

Northwest Regional Office CLEAN WATER PROGRAM

Application Type
Facility Type
Major / Minor

Renewal

Non-Municipal

Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. PA0093360

APS ID 1053881

Authorization ID 1380128

Applicant Name	Lake	Arthur Estates, LLC	Facility Name	Lake Arthur Estates MHP	
Applicant Address	2925	New Castle Road	Facility Address	2925 New Castle Road	
	Porte	rsville, PA 16051-1223	<u></u>	Portersville, PA 16051-1223	
Applicant Contact		rt Sechan, Managing Partner han@newedgecg.com)	Facility Contact	Robert Sechan, Managing Partner (rsechan@newedgecg.com)	
Applicant Phone	(724)	368-8875	Facility Phone	(724) 368-8875 244083 Muddycreek Township	
Client ID	32954	40	Site ID		
Ch 94 Load Status	Not C	verloaded	Municipality		
Connection Status	No Li	mitations	County	Butler	
Date Application Rece	eived	December 22, 2021	EPA Waived?	Yes	
Date Application Acce	epted	December 28, 2021	If No, Reason	-	

Summary of Review

Act 14 - Proof of Notification was submitted and received.

A Part II Water Quality Management permit is not required at this time.

The applicant should be able to meet the limits of this permit, which will protect the uses of the receiving stream.

I. OTHER REQUIREMENTS:

- A. Stormwater into Sewers
- B. Right of Way
- C. Solids Handling
- D. Public Sewerage Availability
- E. Little or no assimilative capacity

SPECIAL CONDITIONS:

II. Solids Management

There are no open violations in efacts associated with the subject Client ID (329540) as of 9/6/2023. 9/6/2023 CWY

Approve	Deny	Signatures	Date	
		Stephen A. McCauley	9/6/2023	
^		Stephen A. McCauley, E.I.T. / Environmental Engineering Specialist	9/0/2023	
		Chad W. Yurisic	9/6/2023	
^		Chad W. Yurisic, P.E. / Environmental Engineer Manager	9/0/2023	

scharge, Receiv	ing Wate	rs and Water Supply Info	rmation	
Outfall No. 00	1		Design Flow (MGD)	0.425
Latitude 40	0 57' 51.70	0"	Longitude	-80° 08' 58.70"
Quad Name	-		Quad Code	-
Wastewater Des	cription:	Sewage Effluent	-	
Receiving Water	s Mudo	ly Creek (WWF)	Stream Code	34081
NHD Com ID	-	16820	RMI	3.33
Drainage Area	0.24		Yield (cfs/mi²)	0.0342
Q ₇₋₁₀ Flow (cfs)	0.008	32	Q ₇₋₁₀ Basis	calculated
Elevation (ft)	1167		Slope (ft/ft)	0.011
Watershed No.	20-C		Chapter 93 Class.	WWF
Existing Use	-		Existing Use Qualifier	
Exceptions to Us	se -		Exceptions to Criteria	-
Assessment Sta	tus	Attaining Use(s)		
Cause(s) of Impa	airment			
Source(s) of Imp	airment			
TMDL Status			Name	
Background/Aml	oient Data		Data Source	
pH (SU)		-	-	
Temperature (°F)	<u>-</u>	-	
Hardness (mg/L))	<u>-</u>	-	
Other:		<u>-</u>	-	
Nearest Downsti	eam Publ	ic Water Supply Intake	PA American Water Company	y - Ellwood City
PWS Waters	Connog	uenessing Creek	Flow at Intake (cfs)	27.6
PWS RMI	0.2		Distance from Outfall (mi)	14.5

Sludge use and disposal description and location(s):

All sludge is hauled to the Dalton Processing Facility by the Dalton Service Company, where it is ultimately disposed of at an approved landfill.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the Pennsylvania Bulletin in accordance with 25 Pa. Code § 92a.82. Upon publication in the Pennsylvania Bulletin, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the Pennsylvania Bulletin at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

NPDES Permit Fact Sheet Lake Arthur Estates MHP

Narrative: This Fact Sheet details the determination of draft NPDES permit limits for an existing discharge of 0.425 MGD of treated sewage from an existing non-municipal STP in Muddycreek Township, Butler County.

Treatment permitted under Water Quality Management (WQM) Permit No. 1096402 consists of the following: A comminutor and grit/rag screw, an aerated flow equalization tank, a 4-cell Sequential Batch Reactor (SBR), ultraviolet light disinfection, sludge thickening, and rapid sludge dewatering system.

1. Streamflow:

Unnamed Tributary to the Muddy Creek at Outfall 001:

Drainage Area: 0.24 sq. mi. (USGS StreamStats)
Yieldrate: 0.0342 cfsm from 1/30/2006 WQPR

% of stream allocated: 100% Basis: No nearby discharges

Q₇₋₁₀: 0.0082 cfs (USGS StreamStats)

2. Wasteflow:

Maximum discharge: 0.425 MGD = 0.657 cfs

Runoff flow period: 24 hours Basis: STP with flow equalization

The calculated stream flow (Q7-10) is much less than 3 times the permitted discharge flow. In accordance with the SOP, since this is an existing discharge that is no capable of meeting advanced treatment, the treatment requirements in document number 391-2000-014, titled, "Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers", dated April 12, 2008, will not be added for this facility.

Flow will be required to be monitored as authorized under Chapter 92a.61, and as recommended in the SOP.

3. Parameters:

The following parameters were evaluated: pH, Total Suspended Solids, Fecal Coliform, E. Coli, Total Phosphorus, Total Nitrogen, NH₃-N, CBOD₅, Dissolved Oxygen, and Disinfection.

a. pH

Between 6.0 and 9.0 at all times

Basis: Application of Chapter 93.7 technology-based limits.

The measurement frequency was previously set to 4/day, which will be reduced to 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001).

b. <u>Total Suspended Solids</u>

Limits are 30.0 mg/l as a monthly average and 60.0 as an instantaneous maximum.

Basis: Application of Chapter 92a47 technology-based limits.

c. Fecal Coliform

05/01 - 09/30: 200/100ml (monthly average geometric mean)

1,000/100ml (instantaneous maximum)

10/01 - 04/30: <u>2,000/100ml</u> (monthly average geometric mean)

10,000/100ml (instantaneous maximum)

Basis: Application of Chapter 92a47 technology-based limits

d. E. Coli

Monitoring was added for E. Coli at a frequency of 1/quarter.

Basis: Application of Chapter 92a.61 as recommended by the SOP for flows between 0.05 MGD and

1.0 MGD.

e. <u>Phosphorus</u>

Chapter 96.5 does not apply. The previous monitoring for Total Phosphorus will be retained in accordance with the SOP, based on Chapter 92a.61. The monitoring frequency will be reduced from 2/quarter to 1/quarter since the receiving stream is not impaired for nutrients, per the SOP.

f. <u>Total Nitrogen</u>

The previous monitoring for Total Nitrogen will be retained in accordance with the SOP, based on Chapter 92a.61. The monitoring frequency will be reduced from 2/quarter to 1/quarter since the receiving stream is not impaired for nutrients, per the SOP.

g. <u>Ammonia-Nitrogen (NH₃-N)</u>

Median discharge pH to be used: 7.2 Standard Units (S.U.)

Basis: <u>eDMR data from previous 12 months</u>

Discharge temperature: 25°C (default value used in the absence of data)

Median stream pH to be used: 7.0 Standard Units (S.U.)

Basis: default value used in the absence of data

Stream Temperature: <u>25°C</u> (default value used for WWF modeling)

Background NH₃-N concentration: <u>0.1</u> mg/l

Basis: Default value

Calculated NH₃-N Summer limits: $\underline{6.8}$ mg/l (monthly average)

<u>13.6</u> mg/l (instantaneous maximum)

Calculated NH₃-N Winter limits: 20.4 mg/l (monthly average)

40.8 mg/l (instantaneous maximum)

Result: WQ modeling resulted in the summer limits above (see Attachment 1). The winter limits are calculated as three times the summer limits. The calculated limits are less stringent than the current

limits, so the more restrictive limits will be retained.

h. CBOD₅

Median discharge pH to be used: 7.2 Standard Units (S.U.)

Basis: eDMR data from previous 12 months

Discharge temperature: <u>25°C</u> (default value used in the absence of data)

Median stream pH to be used: 7.0 Standard Units (S.U.)

Basis: <u>default value used in the absence of data</u>

Stream Temperature: 25°C (default value used for WWF modeling)

Background CBOD₅ concentration: 2.0 mg/l

Basis: <u>Default value</u>

Calculated CBOD₅ limits: <u>25.0</u> mg/l (monthly average)

50.0 mg/l (instantaneous maximum)

Result: WQ modeling resulted in the limits above (see Attachment 1). The calculated limits are the same as

the previous permit and will be retained.

i. <u>Dissolved Oxygen (DO)</u>

The Dissolved Oxygen minimum of 4.0 mg/l will be retained with this renewal. The technology-based minimum of 4.0 mg/l is recommended by the WQ Model (see Attachment 1) and the SOP based on Chapter 93.7, under the authority of Chapter 92a.61.

The measurement frequency was previously set to 4/day, which will be reduced to 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001).

j. <u>Disinfection</u>

	Total Residual Chlorine (TRC) limits:	 mg/l (monthly average) mg/l (instantaneous maximum)
\boxtimes	Ultraviolet (UV) light monitoring	

Basis: UV Intensity (µw/cm²) reporting will be retained with this renewal.

The measurement frequency was previously set to 4/day, which will be reduced to 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001).

4. Reasonable Potential Analysis for Receiving Stream:

A Reasonable Potential Analysis was performed in accordance with State practices for Outfall 001 using the Department's Toxics Management Spreadsheet (see Attachment 2) for Total Copper and Total Lead.

Result: The discharge concentrations for the following parameters were found to be greater than 10% of the calculated WQBELs:

Parameter	Discharge Conc. (mg/l)	WQBEL (mg/l)	%WQBEL
Total Copper	0.0175	0.034	>50%
Total Lead	0.00716	0.012	>50%

Per the SOP, since the maximum discharge concentration for Total Copper and Total Lead were greater than 50% of the calculated WQBELs, new limits will be added. Based on eDMR data, the limits are

attainable so no compliance schedule will be added. Both copper and lead were set in the previous permit as monitor only.

5. Reasonable Potential for Downstream Public Water Supply (PWS):

The Department's Toxics Management Spreadsheet does not calculate limits for parameters that are based on PWS criteria (TDS, Chloride, Bromide, and Sulfate). Since no relevant sampling was provided, mass-balance calculations were not performed.

Nearest Downstream potable water supply (PWS): <u>PA American Water Company - Ellwood City</u> Distance downstream from the point of discharge: 14.5 miles (approximate)

Parameter	PWS Criteria (mg/l)	Discharge Maximum (mg/l)
TDS	500	594
Chloride	250	88.9
Bromide	1.0	0.29
Sulfate	250	22.6

Result: No limits or monitoring are necessary as there is significant dilution available.

6. Anti-Backsliding:

Since all the permit limits in this renewal are the same or more restrictive than the previous NPDES Permit, anti-backsliding is not applicable.

7. Attachment List:

Attachment 1 - WQ Modeling Printouts

Attachment 2 - Toxics Management Spreadsheet

(The Attachments above can be found at the end of this document)

Compliance History

DMR Data for Outfall 001 (from July 1, 2022 to June 30, 2023)

Parameter	JUN-23	MAY-23	APR-23	MAR-23	FEB-23	JAN-23	DEC-22	NOV-22	OCT-22	SEP-22	AUG-22	JUL-22
Flow (MGD)												
Average Monthly	53.600	0.049	2.584	52684	0.05990	58820	0.075	75826	63985	65718	0.053	95248
pH (S.U.)												
Minimum	7.0	7.2	7.2	7.2	7.2	7.2	7.2	7.2	7.2	6.8	6.5	6.0
pH (S.U.)												
Maximum	7.6	8.7	7.7	7.6	7.6	7.6	7.8	7.7	7.7	7.6	7.6	7.9
DO (mg/L)												
Minimum	4.0	4.0	6.2	5.3	6.8	6.2	6.5	6.8	6.8	6.8	6.8	6.7
CBOD5 (lbs/day)												
Average Monthly	1.768	1.634	4.0	2.1641	1.96	7.0	2.502	2.529	2.10	2.1	1.725	3.17747
CBOD5 (mg/L)												
Average Monthly	4.0	4.0	2.06832	5	4.0	3.327	4.0	4.0	4.0	2.1684	4.0	4.9
TSS (lbs/day)												
Average Monthly	3.09	3.677	5.5	4.336	3.69	6.5	3.125	3.794	2.62	2.64	2.157	39.718
TSS (mg/L)												
Average Monthly	7	9	2.84394	10	6	3.08997	5.0	6	5	2.64	5.0	5.0
Fecal Coliform (No./100 ml)												
Geometric Mean	15	1	1.0	96	77	1.8920	4.636	2.00	146	89	187	204
Fecal Coliform (No./100 ml)		_										
Instantaneous Maximum	35	1	1.0	382	303	2.0	42	3.00	384	256	843	472
UV Intensity (µw/cm²)												
Average Monthly	100.00	100.00	100.0	100.00	100	100.00	100	100	100.00	100	100	88
Total Nitrogen (mg/L)												
Average Monthly	5.16			0.007			8.08			6.33		
Ammonia (lbs/day)	0.040	0.400	0.00	0.04004	0.4.70	4 0075	0.04075	0.400	0.045	0.0	0.400	4 400
Average Monthly	0.013	0.122	0.30	0.01301	0.1476	1.6975	0.31275	0.189	0.315	0.3	0.129	1.493
Ammonia (mg/L)	0.00	0.00	4 55404	0.0	0.00	0.0000	0.00	0.0	0.0	0.450	0.0	4.0
Average Monthly	0.03	0.30	1.55124	0.3	0.30	0.8069	0.83	0.3	0.6	0.158	0.3	1.9
Total Phosphorus (mg/L)	1 40			0.50			2.20			4 77		
Average Monthly	1.42			0.58			2.38			1.77		
Total Copper (mg/L)	5.97	0.00045	0.0004	0.00054	0.00704	0.0000	0.0175	0.007	0.007	0.007	0.007	0.007
Average Monthly	5.97	0.00945	0.0094	0.00951	0.00781	0.0083	0.0175	0.007	0.007	0.007	0.007	0.007
Total Lead (mg/L)	0.0	0.007	0.00716	0.007	0.007	0.007	0.007	0.007	0.007	0.00502	0.007	0.007
Average Monthly	0.8	0.007	0.00716	0.007	0.007	0.007	0.007	0.007	0.007	0.00592	0.007	0.007

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Doromotor	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum (2)	Required
Parameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	XXX	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0 Daily Min	XXX	9.0 Daily Max	XXX	1/day	Grab
DO	XXX	XXX	4.0 Daily Min	XXX	XXX	XXX	1/day	Grab
CBOD5	88.6	XXX	XXX	25.0	XXX	50	1/week	24-Hr Composite
TSS	106.0	XXX	XXX	30.0	XXX	60	1/week	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	1/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	1/week	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/quarter	Grab
UV Intensity (μw/cm²)	XXX	XXX	XXX	Report	XXX	XXX	1/day	Measured
Total Nitrogen	XXX	XXX	XXX	Report Daily Max	XXX	XXX	1/quarter	24-Hr Composite
Ammonia Nov 1 - Apr 30	37.2	XXX	XXX	10.5	XXX	21	1/week	24-Hr Composite
Ammonia May 1 - Oct 31	12.4	XXX	XXX	3.5	XXX	7	1/week	24-Hr Composite
Total Phosphorus	XXX	XXX	XXX	Report Daily Max	XXX	XXX	1/quarter	24-Hr Composite
Total Copper	120.5	XXX	XXX	0.034	XXX	0.068	2/month	24-Hr Composite

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

			Monitoring Red	quirements				
Parameter	Mass Units	(lbs/day) (1)		Concentrat	Minimum (2)	Required		
Parameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
								24-Hr
Total Lead	42.5	XXX	XXX	0.012	XXX	0.024	2/month	Composite

Compliance Sampling Location: at Outfall 001, after ultraviolet (UV) light disinfection.

Flow is monitor only based on Chapter 92a.61. The limits for pH and Dissolved Oxygen are technology-based on Chapter 93.7. The limits for CBOD₅, Total Suspended Solids (TSS), and Fecal Coliforms are technology-based on Chapter 92a.47. The limits for Ammonia-Nitrogen are water quality-based on Chapter 93.7. Monitoring for E. Coli, UV Intensity, Total Nitrogen, and Total Phosphorus is based on Chapter 92a.61. Limits for Total Copper and Total Lead are based on Chapter 16.

Attachment 1

WQM 7.0 Effluent Limits (Perennial Reach)

	SWP Basin St	ream Code		Stream Name	2		
	20C	34081		MUDDY CREE	K		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
2.990	Lake Arthur	PA0093360a	0.425	CBOD5	21.04		
				NH3-N	6.44	12.88	
				Dissolved Oxygen			2

CBOD5 and DO are the same as the Dry Reach inputs, so the Dry Reach limits are protective.

For NH3-N, the limit can be back-calculated using the equation: Ct = (Co)e-(kt), where

$$\label{eq:ct} \begin{split} Ct &= 6.44 \text{ mg/l} \\ k &= 0.7 \text{ days-1} = \text{constant for NH3-N} \\ t &= 0.085 \text{ days} = \text{Dry Reach Model travel time} \end{split}$$

Therefore, 6.44 mg/l = (Ct)e-(0.7 days-1)(0.085 days)

Ct = 6.83

NH3-N = 6.8 mg/l

WQM 7.0 D.O.Simulation

SWP Basin St	ream Code			Stream Name	
20C	34081			MUDDY CREEK	
<u>RMI</u>	Total Discharge	400	l) <u>Ana</u>	lysis Temperature (°C	S CONTRACTOR OF THE SECOND SEC
2.990	0.425			25.000	7.045
Reach Width (ft)	Reach Dep			Reach WDRatio	Reach Velocity (fps)
26.825	0.630			42.561	0.147
Reach CBOD5 (mg/L)	Reach Kc (<u>R</u>	each NH3-N (mg/L)	Reach Kn (1/days)
7.04	0.803			1.71	1.029
Reach DO (mg/L)	Reach Kr (*			Kr Equation	Reach DO Goal (mg/L)
6.073	8.759	9		Tsivoglou	5
Reach Travel Time (days)		Subreach	Results		
1.244	Tra∨Time	CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.124	6.21	1.50	6.29	
	0.249	5.48	1.32	6.51	
	0.373	4.83	1.16	6.73	
	0.498	4.26	1.02	6.92	
	0.622	3.76	0.90	7.10	
	0.746	3.31	0.79	7.25	
	0.871	2.92	0.70	7.38	
	0.995	2.58	0.61	7.50	
	1.120	2.27	0.54	7.54	
	1.244	2.00	0.47	7.54	

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	5		

Input Data WQM 7.0

	SWI Basi			Stre	eam Name		RM	l El	evation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	Witho	50000	Apply FC
	20C	340	081 MUDE	Y CREE	<		2.9	90	1147.00	53.70	0.000	00	0.00	✓
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	n Tem	<u>Tributary</u> np pH	Т	<u>Strear</u> emp	<u>n</u> pH	
Conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	;)	Ī	(°C)		
Q7-10 Q1-10 Q30-10	0.034	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.	00 2	5.00 7.	00	0.00	0.00	
					Di	scharge l	Data							
			Name	Per	rmit Numbe	Existing Disc r Flow (mgd)	Permit Disc Flow (mgc	o Di v Fl	sc Res	Di serve Ter actor	mp	Disc pH		
		Lake	Arthur	PA	0093360a	0.4250	0.00	000 0.	0000	0.000	25.00	7.20		
					Pa	arameter I	Data							
				Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
						(m	g/L) ((mg/L)	(mg/L)	(1/days)				
			CBOD5				21.04	2.00	0.00	1.50				
			Dissolved	Oxygen			2.00	7.54	0.00	0.00				
			NH3-N			:	22.63	0.00	0.00	0.70				

(inputs from Dry Reach Model)

Input Data WQM 7.0

					шр	ut Date	A 88 GC	71.7.0						
	SWP Basin			Str	eam Name		RMI		evation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PW Withd (mg	Irawal	App FC
	20C	340	081 MUDE	Y CREE	K		0.0	00	1059.00	58.20	0.00000	0	0.00	V
					St	ream Dat	a							
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	ı Ten	<u>Tributary</u> np pH	Te	<u>Strear</u> mp	<u>n</u> pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	;)	(%	C)		
Q7-10 Q1-10 Q30-10	0.034	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.0	00 2	5.00 7.	00	0.00	0.00	
					Di	scharge l	Data]	
			Name	Pe	rmit Number	Disc	Permiti Disc Flow (mgc	Dis	sc Res	Disserve Teractor	np	Disc pH		
		×				0.000	0.00	00 0.0	0000	0.000 2	25.00	7.00		
					Pa	rameter l	Data							
				Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
						(m	ıg/L) (mg/L)	(mg/L)	(1/days)				
	-		CBOD5				25.00	2.00	0.00	1.50		_		
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

WQM 7.0 Hydrodynamic Outputs

SWP Basin Stream Code 20C 34081					<u>Stream Name</u> MUDDY CREEK							
RMI	Stream Flow	PWS With	Net Stream Flow	Flow	14	Depth	Width	W/D Ratio	Velocity	Tra∨ Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-10	0 Flow											
2.990	1.83	0.00	1.83	.6575	0.00557	.63	26.83	42.56	0.15	1.244	25.00	7.04
Q1-1	0 Flow											
2.990	1.17	0.00	1.17	.6575	0.00557	NA	NA	NA	0.12	1.478	25.00	7.06
Q30-	10 Flow											
2.990	2.48	0.00	2.48	.6575	0.00557	NA	NA	NA	0.17	1.091	25.00	7.03

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name
20C	34081	MUDDY CREEK

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
2.99	0 Lake Arthur	10.46	29.06	10.46	29.06	0	0
□3 -N (Shronic Allocati	ione					
H3-N (Chronic Allocati		Raseline	Multiple	Multiple	Critical	Dercent
H3-N (Chronic Allocati	ions Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction

Dissolved Oxygen Allocations

		CBOD5		NH:	<u>3-N</u>	Dissolved	d Oxygen	Critical	Percent
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction
2.99	Lake Arthur	21.04	21.04	6.44	6.44	2	2	0	0

WQM 7.0 D.O.Simulation (Dry Reach)

SWP Basin Str	ream Code 34081			Stream Name MUDDY CREEK	
RMI 3.330 Reach Width (ft) 5.329 Reach CBOD5 (mg/L) 24.69 Reach DO (mg/L)	Total Discharge 0.425 Reach Dep 0.510 Reach Kc (1.500 Reach Kr (*	5 oth (ft)) 1/days)		lysis Temperature 25.000 Reach WDRatio 10.440 each NH3-N (mg/ 24.69 Kr Equation	 Analysis pH 7.197 Reach Velocity (fps) 0.245 Reach Kn (1/days) 1.029 Reach DO Goal (mg/L)
3.975 Reach Travel Time (days)	33.01	100	n Results	Owens	NA NA
0.085	TravTime (days)	CBOD5 (mg/L)	NH3-N (mg/L)	D.O. (mg/L)	
	0.008 0.017	24.30 23.91	24.48 24.27	2.00 2.00	
	0.025 0.034 0.042	23.53 23.16 22.79	24.05 23.85 23.64	2.00 2.00 2.00	
	0.051 0.059	22.43 22.07	23.43 23.23	2.00	
	0.068 0.076	21.72 21.38	23.03 22.83	2.00	
	0.085	21.04	22.63	2.00	

(input into Perennial Reach Model)

WQM 7.0 Modeling Specifications

Parameters	D.O.	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	Simulation	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	5		

Input Data WQM 7.0

					IIIP	ut Dat	a vvQi	VI 7.U						
	SWP Basir	N=15015745		Stre	eam Name		RMI		vation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PW Withd (mg	rawal	Apply FC
	20C	340	081 MUDE	Y CREEK	<		3.3	30	1167.00	0.24	0.00000	r.	0.00	
					St	ream Da	ta							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> np pH	Ter	<u>Strean</u> np	<u>n</u> pH	
Cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°C	C)		
Q7-10 Q1-10 Q30-10	0.034	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.0	0 2	5.00 7.	00	0.00	0.00	
					D	ischarge	Data]	
			Name	Per	mit Numbe	Disc	g Permitt Disc Flow (mgd	Dis Flo	c Res w Fa	Distriction Distri	np	isc pH		
		Dry R	Reach	PA	0093360	0.425	0.00	0.0	000	0.000 2	25.00	7.20		
					P	arameter	Data							
			8	Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
				i ai airiete	i ivallie	(n	ng/L) (r	mg/L)	(mg/L)	(1/days)				
	-		CBOD5				25.00	0.00	0.00	1.50				
			Dissolved	Oxygen			4.00	2.00	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

Input Data WQM 7.0

			mput Data VVQIVI 7.0											
	SWP Basin			Stre	eam Name		RMI		evation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PW Withd (mg	rawal	App F(
	20C	340	081 MUDE	Y CREE	<		2.9	90	1147.00	53.70	0.00000)	0.00	•
					St	ream Dat	a							
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> np pH	Ter	<u>Strean</u> mp	<u>p</u> H	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(%	C)		
Q7-10 Q1-10 Q30-10	0.034	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.0	00 2	5.00 7.0	00	0.00	0.00	
					Di	scharge I	Data							
			Name	Per	rmit Number	Disc	Permiti Disc Flow (mgc	Dis	c Res	Dis erve Ten ctor (°C	np	Disc pH		
						0.0000	0.00	00 0.0	0000	0.000 2	5.00	7.00		
					Pa	arameter I	Data							
				Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
					9	(m	ıg/L) (mg/L)	(mg/L)	(1/days)		_		
			CBOD5			;	25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

WQM 7.0 Hydrodynamic Outputs

SWP Basin Stream Code 20C 34081						<u>Stream Name</u> MUDDY CREEK							
RMI	Stream Flow (cfs)	PWS With (cfs)	Net Stream Flow (cfs)	Disc Analysis Flow (cfs)	Reach Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity	Reach Trav Time (days)	Analysis Temp (°C)	Analysis pH	
Q7-1	0 Flow												
3.330	0.01	0.00	0.01	NA	0.01114	.51	5.33	10.44	0.24	0.085	25.00	7.20	
Q1-1	0 Flow												
3.330	0.01	0.00	0.00	NA	0.01114	NA	NA	NA	0.00	0.000	0.00	0.00	
Q30-	10 Flow	,											
3.330	0.01	0.00	0.00	NA	0.01114	NA	NA	NA	0.00	0.000	0.00	0.00	

Attachment 2

Toxics Management Spreadsheet Version 1.4, May 2023

Discharge Information

Instructions	Discha	arge Stream	1			
Facility:	Lake Ar	thur Estates MHP		NPDES Permit No.:	PA0093360	Outfall No.: 001
Evaluation T	ype:	<mark>Major Sewage / In</mark>	dustrial Waste	Wastewater Descrip	tion: Non-Municipal S	ewage

			Discharge	Characteris	tics			
Design Flow	Hardness (mg/l)*	*(US) Hq	F	Partial Mix F	actors (PMF:	s)	Complete Mi	x Times (min)
(MGD)*	Hardness (mg/l)*	pn (50)	AFC	CFC	THH	CRL	Q ₇₋₁₀	Q _h
0.425	100	7.2						

					0 if lef	t blank	0.5 if le	eft blank	0) if left blan	k	1 if left	t blank
	Discharge Pollutant	Units	Max	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L		594									
7	Chloride (PWS)	mg/L		88.9									
Group 1	Bromide	mg/L		0.29									
Ιō	Sulfate (PWS)	mg/L		22.6									
4000	Fluoride (PWS)	mg/L	,										
	Total Aluminum	μg/L											
	Total Antimony	μg/L	<										
	Total Arsenic	μg/L	<										
	Total Barium	μg/L											
	Total Beryllium	μg/L	<										
	Total Boron	μg/L											
	Total Cadmium	μg/L	<										
	Total Chromium (III)	μg/L	<										
	Hexavalent Chromium	μg/L	<										
	Total Cobalt	μg/L											
	Total Copper	mg/L		0.0175									
2	Free Cyanide	μg/L											
Group 2	Total Cyanide	μg/L											
5	Dissolved Iron	μg/L											
4000	Total Iron	μg/L											
	Total Lead	mg/L		0.00716									
	Total Manganese	μg/L											
	Total Mercury	μg/L	<										
	Total Nickel	μg/L											
	Total Phenols (Phenolics) (PWS)	μg/L											
	Total Selenium	μg/L	<										
	Total Silver	μg/L	<										
	Total Thallium	μg/L	٧										
	Total Zinc	mg/L											
	Total Molybdenum	μg/L	<										
	Acrolein	μg/L	٧										
1	Acrylamide	μg/L	<										
1	Acrylonitrile	μg/L	<										
1	Benzene	μg/L	<										
	Bromoform	μg/L	<										

1	Carbon Tetrachloride	μg/L	<				
	Chlorobenzene	μg/L	<				
	Chlorodibromomethane	μg/L	<	1			
	Chloroethane		<				
	2-Chloroethyl Vinyl Ether	μg/L	<				
		μg/L	-				
	Chloroform	μg/L	-				
	Dichlorobromomethane	μg/L	<				
	1,1-Dichloroethane	μg/L	<				
က	1,2-Dichloroethane	μg/L	<				
Group	1,1-Dichloroethylene	μg/L	<				
1%	1,2-Dichloropropane	μg/L	<				
١٠	1,3-Dichloropropylene	μg/L	<				
	1,4-Dioxane	μg/L	<				
	Ethylbenzene	μg/L	<				
	Methyl Bromide	μg/L	<				
	Methyl Chloride	μg/L	<				
	Methylene Chloride	μg/L	<				
	1,1,2,2-Tetrachloroethane	μg/L	<				
	Tetrachloroethylene	μg/L	<				
	Toluene	μg/L					
	1,2-trans-Dichloroethylene	μg/L	<	1 1			
	1,1,1-Trichloroethane	μg/L	<	 			
	1,1,2-Trichloroethane		<	1			
		μg/L	1777				
	Trichloroethylene	μg/L	<				
_	Vinyl Chloride	μg/L	<				
	2-Chlorophenol	μg/L	<				
	2,4-Dichlorophenol	μg/L	<				
	2,4-Dimethylphenol	μg/L	<				
	4,6-Dinitro-o-Cresol	μg/L	<				
4	2,4-Dinitrophenol	μg/L	<				
Group	2-Nitrophenol	μg/L	<				
้อ	4-Nitrophenol	μg/L	<				
	p-Chloro-m-Cresol	μg/L	<				
	Pentachlorophenol	μg/L	<				
	Phenol	μg/L	<				
	2,4,6-Trichlorophenol	μg/L	<				
	Acenaphthene	μg/L	<				
	Acenaphthylene	μg/L	<				
	Anthracene	μg/L	<				
	Benzidine	μg/L	<				
	Benzo(a) Anthracene	μg/L	<	1 1			
	Benzo(a)Pyrene	μg/L	<				
	3,4-Benzofluoranthene		<	1			
		μg/L		+			
1	Benzo(ghi)Perylene	μg/L	<				
1	Benzo(k)Fluoranthene	μg/L	<				
	Bis(2-Chloroethoxy)Methane	μg/L	<				
	Bis(2-Chloroethyl)Ether	μg/L	<				
	Bis(2-Chloroisopropyl)Ether	μg/L	<				
1	Bis(2-Ethylhexyl)Phthalate	μg/L	<				
1	4-Bromophenyl Phenyl Ether	μg/L	<				
1	Butyl Benzyl Phthalate	μg/L	<				
1	2-Chloronaphthalene	μg/L	<				
1	4-Chlorophenyl Phenyl Ether	μg/L	<				
1	Chrysene	μg/L	<				
1	Dibenzo(a,h)Anthrancene	μg/L	<				
1	1,2-Dichlorobenzene	μg/L	<				
1	1,3-Dichlorobenzene	µg/L	<				
1	1,4-Dichlorobenzene	μg/L	<				
p 5	3,3-Dichlorobenzidine	μg/L	<				
Group	Diethyl Phthalate	μg/L	<				
ច	Dimethyl Phthalate	μg/L	<				
1	Di-n-Butyl Phthalate		<				
1	2,4-Dinitrotoluene	μg/L μg/L	<				
	iz 4-izimiioioiuene	I UU/L	<				

-	2,6-Dinitrotoluene	μg/L	<				
	Di-n-Octyl Phthalate	μg/L	<				
	1,2-Diphenylhydrazine	µg/L	<				
	Fluoranthene	μg/L	<				
	Fluorene	µg/L	<	+ + +			
	Hexachlorobenzene		<				
		μg/L					
	Hexachlorobutadiene	μg/L	<	+ + + + + + + + + + + + + + + + + + + +			
	Hexachlorocyclopentadiene	μg/L	<				
	Hexachloroethane	μg/L	<				
	Indeno(1,2,3-cd)Pyrene	μg/L	<				
	Isophorone	μg/L	<				
	Naphthalene	μg/L	<				
	Nitrobenzene	μg/L	<				
	n-Nitrosodimethylamine	μg/L	<				
	n-Nitrosodi-n-Propylamine	μg/L	<				
	n-Nitrosodiphenylamine	μg/L	<				
	Phenanthrene	µg/L	<				
	Pyrene	µg/L					
	1,2,4-Trichlorobenzene	μg/L	<				
4			<				
	Aldrin	μg/L					
	alpha-BHC	μg/L	<				
	beta-BHC	μg/L	<				
	gamma-BHC	μg/L	<				
	delta BHC	μg/L	<				
	Chlordane	μg/L	<				
	4,4-DDT	μg/L	<				
	4,4-DDE	μg/L	<				
	4,4-DDD	µg/L	<				
	Dieldrin	µg/L	<				
	alpha-Endosulfan		<				
	beta-Endosulfan	μg/L	<				
		μg/L					
	Endosulfan Sulfate	μg/L	<				
3	Endrin	μg/L	<				
32	Endrin Aldehyde	μg/L	<				
	Heptachlor	μg/L	<				
	Heptachlor Epoxide	μg/L	<				
	PCB-1016	μg/L	<				
	PCB-1221	μg/L	<				
	PCB-1232	μg/L	<				
	PCB-1242	μg/L	<				
	PCB-1248	µg/L	<				
	PCB-1254	μg/L	<				
	PCB-1260	μg/L	<				
	PCBs, Total	μg/L	<				
	Toxaphene	μg/L	<				
	2,3,7,8-TCDD	ng/L	<				
	Gross Alpha	pCi/L					
.	Total Beta	pCi/L	<				
Gloup /	Radium 226/228	pCi/L	<				
5	Total Strontium	μg/L	<				
ן	Total Uranium	µg/L	<				
	Osmotic Pressure	mOs/kg					
	2011010111000110	moung		+ + +			

Toxics Management Spreadsheet Version 1.4, May 2023

Stream / Surface Water Information

Lake Arthur Estates MHP, NPDES Permit No. PA0093360, Outfall 001

Toxics Management Spreadsheet Version 1.4, May 2023

Model Results

Lake Arthur Estates MHP, NPDES Permit No. PA0093360, Outfall 001

Instructions Results	RETURN	TO INPU	TS (SAVE AS	PDF	PRINT	r	II O Inputs O Results O Limits
☐ Hydrodynamics ☑ Wasteload Allocations								
wasteroad Anocations								
☑ AFC cc	Γ (min): 14.		PMF:	1		lysis Hardne	ss (mg/l):	100 Analysis pH: 7.40
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	(49,5)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	13.439	14.0	53.1	Chem Translator of 0.96 applied
Total Lead	0	0		0	64.581	81.6	310	Chem Translator of 0.791 applied

		127		25
———				
				·

								0.
	1							
	1							
	1							
	1							
	_							
	+							
	+							
	+							
	+				-			
	+	1			-			
	+	_			 			
		_						
	+	_			—			
	+	_			—		_	
	+	+			-		_	
	+				-			
	+	_						
	+	_						
	+				<u> </u>			
	+	-			<u> </u>			
		-						
	+	_						
					L	l .		
☑ CFC CC	CT (min): 14	.345	PMF:	1	Ana	alysis Hardne	ess (mg/l):	100 Analysis pH: 7.40
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	8.956	9.33	35.4	Chem Translator of 0.96 applied
Total Lead	0	0		0	2.517	3.18	12.1	Chem Translator of 0.791 applied
Total Load	+	-		-	2.0.17	0.10	114-01	Shelli Hallolator of S.FoT applied
	+							
	+	-						
	1	1			ı	ı	I	

				 ¥
			 	
			1	
			<u> </u>	
<u> </u>	_		 	
			-	
			_	
-	_		_	
<u> </u>	_		 	
			 	
-				

				 ¥
			 	
			1	
			<u> </u>	
<u> </u>	_		 	
			-	
			_	
-			_	
<u> </u>	_		 	
			 	
-				

	1							
	+							
☑ THH CC	CT (min): 14	345	PMF:	1	Ana	alysis Hardne	ess (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)		WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A	
Chloride (PWS)	0	0		0	250,000	250,000	N/A	
Sulfate (PWS)	0	0		0	250,000	250,000	N/A	
Total Copper Total Lead	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
	1							
	1							
	+	 					 	
	+							
	1							
	1	_		-				
		_						
	1							
	1						-	
	_	-						
	-							
	↓							
	1							
	1							
	•							

			1		
		-	-		
		\vdash			
			-		
		-			
			1		
	_				
		-			
		-			
					
	-				
	_				
	-	 			
	-	-			

Pollutants Conc Cov C								
Pollutants Stream Conc Cv (μg/L) Coef (μg/L) (μg/L) WLA (μg/L) Comments								
Pollutants Stream Conc CV (μg/L) Coef (μg/L) (μg/L) WLA (μg/L) Comments								
Pollutants Stream Conc CV (μg/L) Coef (μg/L) (μg/L) WLA (μg/L) Comments								
Pollutants Stream Trib Conc Fate WQC (μg/L) (μg/L) WLA (μg/L) Comments								
Pollutants Stream Trib Conc Fate WQC (μg/L) (μg/L) WLA (μg/L) Comments								
Pollutants Stream Trib Conc Fate WQC (μg/L) (μg/L) WLA (μg/L) Comments		1						
Pollutants Stream Trib Conc Fate WQC (μg/L) (μg/L) WLA (μg/L) Comments								
Pollutants Conc Cov C		1						
Pollutants Stream Conc CV (μg/L) Coef (μg/L) (μg/L) WLA (μg/L) Comments								
Pollutants Conc Cov (μg/L) Coef (μg/L) (μg/L) (μg/L) (μg/L) Comments								
Pollutants Conc Cov (μg/L) Coef (μg/L) (μg/L) (μg/L) (μg/L) Comments		1						
Pollutants Conc Cov (μg/L) Coef (μg/L) (μg/L) WLA (μg/L) Comments		+						
Pollutants Conc Cov (μg/L) Coef (μg/L) (μg/L) WLA (μg/L) Comments		+						
Pollutants Stream Conc Cv (μg/L) Coef (μg/L) (μg/L) WLA (μg/L) Comments		1						
Pollutants Conc Cov C		+						
Pollutants Conc Cov (μg/L) Coef (μg/L) (μg/L) WLA (μg/L) Comments		-						
Pollutants Conc CV (μg/L) Coef (μg/L) (μg/L) WLA (μg/L) Comments			_					
Pollutants								
Total Dissolved Solids (PWS) 0 0 N/A N/A N/A Chloride (PWS) 0 0 0 N/A N/A N/A Sulfate (PWS) 0 0 0 N/A N/A N/A Total Copper 0 0 N/A N/A N/A	Pollutants	Conc			WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Chloride (PWS) 0 0 0 N/A N/A N/A Sulfate (PWS) 0 0 0 N/A N/A N/A Total Copper 0 0 N/A N/A N/A	Total Dissolved Solids (PWS)		0	0	N/A	N/A	N/A	
Sulfate (PWS) 0 0 0 N/A N/A N/A Total Copper 0 0 0 N/A N/A N/A		0	0	0	2.2.22			
Total Copper 0 0 0 N/A N/A N/A	Chloride (PWS)			U	N/A	N/A		
Total Lead 0 0 N/A N/A N/A	Chloride (PWS) Sulfate (PWS)	0	0				N/A	
	Sulfate (PWS)			0	N/A	N/A	N/A N/A	
	Sulfate (PWS) Total Copper	0	0	0	N/A N/A	N/A N/A	N/A N/A N/A	
	Sulfate (PWS) Total Copper	0	0	0	N/A N/A	N/A N/A	N/A N/A N/A	
	Sulfate (PWS) Total Copper	0	0	0	N/A N/A	N/A N/A	N/A N/A N/A	
	Sulfate (PWS) Total Copper	0	0	0	N/A N/A	N/A N/A	N/A N/A N/A	
	Sulfate (PWS) Total Copper	0	0	0	N/A N/A	N/A N/A	N/A N/A N/A	
	Sulfate (PWS) Total Copper	0	0	0	N/A N/A	N/A N/A	N/A N/A N/A	
	Sulfate (PWS) Total Copper	0	0	0	N/A N/A	N/A N/A	N/A N/A N/A	
	Sulfate (PWS) Total Copper	0	0	0	N/A N/A	N/A N/A	N/A N/A N/A	
	Sulfate (PWS) Total Copper	0	0	0	N/A N/A	N/A N/A	N/A N/A N/A	

20		5.5		3	28
			3		
			-		

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits		Concentra	ition Limits				
Pollutante	AML	MDL	ΔMI	MDI	IMAX	Unite	Governing	WQBEL	Comments

i unutarita	(lbs/day)	(lbs/day)	VINIT	IVIDL	IIVIOON	OTILO	WQBEL	Basis	Connents
Total Copper	0.12	0.19	0.034	0.053	0.085	mg/L	0.034	AFC	Discharge Conc ≥ 50% WQBEL (RP)
Total Lead	0.043	0.067	0.012	0.019	0.03	mg/L	0.012	CFC	Discharge Conc ≥ 50% WQBEL (RP)
-									

☑ Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
	1		
	1		
	1		
	_		
—	_		
	_		