the lagoons on October 15, 2019. Sludge depth was about 7.5 inches in the small lagoon and about 12.5 inches in the larger lagoon. Township was investigating options for removing sludge from the lagoons.

10/21/2021:

- Both influent pumps were recently repaired. Impellers and cases were replaced. The treatment plant appeared to be operating properly.
- Daily operation and repair information for the plant was currently recorded in the operator's work log. But the township will begin using a daily log for the facility.
- The township was unaware of reporting requirements for SSOs and failed to report manhole overflows that occurred during tropical storm Ida on September 1, 2021.
- The township was considering adding an additional surface aerator to the large lagoon to improve solids mixing and digestion.

1/26/2023:

 Since last inspection the sand filter was repaired and the brushes on the fine screen were replaced.

03/07/2023:

• There was nothing significant to report.

3.2 Summary of DMR Data

A review of approximately 1-year of DMR data shows that the monthly average flow data for the facility below the design capacity of the treatment system. The maximum average flow data for the DMR reviewed was 0.051 MGD. The design capacity of the treatment system is 0.0833 MGD.

The off-site laboratory used for the analysis of the parameters was Pace Analytical Services, LLC located at 2019 9th Street, Altoona, PA 16602.

DMR Data for Outfall 001 (from October 1, 2022 to September 30, 2023)

Parameter	SEP-23	AUG-23	JUL-23	JUN-23	MAY-23	APR-23	MAR-23	FEB-23	JAN-23	DEC-22	NOV-22	OCT-22
Flow (MGD)		0.03359	0.04046		0.04589		0.05138	0.03463	0.04880	0.04027	0.04640	0.03224
Average Monthly	0.04109	7	7	0.03399	6	0.04015	1	6	6	1	2	7
Flow (MGD)	0.17689	0.14067	0.15421	0.16411	0.20071	0.11753	0.14867	0.08293	0.23521		0.27059	0.20954
Daily Maximum	5	2	3	3	8	2	2	9	8	0.16113	7	1
pH (S.U.)												
Instantaneous												
Minimum	7.3	7.25	7.34	7.35	7.4	7.45	7.71	7.47	7.25	7.18	7.02	7.15
pH (S.U.)												
Instantaneous												
Maximum	7.37	7.5	7.42	7.48	7.55	7.73	7.83	7.81	7.45	7.31	7.24	7.32
DO (mg/L)												
Instantaneous												
Minimum	9.4	9.25	9.41	9.41	9.1	9.22	9.43	9.5	9.21	9.26	9.15	9.1
CBOD5 (lbs/day)												
Average Monthly	< 3	< 2	< 1	1	8	6	7	5	19	7	7	< 4.0
CBOD5 (lbs/day)												
Weekly Average	< 3	< 2	< 2	2	11	10	8	6	26	13	11	< 5.0
CBOD5 (mg/L)												
Average Monthly	< 3	< 3	< 3	3	7	8	8	11	15	17	9.2	< 3
CBOD5 (mg/L)												
Weekly Average	< 3	< 3	< 3	3	11	10	9	12	17	18	9.26	< 3
BOD5 (lbs/day)												
Raw Sewage Influent												
 br/> Average												
Monthly	57	72	84	64	218	68	145	97	24	16	61	40
BOD5 (lbs/day)												
Raw Sewage Influent												
 br/> Daily Maximum	79	109	141	128	299	110	265	119	48	32	122	43
BOD5 (mg/L)												
Raw Sewage Influent												
 br/> Average												
Monthly	124	141	213	220	198	213	234	161	128	161	154	92
TSS (lbs/day)												
Average Monthly	< 3	< 1	< 2	4	17	6	6	9	53	10	7	9
TSS (lbs/day)												
Raw Sewage Influent												
 br/> Average												
Monthly	59	61	61	29	69	31	57	49	34	8	176	26

NPDES Permit No. PA0088609

TSS (lbs/day)												
Raw Sewage Influent												
 br/> Daily Maximum	100	62	97	58	94	39	107	66	66	16	352	44
TSS (lbs/day)												
Weekly Average	4	2	3	7	25	11	6	13	81	20	10	13
TSS (mg/L)												
Average Monthly	< 4	< 2	< 3	9	16	9	6	18	37	19	10	6
TSS (mg/L)												
Raw Sewage Influent												
 br/> Average												
Monthly	102	123	156	107	63	123	75	81	213	84	265	50
TSS (mg/L)												
Weekly Average	5.6	2	4.4	9.6	26	11	7.2	26	41.3	24	12.4	7.6
Fecal Coliform												
(No./100 ml)												
Geometric Mean	< 4	< 4	< 4	< 6	< 33	< 45	235	109	271	246	< 6	< 3
Fecal Coliform												
(No./100 ml)												
Instantaneous												
Maximum	< 4	< 4	< 4	10	110	< 100	374	192	498	283.2	< 10	< 4
UV Intensity												
(µw/cm²)												
Daily Minimum	1.2	1	1.7	1.3	1.7	0.09	0.6	1.5	1.3	1.1	1.1	0.4
Nitrate-Nitrite												
(lbs/day)												
Semi-Annual												
Average				2						2		
Nitrate-Nitrite (mg/L)												
Semi-Annual												
Average				5.493						8.078		
Total Nitrogen												
(lbs/day)												
Semi-Annual												
Average				17						< 0.2		
Total Nitrogen (mg/L)												
Semi-Annual												
Average				37.63						< 0.9		
Ammonia (lbs/day)												
Semi-Annual												
Average				21						0.09		

NPDES Permit Fact Sheet Six Mile Run STP

NPDES Permit No. PA0088609

Ammonia (mg/L)					
Semi-Annual					
Average	46.44			0.329	
TKN (lbs/day)					
Semi-Annual					
Average	17			< 0.1	
TKN (mg/L)					
Semi-Annual					
Average	37.63			< 0.5	
Total Phosphorus					
(lbs/day)					
Semi-Annual					
Average	3			1	
Total Phosphorus					
(mg/L)					
Semi-Annual					
Average	5.88			4.68	

3.3 Non-Compliance

3.3.1 Non-Compliance- NPDES Effluent

A summary of the non-compliance to the permit limits for the existing permit cycle is as follows.

From the DMR data beginning in April 1, 2019 and ending November 16, 2023, the following were observed effluent non-compliances.

NPDES Permit No. PA0088609

				Sur	nmary of Nor	n-Compliar	ice with NF	DES Effluent Lim	its
	I			Ве	ginning April	1, 2019 an	d ending N	lovember 16, 202	3
NON_COMPLIA NCE_DATE	NON_COMPL_TYP E_DESC	NON_COMP L_CATEGORY _DESC	PARAMETER	SAMPLE_ VALUE	VIOLATION _CONDITIO N	PERMIT_ VALUE	UNIT_OF _MEASU RE	STAT_BASE_CO	FACILITY_COMMENTS
6/14/2019	Violation of permit condition	Effluent	Total Suspended Solids	41	>	30	mg/L	Average Monthly	High Average Monthly Total Suspended Solids is because of algae growth. Duck weed will correct this. The 6/4 test was within the limits.
6/14/2019	Violation of permit condition	Effluent	Total Suspended Solids	66	>	45	mg/L	Weekly Average	Weekly Average high due to the algae growth. Duck weed will correct this. The 6/4 testing was within the limits.
1/15/2021	Sample collection less frequent than required	Other Violations	Flow						
8/2/2021	Late DMR Submission	Other Violations							
5/13/2021	Violation of permit condition	Effluent	Total Suspended Solids	36	>	30	mg/L	Average Monthly	
6/17/2021	Violation of permit condition	Effluent	pН	5.94	<	6.0	S.U.	Instantaneous Minimum	measurement anomaly
7/13/2021	Violation of permit condition	Effluent	pН	5.77	<	6.0	S.U.	Instantaneous Minimum	new hire has been trained to use equipment properly
7/30/2021	Violation of permit condition	Effluent	Fecal Coliform	5198.8	>	1000	No./100 ml	Instantaneous Maximum	Bulbs were cleaned properly
7/30/2021	Violation of permit condition	Effluent	Total Suspended Solids	36	>	30	mg/L	Average Monthly	
7/30/2021	Violation of permit condition	Effluent	Total Suspended Solids	56	>	45	mg/L	Weekly Average	
10/21/2021		Unauthorized Discharges							Due to Ida Hurricane we received 9" of rain. I-I infiltration. We remediated the issue by rebuilding 2 pumps in the lift station.
6/20/2022	Violation of permit condition	Effluent	Carbonaceous Biochemical Oxygen Demand (CBOD5)	18	>	17	lbs/day	Average Monthly	Due to the excessive amount of rain, we experienced a very high flow and the detention time required for proper treatment was exceeded. After a couple of weeks of recovery time the system returned to normal treatment efficiency. We have been working with PRWA to correct the problem.
6/20/2022	Violation of permit condition	Effluent	Carbonaceous Biochemical Oxygen Demand (CBOD5)	30	>	27	lbs/day	Weekly Average	Due to the excessive amount of rain, we experienced a very high flow and the detention time required for proper treatment was exceeded. After a couple of weeks of recovery time the system returned to normal treatment efficiency. We have been working with PRWA to correct the problem.
6/20/2022	Violation of permit condition	Effluent	Fecal Coliform	1178	>	1000	No./100 ml	Instantaneous Maximum	Due to the excessive amount of rain, we experienced a very high flow and the detention time required for proper treatment was exceeded. After a couple of weeks of recovery time the system returned to normal treatment efficiency. We have been working with PRWA to correct the problem.
6/20/2022	Violation of permit condition	Effluent	Fecal Coliform	275	>	200	No./100 ml	Geometric Mean	Due to the excessive amount of rain, we experienced a very high flow and the detention time required for proper treatment was exceeded. After a couple of weeks of recovery time the system returned to normal treatment efficiency. We have been working with PRWA to correct the problem.

NPDES Permit No. PA0088609

6/20/2022	Violation of permit condition	Effluent	Total Suspended Solids	142	>	31	lbs/day	Weekly Average	Due to the excessive amount of rain, we experienced a very high flow and the detention time required for proper treatment was exceeded. After a couple of weeks of recovery time the system returned to normal treatment efficiency. We have been working with PRWA to correct the problem.
6/20/2022	Violation of permit condition	Effluent	Total Suspended Solids	39	>	30	mg/L	Average Monthly	Due to the excessive amount of rain, we experienced a very high flow and the detention time required for proper treatment was exceeded. After a couple of weeks of recovery time the system returned to normal treatment efficiency. We have been working with PRWA to correct the problem.
6/20/2022	Violation of permit condition	Effluent	Total Suspended Solids	60	>	45	mg/L	Weekly Average	Due to the excessive amount of rain, we experienced a very high flow and the detention time required for proper treatment was exceeded. After a couple of weeks of recovery time the system returned to normal treatment efficiency. We have been working with PRWA to correct the problem.
6/20/2022	Violation of permit condition	Effluent	Total Suspended Solids	85	>	20	lbs/day	Average Monthly	Due to the excessive amount of rain, we experienced a very high flow and the detention time required for proper treatment was exceeded. After a couple of weeks of recovery time the system returned to normal treatment efficiency. We have been working with PRWA to correct the problem.
2/20/2023	Violation of permit condition	Effluent	Carbonaceous Biochemical Oxygen Demand (CBOD5)	19	>	17	lbs/day	Average Monthly	The sand filters were cleaned and will be recirculated more frequently.
2/20/2023	Violation of permit condition	Effluent	Total Suspended Solids	37	>	30	mg/L	Average Monthly	The sand filters were cleaned and will be recirculated more frequently.
2/20/2023	Violation of permit condition	Effluent	Total Suspended Solids	53	>	20	lbs/day	Average Monthly	The sand filters were cleaned and will be recirculated more frequently.
2/20/2023	Violation of permit condition	Effluent	Total Suspended Solids	81	>	31	lbs/day	Weekly Average	The sand filters were cleaned and will be recirculated more frequently.

3.3.2 Non-Compliance- Enforcement Actions

A summary of the non-compliance enforcement actions for the current permit cycle is as follows:

Beginning in April 1, 2019 and ending November 16, 2023, the following were observed enforcement actions.

Summary of Enforcement Actions Beginning April 1, 2019 and ending November 16, 2023

ENF ID	ENF TYPE	ENF TYPE	ENF	EXECUTED	VIOLATI	ENF	ENF
<u>396781</u>	NOV	Notice of	08/24/2021	08/16/2021	92A.44	Comply/Closed	08/17/2021
		Violation					

3.4 Summary of Biosolids Disposal

A summary of the biosolids disposed of from the facility is as follows.

The facility did not report any solids disposal from January 2023 to September 2023. The wastewater is treated with lagoons. Measurements for solids depth in the lagoon are measured periodically.

3.5 Open Violations

As of November 2023, there were no open violations for the subject facility. However, Broad Top Township has open violations for the Hess MHP (PA0246433). Final issuance of the permit may be withheld until the open violation is addressed.

4.0 Receiving Waters and Water Supply Information Detail Summary

4.1 Receiving Waters

The receiving waters has been determined to be Raystown Branch Juniata River. The sequence of receiving streams that the Raystown Branch Juniata River discharges into are Juniata River and the Susquehanna River which eventually drains into the Chesapeake Bay.

4.2 Public Water Supply (PWS) Intake

The closest PWS to the subject facility is Saxton Municipal Water Authority (PWS ID #4050021) located approximately 7 miles downstream of the subject facility on the Juniata River. Based upon the distance and the flow rate of the facility, the PWS should not be impacted.

4.3 Class A Wild Trout Streams

Class A Wild Trout Streams are waters that support a population of naturally produced trout of sufficient size and abundance to support long-term and rewarding sport fishery. DEP classifies these waters as high-quality coldwater fisheries.

The information obtained from EMAP suggests that no Class A Wild Trout Fishery will be impacted by this discharge.

4.4 2022 Integrated List of All Waters (303d Listed Streams)

Section 303(d) of the Clean Water Act requires States to list all impaired surface waters not supporting uses even after appropriate and required water pollution control technologies have been applied. The 303(d) list includes the reason for impairment which may be one or more point sources (i.e. industrial or sewage discharges) or non-point sources (i.e. abandoned mine lands or agricultural runoff and the pollutant causing the impairment such as metals, pH, mercury or siltation).

States or the U.S. Environmental Protection Agency (EPA) must determine the conditions that would return the water to a condition that meets water quality standards. As a follow-up to listing, the state or EPA must develop a Total Maximum Daily Load (TMDL) for each waterbody on the list. A TMDL identifies allowable pollutant loads to a waterbody from both point and non-point sources that will prevent a violation of water quality standards. A TMDL also includes a margin of safety to ensure protection of the water.

The water quality status of Pennsylvania's waters uses a five-part categorization (lists) of waters per their attainment use status. The categories represent varying levels of attainment, ranging from Category 1, where all designated water uses are met to Category 5 where impairment by pollutants requires a TMDL for water quality protection.

The receiving waters is listed in the 2022 Pennsylvania Integrated Water Quality Monitoring and Assessment Report as a Category 2 waterbody. The surface waters is an attaining stream that supports aquatic life / fish consumption / potable water supply. The designated use has been classified as protected waters for Trout stocking fishes (TSF) and migratory fishes (MF).

4.5 Low Flow Stream Conditions

Water quality modeling estimates are based upon conservative data inputs. The data are typically estimated using either a stream gauge or through USGS web based StreamStats program. The NPDES effluent limits are based upon the combined flows from both the stream and the facility discharge.

A conservative approach to estimate the impact of the facility discharge using values which minimize the total combined volume of the stream and the facility discharge. The volumetric flow rate for the stream is based upon the seven-day, 10-year low flow (Q710) which is the lowest estimated flow rate of the stream during a 7 consecutive day period that occurs once in 10 -year time period. The facility discharge is based upon a known design capacity of the subject facility.

The closest WQN station to the subject facility is the Raystown Branch Juniata River at Saxton, PA (WQN223). This WQN station is located approximately 8 miles downstream of the subject facility.

The closest gauge station to the subject facility is the Raystown Branch Juniata River at Saxton, PA (USGS station number 1562000). This gauge station is located approximately 8 miles downstream of the subject facility.

For WQM modeling, pH and stream water temperature data from the water quality network station was used. pH was estimated to be 8.00 and the stream water temperature was estimated to be 23.3 C.

The hardness of the stream was estimated from the water quality network to be 96 mg/l CaCO3.

The low flow yield and the Q710 for the subject facility was estimated as shown below.

	Gauge Station Data						
USGS Station Number	1562000	1562000					
Station Name	Raystown Branch Juniata Riv	ver at Saxton, PA					
Q710	67.1	ft ³ /sec					
Drainage Area (DA)	756	mi ²					
Calculations							
The low flow yield of the	gauge station is:						
Low Flow Yield (LFY) = Q7	710 / DA (67.1 ft³/sec / 756 mi²)						
LFY =	0.0888	ft ³ /sec/mi ²					
The low flow at the subje	724	mi ²					
Q710 = (LFY@gauge stati							
$Q710 = (0.0888 \text{ ft}^3/\text{sec/m})$							
Q710 =	64.260	ft ³ /sec					

Outfall No. 001 Design Flow (MGD) .0833 Latitude 40° 9' 43.77" Longitude -78° 15' 12.66" Quad Name Wastewater Description: Sewage Effluent Receiving Waters Raystown Branch Juniata River Stream Code 13349 NHD Com ID 65843557 RMI 46 Drainage Area 724 Yield (cfs/mi²) 0.0888 Gr-10 Flow (cfs) 64.26 Qr-10 Basis Streamstats/streamgauge Elevation (ft) 848 Slope (ft/ft) Watershed No. 11-D Chapter 93 Class. TSF / MF Existing Use Same as Chapter 93 class Existing Use Qualifier Exceptions to Use Assessment Status Impaired Cause(s) of Impairment METALS, PH Source(s) of Impairment ACID MINE DRAINAGE TMDL Status Final Name Sixmile Run Background/Ambient Data Data Source pH (SU) 8.00 WQN223; median July to Sept Temperature (°C) 23.3 WQN223; median July to Sept Hardness (4.6 Summary of Disc	harge, F	Receiving Waters and Wa	ater Supply Information			
Latitude 40° 9′ 43.77" Longitude -78° 15′ 12.66° Quad Name Wastewater Description: Sewage Effluent Receiving Waters Raystown Branch Juniata River NHD Com ID 65843557 RMI 46 Drainage Area 724 Yield (cfs/mi²) 0.0888 Qr.10 Flow (cfs) 64.26 Qr.10 Basis Streamstats/streamgauge Elevation (ft) 848 Slope (ft/ft) Watershed No. 11-D Chapter 93 Class. TSF / MF Existing Use Same as Chapter 93 class Existing Use Qualifier Exceptions to Use Assessment Status Cause(s) of Impairment ACID MINE DRAINAGE TMDL Status Final Name Sixmile Run Background/Ambient Data Data Source pH (SU) 8.00 WQN223; median July to Sept Hardness (mg/L) 96 WQN223; Median historical Nearest Downstream Public Water Supply Intake PWS Waters Juniata River Flow at Intake (cfs)							
Quad Name Quad Code Wastewater Description: Sewage Effluent Receiving Waters Raystown Branch Juniata River Stream Code 13349 NHD Com ID 65843557 RMI 46 Drainage Area 724 Yield (cfs/mi²) 0.0888 Qr-10 Flow (cfs) 64.26 Qr-10 Basis Streamstats/streamgauge Elevation (ft) 848 Slope (ft/ft) Watershed No. 11-D Chapter 93 Class. TSF / MF Existing Use Same as Chapter 93 class Existing Use Qualifier Exceptions to Use Exceptions to Criteria Assessment Status Impaired Cause(s) of Impairment METALS, PH Source(s) of Impairment ACID MINE DRAINAGE TMDL Status Final Name Sixmile Run Background/Ambient Data Data Source pH (SU) 8.00 WQN223; median July to Sept Temperature (°C) 23.3 WQN223; median July to Sept Hardness (mg/L) 96 WQN223; Median historical Other: WQN223; Medi	Outfall No. 001			Design Flow (MGD)	.0833		
Receiving Waters Raystown Branch Juniata River Stream Code 13349 NHD Com ID 65843557 RMI 46 Drainage Area 724 Yield (cfs/mi²) 0.0888 Qr-10 Flow (cfs) 64.26 Qr-10 Basis Streamstats/streamgauge Elevation (ft) 848 Slope (ft/ft) Watershed No. 11-D Chapter 93 Class. TSF / MF Existing Use Same as Chapter 93 class Existing Use Qualifier Exceptions to Use Exceptions to Criteria Assessment Status Impaired Cause(s) of Impairment METALS, PH Source(s) of Impairment ACID MINE DRAINAGE TMDL Status Final Name Sixmile Run Background/Ambient Data Data Source pH (SU) 8.00 WQN223; median July to Sept Hardness (mg/L) 96 WQN223; median July to Sept Hardness (mg/L) 96 WQN223; Median historical Nearest Downstream Public Water Supply Intake Saxton Municipal Water Authority PWS Waters <	Latitude 40° 9)' 43.77"		Longitude	-78º 15' 12.66"		
Receiving Waters Raystown Branch Juniata River Stream Code 13349 NHD Com ID 65843557 RMI 46 Drainage Area 724 Yield (cfs/mi²) 0.0888 Qr-10 Flow (cfs) 64.26 Qr-10 Basis Streamstats/streamgauge Elevation (ft) 848 Slope (ft/ft) Watershed No. 11-D Chapter 93 Class. TSF / MF Existing Use Same as Chapter 93 class Existing Use Qualifier Exceptions to Use Exceptions to Criteria Assessment Status Impaired Cause(s) of Impairment METALS, PH Source(s) of Impairment ACID MINE DRAINAGE TMDL Status Final Name Sixmile Run Background/Ambient Data Data Source pH (SU) 8.00 WQN223; median July to Sept Hardness (mg/L) 96 WQN223; median July to Sept Hardness (mg/L) 96 WQN223; Median historical Nearest Downstream Public Water Supply Intake Saxton Municipal Water Authority PWS Waters Juniata River Flow at Intake	Quad Name			Quad Code			
NHD Com ID 65843557 RMI 46 Drainage Area 724 Yield (cfs/mi²) 0.0888 Q7-10 Flow (cfs) 64.26 Q7-10 Basis Streamstats/streamgauge Elevation (ft) 848 Slope (ft/ft) Watershed No. 11-D Chapter 93 Class. TSF / MF Existing Use Same as Chapter 93 class Existing Use Qualifier Exceptions to Use Exceptions to Criteria Assessment Status Impaired Cause(s) of Impairment METALS, PH Source(s) of Impairment ACID MINE DRAINAGE TMDL Status Final Name Sixmile Run Background/Ambient Data pH (SU) 8.00 WQN223; median July to Sept Temperature (°C) 23.3 WQN223; median July to Sept Hardness (mg/L) 96 WQN223; Median historical Other: Nearest Downstream Public Water Supply Intake Saxton Municipal Water Authority PWS Waters Juniata River Flow at Intake (cfs)	Wastewater Descri	ption:	Sewage Effluent				
NHD Com ID 65843557 RMI 46 Drainage Area 724 Yield (cfs/mi²) 0.0888 Q7-10 Flow (cfs) 64.26 Q7-10 Basis Streamstats/streamgauge Elevation (ft) 848 Slope (ft/ft) Watershed No. 11-D Chapter 93 Class. TSF / MF Existing Use Same as Chapter 93 class Existing Use Qualifier Exceptions to Use Exceptions to Criteria Assessment Status Impaired Cause(s) of Impairment METALS, PH Source(s) of Impairment ACID MINE DRAINAGE TMDL Status Final Name Sixmile Run Background/Ambient Data pH (SU) 8.00 WQN223; median July to Sept Temperature (°C) 23.3 WQN223; median July to Sept Hardness (mg/L) 96 WQN223; Median historical Other: Nearest Downstream Public Water Supply Intake Saxton Municipal Water Authority PWS Waters Juniata River Flow at Intake (cfs)							
Drainage Area 724 Yield (cfs/mi²) 0.0888 Qr-10 Flow (cfs) 64.26 Qr-10 Basis Streamstats/streamgauge Elevation (ft) 848 Slope (ft/ft) Watershed No. 11-D Chapter 93 Class. TSF / MF Existing Use Same as Chapter 93 class Existing Use Qualifier Exceptions to Use Exceptions to Criteria Assessment Status Impaired Cause(s) of Impairment ACID MINE DRAINAGE TMDL Status Final Name Sixmile Run Background/Ambient Data PH (SU) 8.00 WQN223; median July to Sept Hardness (mg/L) 96 WQN223; Median historical Nearest Downstream Public Water Supply Intake PWS Waters Juniata River Flow at Intake (cfs)	Receiving Waters	Raysto	wn Branch Juniata River	Stream Code	13349		
Comparison of the content of the c	NHD Com ID	65843	557	RMI	46		
Elevation (ft) 848 Slope (ft/ft) Watershed No. 11-D Chapter 93 Class. TSF / MF Existing Use Same as Chapter 93 class Existing Use Qualifier Exceptions to Use Exceptions to Criteria Assessment Status Impaired Cause(s) of Impairment ACID MINE DRAINAGE TMDL Status Final Name Sixmile Run Background/Ambient Data Data Source pH (SU) 8.00 WQN223; median July to Sept Temperature (°C) 23.3 WQN223; median July to Sept Hardness (mg/L) 96 WQN223; Median historical Nearest Downstream Public Water Supply Intake Saxton Municipal Water Authority PWS Waters Juniata River Flow at Intake (cfs)	Drainage Area	724		Yield (cfs/mi²)	0.0888		
Watershed No. 11-D Chapter 93 Class. TSF / MF Existing Use Same as Chapter 93 class Existing Use Qualifier Exceptions to Use Exceptions to Criteria Assessment Status Impaired Cause(s) of Impairment METALS, PH Source(s) of Impairment ACID MINE DRAINAGE TMDL Status Final Name Sixmile Run Background/Ambient Data Data Source pH (SU) 8.00 WQN223; median July to Sept Temperature (°C) 23.3 WQN223; median July to Sept Hardness (mg/L) 96 WQN223; Median historical Other: Nearest Downstream Public Water Supply Intake Saxton Municipal Water Authority PWS Waters Juniata River Flow at Intake (cfs)	Q ₇₋₁₀ Flow (cfs)	64.26		Q ₇₋₁₀ Basis	Streamstats/streamgauge		
Existing Use Same as Chapter 93 class Existing Use Qualifier Exceptions to Use Exceptions to Criteria Assessment Status Impaired Cause(s) of Impairment METALS, PH Source(s) of Impairment ACID MINE DRAINAGE TMDL Status Final Name Sixmile Run Background/Ambient Data Data Source pH (SU) 8.00 WQN223; median July to Sept Temperature (°C) 23.3 WQN223; median July to Sept Hardness (mg/L) 96 WQN223; Median historical Other: Nearest Downstream Public Water Supply Intake Saxton Municipal Water Authority PWS Waters Juniata River Flow at Intake (cfs)	Elevation (ft)	848		Slope (ft/ft)			
Exceptions to Use Exceptions to Criteria	Watershed No.	11-D		Chapter 93 Class.	TSF / MF		
Assessment Status Impaired Cause(s) of Impairment METALS, PH Source(s) of Impairment ACID MINE DRAINAGE TMDL Status Final Name Sixmile Run Background/Ambient Data Data Source pH (SU) 8.00 WQN223; median July to Sept Temperature (°C) 23.3 WQN223; median July to Sept Hardness (mg/L) 96 WQN223; Median historical Other: Nearest Downstream Public Water Supply Intake Saxton Municipal Water Authority PWS Waters Juniata River Flow at Intake (cfs)	Existing Use	Same	as Chapter 93 class	Existing Use Qualifier			
Cause(s) of Impairment Source(s) of Impairment TMDL Status Final Name Sixmile Run Background/Ambient Data pH (SU) Temperature (°C) Hardness (mg/L) Other: NETALS, PH ACID MINE DRAINAGE Final Name Sixmile Run Data Source WQN223; median July to Sept WQN223; median July to Sept WQN223; median July to Sept WQN223; Median historical Other: Nearest Downstream Public Water Supply Intake PWS Waters Juniata River Flow at Intake (cfs)	Exceptions to Use			Exceptions to Criteria			
Source(s) of Impairment ACID MINE DRAINAGE TMDL Status Final Name Sixmile Run Background/Ambient Data pH (SU) 8.00 WQN223; median July to Sept Temperature (°C) 23.3 WQN223; median July to Sept Hardness (mg/L) 96 WQN223; Median historical Other: Nearest Downstream Public Water Supply Intake PWS Waters Juniata River Flow at Intake (cfs)	Assessment Status	<u> </u>	Impaired				
TMDL Status Final Name Sixmile Run Background/Ambient Data pH (SU) Data Source pH (SU) 8.00 WQN223; median July to Sept Temperature (°C) 23.3 WQN223; median July to Sept Hardness (mg/L) 96 WQN223; Median historical Other: Other: Name Sixmile Run Sept Flow at Intake (cfs)	Cause(s) of Impairr	ment	METALS, PH				
Background/Ambient Data pH (SU) 8.00 WQN223; median July to Sept WQN223; median July to Sept WQN223; median July to Sept WQN223; median July to Sept WQN223; Median historical Other: Nearest Downstream Public Water Supply Intake PWS Waters Juniata River Data Source WQN223; median July to Sept WQN223; Median historical Saxton Municipal Water Authority Flow at Intake (cfs)	Source(s) of Impair	ment	ACID MINE DRAINAGE				
pH (SU) 8.00 WQN223; median July to Sept Temperature (°C) 23.3 WQN223; median July to Sept Hardness (mg/L) 96 WQN223; Median historical Other: Nearest Downstream Public Water Supply Intake Saxton Municipal Water Authority PWS Waters Juniata River Flow at Intake (cfs)	TMDL Status	_	Final	Name Sixmile Run			
pH (SU) Remperature (°C) Hardness (mg/L) Other: Nearest Downstream Public Water Supply Intake Saxton Municipal Water Authority							
Temperature (°C) 23.3 WQN223; median July to Sept Hardness (mg/L) 96 WQN223; Median historical Other: Nearest Downstream Public Water Supply Intake Saxton Municipal Water Authority PWS Waters Juniata River Flow at Intake (cfs)	Background/Ambie	nt Data		Data Source			
Hardness (mg/L) 96 WQN223; Median historical Other: Nearest Downstream Public Water Supply Intake Saxton Municipal Water Authority PWS Waters Juniata River Flow at Intake (cfs)	pH (SU)		8.00	WQN223; median July to Sept			
Other: Nearest Downstream Public Water Supply Intake PWS Waters Juniata River Saxton Municipal Water Authority Flow at Intake (cfs)	Temperature (°C)		23.3	WQN223; median July to Sept			
Nearest Downstream Public Water Supply Intake PWS Waters Juniata River Saxton Municipal Water Authority Flow at Intake (cfs)	Hardness (mg/L)		96				
PWS Waters Juniata River Flow at Intake (cfs)	Other:						
PWS Waters Juniata River Flow at Intake (cfs)							
				•	ority		
PWS RMI 42 Distance from Outfall (mi) 7			liver				
	PWS RMI	42	·	Distance from Outfall (mi)	7		

5.0: Overview of Presiding Water Quality Standards

5.1 General

There are at least six (6) different policies which determines the effluent performance limits for the NPDES permit. The policies are technology based effluent limits (TBEL), water quality based effluent limits (WQBEL), antidegradation, total maximum daily loading (TMDL), anti-backsliding, and whole effluent toxicity (WET) The effluent performance limitations enforced are the selected permit limits that is most protective to the designated use of the receiving waters. An overview of each of the policies that are applicable to the subject facility has been presented in Section 6.

5.2.1 Technology-Based Limitations

TBEL treatment requirements under section 301(b) of the Act represent the minimum level of control that must be imposed in a permit issued under section 402 of the Act (40 CFR 125.3). Available TBEL requirements for the state of Pennsylvania are itemized in PA Code 25, Chapter 92a.47.

The presiding sources for the basis for the effluent limitations are governed by either federal or state regulation. The reference sources for each of the parameters is itemized in the tables. The following technology-based limitations apply, subject to water quality analysis and best professional judgement (BPJ) where applicable:

Parameter	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 - 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 - 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 - 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform	_			
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

5.2.2 Mass Based Limits

For publicly owned treatment works (POTW), mass loadings are calculated based upon design flow rate of the facility and the permit limit concentration. The generalized calculation for mass loadings is shown below:

Quantity
$$\left(\frac{lb}{day}\right) = (MGD)(Concentration)(8.34)$$

5.3 Water Quality-Based Limitations

WQBEL are based on the need to attain or maintain the water quality criteria and to assure protection of designated and existing uses (PA Code 25, Chapter 92a.2). The subject facility that is typically enforced is the more stringent limit of either the TBEL or the WQBEL.

Determination of WQBEL is calculated by spreadsheet analysis or by a computer modeling program developed by DEP. DEP permit engineers utilize the following computing programs for WQBEL permit limitations: (1) MS Excel worksheet for Total Residual Chorine (TRC); (2) WQM 7.0 for Windows Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen Version 1.1 (WQM Model) and (3) Toxics using DEP Toxics Management Spreadsheet for Toxics pollutants.

The modeling point nodes utilized for this facility are summarized below.

General Data 1	(Modeling Point #1)	(Modeling Point #2)	(Modeling Point #3)	Units
Stream Code	13349	13349	13349	
River Mile Index	46	43.74	47.8	miles
Elevation	848.79	834.7	856.48	feet
Latitude	40.159722	40.185293	40.137383	
Longitude	-78.255278	-78.243983	-78.265385	
Drainage Area	724	740	723	sq miles
Low Flow Yield	0.0888	0.0888	0.0888	cfs/sq mile

5.3.1 Water Quality Modeling 7.0

The WQM Model is a computer model that is used to determine NPDES discharge effluent limitations for Carbonaceous BOD (CBOD5), Ammonia Nitrogen (NH3-N), and Dissolved Oxygen (DO) for single and multiple point source discharges scenarios. WQM Model is a complete-mix model which means that the discharge flow and the stream flow are assumed to instantly and completely mixed at the discharge node.

WQM recommends effluent limits for DO, CBOD5, and NH₃-N in mg/l for the discharge(s) in the simulation.

Four types of limits may be recommended. The limits are

- (a) a minimum concentration for DO in the discharge as 30-day average;
- (b) a 30-day average concentration for CBOD5 in the discharge;
- (c) a 30-day average concentration for the NH₃-N in the discharge;
- (d) 24-hour average concentration for NH₃-N in the discharge.

The WQM Model requires several input values for calculating output values. The source of data originates from either EMAP, the National Map, or Stream Stats. Data for stream gauge information, if any, was abstracted from USGS Low-Flow, Base-Flow, and Mean-Flow Regression Equations for Pennsylvania Streams authored by Marla H. Stuckey (Scientific Investigations Report 2006-5130).

The applicable WQM Effluent Limit Type are discussed in Section 6 under the corresponding parameter which is either DO, CBOD, or ammonia-nitrogen.

5.3.2 Toxics Modeling

The facility is not subject to toxics modeling.

5.3.3 Whole Effluent Toxicity (WET)

The facility is not subject to WET.

5.4 Total Maximum Daily Loading (TMDL)

5.4.1 TMDL

The goal of the Clean Water Act (CWA), which governs water pollution, is to ensure that all of the Nation's waters are clean and healthy enough to support aquatic life and recreation. To achieve this goal, the CWA created programs designed to regulate and reduce the amount of pollution entering United States waters. Section 303(d) of the CWA requires states to assess their waterbodies to identify those not meeting water quality standards. If a waterbody is not meeting standards, it is listed as impaired and reported to the U.S. Environmental Protection Agency. The state then develops a plan to clean up the impaired waterbody. This plan includes the development of a Total Maximum Daily Load (TMDL) for the pollutant(s) that were found to be the cause of the water quality violations. A Total Maximum Daily Load (TMDL) calculates the maximum amount of a specific pollutant that a waterbody can receive and still meet water quality standards.

A TMDL for a given pollutant and waterbody is composed of the sum of individual wasteload allocations (WLAs) for point sources and load allocations (LAs) for nonpoint sources and natural background levels. In addition, the TMDL must include an implicit or explicit margin of safety (MOS) to account for the uncertainty in the relationship between pollutant loads and the quality of the receiving waterbody. The TMDL components are illustrated using the following equation:

TMDL =
$$\Sigma WLAs + \Sigma LAs + MOS$$

Pennsylvania has committed to restoring all impaired waters by developing TMDLs and TMDL alternatives for all impaired waterbodies. The TMDL serves as the starting point or planning tool for restoring water quality.

5.4.1.1 Local TMDL

The subject facility discharges into the Raystown Branch Juniata River. Just north of the facility is a confluence of the Six Mile Run stream and the Raystown Branch Juniata River. The Six Mile Run stream is subject to TMDL limits.

High levels of metals, and in some areas depressed pH, caused these impairments. All impairments resulted from drainage from abandoned coal mines. The TMDL addresses the three primary metals associated with acid mine drainage (iron, manganese, aluminum), and pH.

The facility is a sewage facility. Impairments were caused by abandoned coal mines. The facility will not be subject to monitoring/effluent limits for iron, manganese, aluminum, and pH.

5.4.1.2 Chesapeake Bay TMDL Requirement

The Chesapeake Bay Watershed is a large ecosystem that encompasses approximately 64,000 square miles in Maryland, Delaware, Virginia, West Virginia, Pennsylvania, New York and the District of Columbia. An ecosystem is composed of interrelated parts that interact with each other to form a whole. All of the plants and animals in an ecosystem depend on each other in some way. Every living thing needs a healthy ecosystem to survive. Human activities affect the Chesapeake Bay ecosystem by adding pollution, using resources and changing the character of the land.

Most of the Chesapeake Bay and many of its tidal tributaries have been listed as impaired under Section 303(d) of the federal Water Pollution Control Act ("Clean Water Act"), 33 U.S.C. § 1313(d). While the Chesapeake Bay is outside the boundaries of Pennsylvania, more than half of the State lies within the watershed. Two major rivers in Pennsylvania are part of the Chesapeake Bay Watershed. They are (a) the Susquehanna River and (b) the Potomac River. These two rivers total 40 percent of the entire Chesapeake Bay watershed.

The overall management approach needed for reducing nitrogen, phosphorus and sediment are provided in the Bay TMDL document and the Phase I, II, and III WIPs which is described in the Bay TMDL document and Executive Order 13508.

The Bay TMDL is a comprehensive pollution reduction effort in the Chesapeake Bay watershed identifying the necessary pollution reductions of nitrogen, phosphorus and sediment across the seven Bay watershed jurisdictions of Delaware, Maryland, New York, Pennsylvania, Virginia, West Virginia and the District of Columbia to meet applicable water quality standards in the Bay and its tidal waters.

The Watershed Implementation Plans (WIPs) provides objectives for how the jurisdictions in partnership with federal and local governments will achieve the Bay TMDL's nutrient and sediment allocations.

Phase 3 WIP provides an update on Chesapeake Bay TMDL implementation activities for point sources and DEP's current implementation strategy for wastewater. The latest revision of the supplement was September 13, 2021.

The Chesapeake Bay TMDL (Appendix Q) categorizes point sources into four sectors:

- Sector A- significant sewage dischargers;
- Sector B- significant industrial waste (IW) dischargers;
- Sector C- non-significant dischargers (both sewage and IW facilities); and
- Sector D- combined sewer overflows (CSOs).

All sectors contain a listing of individual facilities with NPDES permits that were believed to be discharging at the time the TMDL was published (2010). All sectors with the exception of the non-significant dischargers have individual wasteload allocations (WLAs) for TN and TP assigned to specific facilities. Non-significant dischargers have a bulk or aggregate allocation for TN and TP based on the facilities in that sector that were believed to be discharging at that time and their estimated nutrient loads.

Cap Loads will be established in permits as Net Annual TN and TP loads (lbs/yr) that apply during the period of October 1 – September 30. For facilities that have received Cap Loads in any other form, the Cap Loads will be modified accordingly when the permits are renewed.

Offsets have been incorporated into Cap Loads in several permits issued to date. From this point forward, permits will be issued with the WLAs as Cap Loads and will identify Offsets separately to facilitate nutrient trading activities and compliance with the TMDL.

Based upon the supplement the subject facility has been categorized as a Sector C discharger. The supplement defines Sector C as a non-significant dischargers include sewage facilities (Phase 4 facilities: ≥ 0.2 MGD and < 0.4 MGD and Phase 5 facilities: > 0.002 MGD and < 0.2 MGD), small flow/single residence sewage treatment facilities (≤ 0.002 MGD), and non-significant IW facilities, all of which may be covered by statewide General Permits or may have individual NPDES permits.

At this time, there are approximately 850 Phase 4 and 5 sewage facilities, approximately 715 small flow sewage treatment facilities covered by a statewide General Permit, and approximately 300 non-significant IW facilities.

For Phase 5 sewage facilities with individual permits (average annual design flow on August 29, 2005 > 0.002 MGD and < 0.2 MGD), DEP will issue individual permits with monitoring and reporting for TN and TP throughout the permit term at a frequency no less than annually, unless 1) the facility has already conducted at least two years of nutrient monitoring and 2) a summary of the monitoring results are included in the next permit's fact sheet. If, however, Phase 5 facilities choose to expand, the renewed or amended permits will contain Cap Loads based on the lesser of a) existing TN/TP concentrations at current design average annual flow or b) 7,306 lbs/yr TN and 974 lbs/yr TP.

If no data are available to determine existing concentrations for expanding Phase 4 or 5 facilities, default concentrations of 25 mg/l TN and 4 mg/l TP may be used (these are the average estimated concentrations of all non-significant sewage facilities).

DEP will not issue permits to existing Phase 4 and 5 facilities containing Cap Loads unless it is done on a broad scale or unless the facilities are expanding.

For new Phase 4 and 5 sewage discharges, in general DEP will issue new permits containing Cap Loads of "0" and new facilities will be expected to purchase credits and/or apply offsets to achieve compliance, with the exception of small flow and single residence facilities.

This facility is subject to Sector C monitoring requirements. Monitoring shall be required at least 2x/yr for nitrogen species and phosphorus.

5.5 Anti-Degradation Requirement

Chapter 93.4a of the PA regulations requires that surface water of the Commonwealth of Pennsylvania may not be degraded below levels that protect the existing uses. The regulations specifically state that *Existing instream water uses and the level of water quality necessary to protect the existing uses shall be maintained and protected.* Antidegradation requirements are implemented through DEP's guidance manual entitled Water Quality Antidegradation Implementation Guidance (Document #391-0300-02).

The policy requires DEP to protect the existing uses of all surface waters and the existing quality of High Quality (HQ) and Exceptional Value (EV) Waters. Existing uses are protected when DEP makes a final decision on any permit or approval for an activity that may affect a protected use. Existing uses are protected based upon DEP's evaluation of the best available information (which satisfies DEP protocols and Quality Assurance/Quality Control (QA/QC) procedures) that indicates the protected use of the waterbody.

For a new, additional, or increased point source discharge to an HQ or EV water, the person proposing the discharge is required to utilize a nondischarge alternative that is cost-effective and environmentally sound when compared with the cost of the proposed discharge. If a nondischarge alternative is not cost-effective and environmentally sound, the person must use the best available combination of treatment, pollution prevention, and wastewater reuse technologies and assure that any discharge is nondegrading. In the case of HQ waters, DEP may find that after satisfaction of intergovernmental coordination and public participation requirements lower water quality is necessary to accommodate important economic or social development in the area in which the waters are located. In addition, DEP will assure that cost-effective and reasonable best management practices for nonpoint source control in HQ and EV waters are achieved.

The subject facility's discharge will be to a non-special protection waters and the permit conditions are imposed to protect existing instream water quality and uses. Neither HQ waters or EV waters is impacted by this discharge.

5.6 Anti-Backsliding

Anti-backsliding is a federal regulation which prohibits a permit from being renewed, reissued, or modified containing effluent limitations which are less stringent than the comparable effluent limitations in the previous permit (40 CFR 122.I.1 and 40 CFR 122.I.2). A review of the existing permit limitations with the proposed permit limitations confirm that the facility is consistent with anti-backsliding requirements. The facility has proposed effluent limitations that are as stringent as the existing permit.

6.0 NPDES Parameter Details

The basis for the proposed sampling and their monitoring frequency that will appear in the permit for each individual parameter are itemized in this Section. The final limits are the more stringent of technology based effluent treatment (TBEL) requirements, water quality based (WQBEL) limits, TMDL, antidegradation, anti-degradation, or WET.

The reader will find in this section:

- a) a justification of recommended permit monitoring requirements and limitations for each parameter in the proposed NPDES permit;
- b) a summary of changes from the existing NPDES permit to the proposed permit; and
- c) a summary of the proposed NPDES effluent limits.

6.1 Recommended Monitoring Requirements and Effluent Limitations

A summary of the recommended monitoring requirements and effluent limitations are itemized in the tables. The tables are categorized by (a) Conventional Pollutants and Disinfection and (b) Nitrogen Species and Phosphorus.

6.1.1 Conventional Pollutants and Disinfection

	Summary of Proposed NPDES Parameter Details for Conventional Pollutants and Disinfection Six Mile Run; PA0088609						
Parameter	Permit Limitation Required by ¹ :		Recommendation				
		Monitoring: Effluent Limit:	The monitoring frequency shall be daily as a grab sample (Table 6-3). Effluent limits may range from pH = 6.0 to 9.0				
pH (S.U.)	TBEL	Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by Chapter 95.2(1).				
		Monitoring:	The monitoring frequency shall be daily as a grab sample (Table 6-3).				
Dissolved	BPJ	Effluent Limit:	Effluent limits shall be greater than 5.0 mg/l.				
Oxygen	DFJ	Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by best professional judgement.				
		Monitoring:	The monitoring frequency shall be 2x/month as a 24-hr composite sample (Table 6-3).				
		Effluent Limit:	Effluent limits shall not exceed 25 mg/l as an average monthly.				
CBOD	TBEL	Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by Chapter 92a.47(a)(1). WQM modeling indicates that the TBEL is more stringent than the WQBEL. Thus, the permit limit is confined to TBEL.				
		Monitoring:	The monitoring frequency shall be 2x/month as a 24-hr composite sample (Table 6-3).				
	TBEL	Effluent Limit:	Effluent limits shall not exceed 30 mg/l as an average monthly.				
TSS		Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by Chapter 92a.47(a)(1). While there is no WQM modeling for this parameter, the permit limit for TSS is generally assigned similar effluent limits as CBOD or BOD.				
		Monitoring:	The monitoring frequency is 1/day. The facility will be required to recording the UV intensity.				
107		Effluent Limit:	No effluent requirements.				
UV disinfection	SOP	Rationale:	Consistent with the SOP- Establishing Effluent Limitations for Individual Sewage Permits (Revised January 10, 2019), the facility will be required to have routine monitoring for UV transmittance, UV dosage, or UV intensity.				
		Monitoring:	The monitoring frequency shall be 2x/month as a grab sample (Table 6-3).				
Fecal Coliform	TBEL	Effluent Limit:	Summer effluent limits shall not exceed 200 No./100 mL as a geometric mean. Winter effluent limits shall not exceed 2000 No./100 mL as a geometric mean.				
Comonii		Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by Chapter 92a.47(a)(4) and 92a.47(a)(5).				
		Monitoring:	The monitoring frequency shall be 1x/quarter as a grab sample (SOP).				
	SOP; Chapter	Effluent Limit:	No effluent requirements.				
E. Coli	92a.61	Rationale:	Consistent with the SOP- Establishing Effluent Limitations for Individual Sewage Permits (Revised March 22, 2019) and under the authority of Chapter 92a.61, the facility will be required to monitor for E.Coli.				
Notes:							

¹ The NPDES permit was limited by (a) anti-Backsliding, (b) Anti-Degradation, (c) SOP, (d) TBEL, (e) TMDL, (f) WQBEL, (g) WET, or (h) Other 2 Monitoring frequency based on flow rate of 0.0833 MGD.

³ Table 6-3 (Self Monitoring Requirements for Sewage Discharges) in Technical Guidance for the Development and Specification of Effluent Limitations and Other Permit Conditions in NPDES Permits) (Document # 362-0400-001) Revised 10/97

⁴ Water Quality Antidegradation Implementation Guidance (Document # 391-0300-002)

⁵ Chesapeake Bay Phase 3 Watershed Implementation Plan Wastewater Supplement, Revised September 13, 2021

6.1.2 Nitrogen Species and Phosphorus

Summary of Proposed NPDES Parameter Details for Nitrogen Species and Phosphorus

Six Mile Run; PA0088609

			,,			
Parameter	Permit Limitation Required by ¹ :	Recommendation				
		Monitoring:	The monitoring frequency shall be 2x/yr as a 24-hr composite sample			
Ammonia-	Chesapeake Bay	Effluent Limit:	No effluent requirements.			
Nitrogen	TMDL	Rationale:	Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at least 2x/yr.			
		Monitoring:	The monitoring frequency shall be 2x/yr as a 24-hr composite sample			
Nitrate-	Chesapeake Bay	Effluent Limit:	No effluent requirements.			
Nitrite as N	TMDL	Rationale:	Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at least 2x/yr.			
		Monitoring:	The monitoring frequency shall be 2x/yr as a 24-hr composite sample			
Total	Chesapeake Bay	Effluent Limit:	No effluent requirements.			
Nitrogen	TMDL	Rationale:	Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at least 2x/yr.			
		Monitoring:	The monitoring frequency shall be 2x/yr as a 24-hr composite sample			
TKN	Chesapeake Bay	Effluent Limit:	No effluent requirements.			
TRIN	TMDL	Rationale:	Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at least 2x/yr.			
		Monitoring:	The monitoring frequency shall be 2x/yr as a 24-hr composite sample			
Total	Chesapeake Bay	Effluent Limit:	No effluent requirements.			
Phosphorus	TMDL	Rationale:	Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at least 2x/yr.			
Notes:						

¹ The NPDES permit was limited by (a) anti-Backsliding, (b) Anti-Degradation, (c) SOP, (d) TBEL, (e) TMDL, (f) WQBEL, (g) WET, or (h) Other 2 Monitoring frequency based on flow rate of 0.0833 MGD.

³ Table 6-3 (Self Monitoring Requirements for Sewage Discharges) in Technical Guidance for the Development and Specification of Effluent Limitations and Other Permit Conditions in NPDES Permits) (Document # 362-0400-001) Revised 10/97

⁴ Water Quality Antidegradation Implementation Guidance (Document # 391-0300-002)

⁵ Chesapeake Bay Phase 3 Watershed Implementation Plan Wastewater Supplement, Revised September 13, 2021

6.2 Summary of Changes From Existing Permit to Proposed Permit

A summary of how the proposed NPDES permit differs from the existing NPDES permit is summarized as follows.

• Due to the EPA triennial review, monitoring shall be required for E. coli.

6.3.1 Summary of Proposed NPDES Effluent Limits

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

The proposed NPDES effluent limitations are summarized in the table below.

PART	A - EFFLUENT LIMI	TATIONS, MONITORING, RECORDKEEPING AND REPORTING REQUIREMENTS	L
I. A.	For Outfall 001	, Latitude _40° 9' 35.00", Longitude _78° 15' 19.00", River Mile Index _46, Stream Code _13349	
	Receiving Waters:	Sixmile Run (WWF)	
	Type of Effluent:	Sewage Effluent	

- 1. The permittee is authorized to discharge during the period from Permit Effective Date through Permit Expiration Date
- Based on the anticipated wastewater characteristics and flows described in the permit application and its supporting documents and/or amendments, the following effluent limitations and monitoring requirements apply (see also Additional Requirements and Footnotes).

		Monitoring Requirements							
Parameter	Mass Units (lbs/day) (1)			Concentrations (mg/L)				Required	
rarameter	Average Monthly	Weekly Average	Daily Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type	
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured	
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab	
Dissolved Oxygen	XXX	XXX	5.0 Inst Min	XXX	XXX	XXX	1/day	Grab	
Carbonaceous Biochemical Oxygen Demand (CBOD5)	17	27	XXX	25	40	50	2/month	24-Hr Composite	
Biochemical Oxygen Demand (BOD5) Raw Sewage Influent	Report	Report Daily Max	XXX	Report	xxx	XXX	2/month	24-Hr Composite	
Total Suspended Solids Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	2/month	24-Hr Composite	
Total Suspended Solids	20	31	XXX	30	45	60	2/month	24-Hr Composite	
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab	
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab	
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/quarter	Grab	

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

		Effluent Limitations						
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum (2)	Required
Farameter	Average	Weekly	Daily	Average	Weekly	Instant.	Measurement	Sample
	Monthly	Average	Minimum	Monthly	Average	Maximum	Frequency	Type
Ultraviolet light intensity								
(μw/cm²)	XXX	XXX	Report	XXX	XXX	XXX	1/day	Recorded
	Report			Report				24-Hr
Nitrate-Nitrite as N	SEMI AVG	XXX	XXX	SEMI AVG	XXX	XXX	1/6 months	Composite
	Report			Report				
Total Nitrogen	SEMÍ AVG	XXX	XXX	SEMI AVG	XXX	XXX	1/6 months	Calculation
	Report			Report				24-Hr
Ammonia-Nitrogen	SEMI AVG	XXX	XXX	SEMI AVG	XXX	XXX	1/6 months	Composite
	Report			Report				24-Hr
Total Kjeldahl Nitrogen	SEMI AVG	XXX	XXX	SEMI AVG	XXX	XXX	1/6 months	Composite
	Report			Report				24-Hr
Total Phosphorus	SEMI AVG	XXX	XXX	SEMI AVG	XXX	XXX	1/6 months	Composite

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

at Outfall 001

6.3.2 Summary of Proposed Permit Part C Conditions

The subject facility has the following Part C conditions.

- Hauled-in Waste Restrictions
- Chesapeake Bay Nutrient Definitions
- Solids Management for Lagoons

Attachment A Stream Stats/Gauge Data

StreamStats Report

Region ID: PA

Workspace ID: PA20231116175620527000

Clicked Point (Latitude, Longitude): 40.15966, -78.25559

Time: 2023-11-16 12:56:42 -0500 Pittsburgh. Hontingdon Nanty Glo Pittsburgh Munysville
McDonald Bridgeville West Mifflin McKeesport Jeann Blarsville Robinson Mount Unit Midlin McKeesport learnette
FleasantHills dairton hiterali learnette
Midlan McMisray Elizabeth Industry Greensburg
Canonsburg Gastoriville Johnstown . WestNewton Monongahela Washin gton MountPleasant Mayfield-0 Scottdale California Connellswille Chamber sburg Masontown Meyersdale Mercersburg Greencast e Fairchaince Mt Davis Waynesboro

Sixmile Run PA0088609 Modeling Point #1 November 2023

Collapse All

> Basin Characteristics Parameter Code Parameter Description Value Unit CARBON Percentage of area of carbonate rock 16.49 percent DRNAREA Area that drains to a point on a stream 724 square miles PRECIP Mean Annual Precipitation inches 38 ROCKDEP Depth to rock 4.3 STRDEN Stream Density -- total length of streams divided by drainage area 2.34 miles per square mile

Low-Flow Statistics

Low-Flow Statistics Parameters [100.0 Percent (724 square miles) Low Flow Region 2]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	724	square miles	4.93	1280
PRECIP	Mean Annual Precipitation	38	inches	35	50.4
STRDEN	Stream Density	2.34	miles per square mile	0.51	3.1
ROCKDEP	Depth to Rock	4.3	feet	3.32	5,65
CARBON	Percent Carbonate	16.49	percent	0	99

Low-Flow Statistics Flow Report [100.0 Percent (724 square miles) Low Flow Region 2]

PIL: Lower 90% Prediction Interval, PIU: Upper 90% Prediction Interval, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

NPDES Permit Fact Sheet Six Mile Run STP

Statistic	Value	Unit	SE	ASEp
7 Day 2 Year Low Flow	76.3	ft^3/s	38	38
30 Day 2 Year Low Flow	98.2	ft^3/s	33	33
7 Day 10 Year Low Flow	43.1	ft^3/s	51	51
30 Day 10 Year Low Flow	56	ft^3/s	46	46
90 Day 10 Year Low Flow	78.9	ft^3/s	36	36

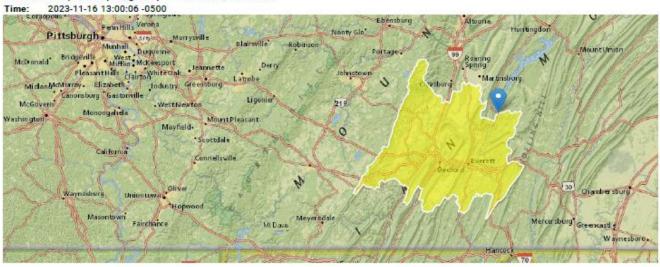
Low-Flow Statistics Citations

Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.


Application Version: 4.18.1 StreamStats Services Version: 1.2.22 NSS Services Version: 2.2.1

StreamStats Report

Region ID: PA

Workspace ID: PA20231116175943699000

Clicked Point (Latitude, Longitude): 40.18550, -78.24368

Sixmile Run PA0088609 Modeling Point #1 November 2023

Collapse All

Parameter Code	Parameter Description	Value	Unit
CARBON	Percentage of area of carbonate rock	16.13	percent
DRNAREA	Area that drains to a point on a stream	740	square miles
PRECIP	Mean Annual Precipitation	38	inches
ROCKDEP	Depth to rock	4.3	feet
STRDEN	Stream Density total length of streams divided by drainage area	2.33	miles per square mile

> Low-Flow Statistics

Low-Flow Statistics Parameters [100.0 Percent (740 square miles) Low Flow Region 2]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	740	square miles	4.93	1280
PRECIP	Mean Annual Precipitation	38	inches	35	50.4
STRDEN	Stream Density	2.33	miles per square mile	0.51	3.1
ROCKDEP	Depth to Rock	4.3	feet	3.32	5.65
CARBON	Percent Carbonate	16.13	percent	0	99

Low-Flow Statistics Flow Report [100.0 Percent (740 square miles) Low Flow Region 2]

PIL: Lower 90% Prediction Interval, PIU: Upper 90% Prediction Interval, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

NPDES Permit Fact Sheet Six Mile Run STP

Statistic	Value	Unit	SE	ASEp
7 Day 2 Year Low Flow	78.2	ft^3/s	38	38
30 Day 2 Year Low Flow	101	ft^3/s	33	33
7 Day 10 Year Low Flow	44.1	ft^3/s	51	51
30 Day 10 Year Low Flow	57.4	ft^3/s	46	46
90 Day 10 Year Low Flow	80.9	ft*3/s	36	36

Low-Flow Statistics Citations

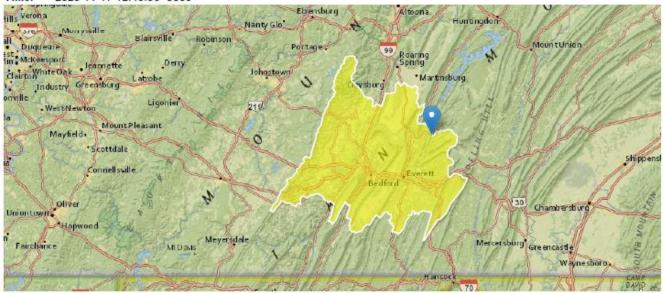
Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.18.1 StreamStats Services Version: 1.2.22 NSS Services Version: 2.2.1


StreamStats Report

Region ID: PA

Workspace ID: PA20231117173934121000

Clicked Point (Latitude, Longitude): 40.13753, -78.26576

Time: 2023-11-17 12:40:06 -0500

Six Mile Run PA0082341 Modeling Point #3 (Hopewell Boro) November 2023

Collapse All

arameter Code	Parameter Description	Value	Unit
ARBON	Percentage of area of carbonate rock	16.51	percent
RNAREA	Area that drains to a point on a stream	723	square miles
RECIP	Mean Annual Precipitation	38	inches
OCKDEP	Depth to rock	4.3	feet
TRDEN	Stream Density total length of streams divided by drainage area	2.34	miles per square mile

> Low-Flow Statistics

Low-Flow Statistics Parameters [100.0 Percent (723 square miles) Low Flow Region 2]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	723	square miles	4.93	1280
PRECIP	Mean Annual Precipitation	38	inches	35	50.4
STRDEN	Stream Density	2.34	miles per square mile	0.51	3.1
ROCKDEP	Depth to Rock	4.3	feet	3.32	5.65

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
CARBON	Percent Carbonate	16.51	percent	0	99

Low-Flow Statistics Flow Report [100.0 Percent (723 square miles) Low Flow Region 2]

PIL: Lower 90% Prediction Interval, PIU: Upper 90% Prediction Interval, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	ASEp
7 Day 2 Year Low Flow	76.2	ft^3/s	38	38
30 Day 2 Year Low Flow	98.1	ft^3/s	33	33
7 Day 10 Year Low Flow	43	ft^3/s	51	51
30 Day 10 Year Low Flow	55.9	ft^3/s	46	46
90 Day 10 Year Low Flow	78.8	ft^3/s	36	36

Low-Flow Statistics Citations

Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.18.1

StreamStats Services Version: 1.2.22

NSS Services Version: 2.2.1

14 Selected Streamflow Statistics for Streamgage Locations in and near Pennsylvania

Table 1. List of U.S. Geological Survey streamgage locations in and near Pennsylvania with updated streamflow statistics.—Continued [Latitude and Longitude in decimal degrees; mi², square miles]

Streamgage number	Streamgage name		Longitude	Drainage area (mi²)	Regulated¹
01561000	Brush Creek at Gapsville, Pa.	39.956	-78.254	36.8	N
01562000	Raystown Branch Juniata River at Saxton, Pa.	40.216	-78.265	756	N
01562500	Great Trough Creek near Marklesburg, Pa.	40.350	-78.130	84.6	N
01563200	Raystown Branch Juniata River below Rays Dam nr Huntingdon, Pa.	40.429	-77.991	960	Y
01563500	Juniata River at Mapleton Depot, Pa.	40.392	-77.935	2,030	Y
01564500	Aughwick Creek near Three Springs, Pa.	40.213	-77.925	205	N
01565000	Kishacoquillas Creek at Reedsville, Pa.	40.655	-77.583	164	N
01565700	Little Lost Creek at Oakland Mills, Pa.	40.605	-77.311	6.52	N
01566000	Tuscarora Creek near Port Royal, Pa.	40.515	-77.419	214	N
01566500	Cocolamus Creek near Millerstown, Pa.	40.566	-77.118	57.2	N
01567000	Juniata River at Newport, Pa.	40.478	-77.129	3,354	Y
01567500	Bixler Run near Loysville, Pa.	40.371	-77.402	15.0	N
01568000	Sherman Creek at Shermans Dale, Pa.	40.323	-77.169	207	N
01568500	Clark Creek near Carsonville, Pa.	40.460	-76.751	22.5	LF
01569000	Stony Creek nr Dauphin, Pa.	40.380	-76.907	33.2	N
01569800	Letort Spring Run near Carlisle, Pa.	40.235	-77.139	21.6	N
01570000	Conodoguinet Creek near Hogestown, Pa.	40.252	-77.021	470	LF
01570500	Susquehanna River at Harrisburg, Pa.	40.255	-76.886	24.100	Y
01571000	Paxton Creek near Penbrook, Pa.	40.308	-76.850	11.2	N
01571500	Yellow Breeches Creek near Camp Hill, Pa.	40.225	-76.898	213	N
01572000	Lower Little Swatara Creek at Pine Grove, Pa.	40.538	-76.377	34.3	N
01572025	Swatara Creek near Pine Grove, Pa.	40.533	-76.402	116	N
01572190	Swatara Creek near Inwood, Pa.	40.479	-76.531	167	N
01573000	Swatara Creek at Harper Tavern, Pa.	40.403	-76.577	337	N
01573086	Beck Creek near Cleona, Pa.	40.323	-76.483	7.87	N
01573160	Quittapahilla Creek near Bellegrove, Pa.	40.343	-76.562	74.2	N
01573500	Manada Creek at Manada Gap, Pa.	40.397	-76.709	13.5	N
01573560	Swatara Creek near Hershey, Pa.	40.298	-76.668	483	N
01574000	West Conewago Creek near Manchester, Pa.	40.082	-76.720	510	N
01574500	Codorus Creek at Spring Grove, Pa.	39.879	-76.853	75.5	Y
01575000	South Branch Codorus Creek near York, Pa.	39.921	-76.749	117	Y
01575500	Codorus Creek near York, Pa.	39.946	-76.755	222	Y
01576000	Susquehanna River at Marietta, Pa.	40.055	-76.531	25,990	Y
01576085	Little Conestoga Creek near Churchtown, Pa.	40.145	-75.989	5.82	N
01576500	Conestoga River at Lancaster, Pa.	40.050	-76.277	324	N
01576754	Conestoga River at Conestoga, Pa.	39.946	-76.368	470	N
01578310	Susquehanna River at Conowingo, Md.	39.658	-76.174	27,100	Y
01578310	Bowery Run near Quarryville, Pa.	39.895	-76.114	5.98	N
01578400	Deer Creek at Rocks, Md.	39.630	-76.403	94.4	N
01580000	Bynum Run at Bel Air, Md.	39.530	-76.330	8.52	N
01581700	Winters Run near Benson, Md.	39.520	-76.373	34.8	N
01582000	Little Falls at Blue Mount, Md.	39.520	-76.620	52.9	N
	Gunpowder Falls at Glencoe, Md.		-76.636	160	Y
01582500	Slade Run near Glyndon, Md.	39.550	-76.795		
01583000	Piney Run at Dover, Md.	39.495		2.09 12.3	N N
01583100	Thiey Run at Dover, Mu.	39.521	-76.767	12.5	N

26 Selected Streamflow Statistics for Streamgage Locations in and near Pennsylvania

Table 2. Selected low-flow statistics for streamgage locations in and near Pennsylvania.—Continued [ft³/s; cubic feet per second; —, statistic not computed; <, less than]

Streamgage number	Period of record used in analysis¹	Number of years used in analysis	1-day, 10-year (ft³/s)	7-day, 10-year (ft³/s)	7-day, 2-year (ft³/s)	30-day, 10-year (ft³/s)	30-day, 2-year (ft³/s)	90-day, 10-year (ft³/s)
01546000	1912-1934	17	1.8	2.2	6.8	3.7	12.1	11.2
01546400	1986-2008	23	13.5	14.0	19.6	15.4	22.3	18.7
01546500	1942-2008	67	26.8	29.0	41.3	31.2	44.2	33.7
01547100	1969-2008	40	102	105	128	111	133	117
01547200	1957-2008	52	99.4	101	132	106	142	115
01547500	21971-2008	38	28.2	109	151	131	172	153
01547500	31956-1969	14	90.0	94.9	123	98.1	131	105
01547700	1957-2008	52	.5	.6	2.7	1.1	3.9	2.
01547800	1971-1981	11	1.6	1.8	2.4	2.1	2.9	3.
01547950	1970-2008	39	12.1	13.6	28.2	17.3	36.4	23.
01548005	21971-2000	25	142	151	206	178	241	223
01548005	31912-1969	58	105	114	147	125	165	140
01548500	1920-2008	89	21.2	24.2	50.1	33.6	68.6	49.
01549000	1910-1920	11	26.0	32.9	78.0	46.4	106	89.
01549500	1942-2008	67	.6	.8	2.5	1.4	3.9	2.
01549700	1959-2008	50	33.3	37.2	83.8	51.2	117	78.
01550000	1915-2008	94	6.6	7.6	16.8	11.2	24.6	18.
01551500	21963-2008	46	520	578	1,020	678	1,330	919
01551500	31901-1961	61	400	439	742	523	943	752
01552000	1927-2008	80	20.5	22.2	49.5	29.2	69.8	49.
01552500	1942-2008	67	.9	1.2	3.1	1.7	4.4	3.
01553130	1969-1981	13	1.0	1.1	1.5	1.3	1.8	1.
01553500	21968-2008	41	760	838	1,440	1,000	1,850	1,470
01553500	31941-1966	26	562	619	880	690	1,090	881
01553700	1981-2008	28	9.1	10.9	15.0	12.6	17.1	15.
01554000	21981-2008	28	1,830	1,990	3,270	2,320	4,210	3,160
01554000	31939-1979	41	1,560	1,630	2,870	1,880	3,620	2,570
01554500	1941-1993	53	16.2	22.0	31.2	25.9	35.7	31.
01555000	1931-2008	78	33.5	37.6	58.8	43.4	69.6	54.
01555500	1931-2008	78	4.9	6.5	18.0	9.4	24.3	16.
01556000	1918-2008	91	43.3	47.8	66.0	55.1	75.0	63.
01557500	1946-2008	63	2.8	3.2	6.3	4.2	8.1	5.
01558000	1940-2008	69	56.3	59.0	79.8	65.7	86.2	73.
01559000	1943-2008	66	104	177	249	198	279	227
01559500	1931-1958	28	9.3	10.5	15.0	12.4	17.8	15.
01559700	1963-1978	16	.1	.1	.2	.1	.3	
01560000	1941-2008	68	8.5	9.4	15.6	12.0	20.2	16.
01561000	1932-1958	27	.4	.5	1.6	.8	2.5	1.
01562000	1913-2008	96	64.1	67.1	106	77.4	122	94.
01562500	1931-1957	27	1.1	1.6	3.8	2.3	5.4	3.
01563200	² 1974–2008	35	_	_	_	112	266	129
01563200	31948-1972	25	10.3	28.2	86.1	64.5	113	95.
01563500	21974-2008	35	384	415	519	441	580	493
01563500	31939-1972	34	153	242	343	278	399	333
01564500	1940-2008	69	3.6	4.2	10.0	6.2	14.4	10.

Attachment B WQM 7.0 Modeling Output Values

WQM 7.0 Effluent Limits

	SWP Basin	Stream Code		Stream Name	<u>e</u>				
	11D	13349	RAY	STOWN BRANCH JU	JUNIATA RIVER				
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)		
46.000	Six Mile Ru	n PA0088609	0.083	CBOD5	25				
				NH3-N	25	50			
				Dissolved Oxygen			5		

WQM 7.0 Wasteload Allocations

	SWP Basin	Stream	m Code		Str	eam Name			
	11D	13	349	RA	YSTOWN BR	ANCH JUNIA	TA RIVER		
NH3-N	Acute Alloc	ations	5						
RM	II Discharge	Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	
47.	860		NA	NA	2.97	NA	NA	NA	
46.	000 Six Mile Run	1	2.98	50	2.98	50	0	0	

NH3-N Chronic Allocations

RMI Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
47.860	NA	NA	.63	NA	NA	NA
46.000 Six Mile Run	.63	25	.63	25	0	0

Dissolved Oxygen Allocations

		CBOD5		NH3-N		Dissolved Oxygen		Critical	Percent	
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)		Multiple (mg/L)	Baseline	Multiple (mg/L)	Reach	Reduction	
47.86		NA	NA	NA	NA	NA	NA	NA	NA	
46.00 Six	x Mile Run	25	25	25	25	5	5	0	0	

						a. Da.								
	SWP Basin			Stre	eam Name		RMI		vation (ft)	Drainage Area (sq mi)	Slo	With	WS drawal ngd)	Appl FC
	11D	133	49 RAYS	TOWN B	RANCH JUI	NIATA RIV	47.80	60	856.48	723.0	0.00	0000	0.00	•
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	Tributary p p		Strea Temp	<u>m</u> pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.089	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.0	0 2	3.30	8.00	0.00	0.00	
					D	ischarge (7	
			Name	Per	rmit Numbe	Disc	Permitte Disc Flow (mgd)	Disc Flor	c Res w Fa	erve T ctor	Disc emp (°C)	Disc pH		
						0.0000	0.000	0.0	000	0.000	25.00	7.00	-	
					Pa	arameter (Data							
				Parameter Name				Trib S Conc	Stream Conc	Fate Coef				
						(m	g/L) (r	ng/L)	(mg/L)	(1/days)				
			CBOD5			2	25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N			:	25.00	0.00	0.00	0.70				

SWP Stream Basin Code Stream Name RMI Elevation Drainage Slope PW Withdow	drawal gd) 0.00
Stream Data Stream Data Stream Data Stream Data Stream Data Stream Data Stream Data Stream Data	m pH
Design Cond. LFY Flow Cond. Trib Stream Flow Flow Trav Time (cfsm) Rch (days) Rch (fps) Rch (ft) Rch (ft) <th< td=""><td>pН</td></th<>	pН
Design Cond. Flow (cfsm) Flow (cfs) Trav (days) Velocity (fps) Ratio (ft) Width (ft) Depth Temp (PC) PH Temp (PC) Q7-10 0.089 0.00 0.00 0.000 0.000 0.00	pН
(cfsm) (cfs) (cfs) (days) (fps) (ft) (ft) (°C) (°C) Q7-10 0.089 0.00 0.00 0.000 0.00 0.00 0.00 23.30 8.00 0.00 Q1-10 0.00 0.00 0.000	0.00
Q1-10 0.00 0.00 0.000 0.000	0.00
Discharge Data]
Existing Permitted Design Disc Disc Disc Disc Disc Reserve Temp pH Name Permit Number Flow Flow Flow Factor (mgd) (mgd) (mgd) (°C)	
Six Mile Run PA0088609 0.0833 0.0833 0.0833 0.000 25.00 7.41	
Parameter Data	
Disc Trib Stream Fate Conc Conc Conc Coef Parameter Name	
(mg/L) (mg/L) (1/days)	
CBOD5 25.00 2.00 0.00 1.50	
Dissolved Oxygen 5.00 8.24 0.00 0.00	
NH3-N 25.00 0.00 0.00 0.70	

OND Observe			
SWP Stream RMI Elevation Basin Code Stream Name (ft)	Drainage Area (sq mi)	With	VS Ap drawal i igd)
11D 13349 RAYSTOWN BRANCH JUNIATA RIV 43.740 834.70	740.00	0.00000	0.00
Stream Data			
LFY Trib Stream Rch Rch WD Rch Rch Design Flow Flow Trav Velocity Ratio Width Depth Tem Cond. Time	Tributary np pH	<u>Strea</u> Temp	m pH
(cfsm) (cfs) (cfs) (days) (fps) (ft) (ft) (°C)	:)	(°C)	
Q7-10 0.089 0.00 0.00 0.000 0.000 0.0 0.00 0.0	3.30 8.0	0 0.00	0.00
Discharge Data			7
	Disc serve Tem actor (°C)	р рН	
0.0000 0.0000 0.0000	0.000 25	5.00 7.00	1
Parameter Data			
Disc Trib Stream Conc Conc Conc Parameter Name	Fate Coef		
(mg/L) (mg/L) (mg/L)	(1/days)		
CBOD5 25.00 2.00 0.00	1.50		
Dissolved Oxygen 3.00 8.24 0.00	0.00		
NH3-N 25.00 0.00 0.00	0.70		

Friday, November 17, 2023

WQM 7.0 D.O.Simulation

SWP Basin St	ream Code			Stream Name	
11D	13349	F	RAYSTOWI	N BRANCH JUNIATA R	IVER
RMI	Total Discharge) Anal	lysis Temperature (°C)	Analysis pH
47.860	0.00			23.300	8.000
Reach Width (ft) 142,284	Reach De 1.08			Reach WDRatio 130.914	Reach Velocity (fps) 0.415
Reach CBOD5 (mg/L)	Reach Kc (-	P	each NH3-N (mg/L)	Reach Kn (1/days)
2.00	0.00		18	0.00	0.902
Reach DO (mg/L)	Reach Kr (_		Kr Equation	Reach DO Goal (mg/L)
8.243	1.64			Tsivoglou	5
Reach Travel Time (days)		Subreach	n Results		
0.274	TravTime		NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.027	2.00	0.00	7.76	
	0.055	2.00	0.00	7.76	
	0.082	2.00	0.00	7.76	
	0.110	2.00	0.00	7.76	
	0.117	2.00	0.00	7.76	
	0.164	2.00	0.00	7.76	
	0.192	2.00	0.00	7.76	
	0.132	2.00	0.00	7.76	
	0.219	2.00	0.00	7.76	
	0.274	2.00	0.00	7.76	
	0.274	2.00	0.00	7.70	
RMI	Total Discharge	Flow (mad	I) Anal	lysis Temperature (°C)	Analysis pH
46.000	0.08		<u> </u>	23.303	7.997
Reach Width (ft)	Reach De			Reach WDRatio	Reach Velocity (fps)
140.118	1.08			129.640	0.425
Reach CBOD5 (mg/L)	Reach Kc (1/days)	R	each NH3-N (mg/L)	Reach Kn (1/days)
2.05	0.02	В		0.05	0.903
Reach DO (mg/L)	Reach Kr (1/days)		Kr Equation	Reach DO Goal (mg/L)
7.759	2.53	4		Tsivoglou	5
Reach Travel Time (days)		Subreach	Results		
0.325	TravTime		NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.032	2.04	0.05	7.76	
	0.065	2.04	0.05	7.76	
	0.097	2.04	0.05	7.76	
	0.130	2.04	0.04	7.76	
	0.162	2.04	0.04	7.76	
	0.195	2.03	0.04	7.76	
		2.03	0.04	7.76	
	0.227	2.00			
	0.227 0.260	2.03	0.04	7.76	
			0.04 0.04	7.76 7.76	
	0.260	2.03			
	0.260 0.292	2.03 2.03	0.04	7.76	

Page 1 of 1

Version 1.1

WQM 7.0 Hydrodynamic Outputs

	SW	P Basin	Strea	m Code				Stream	Name				
	11D		1:	3349		RAYSTOWN BRANCH JUNIATA RIVER							
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH	
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)		
Q7-1	0 Flow												
47.860	64.20	0.00	64.20	NA	0.00078	1.087	142.28	130.91	0.42	0.274	23.30	8.00	
46.000	64.29	0.00	64.29	.1289	0.00118	1.081	140.12	129.64	0.43	0.325	23.30	8.00	
Q1-1	0 Flow												
47.860	61.63	0.00	61.63	NA	0.00078	NA	NA	NA	0.41	0.280	23.30	8.00	
46.000	61.72	0.00	61.72	.1289	0.00118	NA	NA	NA	0.42	0.332	23.30	8.00	
Q30-	10 Flow	,											
47.860	73.83	0.00	73.83	NA	0.00078	NA	NA	NA	0.45	0.253	23.30	8.00	
46.000	73.93	0.00	73.93	.1289	0.00118	NA	NA	NA	0.46	0.300	23.30	8.00	

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.96	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.15	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	5		

	Tools and References Used to Develop Permit
	Twoman with the state of the st
	WQM for Windows Model (see Attachment)
<u> </u>	Toxics Management Spreadsheet (see Attachment)
	TRC Model Spreadsheet (see Attachment)
<u> </u>	Temperature Model Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 386-0400-001, 10/97.
<u> <u> </u></u>	Policy for Permitting Surface Water Diversions, 386-2000-019, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 386-2000-018, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 386-2183-001, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 386-2183-002, 12/97.
	Pennsylvania CSO Policy, 386-2000-002, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 386-2000-008, 4/97.
	Determining Water Quality-Based Effluent Limits, 386-2000-004, 12/97.
	Implementation Guidance Design Conditions, 386-2000-007, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 386-2000-016, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 386-2000-012, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 386-2000-009, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 386-2000-015, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 386-2000-022, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 386-2000-013, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 386-2000-011, 11/1994.
	Implementation Guidance for Temperature Criteria, 386-2000-001, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 386-2000-021, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 386-2000-020, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 386-2000-005, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 386-2000-010, 3/1999.
	Design Stream Flows, 386-2000-003, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 386-2000-006, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 386-3200-001, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP: New and Reissuance Sewage Individual NPDES Permit Applications, rev 2/3/2022
Ħ	Other:

Attachment A Stream Stats/Gauge Data

14 Selected Streamflow Statistics for Streamgage Locations in and near Pennsylvania

Table 1. List of U.S. Geological Survey streamgage locations in and near Pennsylvania with updated streamflow statistics.—Continued [Latitude and Longitude in decimal degrees; mi², square miles]

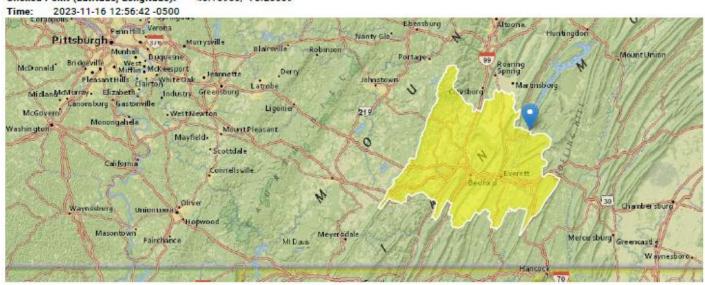
Streamgage number	Streamgage name	Latitude	Longitude	Drainage area (mi²)	Regulated ¹
01561000	Brush Creek at Gapsville, Pa	39 956	-78 254	36.8	N
01562000	Raystown Branch Juniata River at Saxton, Pa.	40.216	-78.265	756	N
01562500	Great Trough Creek near Marklesburg, Pa.	40.350	-/8.130	84.6	N
01563200	Raystown Branch Juniata River below Rays Dam nr Huntingdon, Pa.	40.429	-77.991	960	Y
01563500	Juniata River at Mapleton Depot, Pa.	40.392	-77.935	2,030	Y
01564500	Aughwick Creek near Three Springs, Pa.	40.213	-77.925	205	N
01565000	Kishacoquillas Creek at Reedsville, Pa.	40.655	-77.583	164	N
01565700	Little Lost Creek at Oakland Mills, Pa.	40.605	-77.311	6.52	N
01566000	Tuscarora Creek near Port Royal, Pa.	40.515	-77.419	214	N
01566500	Cocolamus Creek near Millerstown, Pa.	40.566	-77.118	57.2	N
01567000	Juniata River at Newport, Pa.	40.478	-77.129	3,354	Y
01567500	Bixler Run near Loysville, Pa.	40.371	-77.402	15.0	N
01568000	Sherman Creek at Shermans Dale, Pa.	40.323	-77.169	207	N
01568500	Clark Creek near Carsonville, Pa.	40.460	-76.751	22.5	LF
01569000	Stony Creek nr Dauphin, Pa.	40.380	-76.907	33.2	N
01569800	Letort Spring Run near Carlisle, Pa.	40.235	-77.139	21.6	N
01570000	Conodoguinet Creek near Hogestown, Pa.	40.252	-77.021	470	LF
01570500	Susquehanna River at Harrisburg, Pa.	40.255	-76.886	24,100	Y
01571000	Paxton Creek near Penbrook, Pa.	40.308	-76.850	11.2	N
01571500	Yellow Breeches Creek near Camp Hill, Pa.	40.225	-76.898	213	N
01572000	Lower Little Swatara Creek at Pine Grove, Pa.	40.538	-76.377	34.3	N
01572025	Swatara Creek near Pine Grove, Pa.	40.533	-76.402	116	N
01572190	Swatara Creek near Inwood, Pa.	40.479	-76.531	167	N
01573000	Swatara Creek at Harper Tavern, Pa.	40.403	-76.577	337	N
01573086	Beck Creek near Cleona, Pa.	40.323	-76.483	7.87	N
01573160	Quittapahilla Creek near Bellegrove, Pa.	40.343	-76.562	74.2	N
01573500	Manada Creek at Manada Gap, Pa.	40.397	-76.709	13.5	N
01573560	Swatara Creek near Hershey, Pa.	40.298	-76.668	483	N
01574000	West Conewago Creek near Manchester, Pa.	40.082	-76.720	510	N
01574500	Codorus Creek at Spring Grove, Pa.	39.879	-76.853	75.5	Y
01575000	South Branch Codorus Creek near York, Pa.	39.921	-76.749	117	Y
01575500	Codorus Creek near York, Pa.	39.946	-76.755	222	Y
01576000	Susquehanna River at Marietta, Pa.	40.055	-76.531	25,990	Y
01576085	Little Conestoga Creek near Churchtown, Pa.	40.145	-75.989	5.82	N
01576500	Conestoga River at Lancaster, Pa.	40.050	-76.277	324	N
01576754	Conestoga River at Conestoga, Pa.	39.946	-76.368	470	N
01578310	Susquehanna River at Conowingo, Md.	39.658	-76.174	27,100	Y
01578400	Bowery Run near Quarryville, Pa.	39.895	-76.114	5.98	N
01580000	Deer Creek at Rocks, Md.	39.630	-76.403	94.4	N
01581500	Bynum Run at Bel Air, Md.	39.541	-76.330	8.52	N
01581700	Winters Run near Benson, Md.	39.520	-76.373	34.8	N
01582000	Little Falls at Blue Mount, Md.	39.604	-76.620	52.9	N
01582500	Gunpowder Falls at Glencoe, Md.	39.550	-76.636	160	Y
01583000	Slade Run near Glyndon, Md.	39.495	-76.795	2.09	N
01583100	Piney Run at Dover, Md.	39.521	-76.767	12.3	N

26 Selected Streamflow Statistics for Streamgage Locations in and near Pennsylvania

Table 2. Selected low-flow statistics for streamgage locations in and near Pennsylvania.—Continued [ft³/s; cubic feet per second; —, statistic not computed; <, less than]

Streamgage number	Period of record used in analysis¹	Number of years used in analysis	1-day, 10-year (ft³/s)	7-day, 10-year (ft³/s)	7-day, 2-year (ft³/s)	30-day, 10-year (ft³/s)	30-day, 2-year (ft³/s)	90-day, 10-year (ft³/s)
01546000	1912–1934	17	1.8	2.2	6.8	3.7	12.1	11.2
01546400	1986-2008	23	13.5	14.0	19.6	15.4	22.3	18.7
01546500	1942-2008	67	26.8	29.0	41.3	31.2	44.2	33.7
01547100	1969-2008	40	102	105	128	111	133	117
01547200	1957-2008	52	99.4	101	132	106	142	115
01547500	² 1971-2008	38	28.2	109	151	131	172	153
01547500	31956-1969	14	90.0	94.9	123	98.1	131	105
01547700	1957-2008	52	.5	.6	2.7	1.1	3.9	2.5
01547800	1971-1981	11	1.6	1.8	2.4	2.1	2.9	3.:
01547950	1970-2008	39	12.1	13.6	28.2	17.3	36.4	23.
01548005	² 1971–2000	25	142	151	206	178	241	223
01548005	31912-1969	58	105	114	147	125	165	140
01548500	1920-2008	89	21.2	24.2	50.1	33.6	68.6	49.
01549000	1910-1920	11	26.0	32.9	78.0	46.4	106	89.
01549500	1942-2008	67	.6	.8	2.5	1.4	3.9	2.
01549700	1959-2008	50	33.3	37.2	83.8	51.2	117	78.
01550000	1915-2008	94	6.6	7.6	16.8	11.2	24.6	18.
01551500	² 1963-2008	46	520	578	1,020	678	1,330	919
01551500	³ 1901–1961	61	400	439	742	523	943	752
01552000	1927–2008	80	20.5	22.2	49.5	29.2	69.8	49.
01552500	1942–2008	67	.9	1.2	3.1	1.7	4.4	3.
01553130	1969–1981	13	1.0	1.1	1.5	1.3	1.8	1.
01553500	² 1968–2008	41	760	838	1,440	1,000	1,850	1,470
01553500	³ 1941–1966	26	562	619	880	690	1,090	881
01553700	1981–2008	28	9.1	10.9	15.0	12.6	17.1	15.
01554000	² 1981–2008	28	1,830	1,990	3,270	2,320	4,210	3,160
01554000	³ 1939–1979	41	1,560	1,630	2,870	1,880	3,620	2,570
01554500	1941–1993	53	16.2	22.0	31.2	25.9	35.7	31.
01555000	1931–2008	78	33.5	37.6	58.8	43.4	69.6	54.
01555500	1931–2008	78	4.9	6.5	18.0	9.4	24.3	16.
01556000	1918–2008	91	43.3	47.8	66.0	55.1	75.0	63.
01557500	1946–2008	63	2.8	3.2	6.3	4.2	8.1	5.
01557500	1940–2008	69	56.3	59.0	79.8	65.7	86.2	73.
01558000	1940–2008	66	104	177	249	198	279	227
			9.3					
01559500	1931–1958	28		10.5	15.0	12.4	17.8	15.
01559700	1963–1978 1941–2008	16	.1	.1	.2	.1	.3	16
01560000 01561000		68 27	8.5 _4	9.4	15.6 1.6	12.0 .8	20.2	16. 1
01562000	1932–1958 1913–2008	96	64.1	67.1	106	77.4	122	94.
01562500	1931–1957	27	1.1	1.6	3.8	2.3	5.4	120
01563200 01563200	² 1974–2008	35	10.2	20.2	— 06.1	112	266 113	129
U1303ZUU	³ 1948–1972	25	10.3	28.2	86.1	64.5	113	95.
	21074 2009	25	204	115	510	441	500	402
01563500 01563500	² 1974–2008 ³ 1939–1972	35 34	384 153	415 242	519 343	441 278	580 399	493 333

2.34


miles per square mile

StreamStats Report

Region ID:

PA20231116175620527000 Workspace ID:

Clicked Point (Latitude, Longitude): 40.15966, -78.25559

Sixmile Run PA0088609 Modeling Point #1 November 2023

Collapse All

Basin Characteristics Parameter Code Value Unit Parameter Description CARBON Percentage of area of carbonate rock 16.49 percent DRNAREA Area that drains to a point on a stream 724 square miles PRECIP Mean Annual Precipitation 38 inches ROCKDEP Depth to rock 4.3

Low-Flow Statistics

STRDEN

Low-Flow Statistics Parameters [100.0 Percent (724 square miles) Low Flow Region 2]

Stream Density -- total length of streams divided by drainage area

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	724	square miles	4.93	1280
PRECIP	Mean Annual Precipitation	38	inches	35	50.4
STRDEN	Stream Density	2.34	miles per square mile	0.51	3.1
ROCKDEP	Depth to Rock	4.3	feet	3.32	5.65
CARBON	Percent Carbonate	16.49	percent	0	99

Low-Flow Statistics Flow Report [100.0 Percent (724 square miles) Low Flow Region 2]

PIL: Lower 90% Prediction Interval, PIU: Upper 90% Prediction Interval, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	ASEp	
7 Day 2 Year Low Flow	76.3	ft^3/s	38	38	
30 Day 2 Year Low Flow	98.2	ft^3/s	33	33	
7 Day 10 Year Low Flow	43.1	ft^3/s	51	51	
30 Day 10 Year Low Flow	56	ft^3/s	46	46	
90 Day 10 Year Low Flow	78.9	ft^3/s	36	36	

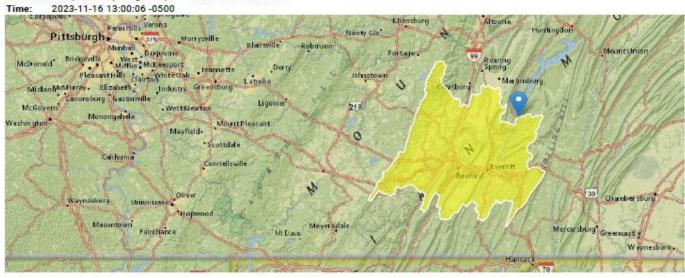
Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.


Application Version: 4.18.1 StreamStats Services Version: 1.2.22 NSS Services Version: 2.2.1

StreamStats Report

Region ID:

PA20231116175943699000 Workspace ID:

Clicked Point (Latitude, Longitude): 40.18550, -78.24368

Sixmile Run PA0088609 Modeling Point #1 November 2023

Collapse All

Parameter Code	Parameter Description	Value	Unit
CARBON	Percentage of area of carbonate rock	16.13	percent
RNAREA	Area that drains to a point on a stream	740	square miles
PRECIP	Mean Annual Precipitation	38	inches
ROCKDEP	Depth to rock	4.3	feet
STRDEN	Stream Density total length of streams divided by drainage area	2.33	miles per square mile

Low-Flow Statistics

Low-Flow Statistics Parameters [100.0 Percent (740 square miles) Low Flow Region 2]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	740	square miles	4.93	1280
PRECIP	Mean Annual Precipitation	38	inches	35	50.4
STRDEN	Stream Density	2.33	miles per square mile	0.51	3.1
ROCKDEP	Depth to Rock	4.3	feet	3.32	5.65
CARBON	Percent Carbonate	16.13	percent	0	99

Low-Flow Statistics Flow Report [100.0 Percent (740 square miles) Low Flow Region 2]

PIL: Lower 90% Prediction Interval, PIU: Upper 90% Prediction Interval, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

NPDES Permit Fact Sheet Six Mile Run STP

Statistic	Value	Unit	SE	ASEp
7 Day 2 Year Low Flow	78.2	ft^3/s	38	38
30 Day 2 Year Low Flow	101	ft^3/s	33	33
7 Day 10 Year Low Flow	44.1	ft^3/s	51	51
30 Day 10 Year Low Flow	57.4	ft^3/s	46	46
90 Day 10 Year Low Flow	80.9	ft^3/s	36	36

Low-Flow Statistics Citations

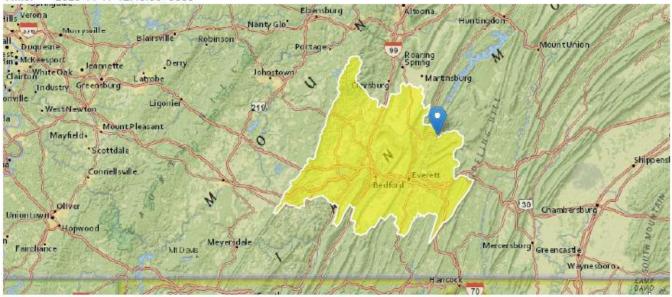
Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.18.1 StreamStats Services Version: 1.2.22 NSS Services Version: 2.2.1


StreamStats Report

Region ID: PA

Workspace ID: PA20231117173934121000

Clicked Point (Latitude, Longitude): 40.13753, -78.26576

Time: 2023-11-17 12:40:06 -0500

Six Mile Run PA0082341 Modeling Point #3 (Hopewell Boro) November 2023

Collapse All

Parameter Code	Parameter Description	Value	Unit
CARBON	Percentage of area of carbonate rock	16.51	percent
RNAREA	Area that drains to a point on a stream	723	square miles
PRECIP	Mean Annual Precipitation	38	inches
ROCKDEP	Depth to rock	4.3	feet
STRDEN	Stream Density total length of streams divided by drainage area	2.34	miles per square mile

Low-Flow Statistics

Low-Flow Statistics Parameters [100.0 Percent (723 square miles) Low Flow Region 2]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	723	square miles	4.93	1280
PRECIP	Mean Annual Precipitation	38	inches	35	50.4
STRDEN	Stream Density	2.34	miles per square mile	0.51	3.1
ROCKDEP	Depth to Rock	4.3	feet	3.32	5.65

Attachment B WQM 7.0 Modeling Output Values

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
CARBON	Percent Carbonate	16.51	percent	0	99

Low-Flow Statistics Flow Report [100.0 Percent (723 square miles) Low Flow Region 2]

PIL: Lower 90% Prediction Interval, PIU: Upper 90% Prediction Interval, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	ASEp
7 Day 2 Year Low Flow	76.2	ft^3/s	38	38
30 Day 2 Year Low Flow	98.1	ft^3/s	33	33
7 Day 10 Year Low Flow	43	ft^3/s	51	51
30 Day 10 Year Low Flow	55.9	ft^3/s	46	46
90 Day 10 Year Low Flow	78.8	ft^3/s	36	36

Low-Flow Statistics Citations

Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.18.1 StreamStats Services Version: 1.2.22

NSS Services Version: 2.2.1

WQM 7.0 Effluent Limits

	SWP Basin 11D	Stream Code 13349	RAY	<u>Stream Nam</u> STOWN BRANCH JU	_		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
46.000	Six Mile Rui	n PA0088609	0.083	CBOD5	25		
				NH3-N	25	50	
				Dissolved Oxygen			5

47.860

NΑ

0

NA

0

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name
11D	13349	RAYSTOWN BRANCH JUNIATA RIVER

RMI Discharge Name		Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
47.86	0	NA	NA	2.97	NA	NA	NA
46.00	0 Six Mile Run	2.98	50	2.98	50	0	0
13-N (Chronic Allocati	ons					
RMI	Discharge Name	Baseline Criterion	Baseline WLA	Multiple Criterion	Multiple WLA	Critical Reach	Percent Reduction

NA

25

(mg/L)

Criterion (mg/L)

NA

.63

Dissolved Oxygen Allocations

46.000 Six Mile Run

		CBC	DD5	NH	3-N	Dissolved	l Oxygen	Critical Reach	Percent Reduction	
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple	Baseline (mg/L)	Multiple (mg/L)			
47.86		NA	NA	NA	NA	NA	NA	NA	NA	
46.00 9	Six Mile Run	25	25	25	25	5	5	0	0	

(mg/L)

.63

.63

(mg/L)

NΑ

25

							514			<u> </u>				
	SWP Basir			Stre	eam Name		RMI		ation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	Witho	vs Irawal gd)	Apply FC
	11D	13	349 RAYS	TOWN B	RANCH JUI	NIATA RIV	47.8	60	856.48	723.00	0.0000	0	0.00	✓
Stream Data														
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> pp pH	Te	Strear emp	<u>n</u> pH	
301141	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(C)		
Q7-10 Q1-10 Q30-10	0.089	0.00 0.00 0.00	0.00	0.000 0.000 0.000		0.0	0.00	0.00	0 2:	3.30 8.	.00	0.00	0.00	
Discharge Data														
			Name	Per	rmit Numbe	Disc	Permitt Disc Flow (mgd)	Disc Flow	Res w Fa	erve Te ctor		Disc pH		
						0.0000	0.000	0.00	000	0.000	25.00	7.00		
					P	arameter l	Data							
		Parameter Name						Trib S Conc	Stream Conc	Fate Coef				
				aramoto	· raino	(m	g/L) (r	mg/L)	(mg/L)	(1/days)				
		CBOD5				:	25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

	SWP Basir			Stre	eam Name		RMI		ation t)	Drainage Area (sq mi)		ope /ft)	PW: Withdr (mg	awal	Apply FC
	11D	133	349 RAYS	TOWN B	RANCH JUI	NIATA RIV	46.00	00	848.79	724.0	0.0	0000		0.00	✓
					St	ream Dat	a								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	Tributary p pl	н	Temp	Stream o	рН	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)			
Q7-10 Q1-10 Q30-10	0.089	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.00) 2:	3.30	8.00	0	.00	0.00	
					Di	ischarge [
			Name	Per	mit Numbe	Disc	Permitte Disc Flow (mgd)	Disc Flow	Res Fa	erve T ctor	Disc emp (°C)	Dis ph			
		Six N	file Run	PAG	0088609	0.0833	0.083	3 0.08	33 (0.000	25.00		7.41		
					Pa	arameter [Data								
		Parameter Name							tream Conc	Fate Coef					
				raiamete	i ivallic	(m	g/L) (n	ng/L) ((mg/L)	(1/days)					
			CBOD5			- :	25.00	2.00	0.00	1.50					
			Dissolved	Oxygen			5.00	8.24	0.00	0.00					
			NH3-N				25.00	0.00	0.00	0.70					

						ut Dutt								
	SWP Basin			Stre	eam Name		RMI	Eleva (fi		Drainage Area (sq mi)	Slope (ft/ft)	PW Withd (mg	rawal	Appl FC
	11D	133	349 RAYS	TOWN B	RANCH JUI	NIATA RIV	/ 43.74	10 8	34.70	740.00	0.00000		0.00	✓
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	Tributary p pH	Ten	Strean np	<u>n</u> pH	
Conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°C	()		
Q7-10 Q1-10 Q30-10	0.089	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.00	23	3.30 8.0	00	0.00	0.00	
					D	ischarge l	Data							
			Name	Per	rmit Numbe	Disc	Permitte Disc Flow (mgd)	Disc Flow	Res Fa	Dis erve Ten ctor (°C	ip t	isc oH		
						0.000	0.000	0.00	00 (0.000 2	5.00	7.00		
					P	arameter l	Data							
				Daramete	r Nama				tream Conc	Fate Coef				
	Parameter Name		rivanic	(m	ng/L) (m	ng/L) (mg/L)	(1/days)						
			CBOD5			:	25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N			:	25.00	0.00	0.00	0.70				

WQM 7.0 D.O.Simulation

SWP Basin 11D	Stream Code 13349	R.A	Stream Name RAYSTOWN BRANCH JUNIATA RIVER							
RMI 47.860 Reach Width (ft) 142.284 Reach CBOD5 (mg/L) 2.00 Reach DO (mg/L) 8.243	Total Discharge FI 0.000 Reach Depth 1.087 Reach Kc (1/c 0.000 Reach Kr (1/c 1.640	n (ft) days)		ysis Temperature (°C) 23.300 Reach WDRatio 130.914 each NH3-N (mq/L) 0.00 Kr Equation Tsivoglou	Analysis pH 8.000 Reach Velocity (fps) 0.415 Reach Kn (1/days) 0.902 Reach DO Goal (mg/L) 5					
Reach Travel Time (days 0.274	TravTime C		Results NH3-N (mg/L)	D.O. (mg/L)						
	0.027 0.055 0.082 0.110 0.137 0.164 0.192 0.219 0.246 0.274	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	7.76 7.76 7.76 7.76 7.76 7.76 7.76 7.76						
RMI 46.000 Reach Width (ft) 140.118 Reach CBOD5 (mg/L) 2.05 Reach DO (mg/L) 7.759	Total Discharge FI 0.083 Reach Depth 1.081 Reach Kc (1/o 0.028 Reach Kr (1/o 2.534	n (ft) days)		ysis Temperature (°C) 23.303 Reach WDRatio 129.640 each NH3-N (mq/L) 0.05 Kr Equation Tsivoglou	Analysis pH 7.997 Reach Velocity (fps) 0.425 Reach Kn (1/days) 0.903 Reach DO Goal (mg/L) 5					
Reach Travel Time (days 0.325	TravTime C (days) ((mg/L) 2.04	NH3-N (mg/L)	7.76						
	0.065 0.097 0.130 0.162 0.195 0.227	2.04 2.04 2.04 2.04 2.03 2.03	0.05 0.05 0.04 0.04 0.04	7.76 7.76 7.76 7.76 7.76 7.76						
	0.260 0.292 0.325	2.03 2.03 2.02	0.04 0.04 0.04	7.76 7.76 7.76						

WQM 7.0 Hydrodynamic Outputs

	SW	P Basin	Strea	m Code				Stream	Name			
		11D	1	3349		RAY	STOWN	BRANC	H JUNIA	TA RIVER	R	
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-10	0 Flow											
47.860	64.20	0.00	64.20	NA	0.00078	1.087	142.28	130.91	0.42	0.274	23.30	8.00
46.000	64.29	0.00	64.29	.1289	0.00118	1.081	140.12	129.64	0.43	0.325	23.30	8.00
Q1-10	0 Flow											
47.860	61.63	0.00	61.63	NA	0.00078	NA	NA	NA	0.41	0.280	23.30	8.00
46.000	61.72	0.00	61.72	.1289	0.00118	NA	NA	NA	0.42	0.332	23.30	8.00
Q30-	10 Flow	1										
47.860	73.83	0.00	73.83	NA	0.00078	NA	NA	NA	0.45	0.253	23.30	8.00
46.000	73.93	0.00	73.93	.1289	0.00118	NA	NA	NA	0.46	0.300	23.30	8.00

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.96	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.15	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	5		