

Application TypeRenewalFacility TypeNon-MunicipalMajor / MinorMinor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No.PA0093980APS ID849969Authorization ID1322423

Applicant and Facility Information

Applicant Name	Better Built Mobile Homes	Facility Name	Kimberly Estates MHP	
Applicant Address	102 Kimberlin Drive	Facility Address	102 Kimberlin Drive	
	Irwin, PA 15642		Irwin, PA 15642	
Applicant Contact	Roger Breig	Facility Contact	Roger Breig	
Applicant Phone	(724) 446-2100	Facility Phone	(724) 446-2100	
Client ID	43977	Site ID	251539	
Ch 94 Load Status	Not Overloaded	Municipality	Sewickley Township	
Connection Status	No Limitations	County	Westmoreland County	
Date Application Rece	ivedJuly 31, 2020	EPA Waived?	Yes	
Date Application Acce	pted August 5, 2020	If No, Reason	-	
Purpose of Application	Renewal of a minor NPDES I	Permit for an existing dischar	ge of treated sanitary wastewater	

Summary of Review

Act 14 - Proof of Notification was submitted and received.

A Part II Water Quality Management permit is not required at this time.

The applicant should be able to meet the limits of this permit, which will protect the uses of the receiving stream.

I. OTHER REQUIREMENTS:

- A. Stormwater into sewers
- B. Right of way
- C. Solids handling

SPECIAL CONDITIONS:

II. Solids Management

- D. Public Sewer Availability
- E. Effluent Chlorine Optimization and Minimization
- F. Limited Assimilative Capacity/Dilution

There are no open violations in efacts associated with the subject Client ID (43977) as of 3/12/2021.

Approve	Deny	Signatures	Date	
Y		Stephen A. McCauley	2/12/2021	
X		Stephen A. McCauley, E.I.T. / Environmental Engineering Specialist	3/12/2021	
Y		Justin C. Dickey	March 15, 2021	
^		Justin C. Dickey, P.E. / Environmental Engineer Manager	March 15, 2021	

NPDES Permit Fact Sheet Kimberly Estates MHP

Discharge, Receiving	Waters	s and Water Supply Info	ormation			
Outfall No. 001			_	Design I	Flow (MGD)	0.03
Latitude 40º 15	Latitude <u>40° 15' 35.00"</u>		_	Longitude		-79º 45' 12.00"
Quad Name			_	Quad C	ode	
Wastewater Descript	tion:	Sewage Effluent				
	Unnar	ned Tributary to the				
Receiving Waters	Little S	Sewickley Creek (TSF)		Stream Co	de	N/A
NHD Com ID	69912	913		RMI		N/A
Drainage Area	0.57			Yield (cfs/n	ni²)	0.19
Q ₇₋₁₀ Flow (cfs)	0.10			Q7-10 Basis		calculated
Elevation (ft)	876			Slope (ft/ft)		0.060566
Watershed No.	19-D			Chapter 93	Class.	TSF
Existing Use	-			Existing Us	e Qualifier	
Exceptions to Use	-			Exceptions	to Criteria	
Assessment Status		Attaining Use(s)				
Cause(s) of Impairme	ent	-				
Source(s) of Impairm	nent	-				
TMDL Status		Final, 4/8/2009		Name	Sewickley C	reek Watershed*
	_		_	_		
Background/Ambient	t Data		Data	Source		
pH (SU)		-	-			
Temperature (°F)		-	-			
Hardness (mg/L)		-	-			
Other:		-	-			
Nearest Downstream	ו Public	Water Supply Intake	Munia	cipal Author	itv of Westmo	preland County
PWS Waters Yo	oughio	pheny River	Flo	w at Intake	e (cfs)	334
PWS RMI 1.	4		Dis	stance from	Outfall (mi)	20.0

* - There is a TMDL for metals in the Sewickley Creek Watershed. The contribution for metals from a sewage plant of this nature is expected to be less than water quality criteria and therefore not contributing to stream impairment. However, 1/year monitoring is imposed per the SOP for Total Iron, Total Manganese, and Total Aluminum in order to establish data to ensure there are no impacts on the quality of the receiving stream.

Sludge use and disposal description and location(s):

<u>Sludge is spread at the Hapchuck facility in Westmoreland County,</u> <u>otherwise, it is disposed of at an approved landfill.</u>

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the Pennsylvania Bulletin in accordance with 25 Pa. Code § 92a.82. Upon publication in the Pennsylvania Bulletin, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be

published in the Pennsylvania Bulletin at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Narrative: This Fact Sheet details the determination of draft NPDES permit limits for an existing discharge of 0.03 MGD of treated sewage from a non-municipal STP in Sewickley Township, Westmoreland County.

Treatment permitted under WQM Permit no. 6577431 consists of the following: manual screening, extended aeration, clarification, sand filtration, and chlorination/dechlorination. Wasted sludge is stored in an aerated holding tank. Sludge is pumped and hauled off site.

1. Streamflow:

Youghiogheny River at Sutersville, PA (USGS gage 03083500):

Q7-10:	<u>332</u>	cfs	(USGS StreamStats)
Drainage Area:	<u>1715</u>	sq. mi.	(USGS StreamStats)
Yieldrate:	<u>0.19</u>	cfsm	calculated

Unnamed Tributary to the Little Sewickley Creek:

%

Yieldrate:	<u>0.19</u>	cfsm	calculated above
Drainage Area:	<u>0.57</u>	sq. mi.	(USGS StreamStats)
Q ₇₋₁₀ :	<u>0.10</u>	cfs	calculated
of stream allocated:	<u>100%</u>	Basis:	No nearby discharges

2. Wasteflow:

Maximum discharge:	<u>0.03</u> MGD =	<u>0.046</u> cfs
Runoff flow period:	<u>16</u> hours	Basis: Runoff flow for a non-municipal STP
24 hour flow	<u>0.03</u> MGD	x 24/16 = 0.045 MGD = 0.069 cfs

There is less than 3 parts stream flow (Q7-10) to 1 part effluent (design flow). However, since this is an existing discharge, the more stringent treatment requirements cannot be achieved, and the receiving stream is not impaired by the discharge, the standards in DEP guidance (391-2000-014) will not be applied. Flow will be required to be monitored as authorized under Chapter 92a.61, and as recommended in the SOP.

3. Parameters:

The following parameters were evaluated: pH, Total Suspended Solids, Fecal Coliform, Phosphorus, NH₃-N, CBOD₅, Dissolved Oxygen, and Total Residual Chlorine. NH₃-N, CBOD₅, and Dissolved Oxygen were evaluated using WQM 7.0 at the discharge point.

a. <u>pH</u>

Between 6.0 and 9.0 at all times

Basis: <u>Application of Chapter 93.7 technology-based limits</u>. The measurement frequency was previously set to 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001), which will be retained.

b. <u>Total Suspended Solids</u>

Limits are 30 mg/l as a monthly average and 60 as an instantaneous maximum.

Basis: Application of Chapter 92a47 technology-based limits. However, the previous limits of 25 mg/l as a monthly average and 50 as an instantaneous maximum were set based on older "dry stream guidances". Since those limits are attainable, they will be retained. c. Fecal Coliform 05/01 - 09/30: 200/100ml (monthly average geometric mean) 1,000/100ml (instantaneous maximum) 10/01 - 04/30: 2,000/100ml (monthly average geometric mean) 10,000/100ml (instantaneous maximum) Basis: Application of Chapter 92a47 technology-based limits d. Phosphorus Limit necessary due to: Discharge to lake, pond, or impoundment \square Discharge to stream Basis: N/A \square Limit not necessary Chapter 96.5 does not apply. However, the previous monitoring for Total Phosphorus will Basis: be retained in accordance with the SOP, based on Chapter 92a.61. **Total Nitrogen** e. The previous monitoring for Total Nitrogen will be retained in accordance with the SOP, based on Chapter 92a.61. f. Ammonia-Nitrogen (NH₃-N) 6.7 Median discharge pH to be used: Standard Units (S.U.) Basis: eDMR data Discharge temperature: 25°C (default value used in the absence of data) Median stream pH to be used: 7.0 Standard Units (S.U.) Basis: default value used in the absence of data Stream Temperature: 20°C (default value used for TSF modeling) Background NH₃-N concentration: 0.1 mg/l Basis: Default value. Calculated NH₃-N Summer limits: 4.4 mg/l (monthly average) mg/l (instantaneous maximum) 8.8 Calculated NH₃-N Winter limits: mg/l (monthly average) <u>13.2</u> 26.4 mg/l (instantaneous maximum)

Result: <u>WQ modeling resulted in the summer water quality-based limits above (see Attachment 1). The</u> <u>winter limits are calculated as three times the summer limits. However, since the more restrictive</u> <u>limits of 2.5 mg/l as a monthly average and 5 mg/l as an instantaneous maximum from the previous</u> <u>permit are attainable, they will be retained.</u>

g. <u>CBOD</u>₅

Median discharge pH to be used:	be used: <u>6.7</u> Standard Units (S.U.)					
	Ba	asis: eDMR data				
Discharge temperature:	<u>25°C</u>	(default value used in the absence of data)				
Median stream pH to be used:	<u>7.0</u>	Standard Units (S.U.)				
	Ba	asis: default value used in the absence of data				
Stream Temperature:	<u>20°C</u>	(default value used for TSF modeling)				
Background CBOD5 concentration:	<u>2.0</u>	mg/l				
	Ba	asis: Default value				
CBOD₅ Summer limits:	<u>25.0</u> 50.0	mg/l (monthly average) mg/l (instantaneous maximum)				
CBOD ₅ Winter limits:	<u>25.0</u> 50.0	mg/l (monthly average) mg/l (instantaneous maximum)				

Result: WQ modeling resulted in the above CBOD₅ limits (see Attachment 1). However, since the more restrictive technology-based limits of 10 mg/l as a monthly average and 20 mg/l as an instantaneous maximum from the previous permit are attainable, they will be retained. Since the summer and winter limits are technology-based, per the SOP, the previous year-round limits of 10 mg/l monthly average and 20 mg/l instantaneous maximum will be retained.

h. <u>Dissolved Oxygen (DO)</u>

- <u>4.0</u> mg/l minimum desired in effluent to protect all aquatic life
- 5.0 mg/l desired in effluent for CWF, WWF, or TSF
- 6.0 mg/l minimum required due to discharge falling under guidance document 391-2000-014
- 8.0 mg/l required due to discharge going to a naturally reproducing salmonid stream

Discussion: The Dissolved Oxygen minimum of 5.0 mg/l will be retained with this renewal. The technologybased minimum of 5.0 mg/l is recommended by the WQ Model (see Attachment 1) and the SOP based on Chapter 93.7, under the authority of Chapter 92a.61. The measurement frequency was previously set to 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001), which will be retained.

- i. <u>Total Residual Chlorine (TRC)</u>
 - No limit necessary

Basis: <u>N/A</u>

TRC limits: 0.22 mg/l (monthly average) 0.72 mg/l (instantaneous maximum) Basis: <u>The water quality-based TRC limits above were calculated using the TRC_Calc spreadsheet</u> (see Attachment 2). Since the previous monthly average limits of 0.22 mg/l are the same, they will be retained. The calculated instantaneous maximum limits are less restrictive than the previous permit, but since the previous limit of 0.50 mg/l is attainable, it will be retained.

The measurement frequency was previously set to 1/day as recommended in the SOP, based on Table 6-3 in the "Technical Guidance for the Development and Specification of Effluent Limitations" (362-0400-001), which will be retained.

j. <u>Anti-Backsliding</u>

Since all the permit limits in this renewal are the same or more restrictive than the previous NPDES Permit, anti-backsliding is not applicable.

4. Reasonable Potential Analysis for Receiving Stream:

A Reasonable Potential Analysis was not performed in accordance with State practices for Outfall 001 since no sampling has been performed for this facility.

5. Reasonable Potential for Downstream Public Water Supply (PWS):

Bromide has been linked to the formation of disinfection byproducts at increased levels in public water systems. Where the concentration of bromide in a discharge exceeds 1 mg/L, as is shown from eDMR, and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for bromide. Since this facility is designed for only 0.03 MGD, and has no Bromide sampling data, monitoring for Bromide will not be added to this renewal permit.

Nearest Downstream potable water supply (PWS): <u>Municipal Authority of Westmoreland County</u>

Distance downstream from the point of discharge: <u>20.0</u> miles (approximate)

No limits necessary

Limits needed

Basis: Significant dilution available.

6. Attachment List:

Attachment 1 - WQ Modeling Printouts

Attachment 2 - TRC_Calc Spreadsheet

(The Attachments above can be found at the end of this document)

Compliance History

DMR Data for Outfall 001 (from February 1, 2020 to January 31, 2021)

Parameter	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20	AUG-20	JUL-20	JUN-20	MAY-20	APR-20	MAR-20	FEB-20
Flow (MGD)												
Average Monthly	0.0035	0.0035	0.0035	0.0032	0.0035	0.0036	0.0035	0.0037	0.0036	0.0037	0.0037	0.037
pH (S.U.)												
Minimum	6.6	6.3	6.5	6.3	6.6	6.3	6.5	6.8	7.0	6.8	6.4	6.6
pH (S.U.)												
Maximum	7.0	6.9	6.8	7.0	7.0	6.8	7.2	7.3	7.5	7.4	7.4	8.2
DO (mg/L)												
Minimum	6.7	6.5	6.4	6.0	6.6	7.3	6.9	7.0	7.5	8.0	8.0	8.9
TRC (mg/L)												
Average Monthly	0.22	0.21	0.20	0.21	0.18	0.21	0.21	0.20	0.21	0.18	0.14	0.14
TRC (mg/L)												
Instantaneous												
Maximum	0.30	0.42	0.27	0.40	0.24	0.33	0.45	0.42	0.45	0.44	0.50	0.33
CBOD5 (mg/L)												
Average Monthly	3	9.9	7.6	4	3	3	3	3.6	3.9	4.1	4.4	4.15
CBOD5 (mg/L)												
Instantaneous												
Maximum	3	12	9.4	4.1	3	3	3	4.3	4.8	4.2	8.85	4.38
TSS (mg/L)				_	_	_	_	_	_	_		
Average Monthly	8.5	12.5	11.5	5	5	5	5	5	5	5	5.0	6
TSS (mg/L)												
Instantaneous				_	_	_	_	_	_	_		_
Maximum	9	15	12	5	5	5	5	5	5	5	5.0	7
Fecal Coliform												
(CFU/100 ml)	400		400	100		400	1=0	400	400	400	100	150
Geometric Mean	100	530	100	100	200	100	150	100	100	100	100	150
Total Nitrogen (mg/L)		07.4						0.40			40.0	
		27.1	-			-		6.12			16.9	
Ammonia (mg/L)			4.00									
Average Monthly	2.74	7.5	4.26	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8
Ammonia (mg/L)												
Instantaneous	1.00	10.0	5.0									
	4.69	10.0	5.9	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8
Total Phosphorus												
(mg/L)		0.5										
Daily Maximum		2.5						2.8			2.8	

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

		Monitoring Re	quirements					
Baramatar	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	XXX	XXX	XXX	XXX	xxx	2/month	Measured
pH (S.U.)	xxx	XXX	6.0 Daily Min	XXX	9.0 Daily Max	XXX	1/day	Grab
DO	XXX	XXX	5.0 Daily Min	xxx	xxx	xxx	1/day	Grab
TRC	XXX	XXX	ххх	0.22	xxx	0.50	1/day	Grab
CBOD5	XXX	XXX	ххх	10.0	xxx	20.0	2/month	Grab
TSS	xxx	XXX	ххх	25.0	XXX	50.0	2/month	Grab
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	xxx	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab
Total Nitrogen	XXX	XXX	ххх	Report Avg Qrtly	xxx	xxx	1/quarter	Grab
Ammonia Nov 1 - Apr 30	XXX	XXX	ххх	7.5	xxx	15.0	2/month	Grab
Ammonia May 1 - Oct 31	XXX	XXX	ххх	2.5	XXX	5.0	2/month	Grab
Total Phosphorus	XXX	XXX	ххх	Report Avg Qrtly	xxx	XXX	1/quarter	Grab
Total Aluminum	xxx	XXX	ххх	Report Avg Qrtlv	XXX	xxx	1/quarter	Grab
Total Iron	XXX	XXX	XXX	Report Avg Qrtly	XXX	XXX	1/quarter	Grab

NPDES Permit Fact Sheet Kimberly Estates MHP

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

			Monitoring Requirements					
Baramotor	Mass Units	(lbs/day) ⁽¹⁾		Concentrations (mg/L)				Required
Falameter	Average Monthly	Average Weekly	Minimum	Average Instant. Minimum Monthly Maximum Maximum				Sample Type
				Report				
Total Manganese	XXX	XXX	XXX	Avg Qrtly	1/quarter	Grab		

Compliance Sampling Location: Outfall 001, after disinfection.

Flow is monitor only based on Chapter 92a.61. The limits for pH and Dissolved Oxygen are technology-based on Chapter 93.7. The limits for Total Residual Chlorine (TRC) are water quality-based on Chapter 93.7. The limits for CBOD₅, Total Suspended Solids, and Fecal Coliforms are technology-based on Chapter 92a.47. The limits for Ammonia-Nitrogen are water quality-based on Chapter 93.7. Monitoring for Total Nitrogen, Total Phosphorus, Total Aluminum, Total Iron, and Total Manganese is based on Chapter 92a.61.

Attachment 1

		VV GQ IVI			<u>_</u>		
	SWP Basin	Stream Code		Stream Name	<u>e</u>		
	190	37557	8	LITTLE SEWICKLEY	CREEK		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
).287	Better Home	s PA0093980	0.045	CBOD5	25		
				NH3-N	4.48	8.96	
				Dissolved Oxygen			5

WQM 7.0 Effluent Limits

Friday, March 5, 2021

Version 1.0b

SWP Basin	Stream Code			Stream Name	
19D	37557		LITTLI	E SEWICKLEY CREEK	
RMI	Total Discharge	Flow (mgd	<u>) Ana</u>	lysis Temperature (°C)	<u>Analysis pH</u>
0.287	0.04	5		25.000	6.857
Reach Width (ft)	Reach De	<u>pth (ft)</u>		Reach WDRatio	Reach Velocity (fps)
3.799	0.42	1		9.023	0.111
Reach CBOD5 (mg/L)	Reach Kc (<u>1/days)</u>	<u>R</u>	each NH3-N (mg/L)	<u>Reach Kn (1/days)</u>
11.00	1.31	0		1.75	1.029
Reach DO (mg/L)	Reach Kr (<u>1/days)</u>		Kr Equation	Reach DO Goal (mg/L)
6.974	27.79	95		Owens	5
<u>Reach Travel Time (days</u>)	Subreach	Results		
0.158	TravTime (days)	CBOD5 (mg/L)	NH3-N (mg/L)	D.O. (mg/L)	
	0.016	10.72	1.73	7.02	
	0.032	10.44	1.70	7.07	
	0.047	10.17	1.67	7.11	
	0.063	9.91	1.64	7.14	
	0.079	9.66	1.62	7.17	
	0.095	9.41	1.59	7.20	
	0.110	9.17	1.57	7.23	
	0.126	8.93	1.54	7.26	
	0.142	8.71	1.52	7.29	
	0.158	8.48	1.49	7.31	

WQM 7.0 D.O.Simulation

Friday, March 5, 2021

Version 1.0b

			8						
NH3-N	Acute Alloca	tions	5						
RMI	Discharge N	lame	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	
0.2	37 Better Homes	8	7.48	14.93	7.48	14.93	0	0	-
NH3-N	Chronic Allo	catio	ns						*0
RMI	Discharge Na	me (Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	
0.2	37 Better Homes	1	1.44	4.48	1.44	4.48	0	0	-11

25

25

4.48

4.48

5

5

0

0

WQM	7.0	Wasteload	Allocations
A A (2014)	1.0	vvusiciouu	Anocations

0.29 Better Homes

Version 1.0b

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	
D.O. Goal	5		

Version 1.0b

			TTOL	1 7.0	i i y Gi	ouyn	anno	out	5410			
	<u>sw</u>	P Basin	<u>Strea</u>	m Code				Stream	<u>Name</u>			
	8	19D	3	7557			LITTLE	SEWICI	KLEY CR	EEK		
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Tra∨ Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-10	0 Flow											
0.287	0.11	0.00	0.11	.0696	0.06071	.421	3.8	9.02	0.11	0.158	25.00	6.86
Q1-10	0 Flow											
0.287	0.07	0.00	0.07	.0696	0.06071	NA	NA	NA	0.10	0.181	25.00	6.82
Q30-'	10 Flow	l										
0.287	0.15	0.00	0.15	.0696	0.06071	NA	NA	NA	0.12	0.141	25.00	6.88

WQM 7.0 Hydrodynamic Outputs

Friday, March 5, 2021

Version 1.0b

Input Data WQM 7.0

	SWF Basir	Strea	m le	Stre	eam Name		RMI	Eleva (ft	ition)	Draina Area (sq m	ge a ii)	Slope (ft/ft)	PW Withdr (mg	S 'awal jd)	Apply FC
	19D	375	57 LITTLI	E SEWIC	KLEY CRE	EK	0.28	37 8	76.00	i	0.57	0.00000		0.00	✓
					St	tream Dat	ta								
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributaı</u> ıp	ry pH	Tem	<u>Stream</u> p	i pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.190	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	2	5.00	7.00) ()	0.00	0.00	
					D	ischarge	Data								
			Name	Per	mit Numbe	Existing Disc r Flow (mgd)	Permitte Disc Flow (mgd)	ed Desigr Disc Flow (mgd)	Res Fa	erve ctor	Disc Temp (°C)	Di p p	sc H		
		Bette	r Homes	PA	093980	0.045	0 0.000	0 0.000	00	0.000	25	.00	6.70		
					P	arameter	Data								
			1	Paramete	r Name	D C	isc 1 onc C	Trib St Conc (ream Conc	Fate Coef					
			18			(m	ng/L) (n	ng/L) (r	mg/L)	(1/day	s)				
			CBOD5				25.00	2.00	0.00	1.:	50				
			Dissolved	Oxygen			5.00	8.24	0.00	0.0	00				
			NH3-N				25.00	0.00	0.00	0.1	70				

Version 1.0b

Input Data WQM 7.0

	SWF Basir	9 Strea n Cod	m e	Stre	eam Name		RMI	Elev (1	ation ft)	Drainage Area (sq mi)	Slor (ft/f	be P\ With t) (m	NS drawal ngd)	Apply FC
	19D	375	57 LITTLI	E SEWIC	KLEY CREI	ΞK	0.00	00	784.00	0.6	0.00	000	0.00	✓
					St	ream Dat	ta							
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p p⊢	I	<u>Strea</u> Temp	m pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)			(°C)		
Q7-10	0.190	0.00	0.00	0.000	0.000	0.0	0.00	0.00) 25	5.00 7	.00	0.00	0.00	
Q1-10 Q30-10		0.00 0.00	0.00 0.00	0.000 0.000	0.000 0.000									
					Di	ischarge	Data						1	
			Name	Per	mit Numbe	Existing Disc r Flow (mgd)	Permitte Disc Flow (mgd)	ed Desig Disc Flow (mgd	n ⊧ Res⊧ ⁄ Fao 1)	D erve Te ctor (°	isc mp C)	Disc pH		
		-				0.000	0 0.000	0.00	00 00	0.000	25.00	7.00	-	
					Pa	arameter	Data							
			T	Paramete	r Name	D C	isc T onc C	Trib S Conc	Stream Conc	Fate Coef				
				urumete	i indinic	(m	ng/L) (n	ng/L) ((mg/L)	(1/days)				
	-		CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

Version 1.0b

Attachment 2

TRC EVALUA	ATION									
Input appropria	te values in <i>i</i>	A3:A9 and D3:D9								
0.1	= Q stream (cfs)	0.5	= CV Daily						
0.045	= Q discharç	je (MGD)	0.5	= CV Hourly						
30	= no. sample	18	1	= AFC_Partial	Mix Factor					
0.3	= Chlorine D	emand of Stream	1	= CFC_Partial Mix Factor						
0	= Chlorine D	emand of Discharge	15	= AFC_Criteria Compliance Time (min)						
0.5	= BAT/BPJ V	alue	720	= CFC_Criteria Compliance Time (min)						
0	= % Factor of	of Safety (FOS)	0	=Decay Coeffic	cient (K)					
Source	Reference	AFC Calculations		Reference	CFC Calculations					
TRC	1.3.2.iii	WLA afc =	0.477	1.3.2.iii	WLA cfc = 0.458					
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581					
PENTOXSD TRG	5.1b	LTA_afc=	0.178	5.1d	LTA_cfc = 0.266					
_										
Source		Efflue	nt Limit Calcu	lations						
PENTOXSD TRG	5.1f	AML MULT = 1.231								
PENTOXSD TRG	5.1g		AVG MON LIMIT (mg/l) = 0.219 AFC							
		INST MAX	LIMII (mg/l) =	0.716						
WLA afc	(.019/e(-k*A	FC tc)) + [(AFC Yc*Qs*.019	/Qd*e(-k*AFC	; tc))						
	+ Xd + (AF	C_Yc*Qs*Xs/Qd)]*(1-FOS/10	0)	_ //						
LTAMULT afc	EXP((0.5*LN	(cvh^2+1))-2.326*LN(cvh^2+	-1)^0.5)							
LTA_afc	wla_afc*LTA	MULT_afc	50 MEG							
WLA_cfc	(.011/e(-k*C	FC_tc) + [(CFC_Yc*Qs*.011/	Qd*e(-k*CFC	_tc))						
	+Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)									
LTAMULT_cfc	EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5)									
LTA_cfc	wla_cfc*LTA	MULT_cfc								
		N//aud42/na.aamplaat4)40	E) O EXI N/aud		141)					
		$N((CVG^{-2}/IO_samples + I)^{-0})$	S)-U.S"LIN(CVU	-zmo_samples	÷1))					
	1 5*(/av mo	J,WIIN(LIA_AIC,LIA_CTC)"AN h limit/AMI MIIIT)/ITAMIII	Tafe)							
	INST MAX LIMIT 1.5°((av_mon_limit/AML_MULT)/LTAMULT_atc)									