

Application Type	Renewal
	Non- Municipal
raciiity Type	wunicipai
Major / Minor	Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0094617 A-1

 APS ID
 1055430

 Authorization ID
 1382824

Applicant and Facility Information

Applicant Name	Jones	Estates Walnut Manor PA LLC	Facility Name	Walnut Manor MHP
Applicant Address	2310 S	Miami Boulevard Suite 238	Facility Address	State Road Lr26193
	Durham	n, NC 27703-4900		Smithfield, PA 15478
Applicant Contact	Kellen E	Buss	Facility Contact	John Foris
Applicant Phone	(419) 3	57-9091	Facility Phone	(412) 445-9145
Client ID	366823		Site ID	240011
Ch 94 Load Status	Not Ove	erloaded	Municipality	Georges Township
Connection Status	No Limi	tations	County	Fayette
Date Application Recei	ved	November 15, 2021	EPA Waived?	Yes
Date Application Accept	oted	February 24, 2022	If No, Reason	
Purpose of Application		Application for Renewal and Trans	fer of an NPDES Permi	t for treated sewage.
				Ŭ

Summary of Review

The permittee has applied for renewal of NPDES Permit No. PA0094617. NPDES Permit No. PA0094617 was previously issued by the PA Department of Environmental Protection on October 6, 2015 and expired October 31, 2020. A renewal application was submitted in a timely manner; therefore, the permit was granted an administrative extension. Since the renewal application was received, a transfer application was also received. The permit is being processed as a renewal and transfer.

This permit is being transferred from Mr. Timothy Strickland to Jones Estates Walnut Manor PA LLC. The associated WQM Permit No. 2684405 is also pending transfer upon approval from the department.

Sewage from this facility is treated by extended aeration, secondary clarification, and chlorine disinfection prior to discharge through Outfall 001 to Trib 41372 to York Run. The receiving stream is classified as a Warm Water Fishery (WWF) per Chapter 93 Designated Use.

The new permittee applied for eDMR registration along with the transfer application.

The applicant has complied with Act 14 Notifications and no comments were received.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*,

Approve	Deny	Signatures	Date
х		It al	
		Stephanie Conrad / Environmental Engineering Specialist	March 14, 2022
x		MAHBURA IASMIN	
		Mahbuba lasmin, Ph.D., P.E. / Environmental Engineering Manager	May 2, 2022

Summary of Review

DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Discharge, Receiving Waters and Water Supply Info	rmation	
Outfall No. 001	Design Flow (MGD)	.03
Latitude <u>39° 51' 3.4"</u>	Longitude	-79º 49' 23.3"
Quad Name Smithfield	Quad Code	2017
Wastewater Description: Sewage Effluent		
Receiving WatersTrib 41372 to York RunNHD Com ID99416322Drainage Area0.16	Stream Code RMI Yield (cfs/mi²)	<u>41372</u> 0.66 0.0054
Q ₇₋₁₀ Flow (cfs) 0 000864	Q ₇₋₁₀ Basis	USGS Stream Stats
Elevation (ft)	Slope (ft/ft)	
Watershed No. 19-G	Chapter 93 Class.	WWF
Existing Use	Existing Use Qualifier	
Exceptions to Use	Exceptions to Criteria	
Assessment Status Impaired		
Cause(s) of Impairment Metals		
Source(s) of Impairment Acid Mine Drainage		
TMDL Status Final	Name York Run	
Background/Ambient Data pH (SU) Temperature (°F) Hardness (mg/L) Other:	Data Source	
Nearest Downstream Public Water Supply Intake PWS Waters <u>Monongahela</u> PWS RMI <u>6.18</u>	<u>Dunkard Valley JT Municipalit</u> Flow at Intake (MGD) Distance from Outfall (mi)	y Authorization 0.25 15.42

Changes Since Last Permit Issuance:

	Treatment Facility Summary							
Treatment Facility Na	ame: Walnut Manor MHP W	/WTP						
WQM Permit No.	Issuance Date							
2684405	December 25, 1999							
2684405	January 16, 2009							
	Degree of			Avg Annual				
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)				
Sewage	Secondary With Ammonia Reduction	Extended Aeration	Chlorine With Dechlorination	0.03				
Hydraulic Capacity	Organic Capacity			Biosolids				
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal				
0.03	72.6	Not Overloaded	Dewatering	Other WWTP				

Changes Since Last Permit Issuance: None

Compliance History

Operations Compliance Check Summary Report

Facility: Strickland Estates STP

NPDES Permit No.: PA0094617

Compliance Review Period: 12/2016 - 12/2021

Inspection Summary:

IN SP ID	INSPECTED DATE	INSP TYPE	AGENCY	INSPECTION RESULT DESC
3204808	06/11/2021	Compliance Evaluation	PA Dept of Environmental Protection	Pending
3185222	05/03/2021	Administrative/File Review	PA Dept of Environmental Protection	Administratively Closed
2583533	04/17/2017	Administrative/File Review	PA Dept of Environmental Protection	Violation(s) Noted
2610670	04/11/2017	Administrative/File Review	PA Dept of Environmental Protection	Violation(s) Noted

Violation Summary:

VIOL ID	VIOLATION DATE	VIOLATION TYPE	VIOLATION TYPE DESC	RESOLVED DATE
783263	04/17/2017	92A.41(A)12B	NPDES - Failure to submit monitoring report(s) or properly complete monitoring reports	04/18/2017
789649	04/11/2017	92A.61(G)	NPDES - Failure to use a format or process required by DEP for self-monitoring results	04/09/2018

Open Violations by Client ID:

No open violations for Client ID 64197

NPDES Permit Fact Sheet Walnut Manor MHP

Enforcement Summary:

ENF ID	ENF TYPE	ENF TYPE DESC	ENF CREATION DATE	VIOLATIONS	ENF FINAL STATUS	ENF CLOSED DATE
<u>356517</u>	CACP	Consent Assessment of Civil Penalty	07/25/2017	92A.41(A)12B	Comply/Closed	07/20/2017
<u>354801</u>	NOV	Notice of Violation	07/05/2017	92A.61(G)	Comply/Closed	04/09/2018
352586	NOV	Notice of Violation	04/18/2017	92A.41(A)12B	Administrative Close Out	12/09/2019

DMR Violation Summary:

END_DATE	OF	PARAMETER	STAT_BASE_CODE	PERMIT VALUE	SAMPLE VALUE	UNIT OF MEASURE
11/30/2020	1	Carbonaceous Biochemical Oxygen Demand (CBOD5)	Average Monthly	10	14.4	mg/L
11/30/2020	1	Carbonaceous Biochemical Oxygen Demand (CBOD5)	Instantaneous Maximum	20	26.8	mg/L
4/30/2019	1	Ammonia-Nitrogen	Average Monthly	6	16.6	mg/L
4/30/2019	1	Ammonia-Nitrogen	Instantaneous Maximum	12	19.5	mg/L
4/30/2019	1	Fecal Coliform	Instantaneous Maximum	10000	164000	CFU/100 ml
4/30/2019	1	Fecal Coliform	Geometric Mean	2000	51861	CFU/100 ml

Compliance Status:

Permit issuance is suggested.

Completed by: John Murphy

Completed date: 12/22/2021

Compliance History

DMR Data for Outfall 001 (from December 1, 2020 to November 30, 2021)

Flow (MGD) 0.0010 0.00100 0.00100 0.00103 0.00095 0.00105 0.00085 0.001 0.00080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0080 0.0090 0.0080 0.0090 0.00080 0.00080 0.00080 0.00080 0.00080 0.00080 0.00080 0.00080 0.00080 0.00080 0.00080 0.00080 0.00080 0.00080 0.00080 0.00080 0.0000 0.000 0.000	Parameter	NOV-21	OCT-21	SEP-21	AUG-21	JUL-21	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21	DEC-20
Average Monthly 0.00100 0.00000 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00100 0.00000 0.00000 0.00100	Flow (MGD)												
pH (S.U) 6.0 6.	Average Monthly			0.00100	0.00100	0.00100	0.00103	0.00090	0.00065	0.001	0.00090	0.00087	0.00080
Minimum 6.0 8.0	pH (S.U.)												
pH (S.U) Maximum 8.0 <td>Minimum</td> <td></td> <td></td> <td>6.0</td>	Minimum			6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Maximum 8.0	pH (S.U.)												
DO (mg/L) Minimum 6.0	Maximum			8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0
Minimum 6.0 6.0 6.0 6.0 6.0 6.0 5.0 6.0 6.0 6.0 TRC (mg/L) 0.7 0.7 0.7 0.7 0.71 0.69 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 <td>DO (mg/L)</td> <td></td>	DO (mg/L)												
TRC (mg/L) 0.7 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8	Minimum			6.0	6.0	6.0	6.0	6.0	6.0	5.0	6.0	6.0	6.0
Average Monthly 0.7 0.80	TRC (mg/L)												
TRC (mg/L) Instantaneous Maximum 0.8 0.8 0.8 0.8 0.80 <	Average Monthly			0.7	0.7	0.7	0.7	0.70	0.71	0.69	0.69	0.69	0.67
Instantaneous 0.8 0.8 0.8 0.8 0.80	TRC (mg/L)												
Maximum 0.8 0.8 0.8 0.8 0.80	Instantaneous												
CBODs (mg/L) Average Monthly 2.0 2.5 2.0 2.4 2.0 2.0 2.0 4.1 2.0 2.0 CBODs (mg/L) Instantaneous 2.0 2.9 2.0 2.8 2.0 2.0 2.0 4.6 2.0 2.0 Maximum 2.0 2.9 2.0 2.8 2.0 2.0 2.0 4.6 2.0 2.0 Maximum 2.0 2.9 2.0 2.8 2.0 2.0 4.6 2.0 2.0 Average Monthly 5.0	Maximum			0.8	0.8	0.8	0.8	0.80	0.80	0.80	0.80	0.80	0.80
Average Monthly 2.0 2.5 2.0 2.4 2.0 2.0 2.0 4.1 2.0 2.0 CBOD ₅ (mg/L) Instantaneous Instantaneous 2.0 2.9 2.0 2.8 2.0 2.0 2.0 4.6 2.0 2.0 Maximum 2.0 2.9 2.0 2.8 2.0 2.0 2.0 4.6 2.0 2.0 Average Monthly 5.0	CBOD₅ (mg/L)												
CBODs (mg/L) Instantaneous 2.0 2.9 2.0 2.8 2.0 <th2.0< t<="" td=""><td>Average Monthly</td><td></td><td></td><td>2.0</td><td>2.5</td><td>2.0</td><td>2.4</td><td>2.0</td><td>2.0</td><td>2.0</td><td>4.1</td><td>2.0</td><td>2.0</td></th2.0<>	Average Monthly			2.0	2.5	2.0	2.4	2.0	2.0	2.0	4.1	2.0	2.0
Instantaneous 2.0 2.9 2.0 2.8 2.0 2.0 2.0 4.6 2.0 2.0 Average Monthly 5.0 <t< td=""><td>CBOD₅ (mg/L)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	CBOD₅ (mg/L)												
Maximum 2.0 2.9 2.0 2.8 2.0 2.0 2.0 4.6 2.0 2.0 2.0 TSS (mg/L) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 6.0 10.0 5.0 5.0 TSS (mg/L) Instantaneous 5.0	Instantaneous												
TSS (mg/L) 5.0 5.0 5.0 5.0 5.0 5.0 6.0 10.0 5.0 5.0 TSS (mg/L) Instantaneous Instantaneous	Maximum			2.0	2.9	2.0	2.8	2.0	2.0	2.0	4.6	2.0	2.0
Average Monthly 5.0 5.0 5.0 5.0 5.0 5.0 6.0 10.0 5.0 5.0 TSS (mg/L) Instantaneous Maximum 5.0	TSS (mg/L)												
TSS (mg/L) Instantaneous 5.0 5.0 5.0 5.0 5.0 5.0 7.0 12.0 5.0 5.0 Fecal Coliform (CFU/100 ml) 1 5 1	Average Monthly			5.0	5.0	5.0	5.0	5.0	5.0	6.0	10.0	5.0	5.0
Instantaneous Maximum 5.0 5.0 5.0 5.0 5.0 5.0 7.0 12.0 5.0 5.0 Fecal Coliform (CFU/100 ml) 1 5 1	TSS (mg/L)												
Maximum 5.0 5.0 5.0 5.0 5.0 5.0 7.0 12.0 5.0 5.0 Fecal Coliform (CFU/100 ml) 1 5 1	Instantaneous										10.0		
Fecal Coliform (CFU/100 ml) Geometric Mean151111111Fecal Coliform (CFU/100 ml) Instantaneous Maximum226211111111Maximum22621111122Total Nitrogen (mg/L) Daily Maximum0.30.40.30.70.30.90.30.40.60.6	Maximum			5.0	5.0	5.0	5.0	5.0	5.0	7.0	12.0	5.0	5.0
(CF-0/100 ml) 1 5 1 <	Fecal Coliform												
Geometric Mean1511111111Fecal Coliform (CFU/100 ml) Instantaneous Maximum226211111111Maximum22621111122Total Nitrogen (mg/L) Daily Maximum2262111122Momonia-Nitrogen (mg/L)0.30.40.30.70.30.90.30.40.60.6	(CFU/100 ml)				-								
Fecal Collform (CFU/100 ml) Instantaneous Maximum 2 26 2 1 1 1 1 2 2 Total Nitrogen (mg/L) Daily Maximum 2 26 2 1 1 1 1 2 2 Ammonia-Nitrogen (mg/L) 0.3 0.4 0.3 0.7 0.3 0.9 0.2 0.4 0.6 0.6	Geometric Mean			1	5	1	1	1	1	1	1	1	1
Instantaneous 2 26 2 1 1 1 1 2 2 Maximum 2 26 2 1 1 1 1 2 2 Total Nitrogen (mg/L) 2 2 1 1 1 1 1 2 2 Maximum 2 26 2 1 1 1 1 2 2 Total Nitrogen (mg/L) 2 2 1 1 1 1 2 2 Ammonia-Nitrogen (mg/L) 2 2 2 1 1 1 2 2	Fecal Collform												
Instantaneous Maximum2262111122Total Nitrogen (mg/L) Daily Maximum22621111122Maximum4.69Ammonia-Nitrogen (mg/L)4.69													
Maximum Imaximum	Maximum			2	26	2	1	1	1	1	1	2	2
Daily Maximum 4.69 Ammonia-Nitrogen (mg/L) 0.3 0.4 0.3 0.7 0.3 0.9 0.4 0.6 0.6				2	20	2	1	1	1	1	1	2	2
Daily Maximum 4.09 Ammonia-Nitrogen (mg/L) 0.3 0.4 0.3 0.7 0.3 0.9 0.4 0.6 0.6	Doily Maximum												4.60
	Ammonia-Nitrogon												4.09
	(mg/L)												
	Average Monthly			03	04	03	07	03	0.9	03	0.4	0.6	0.6
Ammonia-Nitrogen	Ammonia-Nitrogen			0.5	0.4	0.5	0.7	0.5	0.3	0.5	0.4	0.0	0.0
	(mg/L)												
	Maximum			0.3	0.6	04	09	0.3	11	0.5	07	07	07

Total Phosphorus						
(mg/L)						
Daily Maximum						2.3

Effluent Violations for Outfall 001, from: October 1, 2020 To: August 31, 2021

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
CBOD ₅	11/30/20	Avg Mo	14.4	mg/L	10	mg/L
CBOD₅	11/30/20	IMAX	26.8	mg/L	20	mg/L

Summary of Inspections: This facility was last inspected by DEP as a Compliance Evaluation. No violations were noted, but the results of the inspection are pending.

Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	.03
Latitude	39º 51' 5.94"		Longitude	-79º 49' 19.90"
Wastewater D	escription:	Sewage Effluent		

Technology-Based Limitations (TBELs)

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 - 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations (WQBELs)

Pursuant to EPA's approval of Pennsylvania's 2017 Triennial Review of Water Quality Standards and corresponding regulatory changes published in the *Pennsylvania Bulletin* on July 11, 2020 new water quality criteria for ammonianitrogen apply to waters of the commonwealth. Therefore, WQBELs for Outfall 001 are being re-evaluated even though there have been no changes to the STP.

The effluent was modeled using WQM 7.0 to evaluate the CBOD₅, ammonia-nitrogen, and Dissolved Oxygen (DO) parameters. Modeling confirmed that the previously imposed water quality based CBOD₅ limitations are appropriate. Modeling also determined that stricter ammonia-nitrogen limits are necessary to meet in-stream water quality criterion. WQM 7.0 output files are provided in Attachment A. In accordance with PADEP's *Standard Operating Procedure (SOP)* for the Clean Water Program-Establishing Effluent Limitations for Individual Sewage Permits (SOP No. PCW-PMT-033, Version 1.0), winter ammonia-nitrogen limits are assessed by comparing the winter WQM 7.0 output value with one calculated from the summer limit using a seasonal multiplier of three. The more restrictive of the two values is then imposed. For this facility, the winter ammonia-nitrogen limit to be imposed is the value generated using WQM 7.0 modeling.

Total Residual Chlorine (TRC) was modeled with PADEP's TRC Spreadsheet, and it was determined that a water quality based effluent limit is necessary to meet in-stream water quality criterion. The TRC Spreadsheet output file is provided in Attachment B.

The facility is receiving new, more restrictive TRC and ammonia-nitrogen limits. The facility as currently operating should be able to achieve the new, more restrictive ammonia-nitrogen limits. The facility as currently operating, however, is not able to meet the new, more restrictive TRC limit. Based on a compliance schedule provided by the permittee's engineer, the facility is being given eighteen (18) months to comply with the new TRC limits. The compliance schedule provided by the facility's engineer is included in Attachment D.

TRC modeling was conducted using default stream parameter values. Because of this, the permittee has the option to conduct a site-specific study in accordance with the Department's guidance document *Implementation Guidance Total Residual Chlorine (TRC) Regulation*. If the permittee decides to conduct a site-specific study, then they shall notify DEP of

this within 60 days of permit issuance and submit the study results within 15 months of permit issuance. If the Department agrees that the study results in modification of the WQBELs, then the Department will initiate an amendment to the permit. Otherwise, the permittee must achieve compliance with the final TRC limits eighteen (18) months following the permit effective date.

Parameter	Limit (mg/l)	SBC	Model
Total Residual Chlorine	0.01	Average Monthly	TRC Spreadsheet
CBOD₅	10.0	Average Monthly	WQM 7.0
Ammonia-Nitrogen			
November- April	3.0	Average Monthly	WQM 7.0
Ammonia-Nitrogen			
May- October	2.0	Average Monthly	WQM 7.0

York Run TMDL

Section 303(d) of the Clean Water Act and the U.S. Environmental Protection Agency's Water Quality Planning and Management Regulations (codified at Title 40 of the Code of Federal Regulations Part 130) require states to develop a TMDL for impaired water bodies. A TMDL establishes the amount of a pollutant that a water body can assimilate without exceeding water quality criteria for the pollutant. TMDLs also provide a scientific basis for states to establish water quality-based controls for reducing pollution from both point and non-point sources in-order to restore and maintain the quality of the state's water resources (USEPA 1991a). Stream reaches within the York Run Watershed are included in the state's 2008 Section 303(d) because of metals impairment. A TMDL for this watershed was finalized on April 3, 2008 to address aluminum, iron, manganese, and pH associated with acid mine drainage and abandoned coal mines.

In accordance with 40 CFR § 122.44(d)(1)(vii)(B), when developing WQBELs, the permitting authority shall ensure that effluent limits are developed to protect a narrative water criteria, a numeric water quality criterion, or both, and are consistent with the assumptions and requirements of any available wasteload allocation (WLA) for the discharge.

The facility's original permit, PA0094617, pre-dates the finalization of the TMDL and was not identified in the TMDL nor assigned a WLA in the TMDL. The facility discharges treated sewage effluent which is not anticipated to contribute to the stream impairment and no limits or monitoring are being imposed because of this TMDL.

Best Professional Judgment (BPJ) Limitations

A Dissolved Oxygen minimum limitation of 4.0 mg/L will be implemented based on the standard in 25 PA Code Chapter 93 and best professional judgement.

Anti-Backsliding

Section 402(o) of the Clean Water Act (CWA), enacted in the Water Quality Act of 1987, establishes anti-backsliding rules governing two situations. The first situation occurs when a permittee seeks to revise a Technology-Based effluent limitation based on BPJ to reflect a subsequently promulgated effluent guideline which is less stringent. The second situation addressed by Section 402(o) arises when a permittee seeks relaxation of an effluent limitation which is based upon a State treatment standard of water quality standard.

Previous limits can be used pursuant to EPA's anti-backsliding regulation 40 CFR 122.44 (I) Reissued permits. (1) Except as provided in paragraph (I)(2) of this section when a permit is renewed or reissued. Interim effluent limitations, standards or conditions must be at least as stringent as the final effluent limitations, standards, or conditions in the previous permit (unless the circumstances on which the previous permit was based have materially and substantially changed since the time the permit was issued and would constitute cause for permit modification or revocation and reissuance under §122.62). (2) In the case of effluent limitations established on the basis of Section 402(a)(1)(B) of the CWA, a permit may not be renewed, reissued, or modified on the basis of effluent guidelines promulgated under section 304(b) subsequent to the original issuance of such permit, to contain effluent limitations which are less stringent than the comparable effluent limitations in the previous permit.

The facility is not seeking to revise the previously permitted effluent limits.

Additional Considerations

Pursuant to EPA's approval of Pennsylvania's 2017 Triennial Review of Water Quality Standards and corresponding regulatory changes published in the *Pennsylvania Bulletin* on July 11, 2020, sewage discharges will include monitoring, at a minimum for *E. coli*, in new and reissued permits with a monitoring frequency of 1/year for design flows of 0.002 – 0.05 MGD.

For pH, Dissolved Oxygen (DO), and TRC, a monitoring frequency of 1/day has been imposed.

Annual sampling for nitrogen and phosphorus will be imposed per 25 PA Code §92a.61.

Monitoring frequency for the proposed effluent limits are based upon Table 6-3, Self-Monitoring Requirements for Sewage Dischargers, from the Department's *Technical Guidance for the Development and Specification of Effluent Limitations*. Please note that no monitoring frequencies have changed from the previous permit.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Eighteen Months Following Permit Issuance through Permit Expiration Date.

Parameter			Effluent L	imitations			Monitoring Red	quirements
	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required		
Farancier	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
TRC	XXX	XXX	XXX	0.01	XXX	0.03	1/day	Grab

Compliance Sampling Location: Outfall 001

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the previous permit limits which are being reimposed during the compliance period that follows permit issuance. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Eighteen Months Following Permit Issuance.

Parameter			Effluent L	imitations			Monitoring Requirement		
	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required			
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type	
TRC	ХХХ	XXX	XXX	Report	XXX	Report	1/day	Grab	

Compliance Sampling Location: Outfall 001

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

				Monitoring Re	quirements			
Deremeter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Parameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	0.03	XXX	xxx	XXX	XXX	XXX	1/week	Measured
pH (S.U.)	ХХХ	XXX	6.0 Inst Min	xxx	xxx	9.0	1/day	Grab
DO	XXX	XXX	4.0 Avg Mo	xxx	XXX	XXX	1/day	Grab
CBOD₅	ххх	XXX	xxx	10	xxx	20	2/month	Grab
TSS	ххх	XXX	xxx	25	xxx	50	2/month	Grab
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	xxx	XXX	xxx	200 Geo Mean	XXX	1000	2/month	Grab
E. Coli (No./100 ml)	XXX	XXX	ххх	XXX	XXX	Report	1/year	Grab
Total Nitrogen	XXX	XXX	xxx	xxx	Report Daily Max	xxx	1/year	Grab
Ammonia-Nitrogen Nov 1 - Apr 30	XXX	XXX	xxx	3.0	xxx	6.0	2/month	Grab
Ammonia-Nitrogen May 1 - Oct 31	xxx	XXX	xxx	2.0	xxx	4.0	2/month	Grab
Total Phosphorus	ххх	XXX	xxx	XXX	Report Daily Max	XXX	1/year	Grab

Compliance Sampling Location: Outfall 001

ATTACHMENT A

WQM 7.0 Modeling Results

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0094617

Summer

	SWP Basin	Strea Cod	am Je	Stre	am Name		RMI	Elev (f	ation t)	Drainage Area (sq mi)	Slop (ft/f	e PV Withd t) (m	/S Irawal gd)	Apply FC
	19G	413	372 Trib 41	1372 of Yo	ork Run		0.66	50 13	220.00	0.1	6 0.00	000	0.00	\checkmark
					St	ream Data	1							
Design Cond	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p pł	н	<u>Strear</u> Temp	n pH	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.005	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	10.0	0.00	0.00	2	5.00	7.00	0.00	0.00	
Discharge Data]	
			Name	Per	mit Numbe	Existing Disc r Flow (mgd)	Permitte Disc Flow (mgd)	ed Desig Disc Flow) (mgd	n Res / Fa)	erve To ctor ()isc emp °C)	Disc pH		
		Strick	land Esta	PAG	094617	0.000	0.030	00.00	00 (0.000	20.00	7.00		
					Pa	arameter D)ata							
			,	Paramete	Name	Dis Co	inc C	Frib S Conc	tream Conc	Fate Coef				
						(m)	g/L) (n	ng/L) (mg/L)	(1/days)				
		CBOD5			1	0.00	2.00	0.00	1.50					
			Dissolved	Oxygen			4.00	8.24	0.00	0.00				
			NH3-N				4 00	0.00	0.00	0 70				

Input Data WQM 7.0

Thursday, December 16, 2021

Version 1.1

	SWF Basi	o Strea n Coo	am Je	Stre	eam Name		RMI	Elev (f	ation (Drainage Area (sq mi)	Slope (ft/ft)	PV Withd (m	VS irawal gd)	Apply FC
	19G	41	372 Trib 41	1372 of Y	ork Run		0.1	00 1	040.00	0.59	0.0000	0	0.00	\checkmark
					St	ream Dat	a							
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth] Temp	<u>Tributary</u> p pH	Те	<u>Strear</u> mp	n pH	
cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°	C)		
Q7-10 Q1-10 Q30-10	0.005	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	10.0	0.00	0.00) 25	.00 7.0	00	0.00	0.00	
		Discharge Data											1	
			Name	Per	mit Numbe	Existing Disc r Flow (mgd)	Permitt Disc Flow (mgd	ed Desig Disc Flow) (mgd	n Rese / Fac)	Dis erve Ten tor (°C	с [пр ;)	Disc pH		
						0.000	0.00	00.00	00 0	.000 2	5.00	7.00		
					Pa	arameter	Data							
				Paramoto	r Namo	Di	isc · onc (Trib S Conc	tream Conc	Fate Coef				
				aramete	rname	(m	ng/L) (r	mg/L) ((mg/L)	(1/days)				
			CBOD5			:	25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N			:	25.00	0.00	0.00	0.70				

Input Data WQM 7.0

Thursday, December 16, 2021

Version 1.1

Page 2 of 2

		WVQ	<u>vi 7.0</u>	nyui	ouyn	amic	Out	Juis			
SW	<u>P Basin</u> 19G	Stream Code 41372			Stream Name Trib 41372 of York Run						
Stream Flow (cfs)	PWS With (cfs)	Net Stream Flow (cfs)	Disc Analysis Flow (cfs)	Reach Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Reach Trav Time (days)	Analysis Temp (°C)	Analysis pH
) Flow											
0.00	0.00	0.00	.0464	0.06088	.34	1.99	5.85	0.07	0.489	20.09	7.00
) Flow											
0.00	0.00	0.00	.0464	0.06088	NA	NA	NA	0.07	0.490	20.06	7.00
0 Flow											
0.00	0.00	0.00	.0464	0.06088	NA	NA	NA	0.07	0.487	20.12	7.00
	Stream Flow (cfs) Flow 0.00 Flow 0.00 0 Flow 0.00	SWP Basin 19G Stream PWS Flow With (cfs) (cfs) Flow 0.00 Flow 0.00 Flow 0.00 Flow 0.00 Flow 0.00 Flow 0.00 OFlow 0.00 0.00 0.00	SWP Basin Stream 19G 4' Stream PWS Flow With (cfs) (cfs) 0 Flow 0.00 0 Flow 0.00	SWP Basin Stream Code 19G 41372 Stream PWS Flow With Stream PWS Flow Cofs) (cfs) (cfs) 0 Flow 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	SWP Basin Stream Code 19G 41372 Stream PWS Flow With Stream PWS Flow Stream Analysis Slope Flow Flow (cfs) (cfs) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	SWP Basin Stream Code 19G 41372 Stream PWS Flow Net Disc Reach Depth Flow Flow (cfs) (cfs) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	SWP Basin Stream Code 19G 41372 Trib Stream PWS Net Disc Reach Depth Width Flow With Stream Analysis Slope Flow Width (cfs) (cfs) (cfs) (cfs) (ft) (ft) (ft) Flow 0.00 0.00 .0464 0.06088 .34 1.99 Flow 0.00 0.00 .0464 0.06088 NA NA 0 Flow 0.00 0.00 .0464 0.06088 NA NA	SWP Basin Stream Code Stream 19G 41372 Trib 41372 of Stream PWS Net Disc Reach Depth Width W/D Flow With Stream Analysis Slope Ratio Flow Flow Flow Flow Ratio 0 Flow 0.00 0.00 .0464 0.6088 .34 1.99 5.85 Flow 0.00 0.00 .0464 0.06088 NA NA NA 0 Flow 0.00 0.00 .0464 0.06088 NA NA NA	SWP Basin Stream Code Stream Name 19G 41372 Trib 41372 of York Ru Stream PWS Net Disc Reach Depth Width W/D Velocity Flow With Stream Analysis Slope Ratio Velocity Flow Flow Flow Flow (ff) (ft) (ft) 0.00 0.00 0.00 .0484 0.06088 .34 1.99 5.85 0.07 Flow 0.00 0.00 .0484 0.06088 NA NA NA 0.07 Flow 0.00 0.00 .0464 0.06088 NA NA 0.07	SWP Basin Stream Code Stream Name 19G 41372 Trib 41372 of York Run Stream PWS Net Disc Reach Depth Width W/D Velocity Reach Flow With Stream Analysis Slope Depth Width W/D Velocity Reach (cfs) (cfs) (cfs) (ft/ft) (ft) (ft) (ft) (ftps) (days) Plow 0.00 0.00 .0464 0.06088 .34 1.99 5.85 0.07 0.489 Plow 0.00 0.00 .0464 0.06088 NA NA NA 0.07 0.490 0 Flow 0.00 0.00 .0464 0.06088 NA NA NA 0.07 0.490 0 Flow 0.00 0.00 .0464 0.06088 NA NA NA 0.07 0.490	SWP Basin Stream Code Stream Name 19G 41372 Trib 41372 of York Run Stream PWS Net Disc Reach Depth Width W/D Velocity Reach Analysis Flow With Stream Analysis Slope Disc Reach Analysis Trib (cfs) (cfs) (cfs) (ft/ft) (ft) (ft) (ft) Trav Trav Temp 0.00 0.00 0.00 .0464 0.06088 .34 1.99 5.85 0.07 0.489 20.09 Plow 0.00 0.00 .0464 0.06088 NA NA NA 0.07 0.490 20.08 0 Flow 0.00 0.00 .0464 0.06088 NA NA NA 0.07 0.490 20.08

WQM 7.0 Hydrodynamic Outputs

Thursday, December 16, 2021

Version 1.1

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	~
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	~
D.O. Saturation	90.00%	Use Balanced Technology	~
D.O. Goal	5		

Thursday, December 16, 2021

Version 1.1

				.0 wast	eload A	liocatio	ns					
	SWP Basin	Strea	am Code		Stream Name							
	19G	4	1372		Trib 41	372 of York R	tun					
NH3-N	Acute Alloc	ation	s									
RMI	Discharge	Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction				
0.66	0 Strickland E	sta	16.68	8	16.68	8	0	0				
NH3-N	Chronic All	ocati	ons									
RMI	Discharge N	ame	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction				
0.66	0 Strickland Ex	sta	1.87	1.92	1.87	1.92	0	0				

Dissolved Oxygen Allocations

		CBOD5		NH3-N		Dissolver	l Oxygen	Orthopi	Demont
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction
0.66 S	trickland Esta	10	10	1.92	1.92	5	5	0	0

Thursday, December 16, 2021

Version 1.1

SWP Basin	Stream Code			Stream Name	
19G	41372		Trib	41372 of York Run	
RMI	Total Discharge	Flow (mqd) <u>Ana</u>	lysis Temperature (°C	C) Analysis pH
0.660	0.03	0		20.091	7.000
Reach Width (ft)	Reach De	pth (ft)		Reach WDRatio	Reach Velocity (fps)
1.987	0.34	0		5.849	0.070
Reach CBOD5 (mg/L)	Reach Kc	(1/days)	R	each NH3-N (mg/L)	Reach Kn (1/days)
9.85	1.49	2		1.88	0.705
Reach DO (mg/L)	Reach Kr (1/days)		Kr Equation	Reach DO Goal (mg/L)
5.059	26.99	99		Owens	5
Reach Travel Time (days)	Subreach	Results		
0.489	TravTime	CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.049	9.16	1.82	7.32	
	0.098	8.51	1.76	7.96	
	0.147	7.91	1.70	8.18	
	0.195	7.35	1.64	8.23	
	0.244	6.83	1.59	8.23	
	0.293	6.35	1.53	8.23	
	0.342	5.90	1.48	8.23	
	0.391	5.49	1.43	8.23	
	0.440	5.10	1.38	8.23	
	0.489	4.74	1.34	8.23	

WQM 7.0 D.O.Simulation

Thursday, December 16, 2021

Version 1.1

	<u>SWP Basin</u> 19G	Stream Code 41372		Stream Name Trib 41372 of York	<u>)</u> k Run		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effi. Limit Minimum (mg/L)
.660	Strickland Est	a PA0094617	0.000	CBOD5	10		
				NH3-N	1.92	3.84	
				Dissolved Oxygen			5

WQM 7.0 Effluent Limits

Thursday, December 16, 2021

Version 1.1

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0094617

Winter

	SWF Basi	o Strea n Cod	am le	Str	eam Name		RMI	Eleva (ft	ition E	Orainage Area (sq mi)	Slope (ft/ft)	PWS Withdra (mgd	; wal)	Apply FC
	19G	413	372 Trib 41	1372 of Y	ork Run		0.6	60 12	20.00	0.16	0.00000		0.00	\checkmark
					St	ream Da	ta							
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	I Temp	ributary pH	Tem	<u>Stream</u> P	pН	
cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C))		
Q7-10 Q1-10 Q30-10	0.011	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	10.0	0.00	0.00	5.	00 7.0	0 (0.00	0.00	
					D	ischarge	Data							
			Name	Pe	mit Numbe	Existing Disc r Flow (mgd)	Permitt Disc Flow (mgd)	ed Design Disc Flow) (mgd)	Reser Fact	Disc rve Tem or (°C	c Dis np p)	sc H		
		Strick	land Esta	PA	0094617	0.000	0 0.030	0.000	00 0.	000 1	5.00	7.00		
					Pa	arameter	Data							
				Paramete	r Namo	D	isc 1 Xonc (Trib St Conc (ream Conc	Fate Coef				
				raramete	rivanie	(n	ng/L) (r	ng/L) (r	ng/L) ((1/days)				
			CBOD5				10.00	2.00	0.00	1.50				
			Dissolved	Oxygen			4.00	12.51	0.00	0.00				
			NH3-N				4.00	0.00	0.00	0.70				

Input Data WQM 7.0

Thursday, December 16, 2021

Version 1.1

	SWP Basir	Strea Cod	im ie	Stre	eam Name		RMI	Elev (f	ation t)	Drainage Area (sq mi)	Slope (ft/ft)	PW Withd (mg	VS Irawal gd)	Apply FC
	19G	413	372 Trib 41	1372 of Yo	ork Run		0.10	00 10	040.00	0.59	0.0000	0	0.00	\checkmark
					St	ream Dat	ta							
Design Cond	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> np pH	Tei	<u>Strear</u> mp	n pH	
cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°(C)		
27-10	0.011	0.00	0.00	0.000	0.000	10.0	0.00	0.00		5.00 7.	.00	0.00	0.00	
Q1-10 Q30-10		0.00 0.00	0.00 0.00	0.000 0.000	0.000									
					D	ischarge	Data						1	
			Name	Per	mit Numbe	Existing Disc r Flow (mgd)	Permitte Disc Flow (mgd)	ed Desig Disc Flow (mgd	n Res / Fa)	Di erve Tei ictor (°(sc E mp C))isc pH		
						0.000	0 0.000	0.00	00	0.000	25.00	7.00		
					Pa	arameter	Data							
				Paramete	r Name	D	isc 1 Xonc C	Trib S Conc	tream Conc	Fate Coef				
						(m	ng/L) (n	ng/L) (mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

Input Data WQM 7.0

Thursday, December 16, 2021

Version 1.1

Page 2 of 2

WQM 7.0 Hydrodynamic Outputs

	<u>3W</u>	P Bacin	Stres	m Code				Stream	Name			
		190	4	1372			Trib	41372 0	York Ru	n		
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(11/11)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
0.660	0.00	0.00	0.00	.0464	0.06088	.341	2	5.86	0.07	0.484	14.64	7.00
Q1-1	0 Flow											
0.660	0.00	0.00	0.00	.0464	0.06088	NA	NA	NA	0.07	0.487	14.77	7.00
Q30-	10 Flow											
0.660	0.00	0.00	0.00	.0464	0.06088	NA	NA	NA	0.07	0.480	14.52	7.00

Thursday, December 16, 2021

Version 1.1

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0094617

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	\checkmark
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	~
D.O. Saturation	90.00%	Use Balanced Technology	~
D.O. Goal	5		

Version 1.1

0.66 Strickland Esta

Permit No. PA0094617

	19G	41372		<u>St</u> Trib 41	<u>ream Name</u> 372 of York F	tun	
NH3-N	Acute Allocatio	ns					
RMI	Discharge Nam	Baseline criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
0.6	60 Strickland Esta	24.1	8	24.1	8	0	0
NH3-N	Chronic Alloca	tions					
NH3-N Rmi	Chronic Alloca Discharge Name	tions Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
NH3-N RMI 0.6	Chronic Alloca Discharge Name 80 Strickland Esta	tions Baseline Criterion (mg/L) 2.69	Baseline WLA (mg/L) 2.82	Multiple Criterion (mg/L) 2.69	Multiple WLA (mg/L) 2.82	Critical Reach 0	Percent Reduction
NH3-N RMI 0.6	Chronic Alloca Discharge Name 80 Strickland Esta ed Oxygen Allo	tions Baseline Criterion (mg/L) 2.69 cations	Baseline WLA (mg/L) 2.82	Multiple Criterion (mg/L) 2.69	Multiple WLA (mg/L) 2.82	Critical Reach 0	Percent Reduction

10

10

2.82

2.82

5

5

0

0

Thursday, December 16, 2021

Version 1.1

<u>SWP Basin</u> 19G	Stream Code 41372		Trit	Stream Nam 41372 of Yor	<u>e</u> k Run	
RML	Total Discharge	Flow (mgd) Ana	ysis Temperat	ure (°C)	Analysis pH
0.660	0.03	0		14.641		7.000
Reach Width (ft)	Reach De	epth (ft)		Reach WDRa	itio	Reach Velocity (fps)
1.996	0.34	1		5.857		0.071
Reach CBOD5 (mg/L)	Reach Kc	h Kc (1/days)		each NH3-N (i	<u>mg/L)</u>	Reach Kn (1/days)
9.71	1.48	5		2.72		0.463
Reach DO (mg/L)	Reach Kr ((1/days)		Kr Equation	1	Reach DO Goal (mg/L)
5.270	23.73	39		Owens		5
<u>Reach Travel Time (day</u> 0.484	<u>s)</u> TravTime (days) 0.048 0.097 0.145 0.193 0.242 0.290 0.339 0.387 0.435 0.484	Subreact CBOD5 (mg/L) 9.18 8.68 8.21 7.76 7.34 6.93 6.56 6.20 5.86 5.54	Results NH3-N (mg/L) 2.66 2.60 2.54 2.49 2.43 2.38 2.33 2.27 2.22 2.18	D.O. (mg/L) 7.99 8.88 9.16 9.16 9.16 9.16 9.16 9.16 9.16 9.16		

WQM 7.0 D.O.Simulation

Thursday, December 16, 2021

Version 1.1

	WQM 7	7.0 Ef	fluent Limits	5		
SWP Basin Stree	am Code		Stream Name	2		
19G 4	1372		Trib 41372 of York	k Run		
Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
Strickland Esta	PA0094617	0.000	CBOD5	10		
			NH3-N	2.82	5.64	
			Dissolved Oxygen			5
	SWP Basin Stree 19G 4 Name Strickland Esta	SWP Basin Stream Code 19G 41372 Name Permit Number Strickland Esta PA0094617	SWP Basin Stream Code 19G 41372 Name Permit Number Disc Flow (mgd) Strickland Esta PA0094617 0.000	WQM 7.0 Effluent Limits SWP Basin Stream Code Stream Name 19G 41372 Trib 41372 of Yord Name Permit Number Disc Flow (mgd) Parameter Strickland Esta PA0094617 0.000 CBOD5 NH3-N Dissolved Oxygen Dissolved Oxygen Dissolved Oxygen	WQM 7.0 Effluent Limits SWP Basin 19G Stream Code 41372 Stream Name Name 41372 Trib 41372 of York Run Name Permit Number Disc Flow Mumber Parameter Effl. Limit 30-day Ave. (mg/L) Strickland Esta PA0094617 0.000 CBOD5 10 NH3-N 2.82 Dissolved Oxygen Dissolved Oxygen	WQM 7.0 Effluent Limits SWP Basin 19G Stream Code 41372 Stream Name Trib 41372 of York Run Name Permit Number Disc Flow (mgd) Parameter Effl. Limit 30-day Ave. (mg/L) Effl. Limit Maximum (mg/L) Strickland Esta PA0094617 0.000 CBOD5 10 NH3-N 2.82 5.64 Dissolved Oxygen Dissolved Oxygen Dissolved Oxygen

Thursday, December 16, 2021

Version 1.1

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0094617

ATTACHMENT B

TRC Modeling Results

TRC EVALUA	TION							
Input appropria	te values in /	A3:A9 and D3:D9						
0.000864	= Q stream (cfs)	0.5	= CV Daily				
0.03	= Q discharg	je (MGD)	0.5	= CV Hourly				
30	= no. sample	S	1	1 = AFC_Partial Mix Factor				
0.3	= Chlorine D	emand of Stream	1	= CFC_Partial Mix Factor				
0	= Chlorine D	emand of Discharge	15	= AFC_Criteria Compliance Time (min)				
0.5 = BAT/BPJ Value			720	= CFC_Criteria Compliance Time (min)				
0	0 = % Factor of Safety (FOS)			=Decay Coefficient (K)				
Source	Reference	AFC Calculations		Reference	CFC Calculations			
TRC 1.3.2.iii WLA afc = 0.025				1.3.2.iii	WLA cfc = 0.017			
PENTOXSD TRG 5.1a LTAMULT afc = 0.3		0.373	5.1c	LTAMULT cfc = 0.581				
PENTOXSD TRG 5.1b LTA_afc= (0.009	5.1d	LTA_cfc = 0.010				
Source		Effluer	nt Limit Calcul	ations				
PENTOXSD TRG	5.1f		AML MULI = 1.231					
PENTOXSD TRG	5.1g	AVG MON	N LIMIT (mg/l) = 0.011 AFC					
		INST MAX	LIMIT (mg/i) =	0.037				
	10401-1144							
WLA afc	(.019/e(-K^Ar	C_tc)) + [(AFC_Yc*Qs*.019/	Qd*e(-K*AFC_	tc))				
TANUL Tofo	+ X0 + (APU	C_YC*Q\$^X\$/Q0)J^(1-FU8/100 (aubA211)) 2 3268 N(aubA21	J) 1)40 5)					
	EAP((0.5 Liv)	(CVII*2+1))-2.320 LIN(CVII 2+	1)~0.5)					
LTA_arc		MOLI_arc						
WLA_cfc	(.011/e(-k*Cf + Xd + (CF(FC_tc) + [(CFC_Yc*Qs*.011/(C_Yc*Qs*Xs/Qd)]*(1-FOS/10/	Qd*e(-k*CFC_t 0)	tc))				
LTAMULT_cfc	EXP((0.5*LN	(cvd^2/no_samples+1))-2.32(6*LN(cvd*2/nd	o_samples+1)^0	.5)			
LTA_cfc	wla_cfc*LTA	MULT_cfc						
AMLMULT	EXP(2.326*L	N((cvd^2/no_samples+1)^0.{	5)-0.5*LN(cvd4	^2/no_samples+	1))			
AVG MON LIMIT	MIN(BAT_BP	J,MIN(LTA_afc,LTA_cfc)*AN	IL_MULT)					
INST MAX LIMIT	1.5*((av_mor	n_limit/AML_MULT)/LTAMUL	.T_afc)					

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0094617

ATTACHMENT C

USGS Stream Stats Output

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0094617

Discharge Point

StreamStats Report

Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	0.16	square miles
ELEV	Mean Basin Elevation	1218	feet
PRECIP	Mean Annual Precipitation	41	inches
FOREST	Percentage of area covered by forest	56.8671	percent
URBAN	Percentage of basin with urban development	0.2227	percent

35

Low-Flow Statistics Disclaimers [Low Flow Region 4]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Low-Flow Statistics Flow Report [Low Flow Region 4]

Statistic	Value	Unit
7 Day 2 Year Low Flow	0.00352	ft^3/s
30 Day 2 Year Low Flow	0.00741	ft^3/s
7 Day 10 Year Low Flow	0.000864	ft^3/s
30 Day 10 Year Low Flow	0.00213	ft^3/s
90 Day 10 Year Low Flow	0.00477	ft^3/s

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/) 3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0094617

Down Stream of Discharge

StreamStats Report

 Region ID:
 PA

 Workspace ID:
 PA20211025133927877000

 Clicked Point (Latitude, Longitude):
 39.84279, -79.81558

 Time:
 2021-10-25 09:39:47 -0400

Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	0.59	square miles
ELEV	Mean Basin Elevation	1185	feet

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0094617

ATTACHMENT D

Proposed Compliance Schedule

Walnut Manor STP, NPDES Permit No. PA0094617

Compliance Schedule

1.	Feasibility study completion	May 31, 2023
а		
2.	Final plan completion	June 30, 2023
а		
3.	Start construction	30-45 days from approval of final plan and dependent on delivery of equipment by manufacturer August 15, 2023
а	-	
4.	Construction progress report(s)	(August 31 st ,2023) See line 5
а		
5.	End construction	August 31 st , 2023
а		
6.	Compliance with effluent limitations	October 1st,2023