

Northwest Regional Office CLEAN WATER PROGRAM

Application Type

Facility Type

Major / Minor

Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0091316

 APS ID
 1075073

1416520

Authorization ID

		Applicant ar	nd Facility Information	
Applicant Name	Barbara J &	Edward J Tanski	Facility Name	Buttercup Woodlands Campground
Applicant Address	854 Evans C	ity Road	Facility Address	854 Evans City Road
	Renfrew, PA	16053-9206		Renfrew, PA 16053-9206
Applicant Contact	Edward Tans	ski	Facility Contact	
Applicant Phone	(724) 290-06	i82	Facility Phone	
Applicant E Mail	edtanski@zo	oominternet.net	Facility E Maik	
Client ID	142759		Site ID	241701
Municipality	Connoquene	essing Township	County	Butler
Ch 94 Load Status	Not Overload	bet	Connection Status	
Date Application Rec	eived Nov	vember 1, 2022	EPA Waived?	Yes
Date Application Acce	epted Nov	vember 23, 2022	If No, Reason	

Summary of Review

No violations on file and in compliance since 2015.

Sludge use and disposal description and location(s): 7,500-gallons hauled off-site by Cousins Sanitary.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
V		William H. Mentzer	
		William H. Mentzer, P.E.	
		Environmental Engineering Specialist	November 29, 2022
Y			
		Vacant	Okay to Draft
		Environmental Engineer Manager	JCD 12/8/2022

		y Information	
Outfall No.	001	Design Flow (MGD)	.04
Latitude DP	40° 51' 16.00"	Longitude DP	-79° 59' 33.00"
Latitude NHD	40° 51' 16.14"	Longitude NHD	-79° 59' 55.80"
Quad Name	Butler	Quad Code	1206
Wastewater Desc	cription: Treated campgroun	d domestic wastes	
Receiving Waters	S Unnamed Trib L Connoque	enessing Stream Code	unknown
NHD Com ID	126217465	RMI	0.4
Drainage Area	0.1	Yield (cfs/mi²)	0
Q ₇₋₁₀ Flow (cfs)	0	Q ₇₋₁₀ Basis	Dry stream
Elevation (ft)	1161.39	Slope (ft/ft)	0.00947
Watershed No.	20-C	Chapter 93 Class.	CWF
Existing Use		Existing Use Qualifier	none
Exceptions to Use	none	Exceptions to Criteria	none
Comments		ream segment impacted by abandoned	
		· · · · · · · · · · · · · · · · · · ·	•
		3106500 Slippery Rock Creek at Wurtte	
		l 0.67 Drainage 1.24 square mile Elevat evation 994.73 Basin Drainage 19.26 sc	
Tributary mouth [evation 994.73 Basin Drainage 19.26 so /urtemburg No: <u>03106500</u> P	quare miles
Tributary mouth [Orainage 2,83 square miles Ele Slippery Rock Creek at W Low Flow (cfs) 30.2	evation 994.73 Basin Drainage 19.26 so /urtemburg No: <u>03106500</u> P	quare miles Period of Record1913-199
Tributary mouth D Low Flow Basis Assessment State	Slippery Rock Creek at W Low Flow (cfs) 30.2 Attaining Use(s)	evation 994.73 Basin Drainage 19.26 so /urtemburg No: <u>03106500</u> P	quare miles Period of Record1913-199
Tributary mouth Description of the Course (s) of Impa	Slippery Rock Creek at W Low Flow (cfs) 30.2 Attaining Use(s)	evation 994.73 Basin Drainage 19.26 so /urtemburg No: <u>03106500</u> P	quare miles Period of Record1913-1990
Tributary mouth D Low Flow Basis Assessment State Cause(s) of Impa Source(s) of Impa	Slippery Rock Creek at W Low Flow (cfs) 30.2 Attaining Use(s)	evation 994.73 Basin Drainage 19.26 so 'urtemburg No: 03106500 P Drainage (sq mi) 3908 Yiel	quare miles Period of Record <u>1913-199</u> Id (cgs/sq-mi) <u>0.07588</u>
Tributary mouth D Low Flow Basis Assessment State Cause(s) of Impa Source(s) of Impa TMDL Status	Slippery Rock Creek at W Low Flow (cfs) 30.2 us Attaining Use(s) irment airment Final	evation 994.73 Basin Drainage 19.26 so /urtemburg No: 03106500 P Drainage (sq mi) 3908 Yiel Name Little Conno	quare miles Period of Record <u>1913-199</u> Id (cgs/sq-mi) <u>0.07588</u>
Tributary mouth Description of Impartment State (S) of	Slippery Rock Creek at W Low Flow (cfs) 30.2 us Attaining Use(s) irment airment Final	vation 994.73 Basin Drainage 19.26 solution 994.74 solution 994.74 Basin Drainage 19.26 solution 994.74 Basin Drainage 19.	quare miles Period of Record <u>1913-199</u> Id (cgs/sq-mi) <u>0.07588</u>
Tributary mouth D Low Flow Basis Assessment State Cause(s) of Impa Source(s) of Impa TMDL Status Background/Amb pH (SU)	Slippery Rock Creek at W Low Flow (cfs) 30.2 us Attaining Use(s) irment airment Final ient Data 7.4	vation 994.73 Basin Drainage 19.26 so Vurtemburg No: 03106500 P Drainage (sq mi) 3908 Yiel Name Little Connoc Data Source 1988 review	quare miles Period of Record <u>1913-199</u> Id (cgs/sq-mi) <u>0.07588</u>
Tributary mouth D Low Flow Basis Assessment State Cause(s) of Impa Source(s) of Impa TMDL Status Background/Amb pH (SU) Temperature (°F)	Slippery Rock Creek at W Low Flow (cfs) 30.2 us Attaining Use(s) irment airment Final ient Data 7.4 20	evation 994.73 Basin Drainage 19.26 so /urtemburg No: 03106500 P Drainage (sq mi) 3908 Yiel Name Little Conno Data Source 1988 review Cold Water Fishery default	quare miles Period of Record1913-199
Tributary mouth Description of the International Control of the Internatio	Slippery Rock Creek at W Low Flow (cfs) 30.2 us Attaining Use(s) irment airment Final ient Data 7.4 20 100	vation 994.73 Basin Drainage 19.26 solution 994.73 Basin Prainage 19.26 solution 994.73 Basin Prainage 19.26 solution 994.	quare miles Period of Record <u>1913-199</u> Id (cgs/sq-mi) <u>0.07588</u>
Tributary mouth D Low Flow Basis Assessment State Cause(s) of Impa Source(s) of Impa TMDL Status Background/Amb pH (SU) Temperature (°F) Hardness (mg/L)	Slippery Rock Creek at W Low Flow (cfs) 30.2 us Attaining Use(s) irment ient Data 7.4 20 100	evation 994.73 Basin Drainage 19.26 so /urtemburg No: 03106500 P Drainage (sq mi) 3908 Yiel Name Little Conno Data Source 1988 review Cold Water Fishery default	quare miles Period of Record <u>1913-199</u> Id (cgs/sq-mi) <u>0.07588</u>
Tributary mouth D Low Flow Basis Assessment State Cause(s) of Impa Source(s) of Impa TMDL Status Background/Amb pH (SU) Temperature (°F) Hardness (mg/L) 5-day CBOD (mg	Slippery Rock Creek at W Low Flow (cfs) 30.2 us Attaining Use(s) irment airment Final ient Data 7.4 20 100	vation 994.73 Basin Drainage 19.26 solution 994.73 Basin Drainage 19.26 solution of the variety	reriod of Record 1913-1990 Id (cgs/sq-mi) 0.07588 Dequenessing Creek Watershe
Tributary mouth D Low Flow Basis Assessment State Cause(s) of Impa Source(s) of Impa TMDL Status Background/Amb pH (SU) Temperature (°F) Hardness (mg/L) 5-day CBOD (mg	Slippery Rock Creek at W Low Flow (cfs) 30.2 us Attaining Use(s) irment airment Final ient Data 7.4 20 100 /L): 2.0	Pevation 994.73 Basin Drainage 19.26 so described by the following services and source are source and source and source and source and source and source are source and source and source and source and source are source and source and source and source and source and source are source are source are source and source are source are source and source are source are source are source and source are source a	reriod of Record 1913-1990 Id (cgs/sq-mi) 0.07588 Dequenessing Creek Watershe

Changes Since Last Permit Issuance: none

Other Comments: Lower Little Connoquenessing Creek is AMD impaired.

Tractment Escility No	man. Duttaraum Mandanda	Como marro com al		
Treatment Facility Na	me: Buttercup Woodlands	Campground		
WQM Permit No.	Issuance Date			
1080401				
1080401-T1				
1080401-A1-T1				
	Degree of			Avg Annual
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)
	Secondary with			
	Ammonia and			
Sewage	Phosphorus	Extended Aeration	Hypochlorite	0.04
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal
0.04	200	Not Overloaded		Off site

Treatment Facility Summary

Changes Since Last Permit Issuance: none

Other Comments:

Twin parallel systems consisting of comminution, flow splitting, chemical addition, aeration, settling, rapid sand filtration, and chlorine disinfection. Only one treatment train is installed.

WQM SPECIAL CONDITIONS

A. This permit is issued for a staged development type treatment plant. A comminutor, flow splitter, extended aeration sewage treatment plant with a rapid sand filter, and all other required units shall be built initially to serve the campground. Water meter usage records shall be monitored and recorded daily. Monthly average flow shall be calculated taking the average of all flows recorded Thursday, Friday, Saturday, and Sunday for the entire month and reported on the monthly DMRs. Once the monthly average flow for any given month exceeds 0.02 MGD, the permittee shall begin construction of the second treatment train consisting of identical units for tertiary treatment within 60 days. Thus, there will be two tertiary treatment trains upon completion of the proposed stage development.

I. TREATMENT PLANT INSTALLATION

A. The permittee shall install and operate the two tertiary treatment plants as required by Special Condition Letter A in Water Quality Management Permit No. 1080401-A1–T1. Failure to timely construct and operate the second tertiary treatment unit when necessary will result in a condition of hydraulic overload for the existing facility.

Compliance History

DMR Data for Outfall 001 (from October 1, 2021 to September 30, 2022)

Parameter	SEP-22	AUG-22	JUL-22	JUN-22	MAY-22	APR-22	MAR-22	FEB-22	JAN-22	DEC-21	NOV-21	OCT-21
Flow (MGD)												
Average Monthly	0.001	0.001	0.001	0.001	0.001	0.001						0.001
pH (S.U.)												
Minimum	6.9	6.8	7.20	6.40	6.8	6.9						7.4
pH (S.U.)												
Maximum	7.3	7.0	7.30	6.60	7.10	6.9						7.60
DO (mg/L)												
Minimum	7.0	7.70	5.5	6.20	5.4	5.0						7.0
TRC (mg/L)												
Average Monthly	0.1	0.1	0.1	0.1	0.1	0.1						0.1
TRC (mg/L)												
Instantaneous												
Maximum	0.2	0.2	0.2	0.2	0.2	0.2						0.1
CBOD5 (mg/L)												
Average Monthly	4.0	4.0	4.0	4.0	12.0	20						7.3
TSS (mg/L)												
Average Monthly	5.0	5.0	5.0	10.5	8.0	14.0						9.0
Fecal Coliform												
(CFU/100 ml)												
Geometric Mean	180	180	180	160	140	1900						60.0
Fecal Coliform												
(CFU/100 ml)												
Instantaneous												
Maximum	400	500	400	400	400	2420						75.0
Total Nitrogen (mg/L)				0.4-								
Average Quarterly	13.7			2.47						8.0		
Ammonia (mg/L)		0.0		4 77		0.00						0.0
Average Monthly	2.2	2.2	2.0	1.77	2.2	0.30						2.2
Total Phosphorus												
(mg/L)		4.0	4.0	4.00	4.00	4.0						4.0
Average Monthly	2.0	1.8	1.9	1.88	1.38	1.8						1.8

Median summer pH 7.1 annual pH 7.0 SU

Compliance History

No violations reported

		Devel	opment of Effluent Limitations		
Outfall No.	001		Design Flow (MGD)	.04	
Latitude	40° 51' 16.00)"	Longitude	-79° 59' 55.80"	
Wastewater D	escription:	Sewage Effluent			

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD-	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD ₅	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 - 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 - 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)
DO4.0		Daily Minimum		BPJ
E Coli	Monitor			new

Comments: E Coli monitoring proposed.

Water Quality-Based Limitations

A Sewerage program based "Reasonable Potential Analysis" determined the following parameters were candidates for limitations: Flow, CBOD5, TSS, Nitrogen, Phosphorus, ammonia, Total Residual Chlorine and pH.

CBOD5, ammonia, and DO water quality requirements are from DOSAG modelling. Phosphorus requirements are from the Connoquenessing basin implementation plan. CBOD5, TSS, and pH are secondary treatment based.

The following limitations were determined through water quality modeling (output files attached):

Paramet	er	L	imit (mg	/I)	SBC		Model	
CBOD5			25.0	50.0			25.0	50.0
Ammonia	Summer		2.5	5.0			3.9	7,.8
Ammonia	Winter		7.5	15.0			11.7	23.4
DO		4.0				4.0		
TRC			0.5	1.6				

Comments:

TRC spreadsheet was used to evaluate chlorine. Chlorine should be rapidly dissipated in the primary dry stream reach and not impact any downstream aquatic life. Sufficient dilution is available in the perennial stream reach to protect aquatic life.

NPDES Permit Fact Sheet Buttercup Woodlands Campground

The receiving waters have two interacting discharges, Brandy One and Buttercup Woodlands. Design flows were evaluated. Brandy One data was not updated. The sole Buttercup Woodlands change was an effluent pH increase from 6.8 to 7.1 SU. The revised WQM 7.1 model was used changing the ammonia requirements slightly. Earlier modelling used lower basin yields based on Buffalo Creek near Freeport with WQM 7.0 (2.73-mg/L effluent ammonia) and the average of Thorn Creek at McBride and Connoquenessing Creek at Zelienople with WQM 6.3 (2.56-mg/L ammonia with WQM 7.0). All previous modelling verified the 2.5-mg/L summer ammonia requirements.

DOSAG modelling was not adjusted for the 0.4-mile dry stream natural decay.

Best Professional Judgment (BPJ) Limitations

Comments: For DO only

Anti-Backsliding

As the facility reports no violations no action is necessary.

	С	D	E F	G	Н		J K	L M
	charger		oodlands Campground	3		5	Thursday, November 1	
	Site nicipality		oodlands CampgroundSTI ssing Township	7	ļ	Revised	Wednesday, November	23, 2022
	County	Butler	issing rownship					
	ES Permit	PA009131						
10.000	0.5	8 88 10/75/000						
				TRC EV	ALUATION			
	oriate values in l							
	1.4614	= Q stream (d			= CV Daily			
0	0.0250	= Q discharg			= CV Hourly	■ 1110 × 1010 1		
	30 0.3	= no. sample	s emand of Stream	1				
	0		emand of Discharge		= AFC_Criteria Cor		e (min)	
	ā	= BAT/BPJ V			= CFC_Criteria Co			
	0	= % Factor o	f Safety (FOS)		=Decay Coefficient	(K)	31 1531	
	Source	Reference	AFC Calculations		Referenc	е	CFC Calc	West of the second seco
	TRC	1.3.2.iii		afc = 12.073	1.3.2.iii		WLA cfc =	
PENTOXSD T PENTOXSD T		5.1a 5.1b	LTAMULT		5.1c 5.1d		LTAMULT cfc = LTA_cfc =	
FENTOXOD	ING	5.16	LIA	afc= 4.499	5.10		LIA_UC - I	0.000
Source			4		Effluent L	imit Calculat	ons	
PENTOXSD "		5.1f		AML MULT =				
PENTOXSD:	TRG	5.1g		1 LIMIT (mg/l) =		В	AT/BPJ	
				(LIMIT (mg/l) =	1.635			
100 A of-		/040/-/ base	C +-1) + MAEC V-*C-* ***	04*4/ 6*450 4-11				
WLA afc			C_tc)) + [(AFC_Yc*Qs*.019/ C_Yc*Qs*Xs/Qd)]*(1-FOS/10					
LTAMULT afc			cvh^2+1))-2.326*LN(cvh^2+1					
LTA_afc		wla_afc*LTAN	1ULT_afc					
WLA_cfc			C_tc) + [(CFC_Yc*Qs*.011/ C_Yc*Qs*Xs/Qd)]*(1-FOS/10					
LTAMULT cfc			cvd^2/no_samples+1))-2.326		iles+1)^0.5)			
LTA_cfc		wla_cfc*LTAN		Management of the Property of	arer areasons			
		10.00	NAME AND ADDRESS OF THE STATE O	and residence residen				
AML MULT	u T		V((cvd^2/no_samples+1)^0.5		amples+1))			
AVG MON LIMI INST MAX LIMI			J,MIN(LTA_afc,LTA_cfc)*AM _ limit/AML_MULT)/LTAMUL					
180	Chlorine Requi	red	*Xs/1.547*Qd))*(1-FOS/100 = perenn 2 1	ial Chlorine	e Demand	+ 0	hlorine Residual	
Stream Stream	Reach/Node							
Outouiii	Flow	Conditions		2 nerennial				
Stream	Flow Code	Conditions	dry unknov	perennial				
Stream		Conditions	dry	perennial				
Samples	Code Function	Conditions	dry unknov 30	perennial vn 34990 30				
Samples	Code Function outfall	Conditions	dry unknov 30 RMI 0.40	perennial vn 34990 30 0.67				
Samples reach	Code Function	Conditions	dry unknov 30	perennial vn 34990 30 0.67 0				
Samples reach reach	Code Function outfall	Conditions	dry unknov 30 RMI 0.40 RMI 0	perennial yn 34990 30 0.67 0 3537.6				
Samples reach reach drainage	Code Function outfall	average	dry unknow 30 RMI 0.40 RMI 0 feet 2112 sq miles 0.12 mg/L 0.033	perennial vn 34990 30 0.67 0 3537.6 19.26				
Samples reach reach drainage TRC	Code Function outfall Reach End	average maximum	dry unknow 30 RMI 0.40 RMI 0 feet 2112 sq miles 0.12 mg/L 0.030 mg/L 0.092	perennial 34990 30 0.67 0 3537.6 19.26 0.500 1.636				
Samples reach reach drainage TRC elevation	Code Function outfall Reach End	average maximum modelled	dry unknow 30 RMI 0.40 RMI 0 feet 2112 sq miles 0.12 mg/L 0.036 feet 1161.3	perennial 34990 30 0.67 0 3537.6 19.26 0.500 1 1.636 91 1044.21				
Samples reach reach drainage TRC elevation elevation	Code Function outfall Reach End	average maximum	dry unknow 30 RMI 0.40 RMI 0 feet 2112 sq miles 0.12 mg/L 0.030 mg/L 0.092	perennial 34990 30 0.67 0 3537.6 19.26 0.500 1 1.636 91 1044.21				
Samples reach drainage TRC elevation elevation slope low flow	Code Function outfall Reach End	average maximum modelled modelled	dry unknow 30 RMI 0.40 RMI 0 0 feet 2112 sq mg/L 0.036 mg/L 0.095 feet 1161.3 feet 1044.2 feot/foot 0.055 cfs/sq mi 0.076	perennial 34990 30 0.67 0 3537.6 19.26 0.500 1.636 91 1044.21 194.73 0.014 6 0.076				
Samples reach drainage TRC elevation slope low flow discharge	Code Function outfall Reach End limitation	average maximum modelled modelled	dry unknow 30 RMI 0.40 RMI 0 0 feet 2112 sq miles 0.12 mg/L 0.098 feet 1161.3 feet 1044.2 foot/foot 0.055 cfs/sq mi 0.076 mg/d 0.076	perennial 34990 30 0.67 0 3537.6 19.26 0.500 1,636 91 1044.21 11 994.73 6 0.014 6 0.076 0 0.0250				
Samples reach drainage TRC elevation elevation slope low flow discharge Runoff	Code Function outfall Reach End limitation	average maximum modelled modelled modelled	dry unknow 30 RMI 0.40 RMI 0 0 feet 2112 sq miles 0.12 mg/L 0.093 feet 1161.3 feet 1044.2 foot/foot 0.055 cfs/sq mi 0.076 mg/d 0.040 hours 24.00	perennial 34990 30 0.67 0 3537.6 19.26 0.500 1 1.636 19.16 10.44.21 19.47.73 10.014 10.076 0.0250 0.24.000	al stream with suffice	ent flow to a	low a 0.5-ma/l. BAT TRC di	scharqe.
Samples reach drainage TRC elevation elevation slope low discharge Runoff	Code Function outfall Reach End limitation	average maximum modelled modelled modelled	dry unknow 30 RMI 0.40 RMI 0 0 feet 2112 sq miles 0.12 mg/L 0.093 feet 1161.3 feet 1044.2 foot/foot 0.055 cfs/sq mi 0.076 mg/d 0.040 hours 24.00	perennial 34990 30 0.67 0 3537.6 19.26 0.500 1 1.636 19.16 10.44.21 19.47.73 10.014 10.076 0.0250 0.24.000	al stream with suffic	ent flow to a	low a 0.5-mg/L BAT TRC dis	scharge.
Samples reach drainage TRC elevation elevation slope low flow discharge Runoff	Code Function outfall Reach End limitation	average maximum modelled modelled modelled	dry unknow 30 RMI 0.40 RMI 0 0 feet 2112 sq miles 0.12 mg/L 0.093 feet 1161.3 feet 1044.2 foot/foot 0.055 cfs/sq mi 0.076 mg/d 0.040 hours 24.00	perennial 34990 30 0.67 0 3537.6 19.26 0.500 1 1.636 19.16 10.44.21 19.47.73 10.014 10.076 0.0250 0.24.000	al stream with suffic	ent flow to a	low a 0.5-mg/L BAT TRC dis	scharge
Samples reach reach drainage TRC elevation elevation slope low flow discharge Runoff Reach 1 Dry	Code Function outfall Reach End limitation Period y drainage swale	average maximum modelled modelled modelled	dry unknow 30 RMI 0.40 RMI 0.90 feet 2112 sq miles 0.12 mg/L 0.093 feet 1161.3 feet 1044.2 foot/foot 0.055 cfs/sq mi 0.076 mg/d 0.040 hours 24.00 cfs 0.0091	perennial 34990 30 0.67 0 3537.6 19.26 0.500 1.636 91 1044.21 11 994.73 6 0.014 6 0.076 0 0.0250 0 24,000 Reach 2 Perennia	al stream with suffic	ent flow to a	low a 0.5-mg/L BAT TRC dis	scharge.
Samples reach reach drainage TRC elevation elevation slope low flow discharge Runoff Reach 1 Dry	Code Function outfall Reach End limitation Period y drainage swald flow flow	average maximum modelled modelled modelled	dry unknow 30 RMI 0.40 RMI 0.0 feet 2112 sq miles 0.12 mg/L 0.033 mg/L 0.095 feet 1161.3 feet 1161.3 feet 0.076 mg/d 0.040 h no aquatic life to protect cfs 0.0091 MGD 0.058	perennial 34990 30 0.67 0 3537.6 19.26 1.636 1.636 1.636 1.636 1.0014 1.044.21 1.0076 0.0250 0.24.000 Reach 2 Perennia	al stream with suffic	ent flow to a	low a 0.5-mg/L BAT TRC dis	scharge.
Samples reach reach drainage TRC elevation elevation slope low flow discharge Runoff Reach 1 Dry stream stream	Code Function outfall Reach End limitation Period y drainage swall flow flow flow flow	average maximum modelled modelled modelled e discharge wit	dry unknow 30 RMI 0.40 RMI 0 0 feet 2112 sq miles 0.12 mg/L 0.036 mg/L 0.095 feet 11613 feet 1044.2 foot/foot 0.055 cfs/sq mi 0.076 mgd 0.040 hours 24.00 th no aquatic life to protect	m perennial 34990 30 0.67 0 3537.6 19.26 1.0500 1.636 19.1044.21 1.994.73 1.0014 1.0076 0.0250 0.0250 0.0250 0.0260 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250	al stream with suffic	ent flow to a	low a 0.5-mg/L BAT TRC dis	scharge.
Samples reach reach drainage TRC elevation elevation slope low flow discharge Runoff Reach 1 Dry stream stream stream	Code Function outfall Reach End limitation Period y drainage swall flow flow chlorine	average maximum modelled modelled d e discharge wit total demand	dry unknow 30 RMI 0.40 RMI 0.5 RMI 0.	perennial 34990 30 0.67 0 3537.6 19.26 1.636 1.636 1.636 1.636 1.0014 1.044.21 1.0076 0.0250 0.24.000 Reach 2 Perennia	al stream with suffic	ent flow to a	low a 0.5-mg/L BAT TRC dis	scharge.
Samples reach reach drainage TRC elevation elevation slope low flow discharge Runoff Reach 1 Dry stream stream stream discharge	Code Function outfall Reach End limitation Period y drainage swall flow flow flow flow	average maximum modelled modelled modelled e discharge wit total demand demand	dry unknow 30 RMI 0.40 RMI 0 0 feet 2112 sq miles 0.12 mg/L 0.036 mg/L 0.095 feet 11613 feet 1044.2 foot/foot 0.055 cfs/sq mi 0.076 mgd 0.040 hours 24.00 th no aquatic life to protect	m perennial 34990 30 0.67 0 3537.6 19.26 1.0500 1.636 19.1044.21 1.994.73 1.0014 1.0076 0.0250 0.0250 0.0250 0.0260 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250	al stream with suffic	ent flow to a	low a 0.5-mg/L BAT TRC dis	scharge
Samples reach reach drainage TRC elevation elevation slope low flow discharge Runoff Reach 1 Dry stream stream stream discharge	Code Function outfall Reach End limitation Period y drainage swald flow flow flow chlorine discharge	average maximum modelled modelled modelled e discharge wit total demand demand	dry unknow 30 RMI 0.40 RMI 0.0 feet 2112 sq miles 0.12 mg/L 0.033 mg/L 0.098 feet 1161.3 feet 1044.2 foot/foot 0.055 cfs/sq mi 0.076 mg/d 0.040 hours 24.00 th no aquatic life to protect cfs 0.0091 MGD 0.0458 mg/L 0.3 mg/L 0.3	perennial 34990 30 0.67 0 3537.6 19.26 1.636 1.0500 1.636 1.0014 1.0076 0.00250 0.24.000 Reach 2 Perennia 1.46144 85 0.944552 85 0.3	al stream with suffic	ent flow to a	low a 0.5-mg/L BAT TRC dis	scharge.
Samples reach reach drainage TRC elevation elevation slope low flow discharge Runoff Reach 1 Dry stream stream stream discharge	Code Function outfall Reach End limitation Period y drainage swald flow flow flow chlorine discharge	average maximum modelled modelled modelled e discharge wit total demand demand	dry unknow 30 RMI 0.40 RMI 0.0 feet 2112 sq miles 0.12 mg/L 0.033 mg/L 0.098 feet 1161.3 feet 1044.2 foot/foot 0.055 cfs/sq mi 0.076 mg/d 0.040 hours 24.00 th no aquatic life to protect cfs 0.0091 MGD 0.0458 mg/L 0.3 mg/L 0.3	perennial 34990 30 0.67 0 3537.6 19.26 1.636 1.0500 1.636 1.0014 1.0076 0.00250 0.24.000 Reach 2 Perennia 1.46144 85 0.944552 85 0.3	al stream with suffic	ent flow to a	low a 0.5-mg/L BAT TRC dis	scharge.
stream stream stream stream discharge stream	Code Function outfall Reach End limitation	average maximum modelled modelled de discharge with total demand demand //waste	dry unknow 30 RMI 0.40 RMI 0.5 RMI 0.40 RMI 0.5 RMI 0	perennial 34990 30 0.67 0 3537.6 19.26 1.636 1.636 1.1636 1.044.21 1.1 994.73 1.0076 0.0250 0.24,000 1.0250 0.24,000 1.0250 0.24,000 1.0250 0.24,000 1.0250 0.24,000 1.0250 0.24,000 1.0250 0.24,000 1.0250 0.24,000 1.0250 0.250 0.388	al stream with suffic	ent flow to a	low a 0.5-mg/L BAT TRC dis	scharge.
Samples reach reach drainage TRC elevation elevation slow flow discharge Runoff Reach 1 Dry stream stream stream stream discharge stream	Code Function outfall Reach End limitation Period y drainage swald flow flow flow chlorine discharge Total Stream	average maximum modelled modelled e discharge with total demand demand Waste	dry unknow 30 RMI 0.40 RMI 0 0 feet 2112 sq miles 0.12 mg/L 0.095 feet 1161.3 feet 1044.2 foot/foot 0.055 cfs/sq mi 0.076 mgd 0.040 hours 24.00 h on aquatic life to protect cfs 0.0091 MGD 0.058 MGD 0.058 mg/L 0.3 mg/L ratio 1.1	perennial 34990 30 0.67 0 3537.6 19.26 1.0500 1.638 91 1044.21 1.994.73 1.0014 1.0076 0.0250 0.24,000 0.Reach 2 Perennia 1.1.46144 85 0.944552 85 0.969552 0.3 38.8	al stream with suffic	ent flow to a	low a 0.5-mg/L BAT TRC dis	scharge.
Samples reach reach drainage TRC elevation elevation slope low flow discharge Runoff Reach 1 Dry stream stream stream discharge stream discharge stream	Code Function outfall Reach End limitation	average maximum modelled modelled de discharge with total demand demand //waste	dry unknow 30 RMI 0.40 RMI 0.5 RMI 0.40 RMI 0.5 RMI 0	perennial 34990 30 0.67 0 3537.6 19.26 1.636 1.636 1.1636 1.044.21 1.1 994.73 1.0076 0.0250 0.24,000 1.0250 0.24,000 1.0250 0.24,000 1.0250 0.24,000 1.0250 0.24,000 1.0250 0.24,000 1.0250 0.24,000 1.0250 0.24,000 1.0250 0.250 0.388	al stream with suffic	ent flow to a	low a 0.5-mg/L BAT TRC di	scharge.
Samples reach reach drainage TRC elevation elevation slope low flow discharge Runoff Reach 1 Dry stream stream stream discharge stream discharge stream	Code Function outfall Reach End limitation	average maximum modelled modelled de discharge with total demand demand Waste mean maximum	dry unknow 30 RMI 0.40 RMI 0.5 RMI 0.40 RMI 0.5 RMI 0	perennial 34990 30 0.67 0 3537.6 19.26 1.636 1.636 1.1636 1.044.21 1.1 994.73 1.0076 0.0250 0.24,000 1.0250 0.24,000 1.0250 0.24,000 1.0250 0.24,000 1.0250 0.24,000 1.0250 0.24,000 1.0250 0.24,000 1.0250 0.24,000 1.0250 0.250 0.388	al stream with suffic	ent flow to a	low a 0.5-mg∕L BAT TRC dis	scharge
Samples reach reach drainage TRC elevation elevation slope low flow discharge Runoff Reach 1 Dry stream stream discharge stream discharge stream	Code Function outfall Reach End limitation	average maximum modelled modelled de discharge with total demand demand Waste mean maximum	dry unknow 30 RMI 0.40 RMI 0.5 RMI 0.40 RMI 0.5 RMI 0	perennial 34990 30 0.67 0 3537.6 19.26 1.636 1.636 1.1636 1.044.21 1.1 994.73 1.0076 0.0250 0.24,000 1.0250 0.24,000 1.0250 0.24,000 1.0250 0.24,000 1.0250 0.24,000 1.0250 0.24,000 1.0250 0.24,000 1.0250 0.24,000 1.0250 0.250 0.388	al stream with suffic	ent flow to a	low a 0.5-mg∕L BAT TRC dis	scharge.
Samples reach reach drainage TRC elevation elevation slope low flow discharge Runoff Reach 1 Dry stream stream stream discharge stream discharge stream	Code Function outfall Reach End limitation	average maximum modelled modelled de discharge with total demand demand Waste mean maximum	dry unknow 30 RMI 0.40 RMI 0.5 RMI 0.40 RMI 0.5 RMI 0	perennial 34990 30 0.67 0 3537.6 19.26 1.636 19.26 1.636 10.44.21 11 994.73 10.014 10.0076 0.0.250 0.24.000 1.8each 2 Perennial 1.46144 1.46144 1.46144 1.46144 1.46144 1.46144 1.46144 1.46144 1.46144 1.46144 1.46144 1.46144 1.46144 1.46144	al stream with suffic	ent flow to a	low a 0.5-mg/L BAT TRC di	scharge.

Input Data WQM 7.0

	SWP Basin	Strea		Stre	am Name	е	RMI	Elevi		Drainage Area (sq mi)	Slope (ft/ft)	PW Withd (m	rawal	Apply FC
	20C	34	990 Trib 34	1990 to Lt	Connoqu	ienes'ng Cr	1.03	30 10	084.00	0.82	0.00000	0	0.00	✓
					;	Stream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> np pH	Ter	<u>Strear</u> mp	n pH	
Coria.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(%	C)		
ଇ7-10 ଇ1-10 ଇ30-10	0.076	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000	į.	0.00	0.00	2	0.00 7.	40	0.00	0.00	
						Discharge I	Data]	
			Name	Per	mit Numb	Disc	Permitt Disc Flow (mgd)		Res Fa	Dis erve Ten ctor (°C	np	Disc pH		
		Bran	dy One	PAG	00238686	0.023	9 0.023	39 0.02	39	0.000 2	20.00	7.30		
)	Parameter I	Data							
			1	⊃aramete	r Name				tream Conc	Fate Coef				
	_					(m	g/L) (r	ng/L) (mg/L)	(1/days)		_		
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			4.00	8.24	0.00	0.00				
			NH3-N				25.00	0.10	0.00	0.70				

Input Data WQM 7.0

	SWP Basin			Stre	am Nam	е	RI	VII E	Elevation (ft)	on	Draina Area (sq m	9	Slope (ft/ft)	Witho	VS drawal gd)	Apply FC
	20C	349	990 Trib 34	1990 to Lt	Connoqu	uenes'ng Cr	0.	.670	1044	1.21		1.24 (0.00000		0.00	~
					3	Stream Dat	a									
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rcl Dep	th	Tem		<u>ry</u> pH	Ten		<u>т</u> рН	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C	()		
Q7-10 Q1-10	0.076	0.00		0.000	0.000		0.0	00	0.00	2	0.00	7.40		0.00	0.00	
Q30-10		0.00	0.00	0.000	0.000)										
						Discharge I	Data								1	
			Name	Per	mit Numt	Existing Disc per Flow (mgd)	Perm Dis Flo (mg	sc [esign Disc Flow mgd)		erve ctor	Disc Temp (°C)		sc H		
		Butte	rcup Wdld:	s PA	0091316A	0.040	0.0	400	0.0400		0.000	20.	.00	7.10		
						Parameter I	Data									
				Paramete	r Nome	Di C	sc onc	Trib Conc	Stre		Fate Coef					
				Paramete	ivame	(m	g/L)	(mg/L)	(mg	g/L)	(1/day	s)				
			CBOD5				25.00	2.0	0	0.00	1.	50				
			Dissolved	Oxygen			4.00	8.2	4	0.00	0.	00				
	4.5		NH3-N			1	25.00	0.1	0	0.00	0.	70				

Tuesday, November 29, 2022

Version 1.1

Page 2 of 3

Input Data WQM 7.0

	SWP Basin	Strea		Stre	eam Name	,	RM	II E	(ft)	Draina Are (sq n	а	Slope (ft/ft)		VS Irawal gd)	Apply FC
	20C	349	90 Trib 3	1990 to Lt	l Connoqu	enes'ng Cr	0.	000	994.73	3	2.83	0.00000		0.00	~
					S	stream Dat	a								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Dept		<u>Tributa</u> mp	pH	Ten	<u>Strear</u> np	n pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°	C)		(°C	(2)		
Q7-10 Q1-10 Q30-10	0.076	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.0	0 0	.00	20.00	7.40)	0.00	0.00	
					1	Discharge I	Data							1	
			Name	Per	mit Numb	Existing Disc		c D	isc Re	eserve actor	Disc Temp (°C)		isc oH		
						0.000	0.0	000 0	.0000	0.000	0	.00	7.00		
					F	Parameter I	Data								
				Paramete	r Name		sc onc	Trib Conc	Stream	Fate Coe					
				a. a.moto		(m	g/L)	(mg/L)	(mg/L)	(1/day	ys)				
			CBOD5			il.	25.00	2.00	0.0	0 1	.50				
			Dissolved	Oxygen			3.00	8.24	0.0	0 0	.00				
			NH3-N			0	25.00	0.00	0.0	0 0	.70				

WQM 7.0 Hydrodynamic Outputs

	<u>sw</u>	P Basin	Strea	m Code				Stream	<u>Name</u>			
RMI	20C		34990		Trib 34990 to Ltl Connoquenes'ng Cr							
	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow	1										
1.030	0.06	0.00	0.06	.037	0.02093	.351	4.17	11.9	0.07	0.325	20.00	7.36
0.670	0.09	0.00	0.09	.0989	0.01399	.387	5.73	14.79	0.09	0.471	20.00	7.26
Q1-1	0 Flow											
1.030	0.04	0.00	0.04	.037	0.02093	NA	NA	NA	0.06	0.375	20.00	7.35
0.670	0.06	0.00	0.06	.0989	0.01399	NA	NA	NA	0.08	0.525	20.00	7.24
Q30-	10 Flow	,										
1.030	0.08	0.00	0.08	.037	0.02093	NA	NA	NA	0.08	0.290	20.00	7.37
0.670	0.13	0.00	0.13	.0989	0.01399	NA	NA	NA	0.10	0.431	20.00	7.28

Tuesday, November 29, 2022

Version 1.1

Page 1 of 1

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	•
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	•
D.O. Saturation	95.00%	Use Balanced Technology	•
D.O. Goal	5		

Tuesday, November 29, 2022

Version 1.1

Page 1 of 1

WQM 7.0 Wasteload Allocations

	SWP Basin 20C		<u>n Code</u> 990	1	Trib 34990		<u>n Name</u> Connoque	nes'ng Cr		
NH3-N	Acute Alloca	tions						4/2		
RMI	Discharge N		Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multipl Criterio (mg/L	on	lultiple WLA (mg/L)	Critical Reach	Percent Reduction	n
1.0	30 Brandy One		11.43	23.63	11.43	.43	3 21.37	2	10	_
0.6	70 Buttercup Wd	lds	13.37	26.28	13	.11	23.77	2	10	
NH3-N RMI	Chronic Allo Discharge Na	me C	100	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	V	ltiple /LA ng/L)	Critical Reach	Percent Reduction	2
1.0	30 Brandy One		1.55	4.86	1	.55	3.92	2	19	
0.6	70 Buttercup Wd	lds	1.64	4.84	1	.64	3.9	2	19	
Dissolv RMI	ed Oxygen A		<u>c</u>	BOD5 e Multiple	<u>NH</u> Baseline	3-N Multiple		ed Oxygen	Critical	Percent
HVIZI	Discharge	e ivallie	(mg/L)		(mg/L)	(mg/L)			Reach	Reduction
1.	03 Brandy One		2	5 25	3.92	3.9	2 4	4	0	0
0.	67 Buttercup Wd	lds	2	5 25	3.9	3.	9 4	4	0	0

WQM 7.0 Effluent Limits

	SWP Basin St 20C	ream Code 34990	Trib	Stream Name	70) 200 - 201		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
1.030	Brandy One	PA00238686	0.024	CBOD5	25		
				NH3-N	3.92	7.84	
				Dissolved Oxygen			4
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
0.670	Buttercup Wdlds	PA0091316A	0.040	CBOD5	25		
				NH3-N	3.9	7.8	
				Dissolved Oxygen			4

Tuesday, November 29, 2022

Version 1.1

Page 1 of 1

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

		Monitoring Re	quirements					
Parameter	Mass Units	(lbs/day) (1)		Concentrat		Minimum ⁽²⁾	Required	
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	XXX	XXX	XXX	XXX	XXX	Continuous	Metered
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	4.0 Daily Min	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
CBOD5	XXX	XXX	XXX	25.0	XXX	50	2/month	8-Hr Composite
TSS	XXX	XXX	XXX	30.0	XXX	60	2/month	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab
E. Coli (No./100 ml)	XXX	XXX	xxx	Report Annual Avg	XXX	XXX	1/year	Grab
Total Nitrogen	XXX	XXX	XXX	Report Avg Qrtly	XXX	XXX	1/quarter	8-Hr Composite
Ammonia Nov 1 - Apr 30	XXX	XXX	XXX	7.5	XXX	15	2/month	8-Hr Composite
Ammonia	XXX	XXX	XXX	2.5	XXX	5	2/month	8-Hr
May 1 - Oct 31								8-Hr
Total Phosphorus	XXX	XXX	XXX	2.0	XXX	4	2/month	Composite

Compliance Sampling Location: Outfall 001 after disinfection