

Application Type	Renewal
	Non-
Facility Type	Municipal
Major / Minor	Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

PA0094536
1070991
1409798

Applicant and Facility Information							
Applicant Name	Allegiance Rehab Center Inc.	Facility Name	Allegiance Rehab Center Inc. STP				
Applicant Address	1427 Frankstown Road	Facility Address	1427 Frankstown Road				
	Sidman, PA 15955-4611		Sidman, PA 15955-4611				
Applicant Contact	Amanda Duffy	Facility Contact	Charlie Hogue				
Applicant Phone	(814) 487-8001	Facility Phone	814-487-8001				
Client ID	360224	Site ID	329974				
Ch 94 Load Status	Not Overloaded	Municipality	Croyle Township				
Connection Status	No Limitations	County	Cambria				
Date Application Rece	eivedJuly 21, 2022	EPA Waived?	Yes				
Date Application Accepted October 21, 2022		If No, Reason					
Purpose of Application	nNPDES permit renewal and tra	ansfer.					

Summary of Review

The PA Department of Environmental Protection (PADEP/Department) received an NPDES renewal and transfer application from The EADS Group, Inc. on behalf of Allegiance Rehab Center Inc. (new permittee) on July 21, 2022 for permittee's Allegiance Rehab Center Inc. STP (facility). The facility is in Croyle Township, Cambria County and the treated effluent is discharged into state watershed 18-E. The current permit is expired on October 31, 2022. The terms and conditions of the current permit is administratively extended since the renewal application was not received at least 180 days prior to the expiration date. Renewal NPDES permit applications under Clean Water program are not covered by PADEP's PDG per 021-2100-001.

This fact sheet is developed in accordance with 40 CFR §124.56.

Changes in this renewal: E. Coli monitoring added, NH3-N summer limit and TRC limits are more stringent, and numeric flow limit is replaced with monitoring requirement.

Sludge use and disposal description and location(s): Biosolids are hauled-off to FHMA WWTP for further treatment and disposal.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
\checkmark		Reza H. Chowdhury, E.I.T. / Project Manager	October 31, 2022
х		Pravin Patel Pravin C. Patel, P.E. / Environmental Engineer Manager	11/01/2022

Discharge, Receiving	Waters	s and Water Supply Inf	formatior	I			
Outfall No. 001	01			Design Flow (MGD)		0.019	
Latitude 40° 2	1' 44"			Longitu	de	-78º 44' 20"	
Quad Name Bea	averdale)		Quad C	ode	1616	
Wastewater Descrip	otion:	Sewage Effluent					
Receiving Waters		ned Tributary of South F Conemaugh River (CWF		Stream Co	de	45873 (POFU: 45866)	
NHD Com ID	12371		/	RMI		0.31 (2.99 at POFU)	
Drainage Area		ni ² (0.52 mi ²) at POFU		Yield (cfs/r	mi²)	0.1	
Q ₇₋₁₀ Flow (cfs)	-	cfs at POFU		Q ₇₋₁₀ Basis		Please see below	
Elevation (ft)		96 (1745.41 at POFU)		Slope (ft/ft)			
Watershed No.	18-E			Chapter 93		CWF	
Existing Use	CWF			•	se Qualifier	Ch. 93	
Exceptions to Use	None			Exceptions	s to Criteria	None	
Assessment Status		Attaining Use(s)		-			
Cause(s) of Impairm	nent						
Source(s) of Impairr	nent						
TMDL Status		Final		Name	Kiskiminetas Watersheds	s-Conemaugh River TMDL	
Background/Ambier	nt Data		Data S	ource			
pH (SU)		7.0	Defaul	t			
Temperature (°C)		20	Defaul	t			
Hardness (mg/L)		100	Defaul	t			
Other:							
Nearest Downstrear	m Public	Water Supply Intake	Saltsbu	urg Municipa	al Authority, Sa	altsburg Boro, Indiana County	
		ugh River	Flow at Intake (cfs)				
	.55	-	Distance from Outfall (mi) 68.44				

Streamflow:

There is no nearby WQN Station or Streamgage from the discharge point. Therefore, USGS's web based watershed delineation tool StreamStats (accessible at <u>https://streamstats.usgs.gov/ss/</u>, accessed on October 25, 2022) was utilized to determine the drainage area and low flow statistics of the receiving stream at discharge point. The StreamStats delineation report shows a drainage area at the Outfall 001 to be 0.05 mi², and 0.52 mi² at POFU. Since the drainage areas are outside of the suggested range, extrapolated estimates based on the drainage area might be resulted from unknown errors. Therefore, a default yield of 0.1 cfs/mi², default Q₃₀₋₁₀:Q₇₋₁₀ and Q₁₋₁₀:Q₇₋₁₀ Q₇₋₁₀ of 1.36 and 0.64 will be used, if needed.

Q7-10= 0.52*0.1 or 0.052 cfs at POFU

PWS Intake:

The nearby downstream PWS intake is Saltsburg Municipal Authority in Saltsburg Borough, Indiana County, which is approximately 68.44 miles downstream of discharge point. Due to the distance, dilution, and effluent limitations, it is expected that the discharge will not adversely impact the PWS intake. The distance is calculated as following:

RMI at Outfall 001 on UNT 45873 of South Fork Little Conemaugh River	+0.31 mile
RMI at confluence of UNT 45873 and UNT 45866 S. Fork Little Conemaugh River	+1.74 mile
RMI at confluence of UNT 45866 with S. Fork Little Conemaugh 45848	+2.72 mile

RMI at confluence of 45848 with Little Conemaugh River 45815	+11.86 mile
RMI at confluence of 45815 with Conemaugh River 43832	+52.36 mile
RMI at PWS intake on Conemaugh River	-0.55 mile

Total: 64.88 mile

Wastewater Characteristics:

A pH of 7.18 (median July- September 2021-2022), default temperature of 20^oC (Default per 391-2000-007), and default Hardness value of 100 mg/l will be used for modeling, if needed.

Background data:

There is no nearby WQN station from the discharge point. In absence of site-specific data, a default pH of 7.0 S.U., default stream temperature of 20°C, and default hardness of 100 mg/l will be used, as appropriate.

Kiskiminetas-Conemaugh River Watersheds TMDL:

Per previous fact sheet "There is a TMDL for metals in the Kiskiminetas River watershed. This facility is considered a "Negligible Discharge Facility" as identified in Appendix C of the Kiskiminetas-Conemaugh River Watershed TMDL. There is no reason to believe the STP will be discharging these metals in high concentrations. The discharge of metals from a sewage treatment plant of this nature is expected to be less than water quality criteria and not contributing to stream impairment. DEP Guidance does, however, require monitoring of these pollutants at a minimum frequency of 1/year. This monitoring will be incorporated into this renewal." The monitoring requirements will be carried over.

Biosolids management: Biosolids are hauled-off to FHMA WWTP for further treatment and disposal.

Treatment Facility Summary							
Treatment Facility Na	me: Allegiance Rehab Cer	nter Inc.					
WQM Permit No.	Issuance Date						
9324-S T	10/15/2019						
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)			
Sewage	Secondary	Trickling Filter With Settling	Hypochlorite	0.019			
	-						
Hydraulic Capacity	Organic Capacity			Biosolids			
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal			
0.019		Not Overloaded		Combination of methods			

Changes Since Last Permit Issuance: None, this renewal will be issued to new owner.

Treatment Plant Description

The STP served former Forest Hill Middle School which had approximately 500 students and staff until December 2016 when the middle school was moved tot eh Forest Hill High School Building. The building remained vacant until it was sold to Quality Life Service, Inc. on 2019. The facility is again sold to Allegiance Rehab Center Inc. to who this renewal will be issued to. It's a minor STP with a design flow of 19,000 GPD. Per the 2018 inspection report, the facility consists of the following treatment units:

- 1. One comminutor
- 2. One primary Clarifier
- 3. Two trickling filters
- 4. One secondary settling tank
- 5. One erosion chlorinator
- 6. one chlorine contact tank, and
- 7. one erosion dechlorinator

Existing Limits

			Effluent Lir	nitations			Monitor Requirem	
Parameter	Mass Units	s (Ibs./day) ⁽¹⁾		Concentra	tions (mg/L)		Minimum ⁽²⁾	Required
	Average	Average		Average		Instant.	Measurement	Sample
	Monthly	Weekly	Minimum	Monthly	Maximum	Maximum	Frequency	Туре
Flow (MGD)	0.019	XXX	xxx	xxx	xxx	xxx	1/week	Measured
			6.0				Daily when	
pH (S.U.)	XXX	XXX	Inst Min	XXX	XXX	9.0	Discharging	Grab
Dissolved			5.0				Daily when	
Oxygen	XXX	XXX	Daily Min	XXX	XXX	XXX	Discharging	Grab
TRC	xxx	XXX	xxx	0.5	xxx	1.6	Daily when Discharging	Grab
CBOD5	XXX	XXX	XXX	25.0	XXX	50.0	2/month	Grab
TSS	xxx	XXX	xxx	30.0	xxx	60.0	2/month	Grab
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	xxx	XXX	xxx	2000 Geo Mean	xxx	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	xxx	XXX	xxx	200 Geo Mean	xxx	1000	2/month	Grab
Total Nitrogen	xxx	XXX	xxx	XXX	Report Daily Max	xxx	1/year	Grab
Ammonia- Nitrogen Nov 1 - Apr 30	xxx	XXX	xxx	14.0	xxx	28.0	2/month	Grab
Ammonia- Nitrogen May 1 - Oct 31	xxx	XXX	xxx	7.0	xxx	14.0	2/month	Grab
Total Phosphorus	xxx	ХХХ	xxx	XXX	Report Daily Max	xxx	1/year	Grab
Aluminum, Total	xxx	xxx	xxx	ххх	Report Daily Max	xxx	1/year	Grab
Iron, Total	xxx	XXX	XXX	XXX	Report Daily Max	xxx	1/year	Grab
Manganese, Total	xxx	ххх	XXX	XXX	Report Daily Max	xxx	1/year	Grab

Compliance History

DMR Data for Outfall 001 (from September 1, 2021 to August 31, 2022)

Parameter	AUG- 22	JUL-22	JUN-22	MAY-22	APR-22	MAR-22	FEB-22	JAN-22	DEC-21	NOV-21	OCT-21	SEP-21
Flow (MGD)												
Average Monthly	0.0071	0.0076	0.008	0.008	0.008	0.007	0.006	0.006	0.00526	0.0035	0.004	0.006
pH (S.U.)												
Instantaneous												
Minimum	6.41	6.18	6.00	6.02	6.1	6.15	6.51	6.23	6.87	6.87	7.05	6.67
pH (S.U.) IMAX	7.13	7.53	6.97	7.15	7.39	7.28	7.99	7.63	7.47	7.73	7.63	7.82
DO (mg/L)												
Daily Minimum	6.77	5.09	5.67	5.28	8.46	5.83	8.89	8.0	9.35	9.32	6.43	7.09
TRC (mg/L)												
Average Monthly	0.01	0.07	0.12	0.09	0.21	0.48	0.28	0.42	0.48	0.50	0.23	0.15
TRC (mg/L) IMAX	1.14	0.43	0.53	0.71	0.75	1.49	1.48	1.5	1.37	1.37	1.2	0.50
CBOD5 (mg/L)												
Average Monthly	3.0	6.07	3.73	4.06	4.32	13.9	14.7	33.4	6.91	3.0	6.12	3.0
CBOD5 (mg/L) IMAX	3.0	8.07	4.46	5.12	8.6	14.2	17.7	38.9	7.61	3.0	9.24	4.69
TSS (mg/L)												
Average Monthly	1.6	2.4	15.2	9.8	7.8	14.1	23.8	60.0	7.6	6.2	22.7	14.2
TSS (mg/L) IMAX	1.6	3.2	21.6	10.8	10.8	15.2	25.5	80.0	7.6	8.0	35.3	14.4
Fecal Coliform (No./100												
ml)												
Geometric Mean	4	24	65	158	4	< 45	98	984	4677	14	20	473
Fecal Coliform (No./100												
ml) IMAX	20	40	4284	1248	8.6	< 100	9678.4	48392	18416	20	20	22398
Total Nitrogen (mg/L)												
Daily Maximum									2.160			
Ammonia (mg/L)												
Average Monthly	0.1	0.1	0.17	0.20	0.1	0.481	2.875	7.665	0.668	0.497	0.1	0.1
Ammonia (mg/L) IMAX	0.1	0.1	0.23	0.20	0.1	0.524	3.605	11.9	1.235	0.625	0.1	0.1
Total Phosphorus												
(mg/L)												
Daily Maximum									3.2			
Total Aluminum (mg/L)												
Daily Maximum									< 0.1		ļ	
Total Iron (mg/L)												
Daily Maximum									0.964			
Total Manganese												
(mg/L)												
Daily Maximum									0.0279			

Compliance History

Effluent Violations for Outfall 001, from: October 1, 2021 To: August 31, 2022

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
CBOD5	01/31/22	Avg Mo	33.4	mg/L	25.0	mg/L
TSS	01/31/22	Avg Mo	60.0	mg/L	30.0	mg/L
TSS	01/31/22	IMAX	80.0	mg/L	60.0	mg/L
Fecal Coliform	12/31/21	Geo Mean	4677	No./100 ml	2000	No./100 ml
Fecal Coliform	06/30/22	IMAX	4284	No./100 ml	1000	No./100 ml
Fecal Coliform	05/31/22	IMAX	1248	No./100 ml	1000	No./100 ml
Fecal Coliform	12/31/21	IMAX	18416	No./100 ml	10000	No./100 ml
Fecal Coliform	01/31/22	IMAX	48392	No./100 ml	10000	No./100 ml

Other Comments: The submitted Non-Compliance Reporting form for January 2022 indicated that the rotating assemblies on trickling filter froze for a period of 2 weeks and was not operable which caused the non-compliances. The permittee was unsure about December 2021 fecal non-compliance. Chlorine puck stuck in the chlorine tube causing May 2022 non-compliance. Chlorine tablets were put in wrong tube causing June 2022 non-compliance.

Summary of Inspections:

June 25, 2019: RTPT conducted. No violation noted during the inspection. Recommended not to allow mowed grass enter the STP and to use environmentally friendly cleaners and chemicals.

June 20, 2018: CEI conducted. No violation noted during the inspection. Recommended not to allow mowed grass enter the STP.

Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	0.019
Latitude	40º 21' 44.00	'n	Longitude	-78º 44' 20.00"
Wastewater De	escription:	Sewage Effluent		

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform	200/100 ml	Geo Mean		02a 47(a)(4)
(5/1 – 9/30) Fecal Coliform	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform (10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations

WQM 7.0:

WQM 7.0 is a water quality model designed to assist DEP to determine appropriate permit requirements for CBOD₅, NH₃-N and DO. DEP's guidance no. 391-2000-007 provides the technical methods contained in WQM 7.0 for conducting wasteload allocation and for determining recommended NPDES effluent limits for point source discharges. DEP recently updated this model (ver. 1.1) to include new ammonia criteria that has been approved by US EPA as part of the 2017 Triennial Review. The model was utilized for this permit renewal by using updated Q₇₋₁₀ and historic background water quality levels of the receiving stream. The following data were used in the attached computer model of the stream:

٠	Discharge pH	7.18	(median Jul-Sep, 2021-2022, eDMR data)
٠	Discharge Temperature	20°C	(Default per 391-2000-007)
٠	Discharge Hardness	100 mg/l	(Default data)
٠	Stream pH	7.0	(Default per 391-2000-013)
٠	Stream Temperature	20°C	(Default per 391-2000-013, CWF)
٠	Stream Hardness	100 mg/l	(Default)

The following nodes were considered in modeling:

Node 1:	At POFU (Confluence of Elevation: Drainage Area: River Mile Index: Low Flow Yield: Discharge Flow:	of UNT 45873 with 45866, both UNTs to S. Fork Little Conemaugh River) 1745.41 ft (USGS National Map viewer, 10/25/2022) 0.52 mi ² (StreamStat Version 3.0, 10/25/2022) 2.99 (PA DEP eMapPA) 0.1 cfs/mi ² 0.019 MGD
Node 2:	At confluence with UNT Elevation: Drainage Area: River Mile Index: Low Flow Yield: Discharge Flow:	 45868 (UNT of S. Fork Little Conemaugh River) 1637.42 ft (USGS National Map viewer, 10/25/2022) 1.97 mi² (StreamStat Version 3.0, 10/25/2022) 1.74 (PA DEP eMapPA) 0.1 cfs/mi² 0.0 MGD

NPDES Permit Fact Sheet Allegiance Rehab Center Inc.

Pre-Draft survey:

Based on the Reasonable Potential (RP) analysis, a new pollutant was identified with new WQBELs. Per PADEP's SOP titled "*Establishing Water Quality-Based Effluent Limitations (WQBELs) and Permit Conditions for Toxic Pollutants in NPDES Permits for Existing Dischargers (SOP No. BCW-PMT-037, revised May 20, 2021)*", the permittee were provided a pre-draft survey on May 12, 2022. The response was received on May 16, 2022.

<u>NH₃-N:</u>

WQM 7.0 suggested NH₃-N limit of 6.36 mg/l as monthly average and 12.72 mg/l as IMAX limit during summer to protect water quality standards. The winter season limits are calculated by multiplying the summer limits with a factor of 3 (per 391-2000-013) that resulted in average monthly limit of 19.08 mg/l, and IMAX limit of 38.16 mg/l. However, the existing permit used a factor of 2 to calculate the winter limits. The current permit has winter limit of 14.0 mg/l as average monthly and 28.0 mg/l as IMAX which are more stringent than current model output values and will be carried over. A review of past 12 months DMR data indicated that the facility will be meeting new summer limits at 100% of the time, therefore, no schedule is needed. Non-POTW facilities are not subjected to mass limits.

CBOD₅:

The WQM 7.0 model suggests a monthly average CBOD₅ limit of 25 mg/l which is equal to current limit and will be carried over. The IMAX limit of 50.0 mg/l will also be carried over.

Dissolved Oxygen (DO):

The existing permit has a minimum DO of 5.0 mg/l which is consistent with Ch. 93.7 for CWF and will be carried over.

Toxics:

Based on the available data, PADEP utilizes Toxics Management Spreadsheet (TMS) to (1) evaluate reasonable potential for toxic pollutants to cause or contribute to an excursion above the water quality standards and (2) develop WQBELs for those such toxic pollutants (i.e., 40 CFR § 122.44(d)(1)(i)). It is noteworthy that some of these pollutants that may be reported as "non-detect", but still exceeded the criteria, were determined to be candidates for modeling because the method detection levels used to analyze those pollutants were higher than target QLs and/or the most stringent Chapter 93 criteria. The model then recommended the appropriate action for the Pollutants of Concerns based on the following logic:

1. In general, establish limits in the draft permit where the effluent concentration determined in B.1 or B.2 equals or exceeds 50% of the WQBEL (i.e., RP is demonstrated). Use the average monthly, maximum daily and instantaneous maximum (IMAX) limits for the permit as recommended by the TMS (or, if appropriate, use a multiplier of 2 times the average monthly limit for the maximum daily limit and 2.5 times the average monthly limit for IMAX).

2. For non-conservative pollutants, in general, establish monitoring requirements where the effluent concentration determined in B.1 or B.2 is between 25% - 50% of the WQBEL.

3. For conservative pollutants, in general, establish monitoring requirements where the effluent concentration determined in B.1 or B.2 is between 10% - 50% of the WQBEL.

NOTE 4 – If the effluent concentration determined in B.1 or B.2 is "non-detect" at or below the target quantitation limit (TQL) for the pollutant as specified in the TMS and permit application, the pollutant may be eliminated as a candidate for WQBELs or monitoring requirements unless 1) a more sensitive analytical method is available for the pollutant under 40 CFR Part 136 where the quantitation limit for the method is less than the applicable water quality criterion and 2) a detection at the more sensitive method may lead to a determination that an effluent limitation is necessary, considering available dilution at design conditions.

NOTE 5 – If the effluent concentration determined in B.1 or B.2 is a detection below the TQL but above or equal to the applicable water quality criterion, WQBELs or monitoring may be established for the pollutant.

4. Application managers may, on a site- and pollutant-specific basis, deviate from these guidelines where there is specific rationale that is documented in the fact sheet.

The facility was required to monitor Total Aluminum, Total Iron, and Total Manganese as part of the TMDL. Model output is provided below:

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits	Concentration Limits						
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Iron	Report	Report	Report	Report	Report	µg/L	4,154	CFC	Discharge Conc > 10% WQBEL (no RP)

Total Aluminum:

TMS didn't identify Total Aluminum as Chemical of Concern (CoC), however, per BCW-PMT-037 (revised March 22, 2021), TMDL parameters are to be monitored at least annually if no WQBEL is established. Existing monitoring requirement will be carried over.

Total Iron:

TMS recommended monitoring for Total Iron, which is an existing requirement and will be carried over.

Total Manganese:

TMS didn't recommend monitoring or limits requirement for Total Manganese. However, similar to Total Aluminum, existing monitoring will be carried over.

Additional Considerations

Fecal Coliform:

The 25 Pa. code § 92a.47.(a)(4) requires a summer technology limit of 200/100 ml as a geometric mean and an instantaneous maximum not greater than 1,000/100ml and § 92a.47.(a)(5) requires a winter limit of 2,000/100ml as a geometric mean and an instantaneous maximum not greater than 10,000/100ml. These are the existing limits and will be carried over.

E. Coli:

Pa Code 25 §92a.61 requires E. Coli monitoring. DEP's SOP titled "Establishing Effluent Limitations for Individual Sewage Permits (BCW-PMT-033, revised March 24, 2021) recommends annual E. Coli monitoring for all dischargers with flow between ≥0.002 MGD to <0.05 MGD. This requirement will be applied from this permit term.

<u>pH:</u>

The TBEL for pH is above 6.0 and below 9.0 S.U. (40 CFR §133.102(c) and Pa Code 25 § 95.2(1)) which are existing limits and will be carried over.

Total Suspended Solids (TSS):

There is no water quality criterion for TSS. The existing limits of 30 mg/L average monthly and 60 mg/L instantaneous maximum will remain in the permit based on the minimum level of effluent quality attainable by secondary treatment, 25 Pa. Code § 92a.47 and 40CFR 133.102(b).

Total Residual Chlorine (TRC):

The attached computer printout utilizes the equation and calculations as presented in the Department's 2003 Implementation Guidance for Total Residual Chlorine (TRC) (ID#391-2000-015) for developing chlorine limitations. The attached printout indicates that a water quality limit of 0.268 mg/l would be needed to prevent toxicity concerns at the discharge point for Outfall 001. The proposed Instantaneous Maximum (IMAX) limit is 0.875 mg/l. Current permit has average monthly and IMAX limits of 0.5 mg/l and 1.6 mg/l, respectively. The proposed limits are more stringent. A review of the last 12 months DMR data indicated that the facility can't meet the more stringent limit at least 90% of the time, therefore, a compliance schedule will be provided for first 12 months. The compliance schedule is shorter since the facility already have a dechlorination system installed. The more stringent limits will be effective from 2nd year of the permit term. The values were rounded down to 0.26 mg/l and 0.87 mg/l, respectively, per PADEP's technical guidance 362-0400-001, chapter 5.C.2.

Flow Monitoring Requirement:

The requirement to monitor the volume of effluent will remain in the draft permit per 40 CFR § 122.44(i)(1)(ii). The existing numeric limit on total flow will be replaced by average monthly and daily maximum reporting requirement.

Best Professional Judgement (BPJ):

Total Nitrogen:

PADEP's SOP BCW-PMT-033 suggests monitoring requirement, at a minimum, for facilities with design flow greater than 2,000 GPD. This requirement is applied for all facilities meeting the flow criteria. This is an existing requirement and will be carried over.

Total Phosphorus:

PADEP's SOP BCW-PMT-033 suggests monitoring requirement, at a minimum, for facilities with design flow greater than 2,000 GPD. This requirement is applied for all facilities meeting the flow criteria. This is an existing requirement and will be carried over.

Monitoring Frequency and Sample Types:

Otherwise specified above, the monitoring frequency and sample type of compliance monitoring for existing parameters are recommended by DEP's SOP and Permit Writers Manual and/or on a case-by-case basis using best professional judgment (BPJ).

Anti-Backsliding

The proposed limits are at least as stringent as are in existing permit, unless otherwise stated; therefore, anti-backsliding is not applicable.

Proposed Effluent Limitations and Monitoring Requirements

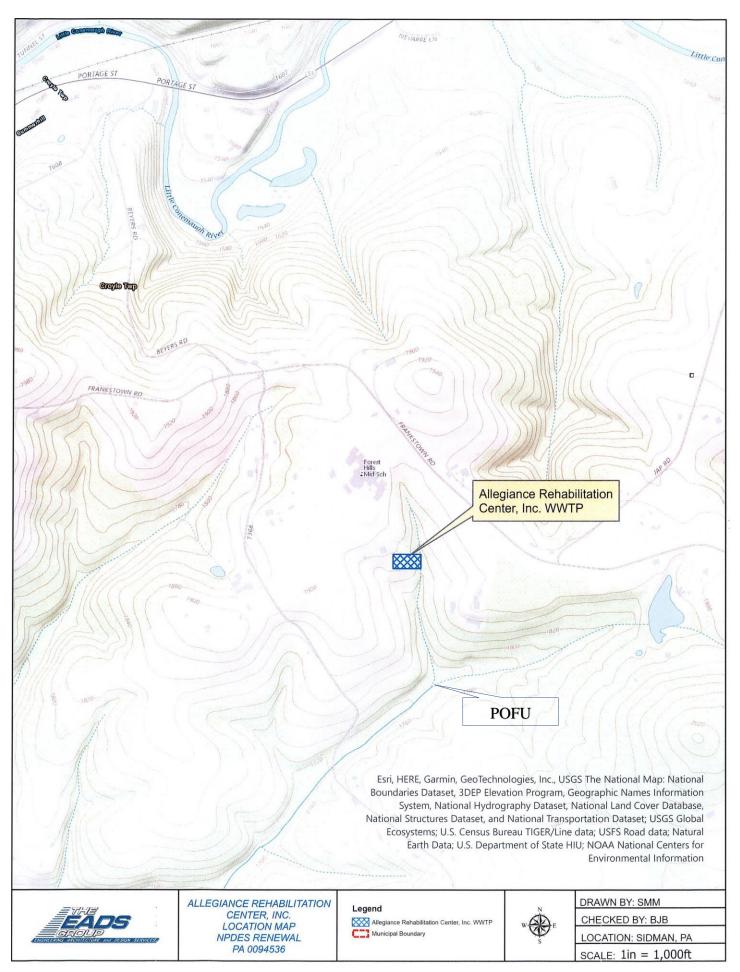
The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

		Monitoring Red	quirements					
Parameter	Mass Units	s (Ibs/day) ⁽¹⁾	Concentrations (mg/L)				Minimum ⁽²⁾	Required
Falameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
		Report Daily						
Flow (MGD)	Report	Max	XXX	XXX	XXX	XXX	1/week	Measured
			6.0				Daily when	
pH (S.U.)	XXX	XXX	Inst Min	XXX	XXX	9.0	Discharging	Grab
			5.0				Daily when	
DO	XXX	XXX	Daily Min	XXX	XXX	XXX	Discharging	Grab
							Daily when	
TRC (interim)	XXX	XXX	XXX	0.5	XXX	1.6	Discharging	Grab
							Daily when	
TRC (final)	XXX	XXX	XXX	0.26	XXX	0.87	Discharging	Grab
CBOD5	XXX	XXX	XXX	25.0	XXX	50.0	2/month	Grab
TSS	XXX	xxx	XXX	30.0	XXX	60.0	2/month	Grab
Fecal Coliform (No./100 ml)				2000				
Oct 1 - Apr 30	XXX	XXX	XXX	Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml)				200				
May 1 - Sep 30	XXX	XXX	XXX	Geo Mean	XXX	1000	2/month	Grab
· ·						_		
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	2/month	Grab
					Report			
Total Nitrogen	XXX	XXX	XXX	XXX	Daily Max	XXX	1/year	Grab
Ammonia								
Nov 1 - Apr 30	XXX	XXX	XXX	14.0	XXX	28.0	2/month	Grab
Ammonia								
May 1 - Oct 31	XXX	XXX	XXX	6.36	XXX	12.72	2/month	Grab
Tatal Dhaankamia	XXXX	VVV	XXX	VVV	Report	XXXX	4 /	Orah
Total Phosphorus	XXX	XXX	XXX	XXX	Daily Max	XXX	1/year	Grab

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

		Effluent Limitations						Monitoring Requirements	
Parameter	Mass Units	Mass Units (Ibs/day) ⁽¹⁾		Concentrations (mg/L)				Required	
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type	
					Report				
Total Aluminum	XXX	XXX	XXX	XXX	Daily Max	XXX	1/year	Grab	
					Report				
Total Iron	XXX	XXX	XXX	XXX	Daily Max	XXX	1/year	Grab	
					Report				
Total Manganese	XXX	XXX	XXX	XXX	Daily Max	XXX	1/year	Grab	

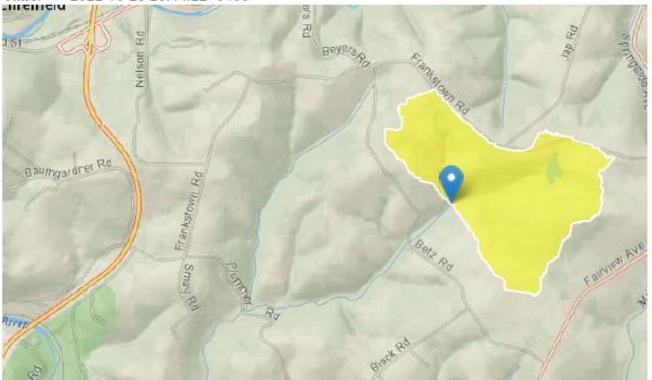

Compliance Sampling Location: At Outfall 001

Other Comments: None

Tools and References Used to Develop Permit
WQM for Windows Model (see Attachment
Toxics Management Spreadsheet (see Attachment)
TRC Model Spreadsheet (see Attachment)
Temperature Model Spreadsheet (see Attachment)
Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
Pennsylvania CSO Policy, 385-2000-011, 9/08.
Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
Implementation Guidance Design Conditions, 391-2000-006, 9/97.
Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
Design Stream Flows, 391-2000-023, 9/98.
Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
SOP:
Other:

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0094536



3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0094536

PA0094536 at POFU

Region ID: PA Workspace ID: PA20221026004402287000 Clicked Point (Latitude, Longitude): 40.35775, -78.73809 Time: 2022-10-25 20:44:22 -0400

Collapse All

> Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	0.52	square miles
ELEV	Mean Basin Elevation	1882	feet
PRECIP	Mean Annual Precipitation	45	inches

> Low-Flow Statistics

Low-Flow Statistics Parameters [Low Flow Region 3]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.52	square miles	2.33	1720
ELEV	Mean Basin Elevation	1882	feet	898	2700
PRECIP	Mean Annual Precipitation	45	inches	38.7	47.9

Low-Flow Statistics Disclaimers [Low Flow Region 3]

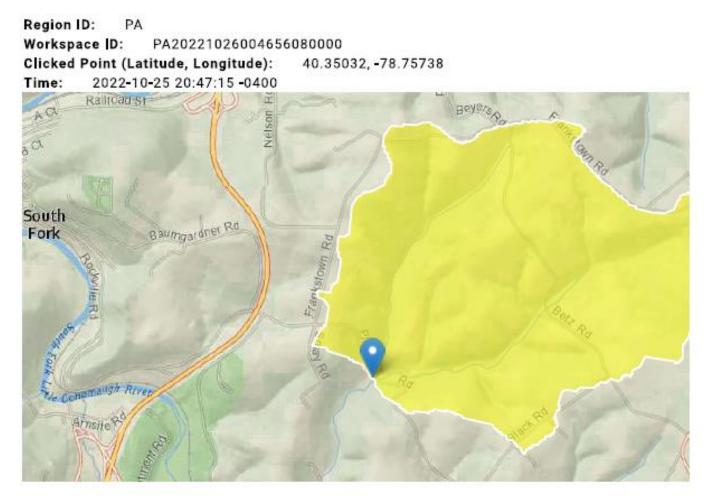
One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Low-Flow Statistics Flow Report [Low Flow Region 3]

Statistic	Value	Unit
7 Day 2 Year Low Flow	0.0662	ft^3/s
30 Day 2 Year Low Flow	0.0992	ft^3/s
7 Day 10 Year Low Flow	0.0268	ft^3/s
30 Day 10 Year Low Flow	0.038	ft^3/s
90 Day 10 Year Low Flow	0.057	ft^3/s

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006– 5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)


USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0094536

PA0094536 at Node 2

Collapse All

> Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	1.97	square miles
ELEV	Mean Basin Elevation	1831	feet
PRECIP	Mean Annual Precipitation	45	inches

> Low-Flow Statistics

Low-Flow Statistics Parameters [Low Flow Region 3]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	1.97	square miles	2.33	1720
ELEV	Mean Basin Elevation	1831	feet	898	2700
PRECIP	Mean Annual Precipitation	45	inches	38.7	47.9

Low-Flow Statistics Disclaimers [Low Flow Region 3]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Low-Flow Statistics Flow Report [Low Flow Region 3]

Statistic	Value	Unit
7 Day 2 Year Low Flow	0.253	ft^3/s
30 Day 2 Year Low Flow	0.371	ft^3/s
7 Day 10 Year Low Flow	0.11	ft^3/s
30 Day 10 Year Low Flow	0.152	ft^3/s
90 Day 10 Year Low Flow	0.225	ft^3/s

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006– 5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the

Discharge Information

Inst	tructions D	ischarge Stream														
Fac	ility: Alle	giance Rehab Cente	er Inc					NPI	DES Pen	mit No.:	PA0094	536		Outfall	No.: 001	
		0					-									
Eva	luation Type:	Major Sewage /	Industri	ial W	laste			Wa	stewater	Descrip	tion: Tre	ated effi	uent			
200	iddioon i jpc.	major ochager	maasa		aste				Joe Weiter	besonp		atea em	acin			
<u> </u>						Discha		<u></u>								
						Discha			racterist				_		-	
De	esign Flow	Hardness (mg/l)*	pH (SU)*	· -			Partial Mix Factors (PMFs)				Complete Mi				
	(MGD)*					AFC	;		CFC	THH CR			Q	-10	G	l <u>h</u>
	0.019	100	7.	18												
-			-		-			-		-	-		-		-	
							6) li ki	t blank	0.5 lf k	ft blank	0) if left blan	k	111.61	blank
				Har		ohorao	-	1b	Stream	Daily	Hourby	Strea	Fate		Criteri	Chem
	Discha	arge Pollutant	Units	max	Cor	charge nc		nc	Conc	CV	Hourly CV	m CV	Coeff	FOS		Transl
					001				00110			in cv	Coen		a mou	Traitsi
		ed Solids (PWS)	mg/L													
P.1	Chloride (PW	S)	mg/L													
Group	Bromide		mg/L													
ō	Sulfate (PWS	<i>i</i>	mg/L													
┣	Fluoride (PWS	1	mg/L													
	Total Aluminu		µg/L	<		100										
	Total Antimon Total Arsenic	y	µg/L	\vdash					<u> </u>		<u> </u>					
	Total Arsenic Total Barlum		µg/L	$\left \right $							<u> </u>					
			µg/L µg/L	\vdash							<u> </u>					
	Total Beryllum Total Boron		µg/L	\vdash							<u> </u>				<u> </u>	
	Total Cadmiu	m	µg/L	\vdash							<u> </u>					
	Total Chromiu		µg/L	\vdash												
	Hexavalent Cl		µg/L													
	Total Cobalt		µg/L													
	Total Copper		µg/L													
2	Free Cyanide		µg/L													
Group	Total Cyanide		µg/L													
ō	Dissolved Iron	1	µg/L													
	Total Iron		µg/L			964										
	Total Lead		µg/L													
	Total Mangan		µg/L		2	27.9										
	Total Mercury		µg/L	\vdash												
	Total Nickel	(Dhonolloc) (DM(0)	µg/L													
	Total Seleniur	(Phenolics) (PWS)	µg/L	\vdash											<u> </u>	
	Total Seleniur Total Silver		µg/L µg/L													
	Total Thaillum		µg/L	\vdash							<u> </u>					
	Total Zinc		µg/L													
	Total Molybde	num	µg/L													
\vdash	Acrolein		µg/L	<												
	Acrylamide		µg/L	<												
	Acrylonitrile		µg/L	<												
	Benzene		µg/L	<												
	Bromoform		µg/L	<												
•							-									

Discharge Information

	Carbon Tetrachloride	µg/L	<						
	Chlorobenzene	µg/L							
	Chlorodibromomethane	µg/L	۷						
	Chloroethane	µg/L	<						
	2-Chloroethyl Vinyl Ether	µg/L	<						
	Chioroform	µg/L	<						
	Dichlorobromomethane	µg/L	<				 <u> </u>	<u> </u>	
			<				 		
	1,1-Dichloroethane	µg/L		 	 		 		
33	1,2-Dichloroethane	µg/L	<						
Group	1,1-Dichloroethylene	µg/L	<						
Ľ,	1,2-Dichloropropane	µg/L	<						
0	1,3-Dichloropropylene	µg/L	۷						
	1,4-Dioxane	µg/L	۰						
	Ethylbenzene	µg/L	۷						
	Methyl Bromide	µg/L	<						
	Methyl Chloride	µg/L	<						
	Methylene Chloride	µg/L	<						
	1,1,2,2-Tetrachioroethane	µg/L	<				 		
							 <u> </u>	<u> </u>	
	Tetrachloroethylene	µg/L	<						
	Toluene	µg/L	<						
	1,2-trans-Dichloroethylene	µg/L	<						
	1,1,1-Trichloroethane	µg/L	<						
	1,1,2-Trichloroethane	µg/L	<						
	Trichloroethylene	µg/L	۷						
	Vinyi Chioride	µg/L	۷						
	2-Chlorophenol	µg/L	<						
	2,4-Dichlorophenol	µg/L	<						
	2,4-Dimethylphenol	µg/L	<						
	4,6-Dinitro-o-Cresol	µg/L	<						
4							<u> </u>	<u> </u>	
Group	2,4-Dinitrophenoi	µg/L	<				<u> </u>	<u> </u>	
ē	2-Nitrophenol	µg/L	<				 		
Ō	4-Nitrophenol	µg/L	<						
	p-Chioro-m-Cresol	µg/L	<						
	Pentachiorophenol	µg/L	<						
	Phenol	µg/L	۷						
	2,4,6-Trichlorophenol	µg/L	۷						
	Acenaphthene	µg/L	۷						
	Acenaphthylene	µg/L	<						
	Anthracene	µg/L	<						
	Benzidine	µg/L	<						
	Benzo(a)Anthracene	µg/L	<				<u> </u>	<u> </u>	
			<u> </u>				<u> </u>	<u> </u>	
	Benzo(a)Pyrene	µg/L	<						
	3,4-Benzofluoranthene	µg/L	<				 		
	Benzo(ghl)Perylene	µg/L	<						
	Benzo(k)Fluoranthene	µg/L	<						
	Bis(2-Chloroethoxy)Methane	µg/L	۰						
	Bis(2-Chloroethyl)Ether	µg/L	•						
	Bis(2-Chloroisopropyl)Ether	µg/L	<						
	Bis(2-Ethylhexyl)Phthalate	µg/L	<						
	4-Bromophenyl Phenyl Ether	µg/L	<						
	Butyl Benzyl Phthalate	µg/L	<						
	2-Chloronaphthalene	µg/L	~						
			<u> </u>						
	4-Chlorophenyl Phenyl Ether	µg/L	<						
	Chrysene	µg/L	<						
	Dibenzo(a,h)Anthrancene	µg/L	<						
	1,2-Dichlorobenzene	µg/L	<						
	1,3-Dichlorobenzene	µg/L	<						
	1,4-Dichlorobenzene	µg/L	<						
	3,3-Dichlorobenzidine	µg/L	<						
-	Diethyl Phthalate	µg/L	<						
ō	Dimethyl Phthalate	µg/L	<						
	Di-n-Butyl Phthalate	µg/L	<						
	2,4-Dinitrotoluene	µg/L	~						
1	Alter extra ordinactic	Pyrc	-						

2-Controtoluene µgL Dh-Octy Phthalate µgL <th></th>	
1.2-Diphenylhydrazine µg/L < <th< td=""><td></td></th<>	
Fluoranthene µg/L < Fluorene µg/L <	
Furthere µg/L <	
Piorene µg/L < <th< th=""></th<>	
Hexachloroberzene µg/L < <td></td>	
Hexachlorobutadiene µg/L < <	
Hexachlorocyclopentadiene µg/L <th< th=""> <</th<>	
Hexachloroethane µg/L	
Indeno(1,2,3-cd)Pyrene µg/L <th< th=""> <th<< td=""><td></td></th<<></th<>	
Isophorone µg/L <	
Naphthalene µg/L <	
Nitrobenzene µg/L <	
n-Nitrosodimethylamine µg/L < <th< th=""> <th< td=""><td></td></th<></th<>	
n-Nitrosodi-n-Propylamine µg/L < <th< th=""></th<>	
n-Nitrosodiphenylamine µg/L < Image: constraint of the second	
Phenanthrene µg/L <	
Pyrene µg/L < <th< th=""> <</th<>	
1,2,4-Trichlorobenzene µg/L < <th< th=""> <th< td=""><td></td></th<></th<>	
1,2,4-Trichlorobenzene µg/L < <th< th=""> <th< td=""><td></td></th<></th<>	
Aldrin µg/L < <th< th=""> <</th<>	
alpha-BHC µg/L <	
beta-BHC µg/L < <th< th=""></th<>	
gamma-BHC µg/L <	
delta BHC µg/L < <th< th=""></th<>	
Chlordane µg/L < <th< th=""></th<>	
4,4-DDT µg/L < 4,4-DDE µg/L <	
4,4-DDE µg/L <	
4,4-DDD µg/L <	
Dieldrin µg/L < <th< th=""></th<>	
alpha-Endosultan µg/L < <td></td>	
beta-Endosultan µg/L <	
Bendosultan Sultate µg/L < <th< th=""> <!--</td--><td></td></th<>	
Pic Pic <td></td>	
Heptachior µg/L <	
Heptachior µg/L <	
Heptachior µg/L <	
Heptachlor Epoxide µg/L < </td <td></td>	
PCB-1016 µg/L <	
PCB-1221	
PCB-1232 µg/L <	
Poblizez pyr s	
PCB-1248 ug/L <	
PCB-1254 µg/L <	
PCB-1260 µg/L <	
PCBs, Total yg/L <	
Toxaphene yg/L <	
2,3,7,8-TCDD ng/L <	
Gross Alpha pCI/L Contract of the second sec	
rotal Beta pCI/L <	
Gradium 226/228 pCI/L <	
Radium 226/228 pC/L <	
Total Uranium µg/L <	
Osmotic Pressure mOs/kg	

Stream / Surface Water Information

Allegiance Rehab Center Inc, NPDES Permit No. PA0094536, Outfall 001

Toxics Management Spreadsheet Version 1.3, March 2021

nstructions Discharge Stream

Receiving Surface Water Name: UNT to S. Ford Little Conemaugh River

No. Reaches to Model: 1

Location	Stream Code*	RMI*	Elevation (ft)*	DA (mi²)*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*
Point of Discharge	045866	2.99	1745.41	0.52			Yes
End of Reach 1	045866	1.74	1637.42	1.97			Yes

Statewide Criteria O Great Lakes Criteria ORSANCO Criteria

Q 7-10	Q	7-10	
--------	---	------	--

≪ 7-10															
Location	RMI	LFY	Flow	r (cfs)	W/D	Width			Time	Tributa	ary	Strea	m	Analys	is
Location	TX000	(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness*	pH*	Hardness	pН
Point of Discharge	2.99	0.1										100	7		
End of Reach 1	1.74	0.1													

Q,

Location	RMI	LFY Flor		(cfs)	W/D	Width	Depth	Velocit	Time	Tributa	iry	Stream	m	Analys	is
Location	RIMI	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness	pН	Hardness	pН
Point of Discharge	2.99														
End of Reach 1	1.74														

Stream / Surface Water Information

10/31/2022

DEPARTMENT OF ENVIRONME PROTECTION									т	oxics Management Spreadsheet Version 1.3, March 2021
Model Results						Allegi	ance Rehab C	enter Inc, NPDE	S Permit No. P	2A0094536, Outfall 001
Instructions Results	RETURN	TO INPU	TS (SAVE AS	PDF	PRINT	r) ® A	ll 🔾 Inputs	Results	O Limits
Hydrodynamics Wasteload Allocations AFC	CCT (min): 0.2	292	PMF:	1	Ana	lysis Hardne	ss (mall):	100	Analysis pH:	7.06
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)			mments
Total Aluminum	(ug/)	0	(µg/L)	0	(µg/L) 750	750	2.077			
Total Iron	- ŏ	ŏ		ŏ	N/A	NA	N/A			
Total Manganese	- ō	0		ō	N/A	N/A	N/A			
	CCT (min): 0.2	292	PMF:	1		alysis Hardne	ess (mg/l):	100	Analysis pH:	7.06
Pollutants	Conc (unl.)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)		Co	mments
Total Aluminum	0	0		0	N/A	N/A	N/A			
Total Iron	0	0		0	1,500	1,500	4,154		WQC = 30 day	y average; PMF = 1
Total Manganese	0	0		0	N/A	N/A	N/A			
🗹 тнн		292	PMF:	1	Ana	alysis Hardne	ess (mg/l):	N/A	Analysis pH:	N/A
Pollutants	Conc (ug/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)		Co	omments
Total Aluminum	0	0		0	N/A	N/A	N/A			
Total Iron	0	0		0	N/A	N/A	N/A			
Total Manganese	0	0		0	1,000	1,000	2,769			
CRL	CCT (min): 0.1		PMF:	1		alysis Hardne	ess (mg/l):	N/A	Analysis pH:	N/A
Pollutants	Conc (un/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)		Co	mments
Total Aluminum	0	0		0	N/A	N/A	N/A			

Model Results

10/31/2022

Total Iron	0	0	0	N/A	N/A	N/A	
Total Manganese	0	0	0	N/A	N/A	N/A	

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits		Concentra	tion Limits				
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Iron	Report	Report	Report	Report	Report	µg/L	4,154	CFC	Discharge Conc > 10% WQBEL (no RP)

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Aluminum	1,331	µg/L	Discharge Conc ≤ 10% WQBEL
Total Manganese	2,769	µg/L	Discharge Conc ≤ 10% WQBEL

Model Results

10/31/2022

TRC_CALC

TRC EVALUA	TION				
Input appropria	te values in /	A3:A9 and D3:D9			
	= Q stream (0.5	= CV Daily	
0.019	= Q discharg	e (MGD)	0.5	= CV Hourly	
30	= no. sample	8	1	= AFC_Partial N	lix Factor
0.3	= Chlorine D	emand of Stream	1	= CFC_Partial N	lix Factor
0	= Chlorine D	emand of Discharge	15	= AFC_Criteria	Compliance Time (min)
0.5	= BAT/BPJ V	alue	720	= CFC_Criteria	Compliance Time (min)
0	= % Factor o	of Safety (FOS)		=Decay Coeffici	ent (K)
Source	Reference	AFC Calculations		Reference	CFC Calculations
TRC	1.3.2.iii	WLA afc =	0.583	1.3.2.iii	WLA cfc = 0.561
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581
PENTOXSD TRG	5.1b	LTA_afc=	0.217	5.1d	LTA_cfc = 0.326
Source		Efflue	nt Limit Calcul	ations	
PENTOXSD TRG	5.1f		AML MULT =	1.231	
PENTOXSD TRG	5.1g		LIMIT (mg/l) =		AFC
		INST MAX	LIMIT (mg/l) =	0.875	
WLA afc		FC_tc)) + [(AFC_Yc*Qs*.019/ C_Yc*Qs*Xs/Qd)]*(1-FOS/10/		_tc))	
LTAMULT afc		cvh^2+1))-2.326*LN(cvh^2+			
LTA_afc	wla_afc*LTA		.,,		
	(044)-(-+*0				
WLA_cfc		FC_tc) + [(CFC_Yc*Qs*.011/(C_Yc*Qs*Xs/Qd)]*(1-FOS/10/	-		
LTAMULT_cfc		(cvd^2/no_samples+1))-2.32		o samples+1)^0	.5)
LTA_cfc	wla_cfc*LTA				
AML MULT	EXP(2.326*LI	N((cvd^2/no_samples+1)^0.5	5)-0.5*LN(cvd	^2/no_samples+	1))
AVG MON LIMIT	MIN(BAT_BP	J,MIN(LTA_afc,LTA_cfc)*AN	IL_MULT)		
INST MAX LIMIT	1.5*((av_mor	_limit/AML_MULT)/LTAMUL	T_afc)		
			- /		

Input	Data WO	QM 7	.0
-------	---------	------	----

	SWP Bash			Stre	am Name		RMI		Elevat (ft)	lon	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawai (mgd)	Appl FC
	18E	45	866 Trib 4	5866 to S	Fk Little C	onemaugh	2.99	90	174	5.41	0.52	0.00000	0.0	0 🔽
					S	tream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width		ch pth	Tem	<u>Tributary</u> p pH	Tem	<u>Stream</u> p pH	
oona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ff)	0	ft)	(°C)	0°))	
27-10 21-10	0.100	0.00		0.000		0.0	0.00		0.00	20	0.00 7.0	00	0.00 0.0	00
Q30-10		0.00	0.00	0.000	0.000									

	Dis	scharge D	ata				
Name	Permit Number	Disc	Permitted Disc Flow (mgd)	Disc Flow	Reserve	Disc Temp (°C)	Disc pH
Allegiance STP	PA0094536	0.0190	0.0190	0.0190	0.000	20.00	7.18
	Par	rameter D	ata				
Da	rameter Name	Dis Co	ic Trit nc Cor		eam Fat onc Co		
	and a realized that the	(mg	y/L) (mg	/L) (m	g/L) (1/da	ays)	
CBOD5		2	5.00 2	2.00	0.00	1.50	
Dissolved Ox	vygen		5.00 8	8.24	0.00	0.00	
NH3-N			7.00 0	0.00	0.00 (0.70	

	SWP Basin			Stre	am Name		RMI		ation ft)	Drainage Area (sq ml)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	18E	458	366 Trib 4	5866 to S	Fk Little C	onemaugh	1.74	10 1	637.42	1.97	0.00000	0.00	V
					S	tream Dat	a						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ten	Tributary 1p pH	Tem	<u>Stream</u> IP PH	
conta.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ff)	(fî)	(°C)	(°C)	
27-10	0.100	0.00	0.00	0.000	0.000	0.0	0.00	0.00) 2	0.00 7.0	00	0.00 0.00)
21-10		0.00	0.00	0.000	0.000								
230-10		0.00	0.00	0.000	0.000								

Input Data WQM 7.0

	Dis	scharge D	ata					
Name	Permit Number	Existing Disc Flow (mgd)	Disc Flow	Dia Fic	sc Rea ow Fa	serve 1 actor	Disc Femp (°C)	Disc pH
		0.0000	0.000	0 0.0	0000	0.000	25.00	7.00
	Pa	rameter D	ata					
	arameter Name	Dis Co		'rib onc	Stream Conc	Fate Coef		
		(mg	/L) (m	ng/L)	(mg/L)	(1/days)		
CBOD5		2	5.00	2.00	0.00	1.50	5	
Dissolved C	xygen	;	3.00	8.24	0.00	0.00)	
NH3-N		2	5.00	0.00	0.00	0.70		

			WQI	/ 7.0	Hydr	odyn	amic	Out	outs			
	SW	P Basin	Strea	m Code				Stream	Name			
		18E	4	5866		Tri	b 45866 f	to S Fk I	Little Con	emaugh		
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1(0 Flow											
2.990	0.05	0.00	0.05	.0294	0.01636	.34	3.64	10.7	0.07	1.163	20.00	7.06
Q1-1(0 Flow											
2.990	0.03	0.00	0.03	.0294	0.01636	NA	NA	NA	0.06	1.346	20.00	7.08
Q30-'	10 Flow	1										
2.990	0.07	0.00	0.07	.0294	0.01636	NA	NA	NA	0.07	1.035	20.00	7.05

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0094536

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	\checkmark
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	\checkmark
D.O. Saturation	90.00%	Use Balanced Technology	\checkmark
D.O. Goal	6		

Wednesday, October 26, 2022

Version 1.0b

Page 1 of 1

	SWP Basin 18E		am Code 5866	т		<u>ream Name</u> S Fk Little Co	nemaugh		
NH3-N	Acute Allo	cation	s						
RMI	Discharge	Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	
2.9	90 Allegiance S	STP	9.16	14	9.16	14	0	0	-
NH3-N RMI	Chronic Al Discharge 1		O NS Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	-
RMI		Name	Baseline Criterion	WLA (mg/L)	Criterion	WLA			-
RMI 2.9	Discharge 1	Name STP	Baseline Criterion (mg/L) 1.87	WLA (mg/L)	Criterion (mg/L)	WLA (mg/L)	Reach	Reduction	-

25

25

6.36

6.36

5

5

0

0

2.99 Allegiance STP

SWP Basin	Stream Code			Stream Name	
18E	45866		Trib 45866	to S Fk Little Co	nemaugh
RMI	Total Discharg	e Flow (mgd) Ana	lysis Temperature	(°C) Analysis pH
2.990	0.01	19		20.000	7.057
Reach Width (ft)	Reach De	epth (ft)		Reach WDRatio	Reach Velocity (fps)
3.641	0.34	10		10.701	0.066
Reach CBOD5 (mg/L)) Reach Ko	(1/days)	R	each NH3-N (mg/	L) Reach Kn (1/days)
10.31	1.10			2.30	0.700
Reach DO (mg/L)	Reach Kr			Kr Equation	Reach DO Goal (mg/L)
7.072	25.7	27		Owens	6
each Travel Time (day	vs)	Subreact	Results		
1.163	TravTime	CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.116	9.06	2.12	8.22	
	0.233	7.97	1.95	8.24	
	0.349	7.01	1.80	8.24	
	0.465	6.17	1.66	8.24	
	0.581	5.43	1.53	8.24	
	0.698	4.77	1.41	8.24	
	0.814	4.20	1.30	8.24	
	0.930		1.20	8.24	
	1.046		1.10	8.24	
	1.163		1.02	8.24	

WQM 7.0 D.O.Simulation

	SWP Basin St	ream Code		Stream Name	<u>e</u>		
	18E	45866	Trib	45866 to S Fk Little	Conemaugh		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
2.990	Allegiance STP	PA0094536	0.019	CBOD5	25		
				NH3-N	6.36	12.72	
				Dissolved Oxygen			5

WQM 7.0 Effluent Limits

Wednesday, October 26, 2022

Version 1.0b

Page 1 of 1