

Northwest Regional Office CLEAN WATER PROGRAM

Application Type
Renewal
NonMunicipal
Major / Minor
Minor
Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. PA0094676

APS ID 700235

Authorization ID 1313956

Applicant Name	Twin Lakes Center Inc.	Facility Name	Twin Lakes Center
Applicant Address	P.O. Box 909	Facility Address	224 Twin Lake Road
	Somerset, PA 15501		Somerset, PA 15501-7727
Applicant Contact	Nicholas Ash	Facility Contact	Matthew Hayman (Operator)
Applicant Phone	(814) 443-3639	Facility Phone	(814) 279-5301
Client ID	107526	Site ID	259423
Ch 94 Load Status	Not Overloaded	Municipality	Somerset Township
Connection Status		County	Somerset
Date Application Rece	eived April 29, 2020	EPA Waived?	Yes
Date Application Acce	pted May 11, 2020	If No, Reason	

Summary of Review

No changes to the discharge quality or quantity were proposed as part of this permit renewal.

The facility started using eDMR for reporting in August 2017.

There are currently no open violations listed in EFACTS for this permittee (2/26/2021).

Sludge use and disposal description and location(s): Hauled offsite to Summerset STP for further processing.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
Х		Adam Pesek Adam J. Pesek, E.I.T. / Environmental Engineering Specialist	March 1, 2021
X		Justin C. Dickey Justin C. Dickey, P.E. / Environmental Engineer Manager	March 3, 2021

Outfall No. 001			Design Flow (MGD)	0.0059					
	2' 22"		Longitude	-79° 5' 35"					
	omerset		Quad Code 01813						
Wastewater Descr		Sewage Effluent	_						
Receiving Waters	East l	Branch Coxes Creek	Stream Code	39032					
NHD Com ID	69915		RMI	2.13					
Drainage Area	0.97		Yield (cfs/mi²)	0.0367					
Q ₇₋₁₀ Flow (cfs)	0.035	6	Q ₇₋₁₀ Basis	Bulletin 12, Page 395, Coxes Creek Near Rock Wood STA # 03078800					
Elevation (ft)	2128		Slope (ft/ft)	0.00266					
Watershed No.	19-F		Chapter 93 Class. WWF						
Existing Use			Existing Use Qualifier						
Exceptions to Use	-		Exceptions to Criteria						
Assessment Statu	s	Impaired							
Cause(s) of Impair	ment	SILTATION							
Source(s) of Impai	rment	HIGHWAY/ROAD/BRID RUNOFF/STORM SEW	DGE RUNOFF (NON-CONSTRUC VERS	TION RELATED), URBAN					
TMDL Status		Final	Name Coxes Cree	k Watershed					
Background/Ambie	ent Data		Data Source						
pH (SU)		7.4	Priority Water Body Survey Co	ores Crk E. Branch Station 2					
Temperature (°C)		25	Default (WWF)						
Hardness (mg/L)									
Other: NH3-N		0.1	Default						
Nearest Downstrea	am Publi	c Water Supply Intake	Ohiopyle Borough Municipal V	Vater Works					
WS Waters Youghiogheny River			Flow at Intake (cfs)						
			Distance from Outfall (mi) 45.75						

Changes Since Last Permit Issuance:

Other Comments: Previous Fact Sheets have stated that the discharge is actually to East Branch Coxes Creek, and not an unnamed tributary to East Branch Coxes Creek.

	Tro	eatment Facility Summa	ry	
Treatment Facility Na	me: Twin Lakes Center ST	P		
WQM Permit No.	Issuance Date			
Unknown	Unknown			
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
Sewage	Secondary	Extended Aeration	Chlorination	0.0059
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal
0.0059	Unknown	Not Overloaded	N/A	Other STP

Changes Since Last Permit Issuance: None

Other Comments: Treatment units include a holding tank, comminutor, bar screen, aeration tank, settling tank, chlorinator, chlorine contact tank, and sludge holding tank.

	Compliance History
Summary of DMRs:	eDMRs have been submitted on time since they started using the eDMR system for reporting in August 2017. See section below for additional information.
Summary of Inspections:	The last site inspection was conducted on 11/04/2019 at the facility. Four effluent violations were noted during this inspection from January 2018 to October 2019. A NOV was sent to the permittee as a result of these violations. No other issues were noted in this report.

Other Comments:

Compliance History

DMR Data for Outfall 001 (from January 1, 2020 to December 31, 2020)

Parameter	DEC-20	NOV-20	OCT-20	SEP-20	AUG-20	JUL-20	JUN-20	MAY-20	APR-20	MAR-20	FEB-20	JAN-20
Flow (MGD)												
Average Monthly	0.0019	0.0017	0.0020	0.0021	0.0022	0.0018	0.0021	0.0020	0.0020	0.0030	0.0024	0.0024
pH (S.U.)												
Minimum	7.1	7.2	7.1	7.2	7.1	7.1	6.9	6.9	6.9	6.9	7.0	7.0
pH (S.U.)												
Maximum	7.3	7.3	7.3	7.3	7.6	7.2	7.1	7.0	7.0	7.1	7.1	7.1
DO (mg/L)												
Minimum	7.7	7.8	7.6	7.6	7.5	7.4	7.3	7.5	7.6	7.5	7.4	7.3
TRC (mg/L)												
Average Monthly	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.5	0.4
TRC (mg/L)												
Instantaneous	0.6	0.7	0.6	0.6	0.6	0.6	0.7	0.6	0.7	0.6	0.6	0.6
Maximum CBOD5 (mg/L)	0.6	0.7	0.6	0.6	0.6	0.6	0.7	0.6	0.7	0.6	0.6	0.6
Average Monthly	2	< 2	< 2	< 3	< 2	< 3	< 2	4	< 2	< 2	< 2	< 2
CBOD5 (mg/L)		\ <u>\</u>	<u> </u>	< 3	\ <u>\</u>	7.5	<u> </u>	4	<u> </u>	\ <u>\</u>	<u> </u>	<u> </u>
Instantaneous												
Maximum	2	< 2	< 2	3	2	< 3	< 2	6	< 2	< 2	2	< 2
TSS (mg/L)		, <u> </u>	,						` -	,		1_
Average Monthly	8	10	6	6	6	8	6	19	8	6	5	4
TSS (mg/L)												
Instantaneous												
Maximum	8	12	6	6	6	8	6	20	9	6	6	4
Fecal Coliform												
(CFU/100 ml)												
Geometric Mean	3.49	< 1.0	< 1.0	< 2.3	< 1.0	1.0	< 1.0	1.8	< 1.0	< 1.0	< 1.0	1.0
Fecal Coliform												
(CFU/100 ml)												
Instantaneous	40.0	4.0	4.0	5 0	4.0	4.0	4.0	0.4	4.0	4.0	4.0	4.0
Maximum	12.2	< 1.0	< 1.0	5.2	< 1.0	< 1.0	< 1.0	3.1	1.0	< 1.0	< 1.0	1.0
Ammonia (mg/L)	0.40	4.4	0.00	4.0	1.0	2	6	1.0	4.4	4.0	4.5	
Average Monthly	0.12	1.4	0.22	1.0	1.0	3	6	1.0	1.1	1.3	4.5	3
Ammonia (mg/L)												
Instantaneous Maximum	0.13	2.47	0.52	1.1	1.6	3	10	1.7	1.32	1.3	5.5	3
ινιαλΙΙΙΙΙΙΙΙ	0.13	2.41	0.52	1.1	1.0	J	10	1.7	1.32	1.3	ວ.ວ	J

		Developme	ent of Effluent Limitations		
Outfall No.	001		Design Flow (MGD)	0.0059	
Latitude	40° 2' 22.00"		Longitude	-79° 5' 35.00"	
Wastewater D	escription:	Treated Sewage Effluent			

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 - 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations

The following limitations were determined through water quality modeling (output files attached):

Parameter	Limit (mg/l)	SBC	Model
Ammonia Nitrogen			
May 1 - Oct 31	6.0	Average Monthly	WQAM 6.3 (previous modeling)

Comments: A seasonal multiplier of 3 is applied for ammonia nitrogen in accordance with the Department's SOP entitled "Establishing Effluent Limitations for Individual Sewage Permits."

Best Professional Judgment (BPJ) Limitations

Comments: Comments: A dissolved oxygen limit of a minimum of 4.0 mg/l and a total residual chlorine IMAX limit of 1.6 mg/l was placed in the permit in accordance with the Department's SOP entitled "Establishing Effluent Limitations for Individual Sewage Permits."

Additional Considerations

Monitoring for total nitrogen and total phosphorus was placed in the permit in accordance with the Department's SOP entitled "Establishing Effluent Limitations for Individual Sewage Permits."

There are no requirements applicable to this sewage discharge in the finalized Coxes Creek Watershed TMDL. The TMDL is focused on reduction of siltation from stormwater runoff. No additional requirements will be added to the permit for this discharge in conjunction with the TMDL.

Anti-Backsliding

None. Modeling done for the renewal using WQM 7.0 Version 1.0b showed results relatively close to previous modeling.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

	T		Effluent L	imitations			Monitoring Red	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	1/week	Measured
pH (S.U.)	XXX	XXX	6.0 Daily Min	XXX	9.0 Daily Max	XXX	1/day	Grab
DO	XXX	XXX	4.0 Daily Min	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
CBOD5	XXX	XXX	XXX	25.0	XXX	50	2/month	Grab
TSS	XXX	XXX	XXX	30.0	XXX	60	2/month	Grab
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	100	2/month	Grab
Ammonia Nov 1 - Apr 30	XXX	XXX	XXX	18.0	XXX	36	2/month	Grab
Ammonia May 1 - Oct 31	XXX	XXX	XXX	6.0	XXX	12	2/month	Grab
Total Nitrogen	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/year	Grab
Total Phosphorus	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/year	Grab

Compliance Sampling Location: Outfall 001 (after disinfection)

Input Data WQM 7.0

	SWP Basir	1070000000		Stre	eam Nam	e	RMI	Ele	evation (ft)	Drainag Area (sq mi)		ope V/ft)	PWS fithdrawal (mgd)	Apply FC
	19F	390	032 Trib 39	9032 to E	ast Branc	h Coxes Cr	2.1	30	2128.00	0	.97 0.0	0000	0.00	✓
						Stream Da	ta							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	n Tem	Tributary	∕ oH	<u>Sti</u> Temp	ream pH	
Conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	;)		(°C)		
Q7-10 Q1-10 Q30-10	0.037	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000)	0.00	0.	00 2	5.00	7.40	0.0	0 0.00	1
		Discharge Data												
			Name	Per	rmit Numl	Disc	Permitt Disc Flow (mgd	Di:	sc Res		Disc Temp (°C)	Disc pH		
		Twin	Lakes Ctr	PA	0094676	0.005	9 0.000	00 0.	0000	0.000	20.00	7.0	00	
						Parameter	Data							
			1	Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
			**			(n	ng/L) (r	mg/L)	(mg/L)	(1/days)			
			CBOD5				25.00	2.00	0.00	1.5	0			
			Dissolved	Oxygen			4.00	7.54	0.00	0.0	0			
			NH3-N				25.00	0.10	0.00	0.7	0			

Input Data WQM 7.0

					TITI	put Data	a vvQ	VI 7.0						
	SWP Basin			Stre	eam Name	е	RM		vation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PW Withd (mg	rawal	Apply FC
	19F	39	032 Trib 39	9032 to E	ast Branch	Coxes Cr	1.5	60	2120.00	1.75	0.00000	E	0.00	✓
					:	Stream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> np pH	Ter	<u>Strean</u> np	<u>p</u> H	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°C	C)		
ଇ7-10 ଇ1-10 ଇ30-10	0.037	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000	ļ.	0.00	0.0	0 2	5.00 7.4	40	0.00	0.00	
		Discharge Data												
			Name	Per	rmit Numb	Disc	Permit Disc Flow (mgc	/ Flo	c Res w Fa	Dis erve Ten ctor	np	risc pH		
		Som	erset Est	PA	0094846	0.065	0 0.00	0.0	000	0.000 2	20.00	7.00		
)	Parameter	Data							
				Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
				raiamete	I Name	(m	ng/L) (mg/L)	(mg/L)	(1/days)				
	-		CBOD5				25.00	2.00	0.00	1.50		-		
			Dissolved	Oxygen			4.00	7.54	0.00	0.00				
			NH3-N				25.00	0.10	0.00	0.70				

Input Data WQM 7.0

					6,415	pat Dati	u 110cm							
	SWP Basin	Stres Cod		Stre	eam Nam	e	RMI		evation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	Witho	VS drawal gd)	Apply FC
	19F	390	032 Trib 3	9032 to Ea	ast Branc	h Coxes Cr	1.1	90	2117.00	1.8	0.000	00	0.00	~
						Stream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> np pH	+ т	<u>Strear</u> emp	<u>т</u> рН	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	Î	(°C)		
27-10 21-10 230-10	0.037	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000)	0.00	0.0	00 2	5.00 7	7.40	0.00	0.00	Sales Control of the
						Discharge	Data						1	
			Name	Per	mit Numl	Disc	Permitt Disc Flow (mgd	Dis Flo	c Res	erve Te ctor	oisc emp °C)	Disc pH		
		-				0.000	0.000	0.0	0000	0.000	25.00	7.00		
						Parameter	Data							
				Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
				, aramete	114	(m	ng/L) (r	mg/L)	(mg/L)	(1/days)				
	-		CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

WQM 7.0 Hydrodynamic Outputs

	SW	P Basin	Strea	m Code				<u>Stream</u>	<u>Name</u>			
		19F	3	9032		Tri	b 39032	to East	Branch C	oxes Cr		
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
2.130	0.04	0.00	0.04	.0091	0.00266	.316	4.02	12.73	0.04	0.989	23.98	7.28
1.560	0.06	0.00	0.06	.1097	0.00154	.399	6.9	17.3	0.06	0.358	21.85	7.11
Q1-1	0 Flow											
2.130	0.02	0.00	0.02	.0091	0.00266	NA	NA	NA	0.03	1.195	23.57	7.24
1.560	0.04	0.00	0.04	.1097	0.00154	NA	NA	NA	0.06	0.387	21.36	7.08
Q30-	10 Flow	į										
2.130	0.05	0.00	0.05	.0091	0.00266	NA	NA	NA	0.04	0.859	24.21	7.31
1.560	0.09	0.00	0.09	.1097	0.00154	NA	NA	NA	0.07	0.333	22.22	7.13

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	
D.O. Goal	5		

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name
19F	39032	Trib 39032 to East Branch Coxes Cr

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
2.13	0 Twin Lakes Ctr	6.11	21.12	6.11	21.12	0	0
1.56	0 Somerset Est	8.2	11.5	8.28	11.5	0	0
H3-N (Chronic Allocati	one					
	Chronic Allocati	Baseline	Baseline	Multiple	Multiple	Critical	Percent
НЗ-N С RMI	Chronic Allocati	AND AND	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
RMI		Baseline Criterion	WLA	Criterion	WLA		

Dissolved Oxygen Allocations

		CBC	DD5	<u>NH</u>	<u>3-N</u>	Dissolved	d Oxygen	Critical	Dovoont
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Percent Reduction
2.13	Twin Lakes Ctr	25	25	6.71	6.71	4	4	0	0
1.56	Somerset Est	25	25	2.61	2.61	4	4	0	0

Wednesday, February 24, 2021

WQM 7.0 D.O.Simulation

SWP Basin S	tream Code			Stream Name	
19F	39032		Trib 39032	to East Branch Cox	ces Cr
<u>RMI</u> 2.130	Total Discharge	LOUIS.) <u>Ana</u>	ysis Temperature (°C	<u>Analysis pH</u> 7.283
Reach Width (ft)	Reach De			Reach WDRatio	Reach Velocity (fps)
4.020	0.31			12.725	0.035
Reach CBOD5 (mg/L)	Reach Kc (1/days				Reach Kn (1/days)
6.69	0.84		_	1.45	0.951
Reach DO (mg/L)	Reach Kr (1/days)		Kr Equation	Reach DO Goal (mg/L)
6.818	21.36	67		Owens	5
Reach Travel Time (days)		Subreach	Poculte		
0.989	TravTime (days)		NH3-N (mg/L)	D.O. (mg/L)	
	0.099	6.05	1.32	7.54	
	0.198	5.48	1.20	7.54	
	0.297	4.95	1.09	7.54	
	0.396	4.48	0.99	7.54	
	0.494	4.05	0.91	7.54	
	0.593	3.66	0.82	7.54	
	0.692	3.31	0.75	7.54	
				7.54	
	0.791	3.00	0.68	7.54	
			0.68 0.62	7.54 7.54	
	0.791	2.71			
RMI	0.791 0.890 0.989	2.71 2.45	0.62 0.57	7.54 7.54	o) Analysis pH
<u>RMI</u> 1.560	0.791 0.890	2.71 2.45 Flow (mgd	0.62 0.57	7.54	<u>Analysis pH</u> 7.109
	0.791 0.890 0.989 <u>Total Discharge</u>	2.71 2.45 E Flow (mgd	0.62 0.57	7.54 7.54 ysis Temperature (°C	
1.560	0.791 0.890 0.989 <u>Total Discharge</u> 0.07	2.71 2.45 Flow (mgd 1 pth (ft)	0.62 0.57	7.54 7.54 ysis Temperature (°C 21.847	7.109
1.560 Reach Width (ft)	0.791 0.890 0.989 <u>Total Discharge</u> 0.07 <u>Reach De</u>	2.71 2.45 Flow (mgd 1 pth (ft)	0.62 0.57) <u>Ana</u>	7.54 7.54 ysis Temperature (°C 21.847 Reach WDRatio	7.109 Reach Velocity (fps)
1.560 Reach Width (ft) 6.897	0.791 0.890 0.989 Total Discharge 0.07 Reach De 0.39 Reach Kc	2.71 2.45 Flow (mgd 1 pth (ft) 9 (1/days)	0.62 0.57) <u>Ana</u>	7.54 7.54 7.54 ysis Temperature (°C 21.847 Reach WDRatio 17.296 each NH3-N (mg/L) 1.67	7.109 Reach Velocity (fps) 0.063 Reach Kn (1/days) 0.807
1.560 <u>Reach Width (ft)</u> 6.897 <u>Reach CBOD5 (mg/L)</u>	0.791 0.890 0.989 Total Discharge 0.07 Reach De 0.39 Reach Kc 1.40 Reach Kr (2.71 2.45 Flow (mgd 1 pth (ft) 9 (1/days) 4 1/days)	0.62 0.57) <u>Ana</u>	7.54 7.54 7.54 ysis Temperature (°C) 21.847 Reach WDRatio 17.296 each NH3-N (mg/L) 1.67 Kr Equation	7.109 Reach Velocity (fps) 0.063 Reach Kn (1/days) 0.807 Reach DO Goal (mg/L)
1.560 <u>Reach Width (ft)</u> 6.897 <u>Reach CBOD5 (mg/L)</u> 15.41	0.791 0.890 0.989 Total Discharge 0.07 Reach De 0.39 Reach Kc	2.71 2.45 Flow (mgd 1 pth (ft) 9 (1/days) 4 1/days)	0.62 0.57) <u>Ana</u>	7.54 7.54 7.54 ysis Temperature (°C 21.847 Reach WDRatio 17.296 each NH3-N (mg/L) 1.67	7.109 <u>Reach Velocity (fps)</u> 0.063 <u>Reach Kn (1/days)</u> 0.807
1.560 <u>Reach Width (ft)</u> 6.897 <u>Reach CBOD5 (mg/L)</u> 15.41 <u>Reach DO (mg/L)</u> 5.493	0.791 0.890 0.989 Total Discharge 0.07 Reach De 0.39 Reach Kc 1.40 Reach Kr (2.71 2.45 Flow (mgd 1 pth (ft) 9 (1/days) 4 1/days)	0.62 0.57)) <u>Ana</u>	7.54 7.54 7.54 ysis Temperature (°C) 21.847 Reach WDRatio 17.296 each NH3-N (mg/L) 1.67 Kr Equation	7.109 Reach Velocity (fps) 0.063 Reach Kn (1/days) 0.807 Reach DO Goal (mg/L)
1.560 <u>Reach Width (ft)</u> 6.897 <u>Reach CBOD5 (mg/L)</u> 15.41 <u>Reach DO (mg/L)</u> 5.493	0.791 0.890 0.989 Total Discharge 0.07 Reach De 0.39 Reach Kc 1.40 Reach Kr (19.50	2.71 2.45 Flow (mgd 1 pth (ft) 9 (1/days) 4 1/days) 86 Subreach CBOD5	0.62 0.57) Anal Results NH3-N	7.54 7.54 7.54 7.54 ysis Temperature (°C) 21.847 Reach WDRatio 17.296 each NH3-N (mg/L) 1.67 Kr Equation Owens D.O.	7.109 Reach Velocity (fps) 0.063 Reach Kn (1/days) 0.807 Reach DO Goal (mg/L)
1.560 Reach Width (ft) 6.897 Reach CBOD5 (mg/L) 15.41 Reach DO (mg/L) 5.493 Reach Travel Time (days)	0.791 0.890 0.989 Total Discharge 0.07 Reach De 0.39 Reach Kc 1.40 Reach Kr (2.71 2.45 2.Flow (mgd 1 pth (ft) 9 (1/days) 4 1/days) 36 Subreach	0.62 0.57) <u>Anal</u>	7.54 7.54 7.54 ysis Temperature (°C 21.847 Reach WDRatio 17.296 each NH3-N (mg/L) 1.67 Kr Equation Owens	7.109 Reach Velocity (fps) 0.063 Reach Kn (1/days) 0.807 Reach DO Goal (mg/L)
1.560 Reach Width (ft) 6.897 Reach CBOD5 (mg/L) 15.41 Reach DO (mg/L) 5.493 Reach Travel Time (days)	0.791 0.890 0.989 Total Discharge 0.07 Reach De 0.39 Reach Kc 1.40 Reach Kr (19.50	2.71 2.45 e Flow (mgd 1 pth (ft) 9 (1/days) 4 1/days) 36 Subreach CBOD5 (mg/L)	0.62 0.57) Anal Results NH3-N	7.54 7.54 7.54 7.54 ysis Temperature (°C) 21.847 Reach WDRatio 17.296 each NH3-N (mg/L) 1.67 Kr Equation Owens D.O.	7.109 Reach Velocity (fps) 0.063 Reach Kn (1/days) 0.807 Reach DO Goal (mg/L)
1.560 Reach Width (ft) 6.897 Reach CBOD5 (mg/L) 15.41 Reach DO (mg/L) 5.493 Reach Travel Time (days)	0.791 0.890 0.989 Total Discharge 0.07 Reach De 0.39 Reach Kc 1.40 Reach Kr (19.55 TravTime (days)	2.71 2.45 e Flow (mgd 1 pth (ft) 9 (1/days) 4 1/days) 36 Subreach CBOD5 (mg/L)	0.62 0.57 Anal Results NH3-N (mg/L)	7.54 7.54 7.54 7.54 ysis Temperature (°C) 21.847 Reach WDRatio 17.296 each NH3-N (mg/L) 1.67 Kr Equation Owens D.O. (mg/L)	7.109 Reach Velocity (fps) 0.063 Reach Kn (1/days) 0.807 Reach DO Goal (mg/L)
1.560 Reach Width (ft) 6.897 Reach CBOD5 (mg/L) 15.41 Reach DO (mg/L) 5.493 Reach Travel Time (days)	0.791 0.890 0.989 Total Discharge 0.07 Reach De 0.39 Reach Kc 1.40 Reach Kr (19.53 TravTime (days)	2.71 2.45 e Flow (mgd 1 pth (ft) 9 (1/days) 4 1/days) 36 Subreach CBOD5 (mg/L)	0.62 0.57 Anal Results NH3-N (mg/L) 1.62	7.54 7.54 7.54 7.54 7.54 ysis Temperature (°C) 21.847 Reach WDRatio 17.296 each NH3-N (mg/L) 1.67 Kr Equation Owens D.O. (mg/L) 6.14	7.109 Reach Velocity (fps) 0.063 Reach Kn (1/days) 0.807 Reach DO Goal (mg/L)
1.560 Reach Width (ft) 6.897 Reach CBOD5 (mg/L) 15.41 Reach DO (mg/L) 5.493 Reach Travel Time (days)	0.791 0.890 0.989 Total Discharge 0.07 Reach De 0.39 Reach Kc 1.40 Reach Kr (19.5) TravTime (days) 0.036 0.072	2.71 2.45 e Flow (mgd 1 pth (ft) 9 (1/days) 4 1/days) 36 Subreach CBOD5 (mg/L) 14.60 13.82 13.08	0.62 0.57 Analogo Analogo Ana	7.54 7.54 7.54 7.54 7.54 7.54 ysis Temperature (°C) 21.847 Reach WDRatio 17.296 each NH3-N (mg/L) 1.67 Kr Equation Owens D.O. (mg/L) 6.14 6.52	7.109 Reach Velocity (fps) 0.063 Reach Kn (1/days) 0.807 Reach DO Goal (mg/L)
1.560 Reach Width (ft) 6.897 Reach CBOD5 (mg/L) 15.41 Reach DO (mg/L) 5.493 Reach Travel Time (days)	0.791 0.890 0.989 Total Discharge 0.07 Reach De 0.39 Reach Kc 1.40 Reach Kr (19.5) TravTime (days) 0.036 0.072 0.107	2.71 2.45 e Flow (mgd 1 pth (ft) 9 (1/days) 4 1/days) 36 Subreach CBOD5 (mg/L) 14.60 13.82 13.08 12.39	0.62 0.57 Analogo Analogo Ana	7.54 7.54 7.54 7.54 7.54 7.54 7.54 7.54	7.109 Reach Velocity (fps) 0.063 Reach Kn (1/days) 0.807 Reach DO Goal (mg/L)
1.560 Reach Width (ft) 6.897 Reach CBOD5 (mg/L) 15.41 Reach DO (mg/L) 5.493 Reach Travel Time (days)	0.791 0.890 0.989 Total Discharge 0.07 Reach De 0.39 Reach Kc 1.40 Reach Kr (19.5) TravTime (days) 0.036 0.072 0.107 0.143	2.71 2.45 e Flow (mgd 1 pth (ft) 9 (1/days) 4 1/days) 36 Subreach CBOD5 (mg/L) 14.60 13.82 13.08 12.39 11.73	0.62 0.57 Analogo Analogo Ana	7.54 7.54 7.54 7.54 7.54 7.54 7.54 7.54	7.109 Reach Velocity (fps) 0.063 Reach Kn (1/days) 0.807 Reach DO Goal (mg/L)
1.560 Reach Width (ft) 6.897 Reach CBOD5 (mg/L) 15.41 Reach DO (mg/L) 5.493 Reach Travel Time (days)	0.791 0.890 0.989 Total Discharge 0.07 Reach De 0.39 Reach Kc 1.40 Reach Kr (19.5) TravTime (days) 0.036 0.072 0.107 0.143 0.179	2.71 2.45 E Flow (mgd 1 pth (ft) 9 (1/days) 4 1/days) 36 Subreach CBOD5 (mg/L) 14.60 13.82 13.08 12.39 11.73 11.11	0.62 0.57 Analogo Analogo Ana	7.54 7.54 7.54 7.54 7.54 7.54 7.54 7.54	7.109 Reach Velocity (fps) 0.063 Reach Kn (1/days) 0.807 Reach DO Goal (mg/L)
1.560 Reach Width (ft) 6.897 Reach CBOD5 (mg/L) 15.41 Reach DO (mg/L) 5.493 Reach Travel Time (days)	0.791 0.890 0.989 Total Discharge 0.07 Reach De 0.39 Reach Kc. 1.40 Reach Kr (19.5) TravTime (days) 0.036 0.072 0.107 0.143 0.179 0.215	2.71 2.45 2.45 2.45 2.45 2.45 2.41 2.41 2.41 2.41 2.41 2.41 2.41 2.41	0.62 0.57 Analogo Analogo Ana	7.54 7.54 7.54 7.54 7.54 7.54 7.54 7.54	7.109 Reach Velocity (fps) 0.063 Reach Kn (1/days) 0.807 Reach DO Goal (mg/L)
1.560 Reach Width (ft) 6.897 Reach CBOD5 (mg/L) 15.41 Reach DO (mg/L) 5.493 Reach Travel Time (days)	0.791 0.890 0.989 Total Discharge 0.07 Reach De 0.39 Reach Kc. 1.40 Reach Kr (19.50 TravTime (days) 0.036 0.072 0.107 0.143 0.179 0.215 0.250	2.71 2.45 2.45 2.45 3.10 2.10 2.10 2.10 2.10 3.10 3.10 3.10 3.10 3.10 3.10 3.10 3	0.62 0.57 Analogo Analogo Ana	7.54 7.54 7.54 7.54 7.54 7.54 7.54 7.54	7.109 Reach Velocity (fps) 0.063 Reach Kn (1/days) 0.807 Reach DO Goal (mg/L)

Version 1.0b

Page 1 of 1

WQM 7.0 Effluent Limits

		am Code 9032	Trib	Stream Name 39032 to East Brane			
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
2.130	Twin Lakes Ctr	PA0094676	0.006	CBOD5	25		·
				NH3-N	6.71	13.42	
				Dissolved Oxygen			4
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
1.560	Somerset Est	PA0094846	0.065	CBOD5	25		
				NH3-N	2.61	5.22	
				Dissolved Oxygen			4

1A	В	С	D	E	F	G	
2	TRC EVALU	ATION		Twin L	akes Center	- PA0094676	
3	2/20/20/20 10/20/20/20/20/20/20/20/20/20/20/20/20/20	Arman Books - Brakim Market a toolta - 1676 h	B4:B8 and E4:E7				
4		= Q stream (N457		= CV Daily		
5		= Q discharg		OBST VACUUS	= CV Hourly		
6		= no. sample			= AFC_Partial N		
7		A STATE OF THE STA	emand of Stream	(5)	= CFC_Partial N		
8			emand of Discharge		(a=a)	Compliance Time (min)	
9		= BAT/BPJ V				Compliance Time (min)	
			of Safety (FOS)	0	=Decay Coeffic	** - ******* - **** - ****************	
10		Reference	AFC Calculations	1.000	Reference	CFC Calculations	
11	TRC PENTOXSD TRG	1.3.2.iii 5.1a	WLA afc = LTAMULT afc =	\$5.00 to \$1.00 to \$1.	1.3.2.iii 5.1c	WLA cfc = 1.224	
	PENTOXSD TRG	100000000000000000000000000000000000000	LTAMOLT atc =	(AELECEDED)	5.1c 5.1d	LTAMULT cfc = 0.581 LTA cfc = 0.712	
14		3.10	LIA_alc-	0.471	J. 14	LIA_CIC = 0.712	
15			Effluent	Limit Cal	culations		
0.530.50	PENTOXSD TRG	5.1f		L MULT =			
	PENTOXSD TRG		AVG MON LIMI	T (mg/l) =	0.500	BAT/BPJ	
18		_	INST MAX LIMI	T (mg/l) =	1.635		
	WLA afc	/ 019/o/ b*A	FC_tc)) + [(AFC_Yc*Q	e* 049/0	4*0/ L*A EC to\\		
	WLA alc	100	C_Yc*Qs*Xs/Qd)]*(1-F		3 8(-K AFO_LC)).	***	
	LTAMULT afc	971	(cvh^2+1))-2.326*LN(0.00	` 0.5)		
	LTA_afc	wla_afc*LTA	ANTONIAL SALE STREET, SALESSEE CON SALESSEE	entrancement terment to •	and a second		
	WLA_cfc	+ Xd + (CF	FC_tc) + [(CFC_Yc*Qs C_Yc*Qs*Xs/Qd)]*(1-F	OS/100)			
	LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5) LTA_cfc wla_cfc*LTAMULT_cfc						
	AML MULT AVG MON LIMIT INST MAX LIMIT	MIN(BAT_BF	N((cvd^2/no_samples ^v J,MIN(LTA_afc,LTA_c n_limit/AML_MULT)/L	fc)*AML_	MULT)	o_samples+1))	