

Southwest Regional Office CLEAN WATER PROGRAM

Application Type
Renewal
NonMunicipal
Major / Minor
Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. PA0093076

APS ID 1027574

1334631

Authorization ID

pplicant Name	Jones	Estates Brookhaven LLC	Facility Name	Brookhaven Estates MHP
applicant Address	2310 South Miami Blvd		Facility Address	580 Moore Road
	Durha	m, NC 27703		Washington, PA 15301-8041
pplicant Contact	Jason	Freed	Facility Contact	Thomas Bibby
pplicant Phone	(917)	225-9614	Facility Phone	(724) 366-5184
lient ID	35970	14	Site ID	250152
h 94 Load Status	Not O	verloaded	Municipality	South Franklin Township
onnection Status	No Lir	nitations	County	Washington
ate Application Rece	eived	November 25, 2020	EPA Waived?	Yes
ate Application Acce	epted	November 25, 2020	If No, Reason	

Summary of Review

This review is in response to an application received on November 25, 2020. Jones Estates Brookhaven LLC owns and operates the Brookhaven Estates Mobile Home Park in South Franklin Township, Washington County. Sewage generated at the mobile home park is treated with a comminutor, three aeration tanks in series, a settling tank, a sludge holding tank, intermittently dosed sand filters, chlorination and de-chlorination before discharging to an unnamed tributary of Chartiers Creek through outfall 001.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
х		It al	
		Stephanie Conrad / Environmental Engineering Specialist	February 24, 2021
х		Chke	
		Christopher Kriley, P.E. / Program Manager	March 16, 2021

Discharge, Receiving Waters and Water Supply Infor	rmation
Outfall No. 001	Design Flow (MCD) 0.02
1.01itudo 400 6! 10 00"	Design Flow (MGD) 0.02 Longitude -80° 17' 36.00"
Latitude 40° 6′ 18.00″ Quad Name	Longitude80° 17' 36.00" Quad Code
Wastewater Description: Sewage Effluent	Quad Code
Unnamed Tributary of Chartiers	
Receiving Waters Creek (WWF)	Stream Code 37155
NHD Com ID	RMI <u>1.19</u>
Drainage Area 0.24	Yield (cfs/mi²) 0.034
Q ₇₋₁₀ Flow (cfs) 0.0082	Q ₇₋₁₀ Basis Chartiers Creek Basin
Elevation (ft)	Slope (ft/ft)
Watershed No. 20-F	Chapter 93 Class. WWF
Existing Use	Existing Use Qualifier
Exceptions to Use	Exceptions to Criteria
Assessment Status Assessed	
Cause(s) of Impairment	
Source(s) of Impairment	
TMDL Status Final, Final	Chartiers Creek, & Chartiers Creek Name Watershed
Background/Ambient Data pH (SU)	Data Source
Temperature (°F)	
Hardness (mg/L)	
Other:	
Nearest Downstream Public Water Supply Intake	Western Pennsylvania Water Company
PWS Waters	Flow at Intake (cfs)
PWS RMI	Distance from Outfall (mi)

Changes Since Last Permit Issuance: NONE

Other Comments:

The discharge is to an UNT to Chartiers Creek, which flows into the Chartiers Creek Watershed that has a Final TMDL and is impaired by PCB and Chlordane. No WLAs have been developed for this sewage discharge and they are not expected to contribute to the stream impairment for these pollutants.

The discharge is to an UNT to Chartiers Creek, which flows into the Chartiers Creek Watershed that has a Final TMDL and is impaired by metals and pH. This sewage discharge is not expected to contribute to the stream impairment for which abandoned mine drainage is source of such impairment. No WLAs have been developed for this sewage discharge and they are not expected to contribute to the stream impairment for these pollutants.

Treatment Facility Summary

Treatment Facility Name: Brookhaven Estates MHP STP

WQM Permit No.	Issuance Date
6374421	12/19/1974

Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
	Secondary With		Chlorine With	
Sewage	Ammonia Reduction	Extended Aeration	Dechlorination	0.01
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal

	Compliance History
Summary of DMRs:	Between 2/19/2016 and 2/19/2020 The facility has complied with submittal of Data Management Reports (DMR) through the electronic DMR (eDMR) system. On 6/30/2020 an effluent limit violation was reported for a geometric mean Fecal Coliform of 564 CFU/ 100 mL and an instantaneous maximum of 1920 CFU/ 100 mL. There were no additional effluent limit violations reported.
Summary of Inspections:	The facility received an administration/file review on 9/02/2020 (inspection ID 3080276). The inspection resulted in one notice of violation type 92A.62 for failure to comply with annual fee payment. An administrative order was also enforced on the property on 10/7/2020. Both the Administrative order and Notice of Violation have been closed.

Other Comments: The Facility has been purchased by Jones Estates since the previous permit became effective. It is unknown if these violations occurred during the ownership of Jones Estates or the previous owner. An Operations Compliance Check Summary Report was conducted on 2/19/2021 and is attached for reference.

	Develop	ment of Effluent Limitations
Outfall No.	001	Design Flow (MGD) .02
Latitude	40° 7' 48.00"	Longitude -80° 18' 30.00"
Wastewater D	Description: Sewage Effluent	-

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CPOD-	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD ₅	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform (5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform (5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform (10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform (10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Other Comments: WQAM6.3 output files confirm that the above Technology-Based CBOD5 Limitation is acceptable.

Water Quality-Based Limitations

The following limitations were determined through water quality modeling (output files attached):

Parameter	Limit (mg/l)	SBC	Model
Ammonia Nitrogen	2.0	Average Monthly	WQM6.3
Dissolved Oxygen	5.0	Minimum	WQAM6.3
Total Residual Chlorine	0.05	Average Monthly	TRC Spreadsheet

Comments: Brookhaven Estates MHP is one of many facilities discharging to either Chartiers Creek or its tributaries. The possible interactions between six sewage treatment plants were considered through the use of WQAM63. The other five STP's include in the evaluation are:

- Joe Walker Elementary School STP (PA0096121)
- Franklin Manor STP (PA0033294)
- Ridgecrest MHP STP (PA0042820)
- Airways MHP STP (PA0094102)
- Treehaven MHP STP (PA0095834)

The discharge was previously modeled using WQM6.3 to evaluate CBOD₅, Ammonia Nitrogen and Dissolved Oxygen parameters and there has been no changes to the discharge or the receiving stream. Therefore, it is not necessary to remodel these parameters using WQM 7.0, and the existing limitations will be re-imposed.

Total Residual Chlorine was remodeled using recommended in-stream and discharge chlorine demand default values of 0.3 mg/l and 0 mg/l. This modeling resulted in a TRC limit of 0.05 mgl/l which is more restrictive than the TRC limit of 0.15mg/l previously imposed on this facility. The more restrictive TRC limit will be imposed upon issuance of the new permit.

Review of historic DMRs determined that the facility already meets the lower effluent limit and therefore a more stringent limit does not impose a significant burden, as a tablet de-chlorinator is in use at this facility.

Anti-Backsliding

Section 402(o) of the Clean Water Act (CWA), enacted in the Water Quality Act of 1987, establishes anti-backsliding rules governing two situations. The first situation occurs when a permittee seeks to revise a Technology-Based effluent limitation based on BPJ to reflect a subsequently promulgated effluent guideline which is less stringent. The second situation addressed by Section 402(o) arises when a permittee seeks relaxation of an effluent limitation which is based upon a State treatment standard of water quality standard.

Previous limits can be used pursuant to EPA's anti-backsliding regulation 40 CFR 122.44 (I) Reissued permits. (1) Except as provided in paragraph (I)(2) of this section when a permit is renewed or reissued. Interim effluent limitations, standards or conditions must be at least as stringent as the final effluent limitations, standards, or conditions in the previous permit (unless the circumstances on which the previous permit was based have materially and substantially changed since the time the permit was issued and would constitute cause for permit modification or revocation and reissuance under §122.62). (2) In the case of effluent limitations established on the basis of Section 402(a)(1)(B) of the CWA, a permit may not be renewed, reissued, or modified on the basis of effluent guidelines promulgated under section 304(b) subsequent to the original issuance of such permit, to contain effluent limitations which are less stringent than the comparable effluent limitations in the previous permit.

The facility is not seeking to revise the previously permitted effluent limits.

Additional Considerations:

For pH, Dissolved Oxygen (DO) and Total Residual Chlorine (TRC), a monitoring frequency 1/day has been imposed. In general, less frequent monitoring may be established only when the permittee demonstrates that there will be no discharge on days where monitoring is not required.

Nutrient monitoring is required to establish the nutrient load from the wastewater treatment facility and the impacts that load may have on the quality of the receiving stream(s). A 1/year monitor and report requirement for Total N & Total P has been added to the permit as per Chapter 92.a.61.

Monitoring frequency for the proposed effluent limits are based upon Table 6-3, Self-Monitoring Requirements for Sewage Dischargers, from the Departments Technical Guidance for the Development and Specification of Effluent Limitations.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001) and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date

			Effluent L	imitations			Monitoring Red	quirements
Parameter	Mass Units (lbs/day)			Concentrat	Minimum	Required		
raiametei	Average Monthly		Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	0.02	XXX	XXX	XXX	XXX	XXX	2/month	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab
Dissolved Oxygen	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab
Total Residual Chlorine	XXX	XXX	XXX	0.05	XXX	0.16	1/day	Grab
CBOD5	XXX	XXX	XXX	25	XXX	50	2/month	Grab
Total Suspended Solids	XXX	XXX	XXX	30	XXX	60	2/month	Grab
Fecal Coliform (CFU/100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1,000	2/month	Grab
Fecal Coliform (CFU/100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2,000 Geo Mean	XXX	10,000	2/month	Grab
Total Nitrogen	XXX	XXX	XXX	XXX	Report	XXX	1/year	Grab

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

		Effluent Limitations							
Parameter	Mass Units (lbs/day)			Concentrat	Minimum	Required			
Farameter	Average Monthly		Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type	
Ammonia-Nitrogen									
May 1 - Oct 31	XXX	XXX	XXX	2.0	XXX	4.0	2/month	Grab	
Ammonia-Nitrogen Nov 1 - Apr 30	XXX	XXX	XXX	6.0	XXX	12.0	2/month	Grab	
Total Phosphorus	XXX	XXX	XXX	XXX	Report	XXX	1/year	Grab	

Compliance Sampling Location: Outfall 001

Total Recoverable Chlorine Modeling

TRC_CALC_Jones Estate

	ATION						
Input appropria	ate values in A	A3:A9 and D3:D9					
0.0082	= Q stream (c	efs)	0.5	= CV Daily			
	= Q discharg	•		= CV Hourly			
	no. sample	• •	1	= AFC_Partial N	lix Factor		
		emand of Stream		= CFC_Partial N			
	-	emand of Discharge		15 = AFC_Criteria Compliance Time (min)			
0.6	BAT/BPJ V	alue		0 = CFC_Criteria Compliance Time (min)			
(= % Factor o	f Safety (FOS)		Decay Coeffic			
Source	Reference	AFC Calculations		Reference	CFC Calculations		
TRC	1.3.2.lii	WLA afc =	0.104	1.3.2.lii	WLA cfc = 0.093		
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581		
PENTOXSD TRG	5.1b	LTA_afc=	0.039	5.1d	LTA_cfc = 0.054		
Source		Efflue	nt Limit Calcul	ations			
PENTOXSD TRG			AML MULT =	1.231			
PENTOXSD TRG	5.1g	AVG MON	LIMIT (mg/l) =	0.047	AFC		
		INSI MAX	LIMIT (mg/l) =	0.155			
WLA afc		C_tc)) + [(AFC_Yc*Qs*.019/ ;_Yc*Qs*Xs/Qd)]*(1-FOS/10/	•	_tc))			
LTAMULT afc	•	cvh^2+1))-2.326*LN(cvh^2+	•				
LTA_afc	wla_afc*LTA	**	.,,				
	(.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) + Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)						
WLA_cfc		_ , -, -	• -	,,			
_	+ Xd + (CFC	_ , -, -	0)		.5)		
LTAMULT_cfc	+ Xd + (CFC	C_Yc*Qs*Xs/Qd)]*(1-F0S/10 cvd^2/no_samples+1))-2.32	0)		.5)		
LTAMULT_cfc LTA_cfc	+ Xd + (CFC EXP((0.5*LN(wla_cfc*LTAN	C_Yc*Qs*Xs/Qd)]*(1-F0S/10 cvd^2/no_samples+1))-2.32	0) 6*LN(cvd^2/nd	o_samples+1)^0	•		
WLA_cfc LTAMULT_cfc LTA_cfc AML MULT AVG MON LIMIT	+ Xd + (CFC EXP((0.5*LN(wla_cfc*LTAM EXP(2.326*LN	C_Yc*Qs*Xs/Qd)]*(1-F08/10 cvd^2/no_samples+1))-2.32 MULT_cfc	0) 6*LN(cvd^2/nd	o_samples+1)^0	•		

Water Quality Based Effluent Limits Modeling

The second secon	To the company	2
Fronklin Manor w10 calcul	lettov3	
Total Q = WF + ISF		
0 = 0.06 mad + 0.01 cm		
= 0.093 cfs + 0.01 cfs : 0.1	or क्षे	
Married Control of the Control of th	w.d.	
No deeth do to avoilable A	2 ×d	
EM: A: 9/V when V:262 . Q	x5, 24, 22 0: 16	1. (P
- 2.12 - 107	3 - 58.6 - 1291	A = 58.6
= 2.62 * 3	8 y 1.90 × 1.30	
= 1,34 m	pd = 0.082 fp	
2×d= ,012 Fpr.		
2.d. 126 H		
4: 1.3CH) = 163 ++	w/0: 2/13 = 217:1	
Dien to the alogo of the reach los	at it appear unlikely the c	integ
velocity would occur. Colculate	e nomograph velocity.	
From chart: V: 0.24 Fps	A3 E01	
A. 8/v3 2	43. 501. 163. Co.	
1	vd: 429 ft	
	d429 ft /2 ft : . 215 ft	
` ~	10. 2) 315 - 42.1	
thru " dout/ 12 = 900 ft	= 3-750 sec = ,04371 day	

W No. 10 to	
W/D colculations (umter)
Total Q = WF + ISF	
• 0,043 cfs • 0,0	A . CH CA . C
From nomograph chart: V: 1245 fps	
N. 1342 tbs	width of shrem: 2', A=2nd
	\delta 2
A: ^Q / _V →	2 · d : 113 · B . 2 · 15 Fps :
	2 rd : .46 Pl
	d: .33 P4
wis: 1/2	(* %n 1)
, Aut	900 A /245 fps . 3673 sec
Actocity . \ Ums .	7,245 tp) 38 13 84 1.643
	나이들의 이번 이번 이 강조근로됐
4.1	*

FRANCLIN MANOR BTP COLDER PERIOD FILE: DISCHARGER DATA 07-10 DESIGN CONDITIONS T PH DO COODS NAS-H KC AH D 15 7.6 5 10 REACH CHARACTERISTICS RCH. RCH. DRAIN LEN. (/D) (FT/FT) (FT.) (HI*2) .0111 900 10

J WALKER STP COLDER	PERIOD							
F10-1			d £					
	4분년 .							
	DIS	SCHARG	E CHA	RACTERI	STICS			
	END OF RE	EACH	1					
	(TOTAL) F							
	PH				.17			
	C-BODS (N					9		
	NH3-N (ME KC (1/DAY	3/L)			.18.2		* OL	
	KU (1/DA)					1 - 8.		
		4 183						
	EFFL	LBENT	LINIT	ATIONS	DISPLAY			
	EFFL DIS Q				DISPLAY 65. DXY			
	DIS Q	NH3-	N TOX	. D1	BS. DXY	GEN EFF.		
	DIS Q MGD	NH3- 1 DAY	N TOX 30 DAY	C-BOD5 30-DAY	BS. DXY NH3-N 30-DAY	GEN EFF. D.O.		
	DIS Q	NH3- 1 DAY	N TOX 30 DAY	. D1	BS. DXY	GEN EFF.		
	DIS Q MGD	NH3- 1 DAY	N TOX 30 DAY	C-BOD5 30-DAY	BS. DXY NH3-N 30-DAY	GEN EFF. D.O.		
	DIS Q MGD	NH3- 1 DAY	N TOX 30 DAY	C-BOD5 30-DAY	BS. DXY NH3-N 30-DAY	GEN EFF. D.O.		
	DIS Q MGD	NH3- 1 DAY	N TOX 30 DAY	C-BOD5 30-DAY	BS. DXY NH3-N 30-DAY	GEN EFF. D.O.		
	DIS Q MGD	NH3- 1 DAY	N TOX 30 DAY	C-BOD5 30-DAY	BS. DXY NH3-N 30-DAY	GEN EFF. D.O.		
	DIS Q MGD	NH3- 1 DAY	N TOX 30 DAY	C-BOD5 30-DAY	BS. DXY NH3-N 30-DAY	GEN EFF. D.O.		
	DIS Q MGD	NH3- 1 DAY	N TOX 30 DAY	C-BOD5 30-DAY	BS. DXY NH3-N 30-DAY	GEN EFF. D.O.		
	DIS Q MGD	NH3- 1 DAY	N TOX 30 DAY	C-BOD5 30-DAY	BS. DXY NH3-N 30-DAY	GEN EFF. D.O.		
	DIS Q MGD	NH3- 1 DAY	N TOX 30 DAY	C-BOD5 30-DAY	BS. DXY NH3-N 30-DAY	GEN EFF. D.O.		
	DIS Q MGD	NH3- 1 DAY	N TOX 30 DAY	C-BOD5 30-DAY	BS. DXY NH3-N 30-DAY	GEN EFF. D.O.		

