

Southwest Regional Office CLEAN WATER PROGRAM

Application Type
Renewal
NonFacility Type
Major / Minor
Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. **PA0092487**APS ID **277112**

Authorization ID 1212285

Applicant Name	Nino	Barsotti	Facility Name	Ninos Restaurant STP
Applicant Address	546 T	hree Mile Hill Road	Facility Address	546 Three Mile Hill Road
	Mt Ple	easant, PA 15666-8874		Mt Pleasant, PA 15666-8874
Applicant Contact	Elizab	eth - Nino Barsotti	Facility Contact	Same as Applicant
Applicant Phone	(724)	547-2900	Facility Phone	Same as Applicant
Client ID	45085	5	Site ID	243894
Ch 94 Load Status	Not O	verloaded	Municipality	Bullskin Township
Connection Status			County	Fayette
Date Application Rece	ived	October 31, 2017	EPA Waived?	Yes
Date Application Accepted		January 4, 2018	If No, Reason	

Summary of Review

The applicant has applied for a renewal of NPDES Permit No. PA0092487, which was previously issued by the Department on April 22, 2013. That permit expired on April 30, 2018.

WQM Permit No. 2676402 authorized the construction of a STP with a hydraulic design capacity of 0.007 MGD.

The existing extended aeration treatment process consists of EQ tank, 2 aeration tanks, a clarifier, Pyradeck fixed media filtration and chlorination.

The receiving stream, UNT to Jacobs Creek, is classified as a CWF and is located in State Watershed No. 19-D.

The applicant has complied with Act 14 Notifications and no comments were received

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
Х		/s/ William C. Mitchell, E.I.T. / Project Manager	August 23, 2019
Х		/s/ Donald J. Leone, P.E. / Environmental Engineer Manager	

Discharge, Receiving Waters and Water Supply Info	ormation			
Outfall No. 001	Design Flow (MGD)	0.007		
Latitude 40° 8' 34.00"	Longitude	-79° 28' 59.00"		
Quad Name Mammoth	Quad Code	1710		
Wastewater Description: Sewage Effluent				
Unnamed Tributary to Jacobs	01	07000		
Receiving Waters Creek (CWF)	Stream Code	37983		
NHD Com ID 69914045	RMI	0.15		
Drainage Area 2.85	Yield (cfs/mi²)	0.026		
		PA Bulletin 12, STA		
Q ₇₋₁₀ Flow (cfs) 0.074	Q ₇₋₁₀ Basis	03083000, Green Lick Run @ Green Lick Reservoir		
Elevation (ft) 1160	Slope (ft/ft)	0.025		
Watershed No. 19-D	Chapter 93 Class.	CWF		
Existing Lies	Evicting Llos Qualifier			
·		NONE		
Exceptions to Use NONE	Exceptions to Criteria	NONE		
Assessment Status Attaining Use(s)				
Cause(s) of Impairment				
Source(s) of Impairment				
TMDL Status	Name			
Background/Ambient Data	Data Source			
pH (SU)				
Temperature (°F)				
Hardness (mg/L)				
Other:				
Nearest Downstream Public Water Supply Intake	Pennsylvania-American Wate	r Company. Pittsburgh		
PWS Waters Monongahela River	Flow at Intake (cfs)			
PWS RMI 4.6	Distance from Outfall (mi)			

Changes Since Last Permit Issuance: NONE

Treatment Facility Summary							
Treatment Facility Na	me: Ninos Restaurant STP						
WQM Permit No.	Issuance Date						
2676402							
	Degree of			Avg Annual			
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)			
	Secondary With			•			
Sewage	Ammonia Reduction	Extended Aeration	Chlorine				
Hydraulic Capacity	Organic Capacity			Biosolids			
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal			
0.007	, , , , , , , , , , , , , , , , , , , ,	Not Overloaded	Aerated Holding Tank	Regional WWTF			

Changes Since Last Permit Issuance: NONE

Compliance History

Operations Compliance Check Summary Report

<u>Facility:</u> Nino's Restaurant STP <u>NPDES Permit No.:</u> PA0092487

Compliance Review Period: 8/2014 – 8/2019

Inspection Summary:

inspection .	i Sullillai y .				
INSP ID	INSPECTED DATE	INSP TYPE	AGENCY	INSPECTION RESULT DESC	INSPECTION COMMENT
2826532	11/14/2018	Compliance Evaluation	PA Dept of Environmental Protection	No Violations Noted	
2789820	10/04/2018	Administrative/File Review	PA Dept of Environmental Protection	Violation(s) Noted	
2650669	10/16/2017	Compliance Evaluation	PA Dept of Environmental Protection	Violation(s) Noted	
2610683	04/11/2017	Administrative/File Review	PA Dept of Environmental Protection	Violation(s) Noted	
2351981	01/29/2015	Compliance Evaluation	PA Dept of Environmental Protection	Violation(s) Noted	Total Phosphorus & Total Nitrogen parameter results not submitted for 2014.

NPDES Permit Fact Sheet Ninos Restaurant STP

Violation Summary:

VIOL ID	VIOLATION DATE	VIOLATION TYPE	VIOLATION TYPE DESC	RESOLVED DATE	INSPECTED DATE	INSP TYPE
830670	10/04/2018	92A.61(G)	NPDES - Failure to use a format or process required by DEP for self-monitoring results	11/19/2018	10/04/2018	Administrative/File Review
799771	10/16/2017	92A.41(A)12B	NPDES - Failure to submit monitoring report(s) or properly complete monitoring reports	10/23/2017	10/16/2017	Compliance Evaluation
789662	04/11/2017	92A.61(G)	NPDES - Failure to use a format or process required by DEP for self-monitoring results	11/19/2018	04/11/2017	Administrative/File Review
717768	01/29/2015	92A.61(C)	NPDES - Failure to monitor pollutants as required by the NPDES permit	03/16/2015	01/29/2015	Compliance Evaluation

Open Violations by Client ID:

No open violations for client ID 90463

Enforcement Summary:

	ENF	ENF CREATION		ENF	ENF CLOSED
ENF ID	TYPE	DATE	VIOLATIONS	FINALSTATUS	DATE
<u>368253</u>	NOV	10/17/2018	92A.61(G)	Comply/Closed	11/19/2018
358808	NOV	10/23/2017	92A.41(A)12B	Administrative Close Out	08/21/2019
<u>354814</u>	NOV	07/05/2017	92A.61(G)	Comply/Closed	11/19/2018
320979	NOV	03/16/2015	92A.61(C)	Administrative Close Out	08/19/2019

DMR Violation Summary:

eDMR started in July 2019. No exceedances in 2017 and 2018

Compliance Status:

Permittee is in compliance.

Completed by: John Murphy

Completed date: 8/21/2019

Development of Effluent Limitations						
Outfall No.	001	Design Flow (MGD) .004				
Latitude	40° 8' 34.00"	Longitude -79° 28' 59.00"	 -			
Wastewater D	Wastewater Description: Sewage Effluent					

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 - 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 - 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 - 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations

The discharge was previously modeled using WQAM6.3 to evaluate the CBOD₅, Ammonia Nitrogen and Dissolved Oxygen parameters. Because there have been no changes to the discharge or the receiving stream, it is unnecessary to remodel these three parameters using the current WQM 7.0 model because the same effluent results are computed for a single discharge scenario. The modeling results show technology based effluent limitations for CBOD₅ are appropriate.

The following limitations were determined through water quality modeling (output files attached):

Parameter	Limit (mg/l)	SBC	Model
Ammonia Nitrogen			
(May 1 to Oct 31)	10.0	Average Monthly	WQAM6.3
Ammonia Nitrogen			
(Nov 1 to April 30)	20.0	Average Monthly	WQAM6.3

Best Professional Judgment (BPJ) Limitations

Comments: A Dissolved Oxygen minimum limitation of 4.0 mg/l will be imposed based on the standard in 25 PA Code Chapter 93 and best professional judgment.

Anti-Backsliding

Additional Considerations:

For pH, Dissolved Oxygen (DO) and Total Residual Chlorine (TRC), a monitoring frequency 1/day has been imposed. In general, less frequent monitoring may be established only when the permittee demonstrates that there will be no discharge on days where monitoring is not required.

NPDES Permit No. PA0092487

NPDES Permit Fact Sheet Ninos Restaurant STP

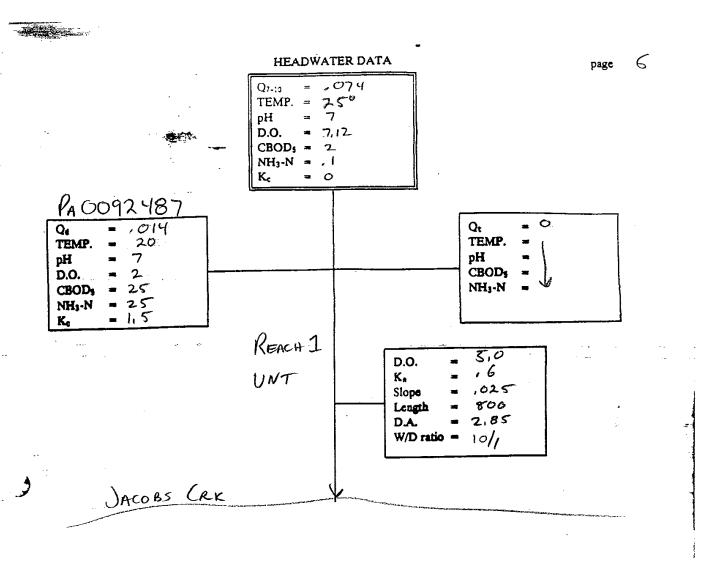
Nutrient monitoring is required to establish the nutrient load from the waste water treatment facility and the impacts that load may have on the quality of the receiving stream(s). A 1/year monitor and report requirement for Total N & Total P has been added to the permit as per Chapter 92.a.61.

Monitoring frequency for the proposed effluent limits are based upon Table 6-3, Self-Monitoring Requirements for Sewage Dischargers, from the Departments Technical Guidance for the Development and Specification of Effluent Limitations.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.


			Effluent L	imitations			Monitoring Requirements	
Parameter	Mass Units	(lbs/day) (1)		Concentrations (mg/L)			Minimum ⁽²⁾	Required
r al ametei	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	0.007	XXX	XXX	XXX	XXX	XXX	2/month	Measured
pH (S.U.)	XXX	XXX	6.0 Daily Min	XXX	9.0 Daily Max	XXX	1/day	Grab
DO	XXX	XXX	4.0 Daily Min	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
CBOD5	XXX	XXX	XXX	25	XXX	50	2/month	Grab
TSS	XXX	XXX	XXX	30	XXX	60	2/month	Grab
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab
Total Nitrogen	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/year	Grab
Ammonia Nov 1 - Apr 30	XXX	XXX	XXX	20	XXX	40	2/month	Grab
Ammonia May 1 - Oct 31	XXX	XXX	XXX	10	XXX	20	2/month	Grab
Total Phosphorus	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/year	Grab

Compliance Sampling Location: 001

TRC_CALC

+ Xd + (AFC_Ye*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT afc EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5) WIA_cfc WLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) + Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) WIA_cfc WLA_cfc EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1)) MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)	TRC EVALUATION							
O.007	Input appropria	te values in /	A3:A9 and D3:D9					
1	0.074	= Q stream (cfs)	0.5	= CV Daily			
1	0.007	= Q discharg	ge (MGD)	0.5	= CV Hourly			
Chlorine Demand of Discharge			-	1	= AFC_Partial N	lix Factor		
BAT/BPJ Value	0.3	= Chlorine D	emand of Stream	1	= CFC_Partial N	lix Factor		
Source Reference AFC Calculations Reference CFC Calculations				15	= AFC_Criteria	Compliance Time (min)		
Source Reference AFC Calculations Reference CFC Calculations	0.5	= BAT/BPJ V	/alue	720	= CFC_Criteria	Compliance Time (min)		
TRC 1.3.2.iii WLA afc = 2.199 1.3.2.iii WLA cfc = 2.136 PENTOXSD TRG 5.1a LTAMULT afc = 0.373 5.1c LTAMULT cfc = 0.581 PENTOXSD TRG 5.1b LTA_afc= 0.819 5.1d LTA_cfc = 1.242 Source Effluent Limit Calculations PENTOXSD TRG 5.1f AML MULT = 1.231 PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.500 BAT/BPJ INST MAX LIMIT (mg/l) = 1.635 WLA afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc))+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT afc Wla_afc*LTAMULT_afc WLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc))+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc))+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) wla_cfc*LTAMULT_cfc AML MULT EXP(2.326*LN((cvd^2/no_samples+1)) MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT) MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)	0	= % Factor o	of Safety (FOS)		=Decay Coeffic	ient (K)		
PENTOXSD TRG	Source	Reference	AFC Calculations		Reference	CFC Calculations		
Source Effluent Limit Calculations	TRC	1.3.2.iii	WLA afc =	2.199	1.3.2.iii	WLA cfc = 2.136		
Source Effluent Limit Calculations	PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581		
PENTOXSD TRG 5.1f AML MULT = 1.231 PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.500 BAT/BPJ INST MAX LIMIT (mg/l) = 1.635 WLA afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc))+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT afc EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5) LTA_afc wla_afc*LTAMULT_afc WLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc))+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) LTA_cfc wla_cfc*LTAMULT_cfc AML MULT EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1)) MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)	PENTOXSD TRG	5.1b	LTA_afc=	0.819	5.1d	LTA_cfc = 1.242		
PENTOXSD TRG 5.1f AML MULT = 1.231 PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.500 BAT/BPJ INST MAX LIMIT (mg/l) = 1.635 WLA afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc))+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT afc EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5) LTA_afc wla_afc*LTAMULT_afc WLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc))+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) LTA_cfc wla_cfc*LTAMULT_cfc AML MULT EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1)) MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)	Course		E#B	at Limit Colou	ations			
PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.500 BAT/BPJ INST MAX LIMIT (mg/l) = 1.635 WLA afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc))+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT afc EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5) LTA_afc wla_afc*LTAMULT_afc WLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc))+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) LTA_cfc wla_cfc*LTAMULT_cfc AML MULT EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1)) MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)		E 45	Ellide					
WLA afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc)) + Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT afc EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5) LTA_afc wla_afc*LTAMULT_afc WLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) + Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) LTA_cfc wla_cfc*LTAMULT_cfc AML MULT EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1)) AVG MON LIMIT MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)			AVC MON			DAT/DD I		
WLA afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc))+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT afc EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5) LTA_afc wla_afc*LTAMULT_afc WLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc))+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) LTA_cfc wla_cfc*LTAMULT_cfc AML MULT EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1)) AVG MON LIMIT MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)	FENTOXSD TRG	5. Ig				BATIBLE		
+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT afc EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5) Wla_afc*LTAMULT_afc WLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc))+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) wla_cfc*LTAMULT_cfc AML MULT EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1)) MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)			1101 11101	Cimir (mgn)	1.000			
+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT afc EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5) Wla_afc*LTAMULT_afc WLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc))+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) wla_cfc*LTAMULT_cfc AML MULT EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1)) MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)								
+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT afc EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5) Wla_afc*LTAMULT_afc WLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc))+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) wla_cfc*LTAMULT_cfc AML MULT EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1)) MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)								
LTAMULT afc	WLA afo	(.019/e(-k*Al	FC_tc)) + [(AFC_Yc*Qs*.019	/Qd*e(-k*AFC	_tc))			
\text{LTA_afo} \text{wla_afc*LTAMULT_afc'} \text{WLA_cfc} \text{(.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc))} \text{+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)} \text{LTAMULT_cfc} \text{EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5)} \text{wla_cfc*LTAMULT_cfc} \text{EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1))} \text{MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)} \text{MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)}	l	+ Xd + (AF	C_Yc*Qs*Xs/Qd)]*(1-FOS/10	0)				
WLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc))+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) wla_cfc*LTAMULT_cfc AML MULT EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1)) MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)	LTAMULT afo	EXP((0.5*LN)	(cvh^2+1))-2.326*LN(cvh^2+	1)^0.5)				
+ Xd + (CFC_Ye*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) LTA_cfc wla_cfc*LTAMULT_cfc AML MULT EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1)) AVG MON LIMIT MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)	LTA_afo	wla_afc*LTA	MULT_afc					
+ Xd + (CFC_Ye*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) LTA_cfc wla_cfc*LTAMULT_cfc AML MULT EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1)) AVG MON LIMIT MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)	MI A -F-	/ 044/-/ 540	EO 4-) - E/OEO V-+O-+ 044/	Odta/ LtCEC	4-11			
LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) LTA_cfc wla_cfc*LTAMULT_cfc AML MULT EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1)) AVG MON LIMIT MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)	WLA_CIC				_tc))			
LTA_cfc wla_cfc*LTAMULT_cfc AML MULT EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1)) AVG MON LIMIT MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)	I TAMILIT of							
AML MULT EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1)) AVG MON LIMIT MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)	_	" ' - 1 " ' - 1 ' '						
AVG MON LIMIT MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)	217_010	ma_olo ETA						
, - , , - , - ,	AML MULT	AML MULT EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1))						
INST MAX LIMIT 1.5*((av_mon_limit/AML_MULT)/LTAMULT_afc)	AVG MON LIMIT	MIN(BAT_BP	J,MIN(LTA_afc,LTA_cfc)*AN	IL_MULT)	-			
	INST MAX LIMIT	1.5*((av_mor	n_limit/AML_MULT)/LTAMUL	T_afc)				

NPOFS PACOG2487 SINCE INTERACTION OF THE BARSOTTI, MENNONITE ASSOC, AND MACCARELLI DISCHARLES IS NOT EXECTED TO OCCUR, THE BARSOTTI STP DISCHARGE WILL BE MODELED AS A SINGLE DISCHARGE IN THE EMPR MODELLEING WQM6,3. MODEL STP DISCHARGE From RATE 7000 GAD RUN OFF PERIOD 12 HAS FROM PART II 2676 402 7000 GPD x 24 HRS/DAY = 14,000 GPD RATE. HOWEVER, FLOW EQUALIZATION PROVIDED USE 7000CPD REACH DESCRIPTION FROM POINT of DISCHARGE TO CONFLUENCE WITH JACOBS CRK. DISTANCE = 800 ft SLOPE = . 025 pt/ft = (1160-1140) /800' D.O. GOAL 5.0 mg/L

NINO BARSOTTI RESTAURANT STP NPDES PA0092487 FILE:

SUMMER EVALUATION

HEADWATERS AND TRIBUTARY DATA

NO. OF REACHES : 1

RH	07-10	T	PΗ	ממ	CEOD!5	M-EHM
	(CFS)	(C)		(MG/L)	(MG/L)	(MG/L)
HW	.074	25	7	7.12	2	. 1
1	0					

STREAM CHARACTERISTICS

RCH	07-10	7	FH	DC)	CBODS	MEHM
	CFS	(C)		MO/L	MG/L	MG/L
					~~~~~~	
i.	. 07	25	7	7.12	2	. 1

Q 1-10/Q 7-10 = .64Q30-10/Q 7-10 = 1.36

NINO BARSOTTI RESTAURANT STF NPDES PA0092487 FILE:

#### DISCHARGER DATA 07-10 DESIGN CONDITIONS

RH		T				NH3-N	KC
	MGD	(C)		M6/L.	MG/L	MG/L	
1	7E-03	20	7	2	25	25	1.5

		REACH	i CHARAC	TERIST:	ICS	
RH			RCH.	RCH.	DRAIN	
	D.O.	KN	SL.	LEN.	AREA	W/D
	GOAL.	(/D)	(FT/FT)	(FT.)	(MI^2)	
•						
1	55	. 6	. 025	800	2,85	10

NINO BARSOTTI RESTAURANT STP NPDES PA0092487 FILE:

REACH CHARACTERISTICS

RH		
	KR	TT
	(ZD)	(DAYS)
	···	
1	Ο	Ō

FILE: BARSOTTI REST STP.WQM6.3

NH3-N DISCHARGE ALLOCATIONS AT 030-10

DIS	Q	IND.	ALL.	CRIT.	PCT.
٠		CONC.	CONC.	RCH.	RED.
	(MGD)	(MG/L)	(MG/L)		(%)
1	7E-03	13.35	13.35	0	O

#### NH3-N DISCHARGE ALLOCATIONS AT Q1-10

DIS	Ö	IND.	ALL.	CRIT.	PCT.	
		CONC.	CONC.	RCH.	RED.	
	(MGD)	(MG/L)	(MG/L)		(%)	
1	7E-03	38.37	38.37	0	0	

FILE: BARSOTTI REST STP.WQM6.3

# SUMMER EVALUATION

MULT	CPLE DIS	CHARGE LI	MITATIONS
(TOTAL)	DISCHARG	E = 7E-03	5 MGD
TEMP = 24	1.4		PH = 7
CBOD-5= 4	4.94 NH	3-N≕ 1.75	D.O. = 6.47
KC'= .907	7 KN:	= .6	D.O.GOAL = 5
KR= 14.05	51		(OWENS)
DIS. 1	RCH. 1	TRVL T	IME:.193
TR.TM.	CBOD-5	NH3-N	D.O.
(DAYS)	(MG/L)	(MG/L)	(MG/L)
arm and make the tree was			mental Manager and and
.019	4.83	1.76	6.69
.039	4.73	1.73	6.86
.058	4.63	1.71	7
<b>.</b> 077	4.53	1.68	7.11
.097	4.43	1.65	7.12
.116	4.34	1.63	7,12
.135	4.25	1.6	7.12
. 155	4.16	1.57	7.12
. 174	4.07	1.55	7.12
. 193	3.98	1.52	7.12

#### EFFLUENT LIMITATIONS DISPLAY

ım	pose	<u>.</u>	20,0	10.0	25		
	1	7E-03	26.7	13.4	25	13.4	2
		MGD	DAY	DAY	30-DAY	30-DAY	D.O.
	#		1	30	C-BOD5	NH3N	EFF.
	DIE	j 1.!	MHS-r	A IDX	. 1113	SEL UXYE	M.dt

THE ALLOWABLE NH3-N EFFLUENT CONCENTRATIONS WERE SLIGHTLY REOVEED TO ACCOUNT FOR THE OTHER DISCHARCES IN THE WATERSHED WHICH MAY BE ELEVATING THE NH3N STREAM CONCENTRATION.

12_

FILE: BARSOTTI REST STP. WQM6.3 WINTER EVALUATION

#### HEADWATERS AND TRIBUTARY DATA

NO. OF REACHES : 1

RH	07-10	-	PH	DO	CBOD5	NH3-N
	(CFS)	(C)		(MG/L)	(MG/L)	(MG/L.)
HW	.148	5	7	10.2	2 .	. 1
1	0					

#### DISCHARGER DATA Q7-10 DESIGN CONDITIONS

RH	Q	T	1-1-1	DO	CBOD5	NH3N	KC
	MGD	(C)		MG/L	MG/L	MG/L	
							***
1	7F-03	1.5	7	2	25	25	1.5

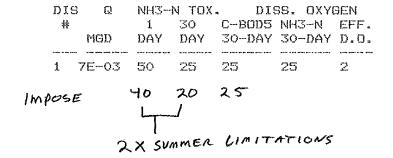
FILE: BARSOTTI REST STP. WOM6.3 WINTER

		REACH	1 CHARAC	IERISI.	LUS	
RH			RCH.	RCH.	DRAIN	
	D.O.	KN	SL.	LEN.	AREA	W/D
	GOAL	(/D)	(FT/FT)	(FT.)	(MI^2)	
			F			
1	5	. 6	.025	800	2.85	10

REACH CHARACTERISTICS

FILE: BARSOTTI WINTER. WOM4.3 WINTER

NH3-N DISCHARGE ALLOCATIONS AT 030-10


DIS	6	IND.	ALL.	CRIT.	PCT.
		CONC.	CONC.	RCH.	RED.
	(MGD)	(MG/L)	(MG/L)		(%)
tests word total					
1	7F-03	25	25	Ο	0

NH3-N DISCHARGE ALLOCATIONS AT Q1-10

DIS	Q	IND.	ALL.	CRIT.	PCT.
		CONC.	CONC.	RCH.	RED.
	(MGD)	(MG/L)	(MG/L)		(%)
			K-1		
1	7E-03	50	50	0	O

FILE: BARSOTTI WINTER. WOM6.3 WINTER

#### EFFLUENT LIMITATIONS DISPLAY

