

 Application Type
 Renewal

 Facility Type
 Municipal

 Major / Minor
 Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0094200

 APS ID
 911432

 Authorization ID
 1372289

Applicant and Facility Information

Applicant Name	Bear Creek Watershed Authority	Facility Name	Petrolia STP
Applicant Address	259 Argyle Street	Facility Address	Rte 268
	Petrolia, PA 16050-9702		Petrolia, PA 16050
Applicant Contact	Thomas McElravy, Chairman	Facility Contact	Chris Dunmyre, Operator
Applicant Phone	(724) 756-4600	Facility Phone	
Applicant E Mail	bearcreekwater@zoominternet.net	Facility E Mail	
Client ID	62798	Site ID	724622
Municipality	Fairview Township	County	Butler
Ch 94 Load Status	Not Overloaded	Connection Status	No Limitations
Date Application Received October 12, 2021		EPA Waived?	Yes
Date Application Accepted October 19, 2021		If No, Reason	
Purpose of Application	n NPDES renewal		

Summary of Review

No current open violations.

Service Area	Contribution	Sewer Type	Population
Fairview Township	11%	Separate	29
Petrolia Borough	83%	Separate	212
Parker Township	6%	Separate	15

Sludge production was 1.94 dry tons from this and other Bear Creek Watershed Authority facilities. Final disposal is to Dalton's Processing Facility.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
X		William H. Mentzer William H. Mentzer, P.E.	
		Environmental Engineering Specialist	January 19, 2023
X		<i>Vacant</i> Environmental Engineer Manager	Okay to Draft JCD 1/19/2023

Discharge, Receiving	g Water	s and Water Supply Info	rmation			
Outfall No.	001		Design Flow (MGD)	.04111		
Latitude DP		36.89"	Longitude DP	-79º 42' 57.39"		
Latitude NHD	<u>41º 1'</u>	37.25"	Longitude NHD	-79º 42' 56.77"		
Quad Name	Parke	r	Quad Code	1008		
Wastewater Descri	ption:	Treated municipal sanita	ry sewerage			
Receiving Waters	South	Branch Bear Creek (WWF	F) Stream Code	49141		
NHD Com ID	12385	51468	RMI	2.55		
Drainage Area	8.9		Yield (cfs/mi ²)	0.044		
Q ₇₋₁₀ Flow (cfs)	0.39		Q7-10 Basis	Perennial stream		
Elevation (ft)	1154.	83	Slope (ft/ft)			
Watershed No.	17-C		Chapter 93 Class.	WWF		
Existing Use	state	vide	Existing Use Qualifier	none		
Exceptions to Use	none		Exceptions to Criteria	none		
Comments						
Cause(s) of Impairr Source(s) of Impair		Metals, Nutrients, Siltatic Abandoned Mine Draina	ge, Municipal Point Source and L	Jrban Runoff/Storm Sewers		
TMDL Status			Name			
Comments		•	mpairment predates NPDES pr	ogram that has abated the		
		Impairment.				
Background/Ambie	nt Data		Data Source			
pH (SU)		6.9	1994-95 Bear Creek Basin re	view		
Temperature (°C)		25	WWF default			
CBOD₅ (mg/L)		2	Assumed default value			
NH ₃ -N (mg/l)			Assumed default value			
Hardness (mg/L)		210	1994-95 Bear Creek Basin re	view		
Other:						
Nearest Downstrea	m Publi	c Water Supply Intake	Butler District Pennsylvania-A	merican Water Company		
			Flow at Intake (cfs)			
	59.90		Distance from Outfall (mi)	19		

Changes Since Last Permit Issuance: none

Other Comments: This is a supplemental water source (water transfer to Lake Oneida)

	Tre	atment Facility Summa	ry	
Treatment Facility Na	me: Petrolia STP			
WQM Permit No.	Issuance Date			
1083404	8/25/83			
	Demos of			A
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
Sewage	Secondary	Extended Aeration	Hypochlorite	0.0411
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal
			Sludge Holding/Drying	-
0.0411	115	Not Overloaded	Beds	Other WWTP

Changes since the last permit issuance: None

Other Comments:

The WQM permit indicates a runoff flow period of 16-hrs. but the extended aeration plant has a detention time of 35.4 hrs., so the flow (and discharge) should be considered equalized over the entire day (24 -hrs.)

Month		Flow Mean MGD	BOD5 Mean PPD	Min	Mean	Max	Min	Mean	Max	#
Annual Average Design		0.0411								
Hydraulic Design Capacity		0.0411								
Organic Design Capacity			115							
Annual Average	2018	0.028								
C C	2019	0.024								
	2020	0.028								
Highest Monthly Average January		0.032								
рН							7.10		7.77 ′	1460
TRC								0.2	1.25	730
Fecal coliform								374.7	10 000	48
CBOD5								4.76	11.5	48
TSS								8.16		48
NH3N								0.61	5.83	48
N								1.52	37.7	48
P								3.9	5.97	48
1								5.9	5.97	-10

Calcium oxide (lime) used to adjust pH.

Compliance History

DMR Data for Outfall 001 (from December 1, 2021 to November 30, 2022)

Parameter	NOV-22	OCT-22	SEP-22	AUG-22	JUL-22	JUN-22	MAY-22	APR-22	MAR-22	FEB-22	JAN-22	DEC-21
Flow (MGD)												
Average Monthly	0.0295	0.0281	0.0286	0.0283	0.0281	0.0275	0.0291	0.0286	0.0276	0.0282	0.0275	0.0340
Flow (MGD)												
Daily Maximum	0.0301	0.0294	0.0304	0.0297	0.0289	0.0286	0.0296	0.0335	0.0330	0.0293	0.0298	0.0363
pH (S.U.)												
Minimum	7.42	7.41	7.42	7.41	7.41	7.40	7.41	7.41	7.41	7.42	7.42	7.42
pH (S.U.)												
Maximum	7.44	7.44	7.44	7.43	7.43	7.43	7.45	7.45	7.48	7.45	7.46	7.45
DO (mg/L)												
Minimum	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
TRC (mg/L)												
Average Monthly	0.37	0.34	0.38	0.4	0.38	0.33	0.32	0.43	0.32	0.31	0.39	0.34
TRC (mg/L)												
Instant Maximum	0.42	0.51	0.50	0.52	0.48	0.50	0.44	0.45	0.54	0.56	0.7	1.24
CBOD5 (lbs/day)												
Average Monthly	1.3	0.70	1.05	0.70	1.27	1.0	1.5	6.6	0.87	2.1	1.1	3.3
CBOD5 (lbs/day)												
Weekly Average	1.4	0.74	1.4	0.74	1.32	1.2	1.6	9.13	1.3	2.9	1.6	6.1
CBOD5 (mg/L)	5.0				E 44	4.04		4.0		0.70	47	44.5
Average Monthly	5.2	3.0	4.4	3.0	5.41	4.34	6.3	1.6	3.8	8.72	4.7	11.5
CBOD5 (mg/L)	7.4				E 40	F 07			10	10.0		00.0
Weekly Average	7.4	3.0	5.5	3.0	5.46	5.07	6.3	2.6	4.6	12.0	6.3	20.0
BOD5 (ppd) Influent	54.6	65.1	17.9	44.8	52.6	63.8	49.5	22.6	33.1	27.5	43.3	47.1
Average Monthly BOD5 (mg/L) Influent	34.0	05.1	17.9	44.0	52.0	03.0	49.5	22.0	33.1	27.5	43.3	47.1
Average Monthly	222	278	75.4	190	224.5	278	204	94.7	144	117.1	189	166
TSS (lbs/day)		270	75.4	190	224.5	210	204	94.7	144	117.1	109	100
Average Monthly	1.7	2.1	3.1	2.3	1.1	1.5	4.3	2.5	1.8	2.7	2.1	1.5
TSS (ppd) Influent	1.7	2.1	5.1	2.5	1.1	1.5	4.5	2.5	1.0	2.1	2.1	1.5
Average Monthly	21.9	34.5	13.1	17.9	33.3	49.1	43.7	15.9	18.2	18.2	26.8	38.0
TSS (lbs/day)	21.5	04.0	10.1	17.5	00.0	+5.1	+0.7	10.0	10.2	10.2	20.0	50.0
Weekly Average	1.8	2.5	6.2	3.3	1.5	1.9	5.1	3.4	2.3	3.1	2.4	2.8
TSS (mg/L)	1.0	2.0	0.2	0.0	1.0		0.1	0.1	2.0	0.1	2.1	2.0
Average Monthly	6.8	9.1	25	9.6	4.6	6.4	17.8	10.4	8.0	11.6	9.0	5.4
TSS (mg/L) Influent	0.0	0		0.0		0.1			0.0		0.0	0
Average Monthly	89	147	55.0	76.0	142.0	214	180.0	67.0	79.0	77.5	117	134
TSS (mg/L)												
Weekly Average	7.2	10.2	34	13.2	6.4	8.0	20.4	12.0	8.4	12.8	9.6	9.2

Fecal Coliform #./100	201	00 5	77.0	52.0	4.40.0	00.0	50.4	242	455.0	400	201	240
ml) Geometric Mean	364	82.5	77.0	53.0	140.6	99.0	58.4	313	155.9	490	291	310
Fecal Coliform (#./100												
ml) Instant Maximum	586	189	97.0	97.0	470	196.0	61.0	528	180.0	554	701	310
Total Nitrogen (mg/L)												
Average Monthly	0.8	0.75	1.0	1.0	1.0	0.8	1.0	0.8	2.7	0.6	0.3	0.5
Ammonia (lbs/day)												
Average Monthly	0.06	0.05	0.05	0.2	0.27	0.2	0.02	0.1	0.023	0.02	0.1	0.04
Ammonia (mg/L)												
Average Monthly	0.26	0.2	0.2	1.0	1.16	0.7	0.1	0.6	0.1	0.1	0.5	0.13
T Phosphorus (mg/L)												
Average Monthly	4.8	4.7	4.9	0.6	8.64	3.3	3.8	2.6	2.3	2.1	3.8	3.7

Median pH 7.4- SU annually and summer

Compliance History

No violations reported

Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	.04111
Latitude	41º 1' 36.89"		Longitude	-79º 42' 57.39"
Wastewater D	escription:	Treated sewage effluent		

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform (5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform (5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform (10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform (10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)
DO	4.0			BPJ
E Coli	Report			BPJ

Comments: E Coli a new parameter

Water Quality-Based Limitations

A Sewerage Program "Reasonable Potential Analysis" determined the following parameters were candidates for limitations: CBOD5, Ammonia and DO.

The following limitations were determined through water quality modeling (output files attached):

Parame	eter		Limit (mg/l)		SBC		Model	
CBOD5			25.0	50.0	NA		25.0	50.0
Ammonia-N	Summer		5.5	11.0			12.28	24.56
	Winter		16.0	33.0			36.0	73.0
DO		4.0				4.0		

Comments: previous summer ammonia model recommendation was 12.7-mg/L

Best Professional Judgment (BPJ) Limitations

Comments: DO only

Anti-Backsliding

With existing limit compliance no changes proposed.

Other Considerations

NPDES Permit Fact Sheet Petrolia STP

Initial evaluations used the Toms Run @ Cooksburg gage station data to develop a yield rate for this watershed (0.048 and 0.052-cfsm). Stream Stats based on drainage area generates a slightly lower yield rates with 0.044-cfsm basin average.

A 2016 stream survey did not find municipal point source impacts in the South Branch and the summary report will be recommending that impairment status be removed. However, this applies only to the municipal discharges and their interaction as the South Branch tributaries remain impaired.

Initially the South Branch Bear Creek basin was limited to 10-PPD BOD5 for all dischargers. No sanitary sewer service was provided, industrial waste and mine drainage were poorly treated, surface coal mines were back filled with industrial waste and the Bruin Lagoon failed.

With the adoption of the Federal Clean Water Act sanitary sewer service was proposed. Permitting was by the South West Regional Office. For some reason the planning review design loads and facility design loads do not always correspond. In parallel with the municipal sewage reviews were stream surveys to determine stream impairments and industrial waste treatment.

Penreco inherited a deep mine discharge as it tried to use the mine for industrial waste disposal. Koppers (Beezer East) tried land application and all industrial facilities seem to back fill surface coal mines with industrial waste. A Koppers report showed that the South Branch Bear Creek hardness was approximately 300-mg/L above, at and below a shallow ground water discharge.

The Koppers facility NPDES permit was for a first flush storm water collection, recycle, and discharge storm water system and evaporator treated contaminated ground water discharge. The storm water discharges were expected to be highly contaminated but only occur a few times in a year.

WITCO and Penreco Clean Water permits were conditioned for an optional sand filter and because Air Quality Control classified the industrial facilities as refineries were required to install oil-water separator covers. No action was taken on the sand filters as the effluent concentrations never approached the calculated effluent concentrations.

Clean Water reserved further ground water action leaving further basin remediation to Mining, Environmental Clean Up and Waste Management.

Bruin, Fairview, and Petrolia STP do not report any industrial waste contribution. With no industrial contribution priority pollutant concentrations should be negligible. Around the year 2000 Central Transport relocated to the Karns City area and proposed a truck wasting discharge to the Bear Creek Authority.

Input Data W	QM 7.0
--------------	--------

	SWP Basin	Strea Coo		Stre	eam Nam	e	RMI		vation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	Witho	VS drawal gd)	Apply FC
	17C	49	141 SOUT	H BRANC	CH BEAR	CREEK	2.5	50	1154.83	8.89	0.0000	00	0.00	\checkmark
87						Stream Da	ta							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> ip pH	Te	<u>Strear</u> emp	n pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°C)		
Q7-10 Q1-10 Q30-10	0.044	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000)	0.00	0.0	0 2	5.00 6.	90	0.00	0.00	
						Discharge	Data						1	
			Name	Per	rmit Numl	Disc	Permitt Disc Flow (mgd	Dis Flo	c Res w Fa	Dis erve Ten ctor (°C	np	Disc pH		
		Petro	lia STP	PA	0094200+	0.041	1 0.04	11 0.0	411	0.000 2	25.00	7.40		
						Parameter	Data							
			1	Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
			10	urumore	, ridinio	(n	ng/L) (r	ng/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			4.00	7.54	0.00	0.00				
			NH3-N				25.00	0.10	0.00	0.70				

Input Data WQM	17.0
----------------	------

	SWP Basin	Strea Coo		Stre	eam Nam	e	RMI		vation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PW Withdr (mg	awal	Apply FC
	17C	49	141 SOUT	H BRANC	H BEAR	CREEK	0.0	00 ⁻	1046.74	41.40	0.00000	91 	0.00	✓
						Stream Dat	a							
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p pH	Tem	<u>Stream</u> 1p	1 pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°C	:)		
Q7-10 Q1-10	0.044	0.00	0.00	0.000	0.000		0.00	0.0	0 2	5.00 6.9	90	0.00	0.00	
Q30-10		0.00	0.00	0.000	0.000									
	Ĩ					Discharge [Data							
			Name	Per	mit Numt	Disc	Permitt Disc Flow (mgd	Dis Flo	c Res w Fa	Dis erve Ten ctor (°C	np p	sc iH		
				pa		0.0000	0.000	0.0 0.0	000	0.000 2	25.00	7.00		
						Parameter I	Data							
			1	Paramete	r Name	Di Ce		Trib Conc	Stream Conc	Fate Coef				
	_		83			(m	g/L) (r	ng/L)	(mg/L)	(1/days)				
			CBOD5			:	25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			4.00	7.54	0.00	0.00				
			NH3-N			:	25.00	0.01	0.00	0.70				

			TTO	1110	i i y ai	ouyn	anno	out	0410			
	SW	P Basin	Strea	ım Code				Stream	Name			
		17C	4	9141			SOUTH E	BRANCH	BEAR C	REEK		
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Tra∨ Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
2.550	0.39	0.00	0.39	.0636	0.00803	.457	11.44	25	0.09	1.793	25.00	6.94
Q1-1	0 Flow											
2.550	0.25	0.00	0.25	.0636	0.00803	NA	NA	NA	0.07	2.207	25.00	6.96
Q30-	10 Flow	(
2.550	0.53	0.00	0.53	.0636	0.00803	NA	NA	NA	0.10	1.542	25.00	6.93

WQM 7.0 Hydrodynamic Outputs

Wednesday, January 18, 2023

Version 1.1

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	95.00%	Use Balanced Technology	✓
D.O. Goal	5		

Wednesday, January 18, 2023

Version 1.1

		<u>eam Code</u> 49141		<u>St</u> SOUTH BR	ream Nan ANCH BE		REEK		
NH3-N	Acute Allocatio	ns							
RMI	Discharge Nam	Baseline criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L		Critical Reach	Percent Reduction	n
2.55	50 Petrolia STP	11.41	50	11.41		50	0	0	-0
NH3-N	Chronic Allocat	ions							_10
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)		Critical Reach	Percent Reduction	
2.55	50 Petrolia STP	1.4	12.28	1.4	12	.28	0	0	-51
Dissolvo	ed Oxygen Allo	cations							
		<u>C</u>	BOD5	<u>NH3-N</u>	Di	ssolve	d Oxygen	Critical	Percen
RMI	Discharge Na	me Baselir	ne Multiple	Baseline Mu	ultiple Ba	seline	Multiple		Reductio

2.55 Petrolia STP	25	25	12.28	12.28	4	4	0	0

Wednesday, January 18, 2023

Version 1.1

SWP Basin	<u>Stream Code</u>			Stream Name	
17C	49141		SOUTH	BRANCH BEAR CREE	к
RMI	Total Discharge	Flow (mgd) <u>Ana</u>	lysis Temperature (°C)	<u>Analysis pH</u>
2.550	0.04	1		25.000	6.944
Reach Width (ft)	<u>Reach De</u>	<u>pth (ft)</u>		Reach WDRatio	Reach Velocity (fps)
11.437	0.45	7		25.002	0.087
Reach CBOD5 (mg/L)	Reach Kc ((1/days)	<u>R</u>	each NH3-N (mg/L)	Reach Kn (1/days)
5.22	0.42	50		1.80	1.029
Reach DO (mg/L)	<u>Reach Kr (</u>			Kr Equation	<u>Reach DO Goal (mg/L)</u>
7.045	20.20)5		Owens	5
Reach Travel Time (days	<u>5)</u>	Subreach	Results		
1.793	TravTime	CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.179	4.74	1.50	7.54	
	0.359	4.31	1.25	7.54	
	0.538	3.91	1.04	7.54	
	0.717	3.55	0.86	7.54	
	0.897	3.23	0.72	7.54	
	1.076	2.93	0.60	7.54	
	1.255	2.67	0.50	7.54	
	1.434	2.42	0.41	7.54	
	1.614	2.20	0.34	7.54	
	1.793	2.00	0.29	7.54	

WQM 7.0 D.O.Simulation

Wednesday, January 18, 2023

Version 1.1

<u>SWP Basin</u> Si	tream Code		Stream Name	2		
17C	49141	S	OUTH BRANCH BEA	R CREEK		
Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
Petrolia STP	PA0094200+	0.041	CBOD5	25		
			NH3-N	12.28	24.56	
			Dissolved Oxygen			4
	17C Name	17C 49141 Name Permit Number	17C 49141 S Name Permit Flow Number (mgd)	17C 49141 SOUTH BRANCH BEA Name Permit Number Disc Flow (mgd) Parameter Petrolia STP PA0094200+ 0.041 CBOD5 NH3-N	17C 49141 SOUTH BRANCH BEAR CREEK Name Permit Number Disc Flow (mgd) Parameter 20-day Ave. (mg/L) Petrolia STP PA0094200+ 0.041 CBOD5 25 NH3-N 12.28 12.28 12.28	17C 49141 SOUTH BRANCH BEAR CREEK Name Permit Number Disc Flow (mgd) Parameter Effl. Limit 30-day Ave. (mg/L) Effl. Limit Maximum (mg/L) Petrolia STP PA0094200+ 0.041 CBOD5 25 NH3-N 12.28 24.56

WQM 7.0 Effluent Limits

Wednesday, January 18, 2023

Version 1.1

B	С	D	E	F	G	н		J	K Nu December 1	L	М
	charger Site	Petrolia Petrolia STP					Revised		ay, December 1 sday, January 1		
	Site iicipality	Fairview Tov					Revised	vveune	isualy, January	0,2025	
	ounty	Butler	manip								
	ES Permit	PA0094200	i .								
Control 112	0.5										
					TRC EVA	LUATION					
nput approp	oriate values in l	B4:B8 and E4:	E7	2							
	1.3868	= Q stream (d				= CV Daily					
0	1.0411	= Q discharg				= CV Hourly					
	30	= no. sample	s emand of Strea			= AFC_Partial Mi = CFC Partial Mi					
	0.3 0		emand of Stream emand of Disch	(2) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2		= CFC_Fartial Wi = AFC_Criteria C		ime (min)			
		= BAT/BPJ V		uige		= CFC_Criteria C					
	0		of Safety (FOS)			=Decay Coefficie					
S	ource	Reference	AFC Calculatio	ins		Refere	nce		CFC Cal	culations	
	TRC	1.3.2.iii		WLA afc =	States and a second	1.3.2.			WLA cfc =		
PENTOXSD		5.1a		LTAMULT afc = 1		5.10			LTAMULT cfc =		
PENTOXSD	IRG	5.1b		LTA_afc= I	0.730	5.10	1		LTA_cfc =	1.106	
Source						Effluen	t Limit Calcu	ations			
PENTOXSD1	TRG	5.1f			AML MULT =						
PENTOXSD	TRG	5.1g			LIMIT (mg/l) =			BAT/BPJ			
				(LIMIT (mg/l) =	1.635					
WLA afc		(.019/e(-k*AF	C_tc)) + [(AFC	Yc*Qs*.019/Qd*e(-k*AFC_tc))						
		+ Xd + (AFC	C_Yc*Qs*Xs/Qd)]*(1-FOS/100)							
TAMULT afc				*LN(cvh^2+1)^0.5)							
.TA_afc		wla_afc*LTAN	IULT_afc								
VLA_cfc		(.011/e(-k*CE	C tc) + I/CEC	Yc*Qs*.011/Qd*e(-	k*CFC_tc))						
			C_Yc*Qs*Xs/Qd								
.TAMULT_cfc		EXP((0.5*LN(_ cvd^2/no_sampl	les+1))-2.326*LN(c	vd^2/no_sampl	es+1)^0.5)					
.TA_cfc		wla_cfc*LTAM	1ULT_cfc								
MLMULT		EVD/2 228*1 M	U(oudA2/pa_cor	nples+1)^0.5)-0.5*L	N/audA2/pa	(mplac+1))					
	IT			TA_cfc)*AML_MUI		mples+1))					
NST MAX LIMI											
0.011/EXP(-	K*CFC_tc/1440))+(((CFC_Yc*Q:	s*0.011)/(1.547*								
0.011/EXP(-I *EXP(-K*C Stream	K*CFC_tc/1440) ;FC_tc/1440)))+X Chlorine Requi Reach/Node)+(((CFC_Yc*Qs :d+(CFC_Yc*Qs red	s*0.011)/(1.547*	Qd) *(1-FOS/100) perennial 1)	Demand	+	Chlorine Res	dual		
0.011/EXP(-) *EXP(-K*C Stream Stream	K*CFC_tc/1440) ;FC_tc/1440)))+X Chlorine Requi Reach/Node Flow)+(((CFC_Yc*Qs :d+(CFC_Yc*Qs red	s*0.011)/(1.547* *Xs/1.547*Qd)) =	Qd) *(1-FOS/100) perennial 1 Perwnnial)	Demand	+	Chlorine Res	dual		
0.011/EXP(-) *EXP(-K*C Stream Stream	K*CFC_tc/1440) ;FC_tc/1440)))+X Chlorine Requi Reach/Node Flow Code)+(((CFC_Yc*Qs :d+(CFC_Yc*Qs red	s*0.011)/(1.547* *Xs/1.547*Qd)) =	Qd) *(1-FOS/100) perennial 1)	Demand	+	Chlorine Res	dual		
0.011/EXP(-) *EXP(-K*C Stream Stream Stream	K*CFC_tc/1440) ;FC_tc/1440)))+X Chlorine Requi Reach/Node Flow)+(((CFC_Yc*Qs :d+(CFC_Yc*Qs red	s*0.011)/(1.547* *Xs/1.547*Qd)) =	Qd) *(1-FOS/100) perennial 1 Perwnnial)	Demand	*	Chlorine Res	dual		
0.011/EXP(- *EXP(-K*C Stream Stream Stream Samples	K°CFC_tc/1440) FC_tc/1440))+X Chlorine Requi Reach/Node Flow Code Function outfall)+(((CFC_Yc*Qs :d+(CFC_Yc*Qs red	s*0.011)/(1.547* s*Xs/1.547*Qd)) = 1 RMI	Qd) perennial 1 Perwnnial 49141 30 2.55)	Demand	+	Chlorine Res	dual		
0.011/EXP(- *EXP(-K*C Stream Stream Stream Samples each	K*CFC_tc/1440); FC_tc/1440));+X Chlorine Requi Reach/Node Flow Code Function)+(((CFC_Yc*Qs :d+(CFC_Yc*Qs red	s*0.011)/(1.547* °*Xs/1.547*Qd)) = 1 RMI RMI	Qd) perennial 1 Perwnnial 49141 30 2.55 0)	Demand	÷	Chlorine Res	dual		
0.011/EXP(- *EXP(-K*C Stream Stream Stream Samples each each	K°CFC_tc/1440) FC_tc/1440))+X Chlorine Requi Reach/Node Flow Code Function outfall)+(((CFC_Yc*Qs :d+(CFC_Yc*Qs red	s*0.011)/(1.547*Qd)) ≤* Xs/1.547*Qd)) = 1 RMI RMI feet	Qd) perennial 1 Perwnnial 49141 30 2.55)	Demand	*	Chlorine Res	dual		
0.011/EXP(- *EXP(-K*C Stream Stream Stream Samples each each trainage	K*CFC_tc/1440))+X (FC_tc/1440))+X Chlorine Requi Reach/Node Flow Code Function outfall Reach End)+(((CFC_Yc*Qs :d+(CFC_Yc*Qs red	s*0.011)/(1.547* °*Xs/1.547*Qd)) = 1 RMI RMI	Qd) perennial 1 Perwnnial 49141 30 2.55 0 13464)	Demand	+	Chlorine Res	dual		
0.011/EXP(-K*C Stream Stream Stream Samples each each lrainage FRC	K°CFC_tc/1440) FC_tc/1440))+X Chlorine Requi Reach/Node Flow Code Function outfall)+(((CFC_Ye [•] Qı (d+(CFC_Ye [•] Qı Conditions Conditions average maximum	**0.011)/(1.547* **Xs/1.547*Qd)) = 1 RMI RMI feet sq miles mg/L mg/L	Qd) perennial 1 Perwnnial 49141 30 2.55 0 13464 8.89 0.050 1.600)	Demand	+	Chlorine Res	dual		
0.011/EXP(+ *EXP(-K*C Stream Stream Stream Samples each each trainage "RC elevation	K*CFC_tc/1440))+X (FC_tc/1440))+X Chlorine Requi Reach/Node Flow Code Function outfall Reach End)+(((CFC_Yc*Qe red Conditions average maximum modelled	**0.011)/(1.547**Qd)) = 1 1 RMI RMI feet sq miles mg/L feet feet	Qd) perennial 1 Perwnnial 49141 30 2.55 0 13464 8.89 0.050 1.600 1155.38)	Demand		Chlorine Res	dual		
0.011/EXP(- *EXP(-K*C Stream Stream Stream Samples each each trainage RC elevation elevation	K*CFC_tc/1440))+X (FC_tc/1440))+X Chlorine Requi Reach/Node Flow Code Function outfall Reach End)+(((CFC_Yc*Qe cd+(CFC_Yc*Qe red Conditions average maximum modelled modelled	s*0.011)/(1.547*Qd)) = 1 RMI RMI feet sq miles mg/L feet feet feet	Qd) perennial 1 Perwnnial 49141 30 2.55 0 13464 8.89 0.050 1.600 1155.38 1046.74)	Demand	*	Chlorine Res	dual		
0.011/EXP(- *EXP(-K*C Stream Stream Stream Samples each each irainage "RC elevation elevation elevation ilope	K*CFC_tc/1440))+X (FC_tc/1440))+X Chlorine Requi Reach/Node Flow Code Function outfall Reach End)+(((CFC_Yc*Qe red Conditions average maximum modelled	**0.011)/(1.547**Qd)) = 1 1 RMI RMI feet sq miles mg/L feet feet	Qd) perennial 1 Perwnnial 49141 30 2.55 0 13464 8.89 0.050 1.600 1155.38)	Demand		Chlorine Res	dual		
0.011/EXP(-/ *EXP(-K*C Stream Stream Stream Samples each trainage TRC elevation elevation elevation elevation elevation elevation elevation elevation elevation elevation elevation	K*CFC_to/1440)) FC_to/1440))+X Chlorine Requi Reach/Node Flow Code Function outfall Reach End limitation)+(((CFC_Yc*Qe cd+(CFC_Yc*Qe red Conditions average maximum modelled modelled	s*0.011)/(1.547* s*Xsr/1.547*Qd)) = 1 RMI feet sq miles mg/L feet feet foot/foot cfs/sq mi mgd	Qd) perennial 1 Perwnnial 49141 30 2.55 0 13464 8.89 0.050 1.800 1155.38 1046.74 0.008 0.044 0.0411)	Demand		Chlorine Res	dual		
0.011/EXP(- *EXP(-K*C Stream Stream Samples each drainage FRC elevation elevation slope ow flow tischarge Runoff	K*CFC_to/1440)) FC_to/1440))+X Chlorine Requi Reach/Node Flow Code Function outfall Reach End limitation)+(((CF C_Yc*Qe cd+(CFC_Yc*Qe red Conditions average maximum modelled modelled	RMI RMI RMI RMI feet sq miles mg/L feet feet feet foot/foot cfs/sq mi	Qd) perennial 1 Perwnnial 49141 30 2.55 0 13464 8.89 0.050 1.600 1155.38 1046.74 0.008 0.044)	Demand	*	Chlorine Res	dual		
0.011/EXP(- *EXP(-K*C Stream Stream Stream Samples each each drainage RC elevation elevation elevation elevation elevation elevation elevation elevation elevation elevation elevation elevation elevation elevation elevation elevation elevation	K*CFC_to/1440)) FC_to/1440))+X Chlorine Requi Reach/Node Flow Code Function outfall Reach End limitation)+(((CF C_Yc*Qe cd+(CFC_Yc*Qe red Conditions average maximum modelled modelled	s*0.011)/(1.547* s*Xsr/1.547*Qd)) = 1 RMI feet sq miles mg/L feet feet foot/foot cfs/sq mi mgd	Qd) perennial 1 Perwnnial 49141 30 2.55 0 13464 8.89 0.050 1.800 1155.38 1046.74 0.008 0.044 0.0411)	Demand	*	Chlorine Res	dual		
D.011/EXP(+ *EXP(-K*C Stream Stream Stream Samples each leach lrainage RC levation lope bw flow lischarge Runoff	K*CFC_to/1440)) FC_to/1440))+X Chlorine Requi Reach/Node Flow Code Function outfall Reach End limitation)+(((CF C_Yc*Qe cd+(CFC_Yc*Qe red Conditions average maximum modelled modelled	s*0.011)/(1.547* s*Xsr/1.547*Qd)) = 1 RMI feet sq miles mg/L feet feet foot/foot cfs/sq mi mgd	Qd) perennial 1 Perwnnial 49141 30 2.55 0 13464 8.89 0.050 1.800 1155.38 1046.74 0.008 0.044 0.0411)	Demand	*	Chlorine Res	dual		
D.011/EXP(+ *EXP(-K*C Stream Stream Stream Samples each leach lrainage RC levation lope bw flow lischarge Runoff	K*CFC_to/1440)) FC_to/1440))+X Chlorine Requi Reach/Node Flow Code Function outfall Reach End limitation)+(((CF C_Yc*Qe cd+(CFC_Yc*Qe red Conditions average maximum modelled modelled	s*0.011)/(1.547* s*Xsr/1.547*Qd)) = 1 RMI feet sq miles mg/L feet feet foot/foot cfs/sq mi mgd	Qd) perennial 1 Perwnnial 49141 30 2.55 0 13464 8.89 0.050 1.800 1155.38 1046.74 0.008 0.044 0.0411)	Demand	•	Chlorine Res	dual		
D.011/EXP(- *EXP(-K*C Stream Stream Stream Samples each each le	K*CFC_tc/1440))+X Chlorine Requi Reach/Node Flow Code Function outfall Reach End limitation)+(((CF C_Yc*Qe cd+(CFC_Yc*Qe red Conditions average maximum modelled modelled	s*0.011))((1.547* s*Xs/1.547*Qd)) = 1 RMI RMI feet sq miles mg/L feet feet feet feet foot/foot cfs/sq mi mgd hours	Qd) perennial 1 Perwnnial 49141 30 2.55 0 13464 8.89 0.050 1.600 1155.38 1046,74 0.008 0.044 0.0411 24.000 0.38683)	Demand	*	Chlorine Res	dual		
0.011/EXP(-I *EXP(-K*C Stream Stream Stream Samples each each frainage *RC elevation elevation elevation elevation slope ow flow discharge Runoff BAT controlli	K*CFC_tc/1440)) FC_tc/1440))+X Chlorine Requi Reach/Node Flow Code Function outfall Reach End limitation	average maximum modelled modelled	s*0.011)/(1.547* *Xs/1.547*Qd)) = 1 RMI RMI feet sq miles mg/L feet feet feet foot/foot cfs/sq mi mgd hours	Qd) perennial 1 Perwnnial 49141 30 2.55 0 13464 8.89 0.050 1.600 1155.38 1046.74 0.008 0.044 0.0411 24.000 0.38683 0.250013)	Demand	*	Chlorine Res	dual		
0.011/EXP(-I *EXP(-K*C Stream Stream Stream Samples each drainage TRC elevation slope ow flow discharge Runoff 3AT controlli	K*CFC_to/1440)) FC_to/1440))+X Chlorine Requi Reach/Node Flow Code Function outfall Reach End limitation Period ling flow flow)+(((CF C_Ye [•] Qe [*] red Conditions average maximum modelled modelled modelled	s*0.011)/(1.547* s*Xsr/1.547*Qd)) = 1 RMI RMI feet sq miles mg/L feet feet foot/foot cfs/sq mi mgd hours	Qd) perennial 1 Perwnnial 49141 30 2.55 0 13464 8.89 0.050 1.800 1155.38 1046.74 0.008 0.044 0.0411 24.000 0.38683 0.250013 0.291113)	Demand		Chlorine Res	dual		
D.011/EXP(- 	K*CFC_tc/1440)) FC_tc/1440))+X Chlorine Requi Reach/Node Flow Code Function outfall Reach End limitation	average maximum modelled modelled	s*0.011)/(1.547* *Xs/1.547*Qd)) = 1 RMI RMI feet sq miles mg/L feet feet feet foot/foot cfs/sq mi mgd hours	Qd) perennial 1 Perwnnial 49141 30 2.55 0 13464 8.89 0.050 1.600 1155.38 1046.74 0.008 0.044 0.0411 24.000 0.38683 0.250013)	Demand		Chlorine Res	dual		
0.011/EXP(- *EXP(-K*C Stream Stream Stream Samples each each trainage FRC elevation elevation elevation elevation elevation elevation scharge Runoff BAT controlli tream tream tream tiream tiream	K*CFC_to/1440)) FC_to/1440))+X Chlorine Requi Reach/Node Flow Code Function outfall Reach End limitation Period ling flow flow flow chlorine	<pre>b+(((CFC_Ye*Qet red Conditions Conditions average maximum modelled modelled modelled modelled modelled demand demand</pre>	s*0.011)/(1.547* s*Xs/1.547*Qd)) = 1 RMI feet sq miles mg/L feet feet foot/foot cfs/sq mi mgd hours cfs MGD MGD mg/L	Qd) perennial 1 Perwnnial 49141 30 2.55 0 13464 8.89 0.050 1.800 1155.38 1046.74 0.008 0.044 0.0411 24.000 0.38683 0.250013 0.291113)	Demand		Chlorine Res	dual		
0.011/EXP(-I *EXP(-K*C Stream Stream Stream Samples each drainage TRC elevation slope ow flow discharge Runoff 3AT controlli stream stream stream tream tream	K*CFC_to/1440)) FC_to/1440))+X Chlorine Requi Reach/Node Flow Code Function outfall Reach End limitation Period ling flow flow flow chlorine discharge Total Stream	++(((CF C_Ye [•] Qe [*] red Conditions average maximum modelled modelled modelled demand demand demand AWaste	s*0.011)/(1.547* s*Xsr/1.547*Qd)) = 1 RMI RMI feet sq miles mg/L feet feet foot/foot cfs/sq mi mgd hours cfs MGD MGD mg/L ratio	Qd) perennial 1 Perwnnial 49141 30 2.55 0 13464 8.89 0.050 1.800 1155.38 1046.74 0.008 0.044 0.0411 24.000 0.38683 0.25013 0.291113 0.3 7.1)	Demand	*	Chlorine Res	dual		
0.011/EXP(-I *EXP(-K*C Stream Stream Stream Samples each drainage TRC elevation slope ow flow discharge Runoff 3AT controlli stream stream stream tream tream	K*CFC_tc/1440)) FC_tc/1440))+X Chlorine Requi Reach/Node Flow Code Function outfall Reach End limitation Period ling flow flow flow chlorine discharge	++(((CF C_Ye [•] Qe [*] red Conditions average maximum modelled modelled modelled demand demand demand AWaste	s*0.011)/(1.547* s*Xsr/1.547*Qd)) = 1 RMI RMI feet sq miles mg/L feet feet foot/foot cfs/sq mi mgd hours cfs MGD MGD mg/L ratio	Qd) perennial 1 Perwnnial 49141 30 2.55 0 13464 8.89 0.050 1.800 1155.38 1046.74 0.008 0.044 0.0411 24.000 0.38683 0.25013 0.291113 0.3 7.1)	Demand		Chlorine Res	dual		
0.011/EXP(-I *EXP(-K*C Stream Stream Stream Samples reach reach drainage FRC elevation elevation elevation elevation slope ow flow discharge Runoff BAT controlli stream stream stream stream stream stream stream stream stream	K*CFC_tc/1440)) FC_tc/1440))+X Chlorine Requi Reach/Node Flow Code Function outfall Reach End limitation Period ling flow flow flow flow flow flow flow flow	++(((CFC_Ye [*] Qe [*] red Conditions Conditions average maximum modelled modelled modelled modelled demand demand demand /Waste chlorine disap: mean	s*0.011))((1.547* s*Xs/1.547*Qd)) = 1 RMI RMI feet sq miles mg/L feet feet feet foot/foot cfs/sq mi mgd hours cfs MGD MGD mg/L mg/L mg/L mg/L stion assumed BAT	Qd) perennial 1 Perwnnial 49141 30 2.55 0 13464 8.89 0.050 1.600 1155.38 1046.74 0.008 0.044 0.0411 24.000 0.38683 0.25013 0.291113 0.3 7.1 0.5)	Demand		Chlorine Res	dual		
0.011/EXP(-I *EXP(-K*C Stream Stream Stream Samples each each drainage FRC each each each drainage FRC each each each drainage FRC each each each drainage FRC each each each drainage Stream stream tream tream tream tream tream tream tream	K*CFC_tc/1440)) FC_tc/1440))+X Chlorine Requi Reach/Node Flow Code Function outfall Reach End limitation Period ling flow flow flow flow chlorine discharge Total Stream	<pre>b+(((CFC_Ye[*]Qe' red Conditions average maximum modelled modelled modelled modelled demand demand demand AWaste chlorine disap.</pre>	r0.011)/(1.547* rXs/1.547*Qd)) = 1 RMI RMI feet sq miles mg/L feet feet feet feet feet feet foot/foot cfs/sq mi mgd hours cfs MGD MGD mg/L ratio ation assumed	Qd) perennial 1 Perwnnial 49141 30 2.55 0 13464 8.89 0.050 1.600 1155.38 1046.74 0.008 0.044 0.0411 24.000 0.38683 0.25013 0.291113 0.3 7.1)	Demand		Chlorine Res	dual		
0.011/EXP(-I *EXP(-K*C Stream Stream Stream Samples each each l	K*CFC_tc/1440)) FC_tc/1440))+X Chlorine Requi Reach/Node Flow Code Function outfall Reach End limitation Period ling flow flow flow flow flow flow flow flow	++(((CFC_Ye [*] Qe [*] red Conditions Conditions average maximum modelled modelled modelled modelled demand demand demand /Waste chlorine disap: mean	s*0.011))((1.547* s*Xs/1.547*Qd)) = 1 RMI RMI feet sq miles mg/L feet feet feet foot/foot cfs/sq mi mgd hours cfs MGD MGD mg/L mg/L mg/L mg/L stion assumed BAT	Qd) perennial 1 Perwnnial 49141 30 2.55 0 13464 8.89 0.050 1.600 1155.38 1046.74 0.008 0.044 0.0411 24.000 0.38683 0.25013 0.291113 0.3 7.1 0.5)	Demand		Chlorine Res	dual		
D.011/EXP(-I *EXP(-K*C Stream Stream Stream Samples each levation levati	K*CFC_tc/1440)) FC_tc/1440))+X Chlorine Requi Reach/Node Flow Code Function outfall Reach End limitation Period ling flow flow flow flow flow flow flow flow	++(((CFC_Ye [*] Qe [*] red Conditions Conditions average maximum modelled modelled modelled modelled demand demand demand /Waste chlorine disap: mean	s*0.011))((1.547* s*Xs/1.547*Qd)) = 1 RMI RMI feet sq miles mg/L feet feet feet foot/foot cfs/sq mi mgd hours cfs MGD MGD mg/L mg/L mg/L mg/L stion assumed BAT	Qd) perennial 1 Perwnnial 49141 30 2.55 0 13464 8.89 0.050 1.600 1155.38 1046.74 0.008 0.044 0.0411 24.000 0.38683 0.25013 0.291113 0.3 7.1 0.5)	Demand		Chlorine Res	dual		
D.011/EXP(-I *EXP(-K*C Stream Stream Stream Samples each levation levati	K*CFC_tc/1440)) FC_tc/1440))+X Chlorine Requi Reach/Node Flow Code Function outfall Reach End limitation Period ling flow flow flow flow flow flow flow flow	++(((CFC_Ye [*] Qe [*] red Conditions Conditions average maximum modelled modelled modelled modelled demand demand demand /Waste chlorine disap: mean	s*0.011))((1.547* s*Xs/1.547*Qd)) = 1 RMI RMI feet sq miles mg/L feet feet feet foot/foot cfs/sq mi mgd hours cfs MGD MGD mg/L mg/L mg/L mg/L stion assumed BAT	Qd) perennial 1 Perwnnial 49141 30 2.55 0 13464 8.89 0.050 1.600 1155.38 1046.74 0.008 0.044 0.0411 24.000 0.38683 0.25013 0.291113 0.3 7.1 0.5)	Demand		Chlorine Res	dual		
D.011/EXP(-I *EXP(-K*C Stream Stream Stream Samples each levation levati	K*CFC_tc/1440)) FC_tc/1440))+X Chlorine Requi Reach/Node Flow Code Function outfall Reach End limitation Period ling flow flow flow flow flow flow flow flow	++(((CFC_Ye [*] Qe [*] red Conditions Conditions average maximum modelled modelled modelled modelled demand demand demand /Waste chlorine disap: mean	s*0.011))((1.547* s*Xs/1.547*Qd)) = 1 RMI RMI feet sq miles mg/L feet feet feet foot/foot cfs/sq mi mgd hours cfs MGD MGD mg/L mg/L mg/L mg/L stion assumed BAT	Qd) perennial 1 Perwnnial 49141 30 2.55 0 13464 8.89 0.050 1.600 1155.38 1046.74 0.008 0.044 0.0411 24.000 0.38683 0.25013 0.291113 0.3 7.1 0.5)	Demand		Chlorine Res	dual		
0.011/EXP(-I *EXP(-K*C Stream Stream Stream Samples each each l	K*CFC_tc/1440)) FC_tc/1440))+X Chlorine Requi Reach/Node Flow Code Function outfall Reach End limitation Period ling flow flow flow flow flow flow flow flow	++(((CFC_Ye [*] Qe [*] red Conditions Conditions average maximum modelled modelled modelled modelled demand demand demand /Waste chlorine disap: mean	s*0.011))((1.547* s*Xs/1.547*Qd)) = 1 RMI RMI feet sq miles mg/L feet feet feet foot/foot cfs/sq mi mgd hours cfs MGD MGD mg/L mg/L mg/L mg/L stion assumed BAT	Qd) perennial 1 Perwnnial 49141 30 2.55 0 13464 8.89 0.050 1.600 1155.38 1046.74 0.008 0.044 0.0411 24.000 0.38683 0.25013 0.291113 0.3 7.1 0.5)	Demand		Chlorine Res	dual		

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations.			Monitoring Re	quirements
Parameter	Mass Units	; (lbs/day) ⁽¹⁾		Concentrati	ions (mg/L)		Minimum ⁽²⁾	Required
Faranieter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
		Report						
Flow (MGD)	Report	Daily Max	XXX	XXX	XXX	XXX	1/week	Measured
		~~~~	6.0				4/-1	Qual
pH (S.U.)	XXX	XXX	Inst Min	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	4.0 Daily Min	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
								8-Hr
CBOD5	8.5	13.7	XXX	25	40	50	2/month	Composite
BOD5								8-Hr
Raw Sewage Influent	Report	XXX	XXX	Report	XXX	XXX	2/month	Composite
								8-Hr
TSS	10.2	15.4	XXX	30	45	60	2/month	Composite
TSS								8-Hr
Raw Sewage Influent	Report	XXX	XXX	Report	XXX	XXX	2/month	Composite
Fecal Coliform (No./100 ml)				2000				
Oct 1 - Apr 30	XXX	XXX	XXX	Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml)				200				
May 1 - Sep 30	XXX	XXX	XXX	Geo Mean	XXX	1000	2/month	Grab
E. Coli (No./100 ml)	xxx	xxx	xxx	xxx	XXX	Report	1/year	Grab
								8-Hr
Total Nitrogen	XXX	XXX	XXX	Report	XXX	XXX	2/month	Composite
Ammonia								8-Hr
Nov 1 - Apr 30	5.4	XXX	XXX	16.0	XXX	33.0	2/month	Composite
Ammonia								8-Hr
May 1 - Oct 31	1.8	XXX	XXX	5.5	XXX	11.0	2/month	Composite
								8-Hr
Total Phosphorus	XXX	XXX	XXX	Report	XXX	XXX	2/month	Composite

Compliance Sampling Location: Outfall 001 after disinfection