

Southwest Regional Office CLEAN WATER PROGRAM

Application Type
Facility Type
Major / Minor
Major

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. PA0095087

APS ID 818425

Authorization ID 1259851

Applicant Name	Brad	ys Run Sanitary Authority	Facility Name	Bradys Run Sanitary Authority STP
Applicant Address	2326	Darlington Road	Facility Address	701 Constitution Boulevard
	Beav	er Falls, PA 15010-1357		Beaver Falls, PA 15010-1749
Applicant Contact	Mr. K	en Meverden	Facility Contact	Same as Applicant
Applicant Phone	(724)	891-2058	Facility Phone	Same as Applicant
Client ID	26202	2	Site ID	264604
Ch 94 Load Status	Not C	verloaded	Municipality	Chippewa Township
Connection Status	No Li	mitations	County	Beaver
Date Application Rece	eived	January 29, 2019	EPA Waived?	No
Date Application Acce	pted	January 30, 2019	If No, Reason	Major Facility

Summary of Review

The applicant has applied for a renewal of an existing NPDES Permit, Permit No. PA0095087, which was previously issued by the Department on March 25, 2014. That permit expired on March 31, 2019.

WQM Permit 0484403 A-1, issued on November 19, 1993, approved STP expansion with a hydraulic design capacity of 2.13 MGD and organic capacity of 3,167 lbs/day. The existing treatment process consists of bar screen/grit chamber, flow equalization, primary clarifiers, trickling filtration, final clarifiers and chlorination.

The receiving stream, Brady Run, is classified as a TSF and is located in State Watershed No. 20-B

Storm Water Outfall 010 will again be permitted for the discharge of un-contaminated storm water runoff from areas in and around the treatment plant. Part C.IV, Requirements Applicable to Storm Water Outfalls, has again been added to the Permit.

The applicant has complied with Act 14 Notifications and no comments were received.

Sludge use and disposal description and location(s): Solids from aerobic digestion are dewatered, via belt filter press, and disposed of at a DEP approved landfill.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-

Approve	Deny	Signatures	Date
Х		hill C Mitebell	
		William C. Mitchell, E.I.T. / Project Manager	April 23, 2021
X		Dell of Ca	
		Christopher Kriley, P.E. / Clean Water Program Manager	April 23, 2021

Summary of Review
day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the <i>Pennsylvania Bulletin</i> at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Discharge, Receiving	g Waters and Water Supply Inform	ation	
Outfall No. 001		Design Flow (MGD)	2.13
Latitude 40° 42	Latitude 40° 42' 55.00"		-80° 18' 20.00"
Quad Name Bea	aver	Quad Code	1303
Wastewater Descrip	otion: Sewage Effluent		
D W.	Brady Run (TSF) - Discharge	0.	00050 B B
Receiving Waters	Evaluated on Beaver River	Stream Code	33959 – Brady Run
NHD Com ID	123918444 3,154.5 Brady Run Confluence wit	RMI	0.095 – Brady Run
Drainage Area	Beaver River)	n Yield (cfs/mi²)	N/A
Dramago / moa			US Army Corps of
Q ₇₋₁₀ Flow (cfs)	640.465	Q ₇₋₁₀ Basis	Engineers
F1 (' ('t')	1127.1 (Brady Run Confluence	01 (6/6)	0.00004
Elevation (ft)	with Beaver River)	Slope (ft/ft)	0.00004
Watershed No.	20-B	Chapter 93 Class.	TSF
Existing Use			
Exceptions to Use		Exceptions to Criteria	
Assessment Status			
Cause(s) of Impairn	nent		
Source(s) of Impair	ment		
TMDL Status		Name	
Background/Ambier	nt Data	Data Source	
pH (SU)			
Temperature (°F)			
Hardness (mg/L)			
Other:	<u></u>		
Nearest Downstream	m Public Water Supply Intake	Midland Borough Water Autho	ority
PWS Waters C	Ohio River	Flow at Intake (cfs)	
PWS RMI 9	944.76	Distance from Outfall (mi)	12.14

Changes Since Last Permit Issuance: None

Other Comments: N/A

Treatment Facility Summary

Treatment Facility Name: Chippewa Township STP

WQM Permit No.	Issuance Date
0484403 A-1	11/19/1993

Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
		Trickling Filter With		
Sewage	Secondary	Settling	Gas Chlorine	0.97

Hydraulic Capacity (MGD)	Organic Capacity (lbs/day)	Load Status	Biosolids Treatment	Biosolids Use/Disposal
			Aerobic Digestion and	
2.13	3167	Not Overloaded	Belt Filter Press	Landfill

Changes Since Last Permit Issuance: None

Other Comments: N/A

Compliance History

Operations Compliance Check Summary Report

Facility: Bradys_Run_SA_STP

NPDES Permit No.: PA0095087

Compliance Review Period: 01/11/2016 - 01/01/2021

Open Violations by Client Summary

None.

Inspection Summary

INSP ID	INSPECTED DATE	INSP TYPE	AGENCY	INSPECTION RESULT DESC	# OF VIOLATIONS
2990235	01/30/2020	Compliance Evaluation	PA Dept of Environmental Protection	Violation(s) Noted	1
2825817	01/11/2019	Compliance Evaluation	PA Dept of Environmental Protection	No Violations Noted	0
2765318	08/13/2018	Incident- Response to Accident or Event	PA Dept of Environmental Protection	No Violations Noted	0
2707832	03/20/2018	Administrative/File Review	PA Dept of Environmental Protection	No Violations Noted	0
2698917	02/27/2018	Compliance Evaluation	PA Dept of Environmental Protection	No Violations Noted	0
2583291	04/13/2017	Compliance Evaluation	PA Dept of Environmental Protection	No Violations Noted	0
2506317	08/01/2016	Compliance Evaluation	PA Dept of Environmental Protection	No Violations Noted	0

Violation Summary

VIOL ID	VIOLATION DATE	VIOLATION TYPE	VIOLATION TYPE DESC	RESOLVED DATE
876388	01/30/2020	92A.44	NPDES - Violation of effluent limits in Part A of permit	02/10/2020

Enforcement Summary

ENF ID	ENF TYPE DESC	EXECUTED DATE	ENF FINALSTATUS	ENF CLOSED DATE
383744	Notice of Violation	02/10/2020		

DMR Violation Summary

Current eDMR user.

Effluent limit violation summary: Unable to obtain this report in WMS yesterday or today.

Compliance Status: Facility does not appear to have any current compliance issues.

Completed by: David Roote

Completed date: 1-12-2021

Development of Effluent Limitations						
Outfall No.	001	Design Flow (MGD) 2.13				
Latitude	40° 42' 55.00"	Longitude -80° 18' 20.00"				
Wastewater D	Wastewater Description: Sewage Effluent					

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 - 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Comments: The attached WQM 7.0 & TRC_CALC Modeling Data confirms that the above Technology-Based Limitation for CBOD₅ & TRC is applicable.

Water Quality-Based Limitations

A "Reasonable Potential Analysis" (Attachment WQM 7.0 Output Data, Toxic Management Spreadsheet, & TRC_CALC Spreadsheet) was conducted.

No limitations were determined through water quality modeling using DEPs WQM 7.0 Model, Toxic Management Spreadsheet Version 1.1 & TRC_CALC Spreadsheet, and no WQBELs will be imposed on this facility during this permit cycle.

This discharge was evaluated at the confluence of Brady Run and the Beaver River, which is consistent with how the limits were developed in previous renewal permits. WQM 7.0 modeling included discharges from the New Brighton STP (NPDES Permit No. PA0026026), and City of Beaver Falls STP (NPDES Permit No. PA0026883)

, both majors which discharge upstream on the Beaver River.

The NPDES Permit Application indicates that the STP does not receive IW flow from an IU.

Best Professional Judgment (BPJ) Limitations

Comments: A Dissolved Oxygen minimum limitation of 4.0 mg/L will be implemented based on the standard in 25 PA Code Chapter 93 and best professional judgment.

Anti-Backsliding

Section 402(o) of the Clean Water Act (CWA), enacted in the Water Quality Act of 1987, establishes anti-backsliding rules governing two situations. The first situation occurs when a permittee seeks to revise a Technology-Based effluent limitation based on BPJ to reflect a subsequently promulgated effluent guideline which is less stringent. The second situation addressed by Section 402(o) arises when a permittee seeks relaxation of an effluent limitation which is based upon a State treatment standard of water quality standard.

Previous limits can be used pursuant to EPA's anti-backsliding regulation 40 CFR 122.44 (I) Reissued permits. (1) Except as provided in paragraph (I)(2) of this section when a permit is renewed or reissued. Interim effluent limitations, standards or conditions must be at least as stringent as the final effluent limitations, standards, or conditions in the previous permit (unless the circumstances on which the previous permit was based have materially and substantially changed since the time the permit was issued and would constitute cause for permit modification or revocation and reissuance under §122.62). (2) In the case of effluent limitations established on the basis of Section 402(a)(1)(B) of the CWA, a permit may not be renewed, reissued, or modified on the basis of effluent guidelines promulgated under section 304(b) subsequent to the original issuance of such permit, to contain effluent limitations which are less stringent than the comparable effluent limitations in the previous permit.

The facility is not seeking to revise the previously permitted effluent limits.

Additional Considerations:

For pH, DO and TRC, a monitoring frequency 1/day has been imposed. In general, less frequent monitoring may be established only when the permittee demonstrates that there will be no discharge on days where monitoring is not required.

Sewage discharges will include monitoring, at a minimum, for E. Coli, in new and reissued permits, with a monitoring frequency of 1/month for facilities with a design flows >= 1 MGD per Chapter 92.a.61.

Nutrient monitoring is required to establish the nutrient load from the wastewater treatment facility and the impacts that load may have on the quality of the receiving stream(s). A 1/quarter monitor and report requirement for Total N & Total P has been added to the permit per Chapter 92.a.61.

For existing discharges (NPDES Renewal Applications), if WQM7.0 modeling results for summer indicates that an average monthly warm period limit of 25 mg/L (default in model) is acceptable for ammonia-nitrogen, a year-round monitoring requirement, at a minimum should be established.

Mass loading limits are applicable for publicly owned treatment works. Current policy requires average monthly mass loading limits be established for CBOD5, TSS, and NH $_3$ -N and average weekly mass loading limits be established for CBOD5 and TSS. Average monthly mass loading limits (lbs/day) are based on the formula: design flow (MGD) x concentration limit (mg/L) x conversion factor (8.34).

For POTWs with design flows greater than 2,000 GPD influent BOD $_5$ and TSS monitoring must be established in the permit, and the monitoring should be consistent with the same frequency and sample type as is used for other effluent parameters.

Monitoring frequency for the proposed effluent limits are based upon Table 6-3, Self-Monitoring Requirements for Sewage Dischargers, from the Departments Technical Guidance for the Development and Specification of Effluent Limitations. Please note that Monitoring Requirements were changed for Flow to 2/week Metered to be consistent with the guidance.

		Whole Effluent Toxicity (WET)	
For Outfall 001	, 🗌 Acute 🗵 Chronic WE	ET Testing was completed:		
Quarte	permit renewal application rly throughout the permit ter rly throughout the permit ter		cted.	
	ries used for the tests was sed for analysis of the result	: 100%, 60%, 30%, 2%, and s is: 0.02.	d 1%. The Target Instr	eam Waste Concentration
Summary of F	our Most Recent Test Res	<u>ults</u>		
TST Data Anal	ysi <u>s</u>			
	Covie dombnio I	Decute (Dece/Feil)	Dimonholos Da	
Test Date	Survival	Results (Pass/Fail) Reproduction	Survival	esults (Pass/Fail) Growth
11/17/2015	Pass	Pass	Pass	Pass
11/18/2016	Pass	Pass	Pass	Pass
11/22/2017	Pass	Pass	Pass	Pass
11/20/2018	Pass	Pass ate data for the TIWC is not si	Pass	Pass
t value ("T-Test F Is there reason	Result") is less than the critical is able potential for an excursion	esult") is greater than the critical value. on above water quality stand nined anytime there is at leas	ards based on the result	s of these tests? (NOTE
☐ YES ⊠ NO)			
Comments: N/	Ά			
Evaluation of	Test Type, IWC and Dilution	n Series for Renewed Perr	<u>nit</u>	
Acute Partial M	ix Factor (PMFa): 0.159	Chronic Partial Mix Fac	ctor (PMFc): 1	
1. Determine	IWC - Acute (IWCa):			
(Q _d x 1.547	r) / ((Q ₇₋₁₀ x PMFa) + (Q _d x 1	.547))		
[(2.13 MGE	0 x 1.547) / ((640.35 cfs x 0.	159) + (2.13 MGD x 1.547))]	x 100 = 3.13 %	
Is IWCa <	1%? TYES NO (YES	- Acute Tests Required OF	NO - Chronic Tests Re	<mark>equired)</mark>
If the disch	arge is to the tidal portion of	the Delaware River, indicate	how the type of test was	s determined:
N/A				
Type of Te	st for Permit Renewal: <mark>Ch</mark>	ronic		
2a. Determine	Target IWCa (If Acute Tes	ts Required)		
TIWCa = 3	.13 / 0.3 = 10.43%			
2b. Determine	Target IWCc (Chronic Tes	ts Required)		

9

 $(Q_d \times 1.547) / (Q_{7-10} \times PMFc) + (Q_d \times 1.547)$

 $[(2.13 \text{ MGD x } 1.547) / ((640.35 \text{ cfs x } 1) + (2.13 \text{ MGD x } 1.547))] \times 100 = 1\%$

3. Determine Dilution Series

(NOTE – check Attachment C of WET SOP for dilution series based on TIWCa or TIWCc, whichever applies). Dilution Series = 100%, 60%, 30%, 2%, and 1%.

WET Limits

Has reasonable potential been determined? ☐ YES ☒ NO

Will WET limits be established in the permit? ☐ YES ☒ NO

If WET limits will be established, identify the species and the limit values for the permit (TU).

N/A

If WET limits will not be established, but reasonable potential was determined, indicate the rationale for not establishing WET limits:

N/A

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum (2)	Required
Farameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	2/week	Metered
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	4.0 Inst Min	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
CBOD5	440	665	XXX	25.0	37.5	50	2/week	24-Hr Composite
BOD5 Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	2/week	24-Hr Composite
TSS Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	2/week	24-Hr Composite
TSS	530	795	XXX	30.0	45.0	60	2/week	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/week	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/month	Grab
Total Nitrogen	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/quarter	24-Hr Composite
Ammonia-Nitrogen	Report	XXX	XXX	Report	XXX	XXX	2/week	24-Hr Composite

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

			Effluent L	imitations			Monitoring Red	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
	MOILLIN	Average	William	WiOnthiny	Report	Waxiiiiuiii	Frequency	24-Hr
Total Phosphorus	XXX	XXX	XXX	XXX	Daily Max	XXX	1/quarter	Composite

Compliance Sampling Location: Outfall 001

Other Comments: N/A

	SWP Basin	Strea Cod		Stre	am Name		RMI		vation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PW: Withdra (mga	awaf	Apply FC
	20B	339	53 BEAV	R RIVER	₹		3.40	0 1	1127.40	3120.39	0.00002	2	0.00	V
					St	ream Data	3.							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth		Tributary p pH	Ter	<u>Stream</u> mp	рН	
Outu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(%(>)		
Q7-10 Q1-10 Q30-10	0.205	0.00 0.00 0.00	640.00 0.00 0.00	0.950 0.000 0.000	0.108 0.000 0.000	27.0	400.00	15.0	0 2	0.00 7.	44 1	20.00	0.00	
					Di	scharge [Data					1		
			Name	Per	mit Number	Disc	Permitte Disc Flow (mgd)	Dis Flo	c Res w Fa	Dir erve Ter ctor	mp	isc pH		
		City o	of Beaver	PAC	0026883	4.8000	4.800	0 4.8	000 (0.000	25.00	7.00		
					Pa	rameter (Data							
			,	Paramete:	r Name	Di: Co		rib onc	Stream Conc	Fate Coef				
						(m	g/L) (m	ng/L)	(mg/l.)	(1/days)				
			CBOD5			1	25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	20.00				
	-		NH3-N				25.00	0.00	0.00	0.60]		

Dam provides acretion

Tuesday, July 23, 2013

Version 1.0b

Page 1 of 4

	SWP Basin			Str	eam Name		RMI	El	evation (ft)	Drainag Area (sq m	Ī	ft/ft)	PWS Withdraw (mgd)	Apply at FC
	20B	339	53 BEAVE	R RIVE	R		1.72	20	1127.20	3128	3.52 0.	90000	0.	00 🗷
					St	ream Data	R							
Design Cond,	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depti	n Te	<u>Tributar</u> mp	У pH	Tem	<u>Stream</u> p pt	1
001141	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(%	C)		(°C)	
Q7-10 Q1-10 Q30-10	0.205	0.00 0.00 0.00	640.11 0.00 0.00	0.180 0.000 0.000	0.000	27.0	400.00	15.	00	20.00	7.44	2	0.00	.00
					Di	scharge (Data	_						
			Name	Pe	rmit Number	Disc	Permitte Disc Flow (mgd)	Di Fi	sc Re	serve	Disc Temp (°C)		sc H	
		N. Bri	ighton STP	PA	0026026	2.0000	2.000	0 2	0000	0.000	20.0	00	7.00	
					Pa	rameter (
				^o aramete	r Name	Di: Co		Trib Conc	Stream Conc	Fate Coef				
						(m	g/L) (n	ng/L)	(mg/L)		s)			
			CBOD5		2	2	5.00	2.00	0.0		50			
			Dissolved	Oxygen			3.00	8.24	0.0	0.0	00		i	
			NH3-N			2	5.00	0.00	0.0	0 0.6	80			

Tuesday, July 23, 2013 Version 1.0b Page 2 of 4

	SWP Basin	Strea Cod		Stre	eam Name		RMI	Ele	evation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PW Withd (mg	rawal	Apply FC
	20B	339	953 BEAV	ER RIVE	₹	7	1.40	00	1127.10	3154.5	0.0000	14	0.00	V
					St	ream Dat	а							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth		<u>Tributary</u> p pl	i To	Strean emp	pH	
00110,	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C))	(°C)		
Q7-10 Q1-10 Q30-10	0.203	0.00 0.00 0.00	640.35 0.00 0.00	0.794 0.000 0.000	0.108 0.000 0.000	27.0	400.00	15.0	00 20	0.00 7	.44	20.00	0.00	
	Γ				Di	scharge	Data							
			Name	Per	mit Number	Disc	Permitte Disc Flow (mgd)	Dis Fic	c Res	erve Te ctor	iisc emp (C)	Disc pH		
		Chipp	ewa STP	PAG	095087	2.130	0 2.130	0 2.1	1300 0	0.000	20.00	7.00		
					Pa	arameter	Data							
				Paramete	r Name			rib onc	Stream Conc	Fate Coef				
						(m	ıg/L) (n	ng/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.60				

Tuesday, July 23, 2013

Version 1.0b

Page 3 of 4

	SWP Basin	Strea Cod		Stre	eam Name		RMI	El	evation (ft)	Drainage Area (sq mi)		ope /ft)	PWS Wilhdraw (mgd)	aí	Apply FC
	20B	339	53 BEAV	ER RIVE	₹		0.0	10	1126.80	19700.0	0.0	0040	0	.00	V
					St	ream Dai	a	_						-	-
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depti		<u>Tributary</u> np p	н	Tem	<u>Stream</u> p p	Н	
oona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	:)		(°C))		
Q7-10 Q1-10 Q30-10	0.244	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000		0.0	0.00	0.	.00 2	20.00	7.00	(0.00	0.00	
	Γ				Di	scharge	Data						1		
			Name	Per	mit Number	Disc	Permitb Disc Flow (mgd)	Di Fi	sc Res	serve T actor	Disc emp (°C)	Dis pl			
						0.000	0.000	0 0.	0000	0.000	25.00)	7.00		
					Pa	rameter									
			,	Paramete	r Name			l'rib Conc	Stream Conc	Fate Coef			ŀ		
						(rr	g/L) (n	ng/L)	(mg/L)	(1/days)					
			CBOD5				25.00	2.00	0.00	1.50					
			Dissolved	Oxygen			3.00	8.24	0.00	0.00					
			NH3-N				25.00	0.00	0.00	0.70					

Tuesday, July 23, 2013

Version 1.0b

Page 4 of 4

WQM 7.0 Hydrodynamic Outputs

	-	P Basin 20B	-	<u>ım Code</u> 3953				Stream SEAVER				
RMI	Stream Flow (cfs)	PWS With (cfs)	Net Stream Flow (cfs)	Disc Analysis Flow (cfs)	Reach Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Reach Trav Time (days)	Analysis Temp	Analysis pH
07.40	Flow											- '
-												
3.400	640.00	0.00	640.00	7.4256	0.00002	15	399.65	26.64	0.11	0.951	20.08	7.43
1.720	640.11	0.00	640.11	10.5196	80000.0	15	405.38	27.03	0.11	0.183	20.08	7.43
1.400	640.35	0.00	640.35	13.8147	0.00004	15	403.81	26.92	0.11	0.787	20.06	7.42
Q1-10	Flow											
3.400	409.60	0.00	409.60	7.4256	0.00002	NA	NA	NA	0.07	1,477	20.09	7.43
1.720	409.67	0.00	409.67	10.5196	0.00006	NA	NA	NA	0.07	0.279	20.09	7.42
1.400	409.83	0.00	409.83	13.8147	0.00004	NA	NA	NA	0.07	1.203	20.09	7.42
Q30-1	0 Flow	,										
3.400	691.20	0.00	691.20	7.4256	0.00002	NA	NA	NA	0.12	0.882	20.05	7.43
1.720	691.32	0.00	691.32	10.5196	0.00006	NA	NA	NA	0.12	0.167	20.05	7.43
1.400	691.58	0.00	691.58	13.8147	0.00004	NA	NA	NA	0.12	0.723	20.05	7.43

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	~
WLA Method	Uniform Treatme	Use Inputted W/D Ratio	$\lceil \ \rceil$
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	[]
Q30-10/Q7-10 Ratio	1.08	Temperature Adjust Kr	4
D.O. Saturation	85.00%	Use Balanced Technology	
D.O. Goal	5		

From Storet Deta for period of record
1961-1991, Q30-10 flow = 693.5 cfs.
Therefore, Q30-10/Q7-10 retio = 693.5 cfs/c40ch=

1.08.

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name
20B	33953	BEAVER RIVER

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Muiliple WLA (mg/L)	Critical Reach	Percent Reduction
3.40	0 City of Beaver	NA	50	6,39	50	0	0
1.72	0 N. Brighton STP	NA	50	6.44	50	0	0
1.40	0 Chippewa STP	NA	50	6.48	50	0	0

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
3.40	0 City of Beaver	NA	25	1.48	25	0	0
1.72	0 N. Brighton STP	NA	25	1.49	25	0	0
1.40	0 Chippewa STP	NA	25	1.49	25	0	0

Dissolved Oxygen Allocations

		CBC	2D5	<u>NH</u>	<u>3-N</u>	Dissolve	d Oxygen	0.00	
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Critical Reach	Percent Reduction
3.40 C	ity of Beaver	25	25	25	25	3	3	0	0
1.72 N	. Brighton STP	25	25	25	25	3	3	0	0
1.40 C	hippewa STP	25	25	25	25	3	3	0	0

WQM 7.0 D.O.Simulation

	Stream Name			ream Code	SWP Basin St
	BEAVER RIVER			33953	20B
Analysis pH	lysis Temperature (°C)) Ana	Flow (mgd	Total Discharge	RMI
7.431	20.057		0	4.80	3.400
Reach Velocity (fps)	Reach WDRatio			Reach De	Reach Width (ft)
0.108	26.643			15.00	399.645
Reach Kn (1/days)	teach NH3-N (mg/L)	<u>R</u>		Reach Kc (Reach CBOD5 (mg/L)
0.603	0.29		-	0.10s	2.26
Reach DO Goal (mg/L 5	Kr Equation User Supplied			Reach Kr (20.02	Reach DO (mg/L) 8.183
	D.O. (mg/L)	Results NH3-N (mg/L)	Subreach CBOD5 (mg/L)	TravTime (days)	Reach Travel Time (days) 0.951
	7.70	0.27	2.24	0.095	
	7.78			0.190	
	7.78	0.26	2.22	0.190	
	7.78	0.24	2.20 2.17	0.285	
	7.78	0.23		0.380	
	7.78	0.22	2.15	0.475	
	7.78	0.20	2.13		
	7.78	0.19	2.11	0.665	
	7.78	0.18	2.09	0.760	
	7.78	0.17	2.07	0.856	
	7.78	0.16	2.05	0.951	
Analysis pH	lysis Temperature (°C)) Anai		Total Discharge	RMI
7.428	20.057			6.80	1.720
Reach Velocity (fps)	Reach WDRatio			Reach De	Reach Width (ft)
0.107	27.025	_		15.00	405.377
Reach Kn (1/days)	each NH3-N (mg/L)	B		Reach Kc (Reach CBOD5 (mg/L) 2.15
0.603	0.28 Kr Equation			0.119 Reach Kr (1	
Reach DO Goal (mg/L 5	Kr Equation O'Connor			0.07	Reach DO (mg/L) 7.754
			Subreach	TravTime	Reach Travel Time (days) 0.183
			くけんけき		0.100
	D.O. (mg/L)	NH3-N (mg/L)	(mg/L)	(days)	
	(mg/L)		(mg/L) 2.15	(days) 0.018	
	(mg/L) 7.74	(mg/L) 0.28			
	(mg/L) 7.74 7.72	(mg/L)	2.15	0.018	
	(mg/L) 7.74	(mg/L) 0.28 0.27	2.15	0.018 0.037	
	7.74 7.72 7.70	(mg/L) 0.28 0.27 0.27	2.15 2.15 2.14	0.018 0.037 0.055	
	7.74 7.72 7.70 7.68 7.66	0.28 0.27 0.27 0.27 0.27 0.26	2.15 2.15 2.14 2.14 2.13	0.018 0.037 0.055 0.073	
	7.74 7.72 7.70 7.68 7.66 7.64	0.28 0.27 0.27 0.27 0.26 0.26	2.15 2.15 2.14 2.14 2.13 2.13	0.018 0.037 0.055 0.073 0.091	
	7.74 7.72 7.70 7.68 7.66 7.64 7.63	0.28 0.27 0.27 0.27 0.26 0.26 0.26	2.15 2.15 2.14 2.14 2.13 2.13 2.13	0.018 0.037 0.055 0.073 0.091 0.110	
	7.74 7.72 7.70 7.68 7.66 7.64	0.28 0.27 0.27 0.27 0.26 0.26	2.15 2.15 2.14 2.14 2.13 2.13	0.018 0.037 0.055 0.073 0.091 0.110 0.128	

WQM 7.0 D.O.Simulation

SWP Basin S	Stream Code 33953	Stroam Name BEAVER RIVER								
RMI	Total Discharge	Flow (mgd) Anai	lysis Temperature (°C)	Analysis pH					
1.400	8.930)		20.057	7.424					
Reach Width (ft)	Reach De	oth (ft)		Reach WDRatio	Reach Velocity (fps)					
403.808	15.00	0		26.921	0.108					
Reach CBOD5 (mg/L)	Reach Kc (1/days)	R	each NH3-N (mg/L)	Reach Kn (1/days)					
2.23	0.100	-		0.38	0.603					
Reach DO (mg/L)	Reach Kr (Kr Equation	Reach DO Goal (mg/L)					
7.550	0.073	3		O'Connor	5					
Reach Travel Time (days 0.787) TravTime (days)	Subreact CBOD5 (mg/L)	Results NH3-N (mg/L)	D.O. (mg/L)						
	0.079	2.21	0.36	7.45						
	0.157	2.19	0.34	7.36						
	0.236	2.17	0.33	7.27						
	0.315	2.15	0.31	7.19						
	0.393	2.13	0.30	7.10						
	0.472	2.12	0.28	7.03						
	0.551	2.10	0.27	8.95						
	0.629	2.08	0.26	6.88						
	0.708	2.06	0.24	6.82						
	0.787	2.05	0.23	6.75						

Ohio River will provide additional significant dilution which will prevent a p.o. deficat below anterna of 510 msl.

Tuesday, July 23, 2013

Version 1.0b

Page 2 of 2

WQM 7.0 Effluent Limits

	SWP Basin Stream	m Code		Stream Name	<u>e</u>		
	20B 33	953		BEAVER RIVE	R		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
3.400	City of Beaver	PA0026883	4.800	CBOD5	25		
				NH3-N	25	50	
				Dissolved Oxygen			3
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effi. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
.720	N. Brighton STP	PA0026026	2.000	CBOD5	25		
				NH3-N	25	50	
				Dissolved Oxygen			3
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
1.400	Chippewa STP	PA0095087	2.130	CBOD5	25		
				NH3-N	25	50	
				Dissolved Oxygen			3

TRC_CALC.xlsx

1A	В	С	D	E	F	G
2	TRC EVALU				CI	
3			B4:B8 and E4:E7		Chippewa STP	
4		= Q stream (d	-		= CV Daily	
5		= Q discharg		_	= CV Hourly	
6		= no. sample			= AFC_Partial M	
7			emand of Stream		= CFC_Partial M	
8		4	emand of Discharge			Compliance Time (min)
9		= BAT/BPJ V			_	Compliance Time (min)
10		Reference	of Safety (FOS) AFC Calculations	U.	=Decay Coeffici	
11	TRC	1.3.2.iii	WLA afc =	0.700	Reference 1.3.2.iii	CFC Calculations
	PENTOXSD TRG		LTAMULT afc =		5.10	WLA cfc = 61.444 LTAMULT cfc = 0.581
	PENTOXSD TRG		LTA_afc=		5.1d	LTA_cfc = 35.721
14			411 (2010	0.020	0110	217_010 - 00.121
15	Source		Effluent	Limit Cal	ulations	
	PENTOXSD TRG		AM	L MULT =	1.231	
	PENTOXSD TRG	5.1g	AVG MON LIMI			BAT/BPJ
18			INST MAX LIMI	T (mg/l) =	1.635	
	WLA afc	(.019/e(-k*AF	C_tc)) + [(AFC_Yc*Qs	*.019/Od*	e(-k*AEC to))	
			C_Yc*Qs*Xs/Qd)]*(1-F		C(-11 A1 O_10))	
	LTAMULT afc	_	cvh^2+1))-2.326*LN(c		0.5)	
	LTA_afo	wia_afc*LTA	MULT_afc	,	-	
	WLA_cfc		C_to) + [(CFC_Yc*Qs		e(-k*CFC_tc))	
	LTAMULT ofc		C_Yc*Qs*Xs/Qd)]*(1-F			-1
	LTA_cfc	wla_cfc*LTA	(cvd^2/no_samples+1) MULT_cfc))-2.326^L	N(cvd^2/no_sam	ples+1)^0.5)
		MIG_OIO ETA				
	AML MULT	EXP(2.326*L	N((cvd^2/no_samples	+1)^0.5}-0	.5*LN(cvd^2/no	samples+1))
	AVG MON LIMIT		J,MIN(LTA_afc,LTA_c			,
	INST MAX LIMIT	1.5*((av_mor	_limit/AML_MULT)/LT	AMULT_6	ıfc)	

Toxics Management Spreadsheet Version 1.1, October 2020

Discharge Information

Instructions	Discharg	ge Stream				
Facility:	Bradys Ru	n Sanitary Auth	ority STP	NPDES Permit No.:	PA0095087	Outfall No.: 001
Evaluation Ty	ype: Ma	ajor Sewage / Inc	dustrial Waste	Wastewater Descrip	tion: Treated Sewage	

			Discharge	Characterist	ics			
Design Flow	Hardness (mg/l)*	-11 (611)*	P	artial Mix Fa	ctors (PMF	5)	Complete Mix	x Times (min)
(MGD)*	maraness (mg/i)*	pH (SU)*	AFC	Q ₇₋₁₀	Qh			
2.13	177.33	6.85	0.159	1				

						t blank	0.5 If le	eft blank	0	If left blan	k	1 If left blank	
	Discharge Pollutant	Units	Ма	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS		Chem Transl
	Total Dissolved Solids (PWS)	mg/L		468									
7	Chloride (PWS)	mg/L		125									
Group	Bromide	mg/L	<	1.25									
ق	Sulfate (PWS)	mg/L		56.6									
	Fluoride (PWS)	mg/L											
	Total Aluminum	μg/L	<	200									
	Total Antimony	μg/L	<	1									
1	Total Arsenic	μg/L	<	5									
	Total Barium	μg/L		50.5									
	Total Beryllium	μg/L	<	2									
	Total Boron	μg/L		159									
	Total Cadmium	μg/L	<	0.6									
	Total Chromium (III)	μg/L		6.39									
	Hexavalent Chromium	μg/L		5									
	Total Cobalt	μg/L	<	1									
	Total Copper	μg/L		20.5									
2	Free Cyanide	μg/L		8									
Group	Total Cyanide	μg/L	<	10									
16	Dissolved Iron	μg/L	<	100									
	Total Iron	μg/L		104									
	Total Lead	μg/L	<	1									
	Total Manganese	μg/L		18									
1	Total Mercury	μg/L	<	0.2									
1	Total Nickel	µg/L		4.63									
	Total Phenols (Phenolics) (PWS)	µg/L		5.77									
1	Total Selenium	μg/L	<	1									
1	Total Silver	µg/L	<	1									
	Total Thallium	μg/L	<	0.2									
	Total Zinc	µg/L		62									
	Total Molybdenum	µg/L	<	10									
	Acrolein	µg/L	<	10									
	Acrylamide	µg/L	<										
	Acrylonitrile	µg/L	<	5									
	Benzene	µg/L	<	1									
	Bromoform	µg/L	<	1									
1	DI VIII VIII III	P9"-	_										

Con Ci	arbon Tetrachloride hlorobenzene hlorodibromomethane hloroethane -Chloroethyl Vinyl Ether hloroform ichlorobromomethane 1-Dichloroethane 2-Dichloroethane 1-Dichloroethylene 2-Dichloropropane 3-Dichloropropane 3-Dichloropropylene 4-Dioxane thylbenzene lethyl Bromide lethyl Chloride lethylene Chloride 1,2,2-Tetrachloroethane etrachloroethylene oluene	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	< < < < < < < < < < < < < < < < < < <	1 1 1 5 4.9 1 1 1 1 1 1 1 100							
Con Ci	hlorodibromomethane hloroethane Chloroethyl Vinyl Ether hloroform ichlorobromomethane 1-Dichloroethane 2-Dichloroethylene 2-Dichloropropane 3-Dichloropropale 4-Dioxane thylbenzene lethyl Bromide lethyl Chloride lethylene Chloride 1,2,2-Tetrachloroethylene etrachloroethylene	49/L 49/L 49/L 49/L 49/L 49/L 49/L 49/L	· · · · · · · · · · · · · · · · · · ·	1 1 5 4.9 1 1 1 1 1 1 1 1 100							
Coop 1. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	hloroethane Chloroethyl Vinyl Ether hloroform ichlorobromomethane 1-Dichloroethane 2-Dichloroethane 1-Dichloroethylene 2-Dichloropropane 3-Dichloropropylene 4-Dioxane thylbenzene lethyl Bromide lethyl Chloride lethylene Chloride 1,2,2-Tetrachloroethane etrachloroethylene	#9/L #9/L #9/L #9/L #9/L #9/L #9/L #9/L	· · · · · · · · · · · · · · · · · · ·	1 5 4.9 1 1 1 1 1 1 1 1 100							
2- Ci Di 1. 2 1. 2 1. 3 1. 4 1. 5 1. 6 1. 7 1. 7 1. 7 1. 7 1. 7 1. 7 1. 7 1. 7	Chloroethyl Vinyl Ether hloroform ichlorobromomethane 1-Dichloroethane 2-Dichloroethane 1-Dichloroethylene 2-Dichloropropane 3-Dichloropropylene 4-Dioxane thylbenzene lethyl Bromide lethyl Chloride lethylene Chloride 1,2,2-Tetrachloroethane etrachloroethylene	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	v v v v v v v v v v v v v v v v v v v	5 4.9 1 1 1 1 1 1 1 1 100							
Cuonb 9 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	hloroform ichlorobromomethane 1-Dichloroethane 2-Dichloroethane 1-Dichloroethylene 2-Dichloropropane 3-Dichloropropylene 4-Dioxane thylbenzene lethyl Bromide lethyl Chloride lethylene Chloride 1,2,2-Tetrachloroethane etrachloroethylene	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	v v v v v v v v v	4.9 1 1 1 1 1 1 1 1 100							
Cuonb 9 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	hloroform ichlorobromomethane 1-Dichloroethane 2-Dichloroethane 1-Dichloroethylene 2-Dichloropropane 3-Dichloropropylene 4-Dioxane thylbenzene lethyl Bromide lethyl Chloride lethylene Chloride 1,2,2-Tetrachloroethane etrachloroethylene	#9/L #9/L #9/L #9/L #9/L #9/L #9/L #9/L	v v v v v v v	1 1 1 1 1 1 1 100							
0 droup 1 1 1 1 1 1 1 1.	ichlorobromomethane 1-Dichloroethane 2-Dichloroethane 1-Dichloroethylene 2-Dichloropropane 3-Dichloropropylene 4-Dioxane thylbenzene lethyl Bromide lethyl Chloride lethylene Chloride 1,2,2-Tetrachloroethane etrachloroethylene	49/L 49/L 49/L 49/L 49/L 49/L 49/L 49/L 49/L 49/L 49/L 49/L	v v v v v v v	1 1 1 1 1 1 1 100							
0 drong 1.1	1-Dichloroethane 2-Dichloroethane 1-Dichloroethylene 2-Dichloropropane 3-Dichloropropylene 4-Dioxane thylbenzene lethyl Bromide lethyl Chloride lethylene Chloride 1,2,2-Tetrachloroethane etrachloroethylene	HB/L HB/L HB/L HB/L HB/L HB/L HB/L HB/L	v v v v v v v	1 1 1 1 1 1 100							
© 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	2-Dichloroethane 1-Dichloroethylene 2-Dichloropropane 3-Dichloropropylene 4-Dioxane thylbenzene lethyl Bromide lethyl Chloride lethylene Chloride 1,2,2-Tetrachloroethane	H9/L H9/L H9/L H9/L H9/L H9/L H9/L H9/L	v v v v v v	1 1 1 1 100							
M M 1. Te 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	1-Dichloroethylene 2-Dichloropropane 3-Dichloropropylene 4-Dioxane thylbenzene lethyl Bromide lethyl Chloride lethylene Chloride 1,2,2-Tetrachloroethane etrachloroethylene	49/L 49/L 49/L 49/L 49/L 49/L 49/L 49/L 49/L	v v v v v	1 1 1 100 1							
1. Etc MM MM 1. Tec 1. 1.	2-Dichloropropane 3-Dichloropropylene 4-Dioxane thylbenzene lethyl Bromide lethyl Chloride lethylene Chloride 1,2,2-Tetrachloroethane etrachloroethylene	h8/r h8/r h8/r h8/r h8/r h8/r h8/r	< < < < < < < < < < < < < < < < < < <	1 1 100 1							
1. Etc MM MM 1. Tec 1. 1.	3-Dichloropropylene 4-Dioxane thylbenzene lethyl Bromide lethyl Chloride lethylene Chloride 1,2,2-Tetrachloroethane etrachloroethylene	µg/L µg/L µg/L µg/L µg/L µg/L	v v v v	1 100 1							
1. Etc MM MM 1. Tec 1. 1.	4-Dioxane thylbenzene lethyl Bromide lethyl Chloride lethylene Chloride 1,2,2-Tetrachloroethane etrachloroethylene	h8/r h8/r h8/r h8/r	< < <	100 1			ļ				
1.2 Etc MM MM 1.1 Tec To 1.2 1.1	4-Dioxane thylbenzene lethyl Bromide lethyl Chloride lethylene Chloride 1,2,2-Tetrachloroethane etrachloroethylene	h8/r h8/r h8/r h8/r	< <	100 1		#	~				
Et M M M 1, Te To 1, 1, 1, 1,	thylbenzene lethyl Bromide lethyl Chloride lethylene Chloride 1,2,2-Tetrachloroethane etrachloroethylene	h8/r h8/r h8/r	< <	1	Ħ	-					
M M 1. Te To 1.	ethyl Bromide lethyl Chloride lethylene Chloride 1,2,2-Tetrachloroethane etrachloroethylene	µg/L µg/L µg/L	<				-				
M 1. Te 1. 1.	ethyl Chloride lethylene Chloride 1,2,2-Tetrachloroethane etrachloroethylene	μg/L μg/L μg/L	<	1	=	\Rightarrow	+				
1. Te To 1. 1.	ethylene Chloride 1,2,2-Tetrachloroethane etrachloroethylene	μg/L μg/L			Н	+	+				+++
1. Te 1. 1.	1,2,2-Tetrachloroethane etrachloroethylene	μg/L		1	\vdash	\rightarrow	\pm				
Te To 1, 1,	etrachloroethylene		-	1	H	\pm	\pm				
1, 1, 1,			<	1	H	7					
1, 1, 1,		μg/L	<	1	Ħ	T	T				
1, 1, 1,		μg/L	<	1							
1.	2-trans-Dichloroethylene	µg/L	<	1							
1,	1.1-Trichloroethane		<	1		+	+				
		μg/L	-		H	-	+				
(1,2-Trichloroethane	μg/L	<	1	Н	-	+				
	richloroethylene	μg/L	<	1	H						
Vi	inyl Chloride	μg/L	<	1	H						
2-	Chlorophenol	μg/L	<	5.26		\neg					
	4-Dichlorophenol	μg/L	<	5.26		_					
_	4-Dimethylphenol	μg/L	<	5.26	Ħ	#	+				
	6-Dinitro-o-Cresol		<	26.3	H	+	+				
I →		μg/L	-		Н	+	+				
2,	4-Dinitrophenol	μg/L	<	2.3	H	\Rightarrow	+				
	-Nitrophenol	μg/L	<	5.26		\Rightarrow					
δ 4-	Nitrophenol	μg/L	<	10.5		Ť	Ť				
p-	-Chloro-m-Cresol	μg/L	<	5.26							
P	entachlorophenol	μg/L	<	26.3		#					
. ⊢	henol	μg/L	<	5.26	Ħ	#	+				
	4,8-Trichlorophenol		<	5.26	Н	+	+				
-		μg/L			H	+	+				
_	cenaphthene	μg/L	<	5.26	H	\Rightarrow	+				
	cenaphthylene	μg/L		5.26		\perp	Ϊ				
Ar	nthracene	μg/L	<	5.26			Т				
B _i	enzidine	μg/L	<	26.3		Į					
B _r	enzo(a)Anthracene	μg/L	<	1		#	#				
ı ⊢	enzo(a)Pyrene	µg/L	<	1		+	+				
	4-Benzofluoranthene	μg/L	<	1		+	+				
			-		H	+	+				
	enzo(ghi)Perylene	μg/L	<	5.26							
	enzo(k)Fluoranthene	μg/L	<	1		7	Τ				
Bi	is(2-Chloroethoxy)Methane	μg/L	٧	5.26							
Bi	is(2-Chloroethyl)Ether	μg/L	<	1	П	Į	Ţ				
	is(2-Chloroisopropyl)Ether	μg/L	<	5.26	H		+				
	is(2-Ethylhexyl)Phthalate	μg/L	<	5.26	H	+	+				
	Bromophenyl Phenyl Ether		<	5.26		+	+				
		µg/L			H	+	+				
	utyl Benzyl Phthalate	μg/L	<	5.26			+				
	-Chloronaphthalene	μg/L	٧	5.26							
4-	Chlorophenyl Phenyl Ether	μg/L	<	5.26							
C	hrysene	μg/L	<	1		Ţ	Ţ				
D	ibenzo(a,h)Anthrancene	μg/L	<	1	H						
. ⊢	2-Dichlorobenzene	µg/L	<	5.26	H	+	+				
	3-Dichlorobenzene		<	5.26							
		µg/L			H	+	+				
	4-Dichlorobenzene	µg/L	<	5.26							
	3-Dichlorobenzidine	μg/L	<	1							
2 D	iethyl Phthalate	μg/L	٧	5.26							
O D	imethyl Phthalate	μg/L	<	5.26	П	Ţ	T				
	i-n-Butyl Phthalate	μg/L	<	5.26	H	7					
	4-Dinitrotoluene	µg/L	<	5.26	H	+	+				

	2,6-Dinitrotoluene	µg/L	<	5.26	-							-	=
	Di-n-Octyl Phthalate	µg/L	<	5.26	+	++						┢	_
	1,2-Diphenylhydrazine	µg/L	<	5.26									
	Fluoranthene		<	5.26	\exists								=
	Fluorene	µg/L	<	5.26	H	₩	_					₩	+
		μg/L	<	1	\vdash	+	_					⊬	
	Hexachlorobenzene	µg/L	-		H	+							
	Hexachlorobutadiene	μg/L	<	5.26									
	Hexachlorocyclopentadiene	µg/L	<	10.5	H	44						<u> </u>	_
	Hexachloroethane	µg/L	<	5.26	H	\dashv						H	4
	Indeno(1,2,3-cd)Pyrene	μg/L	<	1	\Rightarrow								
	Isophorone	μg/L	<	5.26	\Rightarrow								
	Naphthalene	μg/L	<	5.26									
	Nitrobenzene	μg/L	<	5.26	4	\bot						Ļ	
	n-Nitrosodimethylamine	μg/L	<	1	H	\blacksquare						\vdash	
	n-Nitrosodi-n-Propylamine	μg/L	<	1	Ħ	77						H	Ħ
	n-Nitrosodiphenylamine	µg/L	<	5.26									
	Phenanthrene	μg/L	<	5.26									
	Pyrene	μg/L	<	5.26	Ħ	+						H	
	1,2,4-Trichlorobenzene	µg/L	<	5.26	Ħ	++						₩	_
	Aldrin	µg/L	<	0.20									
	alpha-BHC	µg/L	<		I								
	beta-BHC		<		+							-	+
		µg/L	<		+							-	
	gamma-BHC	μg/L			H	\Rightarrow	_						
	delta BHC	μg/L	<			\Rightarrow							
	Chlordane	µg/L	<		4	44							
	4,4-DDT	μg/L	<		H	\dashv						H	#
	4,4-DDE	μg/L	<		\vdash	+							#
	4,4-DDD	μg/L	<										
	Dieldrin	μg/L	<										
	alpha-Endosulfan	μg/L	<		4							ļ.	
	beta-Endosulfan	μg/L	<		\vdash	+						⊬	
9	Endosulfan Sulfate	μg/L	<		Ħ	\Box							
Group	Endrin	μg/L	<										
ĕ	Endrin Aldehyde	μg/L	<										#
_	Heptachlor	μg/L	<		H	77						H	#
	Heptachlor Epoxide	µg/L	<		\vdash	++							
	PCB-1016	μg/L	<		Ħ	Ħ							
	PCB-1221	µg/L	<										=
	PCB-1232	µg/L	<		H	₩	_					-	+
	PCB-1242		<		+	+		1		_	 		+
	PCB-1242 PCB-1248	µg/L			Ħ	\rightarrow							
		μg/L	<) 		_			 		
	PCB-1254	μg/L	<			\Box							\perp
	PCB-1260	μg/L	<		H	\dashv						H	#
	PCBs, Total	μg/L	<		H	+							
	Toxaphene	μg/L	<										
	2,3,7,8-TCDD	ng/L	<			Ш							
	Gross Alpha	pCi/L										L	
7	Total Beta	pCi/L	<		\dashv								
<u>a</u>	Radium 226/228	pCi/L	<										
Group	Total Strontium	μg/L	<										
O	Total Uranium	μg/L	<		H								=
	Osmotic Pressure	mOs/kg			H	-							
					\vdash	$\dashv \dashv$						\vdash	
					Ħ	Ħ							
					+								
					Ų	П							
					\vdash								
					\perp								
													_

Toxics Management Spreadsheet Version 1.1, October 2020

Stream / Surface Water Information

Bradys Run Sanitary Authority STP, NPDES Permit No. PA0095087, Outfall 001

Analysis
Hardness pl
Analysis
milalysis

Toxics Management Spreadsheet Version 1.1, October 2020

Model Results

Widdel Results						brauys nun s	anitary Autr	iority STP, NPDE	3 Permit No. 1	7A0093087, Outrail 001
Instructions Results	RETURN	TO INPU	пѕ)	SAVE AS	PDF	PRINT	● A	All () Inputs	○ Results	() Limits
Hydrodynamics										
✓ Wasteload Allocations										
✓ AFC CCT	(min): 1	15	PMF:	0.159	Ana	lysis Hardne	ss (mg/l):	138.44	Analysis pH:	7.40
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)		Co	omments
Total Dissolved Solids (PWS)	0	0		. 0	N/A	N/A	N/A			
Chloride (PWS)	0	0		0	N/A	N/A	N/A			
Sulfate (PWS)	0	0		0	N/A	N/A	N/A			
Total Aluminum	0	0		0	750	750	23,924			
Total Antimony	0	0		0	1,100	1,100	35,089			
Total Arsenic	0	0		0	340	340	10,846		Chem Tran	slator of 1 applied
Total Barium	0	0		0	21,000	21,000	669,879			
Total Boron	0	0		0	8,100	8,100	258,382			
Total Cadmium	0	0		0	2.762	2.97	94.7		Chem Transl	ator of 0.93 applied
Total Chromium (III)	0	0		0	743.677	2,353	75,071		Chem Transla	ator of 0.316 applied
Hexavalent Chromium	0	0		0	16	16.3	520		Chem Transla	ator of 0.982 applied
Total Cobalt	0	0		0	95	95.0	3,030			
Total Copper	0	0		0	18.258	19.0	607		Chem Transl	ator of 0.96 applied
Free Cyanide	0	0		0	22	22.0	702			
Dissolved Iron	0	0		0	N/A	N/A	N/A			
Total Iron	0	0		0	N/A	N/A	N/A			
Total Lead	0	0		0	91.853	124	3,940		Chem Transla	tor of 0.744 applied
Total Manganese	0	0		0	N/A	N/A	N/A			
Total Mercury	0	0		0	1.400	1.65	52.5		Chem Transl	ator of 0.85 applied
Total Nickel	0	0		0	616.550	618	19,707		Chem Transla	ator of 0.998 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A			
Total Selenium	0	0		0	N/A	N/A	N/A		Chem Transla	ator of 0.922 applied
Total Silver	0	0		0	5.628	6.62	211		Chem Transl	ator of 0.85 applied
Total Thallium	0	0		0	65	65.0	2,073			•
Total Zinc	0	0		0	154.363	158	5,035		Chem Transla	ator of 0.978 applied
Acrolein	0	0		0	3	3.0	95.7			

Acrylonitrile	0	0	П		0	650	650	20,734	
Benzene	0	0	+++	+++	0	640	640	20,415	
Bromoform	0	0	+	+++	0	1.800	1.800	57.418	
Carbon Tetrachloride	0	0			 0	2.800	2.800	89.317	
Chlorobenzene	0	0			0	1,200	1,200	38,279	
	0	0	₩	+++	0	1,200 N/A	1,200 N/A	38,279 N/A	
Chlorodibromomethane		_	##		_				
2-Chloroethyl Vinyl Ether	0	0			- 0	18,000	18,000	574,182	
Chloroform	0	0			0	1,900	1,900	60,608	
Dichlorobromomethane	0	0	+	+++	0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0			- 0	15,000	15,000	478,485	
1,1-Dichloroethylene	0	0			- 0	7,500	7,500	239,243	
1,2-Dichloropropane	0	0			0	11,000	11,000	350,889	
1,3-Dichloropropylene	0	0		\bot	0	310	310	9,889	
Ethylbenzene	0	0			- 0	2,900	2,900	92,507	
Methyl Bromide	0	0			- 0	550	550	17,544	
Methyl Chloride	0	0			0	28,000	28,000	893,172	
Methylene Chloride	0	0			0	12,000	12,000	382,788	
1,1,2,2-Tetrachloroethane	0	0			- 0	1,000	1,000	31,899	
Tetrachloroethylene	0	0			0	700	700	22,329	
Toluene	0	0			0	1,700	1,700	54,228	
1,2-trans-Dichloroethylene	0	0			- 0	6,800	6,800	216,913	
1,1,1-Trichloroethane	0	0		7	0	3,000	3,000	95,697	
1,1,2-Trichloroethane	0	0	***	***	0	3,400	3,400	108,457	
Trichloroethylene	0	0			0	2,300	2,300	73,368	
Vinyl Chloride	0	0			- 0	N/A	N/A	N/A	
2-Chlorophenol	0	0	##	+++	0	560	560	17,863	
2,4-Dichlorophenol	0	0	\rightarrow		0	1,700	1,700	54,228	
2.4-Dimethylphenol	0	0			0	660	660	21,053	
4.6-Dinitro-o-Cresol	0	0			- 0	80	80.0	2,552	
2.4-Dinitrophenol	0	0	##		0	660	660	21,053	
2-Nitrophenol	0	0			0	8.000	8.000	255,192	
4-Nitrophenol	0	0			0	2.300	2.300	73,368	
p-Chloro-m-Cresol	0	0			0	160	160	5,104	
Pentachlorophenol	0	0	+++	+++	0	13.070	13.1	417	
Phenol	0	0	 		0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0			0	460	460	14,674	
Acenaphthene	0	0	+++	+++	ŏ	83	83.0	2,648	
Anthracene	0	0	+++	+++	+ ö	N/A	N/A	N/A	
Benzidine	0	0			- 0	300	300	9.570	
Benzo(a)Anthracene	0	0			- 6	0.5	0.5	15.9	
Benzo(a)Pyrene	0	0	-		0	N/A	N/A	N/A	
		0			_		N/A N/A	N/A N/A	
3,4-Benzofluoranthene	0	_			0	N/A			
Benzo(k)Fluoranthene	_	0			0	N/A	N/A	N/A 956,970	
Bis(2-Chloroethyl)Ether	0	0			0	30,000	30,000	,	
Bis(2-Chloroisopropyl)Ether	0	0			0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0			0	4,500	4,500	143,546	
4-Bromophenyl Phenyl Ether	0	0			0	270	270	8,613	
Butyl Benzyl Phthalate	0	0			0	140	140	4,466	

2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	
Chrysene	0	0	0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0	0	820	820	26,157	
1,3-Dichlorobenzene	0	0	0	350	350	11,165	
1,4-Dichlorobenzene	0	0	0	730	730	23,286	
3,3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A	
Diethyl Phthalate	0	0	0	4,000	4,000	127,596	
Dimethyl Phthalate	0	0	0	2,500	2,500	79,748	
Di-n-Butyl Phthalate	0	0	0	110	110	3,509	
2,4-Dinitrotoluene	0	0	0	1,600	1,600	51,038	
2,6-Dinitrotoluene	0	0	0	990	990	31,580	
1,2-Diphenylhydrazine	0	0	0	15	15.0	478	
Fluoranthene	0	0	0	200	200	6,380	
Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0	0	10	10.0	319	
Hexachlorocyclopentadiene	0	0	0	5	5.0	159	
Hexachloroethane	0	0	0	60	60.0	1,914	
Indeno(1,2,3-cd)Pyrene	0	0	0	N/A	N/A	N/A	
Isophorone	0	0	0	10,000	10,000	318,990	
Naphthalene	0	0	0	140	140	4,466	
Nitrobenzene	0	0	0	4,000	4,000	127,596	
n-Nitrosodimethylamine	0	0	0	17,000	17,000	542,283	
n-Nitrosodi-n-Propylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0	0	300	300	9,570	
Phenanthrene	0	0	0	5	5.0	159	
Pyrene	0	0	0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0	0	130	130	4,147	

	CCT (min): 59.078	PMF: 1	Analysis Hardness (mg/l):	137.39	Analysis pH:	7.43	
--	-------------------	--------	---------------------------	--------	--------------	------	--

Pollutants	Conc	Stream	Trib Conc	Fate	WQC	WQ Obj	WLA (µg/L)	Comments
1 olidiants	(ug/L)	CV	(µg/L)	Coef	(µg/L)	(µg/L)	VVEX (pg/E)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	220	220	42,973	
Total Arsenic	0	0		0	150	150	29,300	Chem Translator of 1 applied
Total Barium	0	0		0	4,100	4,100	800,867	
Total Boron	0	0		0	1,600	1,600	312,533	
Total Cadmium	0	0		0	0.307	0.34	66.9	Chem Translator of 0.896 applied
Total Chromium (III)	0	0		0	96.134	112	21,835	Chem Translator of 0.86 applied
Hexavalent Chromium	0	0		0	10	10.4	2,030	Chem Translator of 0.962 applied
Total Cobalt	0	0		0	19	19.0	3,711	
Total Copper	0	0		0	11.748	12.2	2,390	Chem Translator of 0.96 applied

Free Cyanide	0	0	-			0	5.2	5.2	1,016	
Dissolved Iron	0	0				0	N/A	N/A	N/A	
Total Iron	0	0				0	1,500	1,500	293,000	WQC = 30 day average; PMF = 1
Total Lead	0	0	Ħ			0	3.550	4.77	931	Chem Translator of 0.745 applied
Total Manganese	0	0	Ш			0	N/A	N/A	N/A	
Total Mercury	0	0		\mp		0	0.770	0.91	177	Chem Translator of 0.85 applied
Total Nickel	0	0	H		\vdash	0	68.039	68.2	13,330	Chem Translator of 0.997 applied
Total Phenols (Phenolics) (PWS)	0	0	Ш			0	N/A	N/A	N/A	
Total Selenium	0	0		+	H	0	4.600	4.99	975	Chem Translator of 0.922 applied
Total Silver	0	0	m	\top		0	N/A	N/A	N/A	Chem Translator of 1 applied
Total Thallium	0	0	\square	\Box		0	13	13.0	2,539	
Total Zinc	0	0			H	0	154.622	157	30,632	Chem Translator of 0.986 applied
Acrolein	0	0				0	3	3.0	586	
Acrylonitrile	0	0		\mp	\Box	0	130	130	25,393	
Benzene	0	0				0	130	130	25,393	
Bromoform	0	0				0	370	370	72,273	
Carbon Tetrachloride	0	0				0	560	560	109,387	
Chlorobenzene	0	0				0	240	240	46,880	
Chlorodibromomethane	0	0				0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0	\mathbb{H}	\perp	\vdash	0	3,500	3,500	683,667	
Chloroform	0	0			\vdash	0	390	390	76,180	
Dichlorobromomethane	0	0	\square			0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0	\vdash			0	3,100	3,100	605,534	
1,1-Dichloroethylene	0	0				0	1,500	1,500	293,000	
1,2-Dichloropropane	0	0	\Box			0	2,200	2,200	429,734	
1,3-Dichloropropylene	0	0	\dashv	+	\vdash	0	61	61.0	11,915	
Ethylbenzene	0	0				0	580	580	113,293	
Methyl Bromide	0	0	\square			0	110	110	21,487	
Methyl Chloride	0	0	$H \rightarrow$			0	5,500	5,500	1,074,334	
Methylene Chloride	0	0				0	2,400	2,400	468,800	
1,1,2,2-Tetrachloroethane	0	0	\square			0	210	210	41,020	
Tetrachloroethylene	0	0				0	140	140	27,347	
Toluene	0	0				0	330	330	64,460	
1,2-trans-Dichloroethylene	0	0		+		0	1,400	1,400	273,467	
1,1,1-Trichloroethane	0	0				0	610	610	119,153	
1,1,2-Trichloroethane	0	0				0	680	680	132,827	
Trichloroethylene	0	0				0	450	450	87,900	
Vinyl Chloride	0	0				0	N/A	N/A	N/A	
2-Chlorophenol	0	0	Щ	\perp		0	110	110	21,487	
2,4-Dichlorophenol	0	0				0	340	340	66,413	
2,4-Dimethylphenol	0	0				0	130	130	25,393	
4,6-Dinitro-o-Cresol	0	0				0	16	16.0	3,125	
2,4-Dinitrophenol	0	0				0	130	130	25,393	
2-Nitrophenol	0	0				0	1,600	1,600	312,533	
4-Nitrophenol	0	0	Ш			0	470	470	91,807	

p-Chloro-m-Cresol	0	0	-	-	\vdash	0	30	30.0	5,860	
Pentachlorophenol	0	0		++-		0	10.028	10.0	1.959	
Phenol	0	0				0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0		++-		0	91	91.0	17,775	
Acenaphthene	0	0	#	++		0	17	17.0	3.321	
Anthracene	0	0				0	N/A	N/A	N/A	
Benzidine	0	0	##	#	Ħ	0	59	59.0	11,525	
Benzo(a)Anthracene	0	0		$\forall \forall$		0	0.1	0.1	19.5	
Benzo(a)Pyrene	0	0		#		0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0	##	##		0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0				0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0		#		0	6,000	6,000	1,172,001	
Bis(2-Chloroisopropyl)Ether	0	0	##	##	Ħ	0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0				0	910	910	177,753	
4-Bromophenyl Phenyl Ether	0	0		#		0	54	54.0	10,548	
Butyl Benzyl Phthalate	0	0				0	35	35.0	6,837	
2-Chloronaphthalene	0	0				0	N/A	N/A	N/A	
Chrysene	0	0				0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0	$\dagger \dagger$	$\dagger \dagger$		0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0				0	160	160	31,253	
1,3-Dichlorobenzene	0	0		#	H	0	69	69.0	13,478	
1,4-Dichlorobenzene	0	0		$\forall \vdash$		0	150	150	29,300	
3,3-Dichlorobenzidine	0	0		#		0	N/A	N/A	N/A	
Diethyl Phthalate	0	0			H	0	800	800	156,267	
Dimethyl Phthalate	0	0				0	500	500	97,667	
Di-n-Butyl Phthalate	0	0		-		0	21	21.0	4,102	
2,4-Dinitrotoluene	0	0				0	320	320	62,507	
2,6-Dinitrotoluene	0	0				0	200	200	39,067	
1,2-Diphenylhydrazine	0	0				0	3	3.0	586	
Fluoranthene	0	0				0	40	40.0	7,813	
Fluorene	0	0				0	N/A	N/A	N/A	
Hexachlorobenzene	0	0				0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0	\Box	\top	П	0	2	2.0	391	
Hexachlorocyclopentadiene	0	0				0	1	1.0	195	
Hexachloroethane	0	0				0	12	12.0	2,344	
Indeno(1,2,3-cd)Pyrene	0	0				0	N/A	N/A	N/A	
Isophorone	0	0				0	2,100	2,100	410,200	
Naphthalene	0	0				0	43	43.0	8,399	
Nitrobenzene	0	0				0	810	810	158,220	
n-Nitrosodimethylamine	0	0				0	3,400	3,400	664,134	
n-Nitrosodi-n-Propylamine	0	0				0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0				0	59	59.0	11,525	
Phenanthrene	0	0		\Box	\mathbb{H}^{-}	0	1	1.0	195	
Pyrene	0	0				0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0		Ш		0	26	26.0	5,079	

☑ THH C	CT (min): 59	.078	PMF:	1	Ana	alysis Hardne	ss (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc	Stream	Trib Conc	Fate	WQC	WQ Obj	WLA (µg/L)	Comments
	(ug/L)	CV	(µg/L)	Coef	(µg/L)	(µg/L)		Comments
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A	
Chloride (PWS)	0	0		0	250,000	250,000	N/A	
Sulfate (PWS)	0	0		0	250,000	250,000	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	5.6	5.6	1,094	
Total Arsenic	0	0		0	10	10.0	1,953	
Total Barium	0	0		0	2,400	2,400	468,800	
Total Boron	0	0		0	3,100	3,100	605,534	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Free Cyanide	0	0		0	140	140	27,347	
Dissolved Iron	0	0		0	300	300	58,600	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	1,000	1,000	195,333	
Total Mercury	0	0		0	0.050	0.05	9.77	
Total Nickel	0	0		0	610	610	119,153	
Total Phenols (Phenolics) (PWS)	0	0		0	5	5.0	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	0.24	0.24	46.9	
Total Zinc	0	0		0	N/A	N/A	N/A	
Acrolein	0	0		0	6	6.0	1,172	
Acrylonitrile	0	0		0	N/A	N/A	N/A	
Benzene	0	0		0	N/A	N/A	N/A	
Bromoform	0	0		0	N/A	N/A	N/A	
Carbon Tetrachloride	0	0		0	N/A	N/A	N/A	
Chlorobenzene	0	0		0	130	130	25,393	
Chlorodibromomethane	0	0		0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0		0	N/A	N/A	N/A	
Chloroform	0	0		0	N/A	N/A	N/A	
Dichlorobromomethane	0	0		0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0		0	N/A	N/A	N/A	
1,1-Dichloroethylene	0	0		0	33	33.0	6,446	
1,2-Dichloropropane	0	0		0	N/A	N/A	N/A	
1,3-Dichloropropylene	0	0		0	N/A	N/A	N/A	
Ethylbenzene	0	0		0	530	530	103,527	

Methyl Bromide	0	0	 0	47	47.0	9,181	
Methyl Chloride	0	0	 0	N/A	N/A	N/A	
Methylene Chloride	0	0	0	N/A	N/A	N/A	
1,1,2,2-Tetrachloroethane	0	0	0	N/A	N/A	N/A	
Tetrachloroethylene	0	0	 0	N/A	N/A	N/A	
Toluene	0	0	0	1.300	1,300	253.933	
1,2-trans-Dichloroethylene	0	0	0	140	140	27,347	
1.1.1-Trichloroethane	0	0	 0	N/A	N/A	N/A	
	0	0	0	N/A N/A	N/A N/A	N/A N/A	
1,1,2-Trichloroethane			_				
Trichloroethylene	0	0	0	N/A	N/A	N/A	
Vinyl Chloride	0	0	0	N/A	N/A	N/A	
2-Chlorophenol	0	0	0	81	81.0	15,822	
2,4-Dichlorophenol	0	0	0	77	77.0	15,041	
2,4-Dimethylphenol	0	0	0	380	380	74,227	
4,6-Dinitro-o-Cresol	0	0	0	13	13.0	2,539	
2,4-Dinitrophenol	0	0	0	69	69.0	13,478	
2-Nitrophenol	0	0	0	N/A	N/A	N/A	
4-Nitrophenol	0	0	0	N/A	N/A	N/A	
p-Chloro-m-Cresol	0	0	0	N/A	N/A	N/A	
Pentachlorophenol	0	0	0	N/A	N/A	N/A	
Phenol	0	0	0	10,400	10,400	2,031,468	
2,4,6-Trichlorophenol	0	0	0	N/A	N/A	N/A	
Acenaphthene	0	0	0	670	670	130,873	
Anthracene	0	0	0	8,300	8,300	1,621,267	
Benzidine	0	0	0	N/A	N/A	N/A	
Benzo(a)Anthracene	0	0	0	N/A	N/A	N/A	
Benzo(a)Pyrene	0	0	0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroisopropyl)Ether	0	0	0	1,400	1,400	273,467	
Bis(2-Ethylhexyl)Phthalate	0	0	0	N/A	N/A	N/A	
4-Bromophenyl Phenyl Ether	0	0	0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0	0	150	150	29,300	
2-Chloronaphthalene	0	0	0	1,000	1,000	195,333	
Chrysene	0	0	0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0	0	420	420	82,040	
1,3-Dichlorobenzene	0	0	0	420	420	82,040	
1,4-Dichlorobenzene	0	0	0	420	420	82,040	
3.3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A	
Diethyl Phthalate	0	0	0	17,000	17,000	3,320,668	
Dimethyl Phthalate	0	0	0	270,000	270,000	52,740,024	
Di-n-Butyl Phthalate	0	0	0	2,000	2,000	390,667	
2.4-Dinitrotoluene	0	0	0	N/A	N/A	N/A	
E, I Dilliotolociic	_		_	14073	1407	19073	I

CCT (min): 27.169

☑ CRL

2,6-Dinitrotoluene	0	0	0	N/A	N/A	N/A	
1,2-Diphenylhydrazine	0	0	0	N/A	N/A	N/A	
Fluoranthene	0	0	- 0	130	130	25,393	
Fluorene	0	0	0	1,100	1,100	214,867	
Hexachlorobenzene	0	0	0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0	- 0	N/A	N/A	N/A	
Hexachlorocyclopentadiene	0	0	0	40	40.0	7,813	
Hexachloroethane	0	0	0	N/A	N/A	N/A	
Indeno(1,2,3-od)Pyrene	0	0	0	0.0038	0.004	0.74	
Isophorone	0	0	0	35	35.0	6,837	
Naphthalene	0	0	0	N/A	N/A	N/A	
Nitrobenzene	0	0	0	17	17.0	3,321	
n-Nitrosodimethylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodi-n-Propylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0	0	N/A	N/A	N/A	
Phenanthrene	0	0	0	N/A	N/A	N/A	
Pyrene	0	0	0	830	830	162,127	
1,2,4-Trichlorobenzene	0	0	0	35	35.0	6,837	

Analysis Hardness (mg/l):

N/A

Analysis pH:

N/A

PMF: 1

							'	
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (μg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	N/A	N/A	N/A	
Total Arsenic	0	0		0	N/A	N/A	N/A	
Total Barium	0	0		0	N/A	N/A	N/A	
Total Boron	0	0		0	N/A	N/A	N/A	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Free Cyanide	0	0		0	N/A	N/A	N/A	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	N/A	N/A	N/A	
Total Nickel	0	0		0	N/A	N/A	N/A	
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	

Total Silver 0 0 N/A N/A N/A N/A Total Thallium 0 0 0 N/A N/A N/A N/A Total Zinc 0 0 0 N/A N/A N/A N/A Acrolein 0 0 0 N/A N/A N/A N/A Acrylonitrile 0 0 0 0.051 32.7 89 80	
Total Zinc 0 0 0 N/A N/A N/A Acrolein 0 0 0 N/A N/A N/A Acrylonitrile 0 0 0 0.051 32.7 Benzene 0 0 0 1.2 1.2 769 Bromoform 0 0 0 4.3 4.3 2,755 Carbon Tetrachloride 0 0 0.23 0.23 147 Chlorobenzene 0 0 N/A N/A N/A Chlorodibromomethane 0 </td <td></td>	
Acrolein 0 0 0 N/A N/A N/A Acrylonitrile 0 0 0 0.051 32.7 Benzene 0 0 0 1.2 1.2 769 Bromoform 0 0 0 4.3 4.3 2,756 Carbon Tetrachloride 0 0 0 0.23 0.23 147 Chlorobenzene 0 0 N/A N/A N/A Chlorodibromomethane 0 0 0 0.4 0.4 256 2-Chloroethyl Vinyl Ether 0 0 N/A N/A N/A N/A	
Acrylonitrile	
Benzene 0 0 1.2 1.2 769 Bromoform 0 0 4.3 4.3 2,755 Carbon Tetrachloride 0 0 0.23 0.23 147 Chlorobenzene 0 0 0 N/A N/A N/A Chlorodibromomethane 0 0 0 0.4 0.4 256 2-Chloroethyl Vinyl Ether 0 0 N/A N/A N/A N/A	
Bromoform 0 0 0 4.3 4.3 2,755 Carbon Tetrachloride 0 0 0 0.23 0.23 147 Chlorobenzene 0 0 0 N/A N/A N/A Chlorodibromomethane 0 0 0 0.4 0.4 256 2-Chloroethyl Vinyl Ether 0 0 N/A N/A N/A	
Carbon Tetrachloride 0 0 0 0.23 0.23 147 Chlorobenzene 0 0 0 N/A N/A N/A Chlorodibromomethane 0 0 0 0.4 0.4 256 2-Chloroethyl Vinyl Ether 0 0 N/A N/A N/A	
Chlorobenzene 0 0 N/A N/A N/A Chlorodibromomethane 0 0 0 0.4 0.4 256 2-Chloroethyl Vinyl Ether 0 0 N/A N/A N/A	
Chlorodibromomethane 0 0 0 0.4 0.4 258 2-Chloroethyl Vinyl Ether 0 0 N/A N/A N/A	
2-Chloroethyl Vinyl Ether 0 0 N/A N/A N/A N/A	
Dichlorobromomethane 0 0 0 0 0.55 0.55 352	
1,2-Dichloroethane 0 0 0 0.38 0.38 243	
1,1-Dichloroethylene 0 0 0 N/A N/A N/A	
1,2-Dichloropropane 0 0 0 N/A N/A N/A N/A	
1,3-Dichloropropylene 0 0 0 0.34 0.34 218	
Ethylbenzene 0 0 0 N/A N/A N/A	
Methyl Bromide 0 0 0 N/A N/A N/A	
Methyl Chloride 0 0 N/A N/A N/A N/A	
Methylene Chloride 0 0 0 4.8 4.6 2,947	
1,1,2,2-Tetrachloroethane 0 0 0 0.17 0.17 109	
Tetrachloroethylene 0 0 0 0.69 0.69 442	
Toluene 0 0 0 N/A N/A N/A	
1,2-trans-Dichloroethylene 0 0 0 N/A N/A N/A N/A	
1,1,1-Trichloroethane 0 0 N/A N/A N/A N/A	
1,1,2-Trichloroethane 0 0 0 0 0.59 0.59 378	
Trichloroethylene 0 0 0 0 0 2.5 1,602	
Vinyl Chloride 0 0 0 0.025 0.025 16.0	
2-Chlorophenol 0 0 0 N/A N/A N/A	
2,4-Dichlorophenol 0 0 0 N/A N/A N/A N/A	
2,4-Dimethylphenol 0 0 N/A N/A N/A N/A	
4,8-Dinitro-o-Cresol 0 0 0 N/A N/A N/A	
2,4-Dinitrophenol 0 0 0 N/A N/A N/A	
2-Nitrophenol 0 0 0 N/A N/A N/A	
4-Nitrophenol 0 0 0 N/A N/A N/A	
p-Chloro-m-Cresol 0 0 0 N/A N/A N/A	
Pentachlorophenol 0 0 0 0.270 0.27 173	
Phenol 0 0 0 N/A N/A N/A	
2,4,6-Trichlorophenol 0 0 1.4 1.4 897	
Acenaphthene 0 0 0 N/A N/A N/A N/A	
Anthracene 0 0 0 0 N/A N/A N/A	
Benzidine 0 0 0 0.000088 0.00009 0.055	
Benzo(a)Anthracene 0 0 0 0 0.0038 0.004 2.43	
Benzo(a)Pyrene 0 0 0 0 0.0038 0.004 2.43	

3,4-Benzofluoranthene	0	0	0	0.0038	0.004	2.43	
Benzo(k)Fluoranthene	0	0	0	0.0038	0.004	2.43	
Bis(2-Chloroethyl)Ether	0	0	0	0.03	0.03	19.2	
Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	0	1.2	1.2	769	
4-Bromophenyl Phenyl Ether	0	0	- 0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0	0	N/A	N/A	N/A	
2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	
Chrysene	0	0	0	0.0038	0.004	2.43	
Dibenzo(a,h)Anthrancene	0	0	0	0.0038	0.004	2.43	
1,2-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
1,3-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
1,4-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
3,3-Dichlorobenzidine	0	0	0	0.021	0.021	13.5	
Diethyl Phthalate	0	0	0	N/A	N/A	N/A	
Dimethyl Phthalate	0	0	0	N/A	N/A	N/A	
Di-n-Butyl Phthalate	0	0	0	N/A	N/A	N/A	
2,4-Dinitrotoluene	0	0	0	0.05	0.05	32.0	
2,6-Dinitrotoluene	0	0	0	0.05	0.05	32.0	
1,2-Diphenylhydrazine	0	0	0	0.036	0.036	23.1	
Fluoranthene	0	0	0	N/A	N/A	N/A	
Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	0	0.00028	0.0003	0.18	
Hexachlorobutadiene	0	0	0	0.44	0.44	282	
Hexachlorocyclopentadiene	0	0	0	N/A	N/A	N/A	
Hexachloroethane	0	0	0	1.4	1.4	897	
Indeno(1,2,3-cd)Pyrene	0	0	0	N/A	N/A	N/A	
Isophorone	0	0	0	N/A	N/A	N/A	
Naphthalene	0	0	0	N/A	N/A	N/A	
Nitrobenzene	0	0	0	N/A	N/A	N/A	
n-Nitrosodimethylamine	0	0	0	0.00069	0.0007	0.44	
n-Nitrosodi-n-Propylamine	0	0	0	0.005	0.005	3.2	
n-Nitrosodiphenylamine	0	0	0	3.3	3.3	2,114	
Phenanthrene	0	0	0	N/A	N/A	N/A	
Pyrene	0	0	0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0	0	N/A	N/A	N/A	
				-			I .

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits	Concentration Limits						
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Total Aluminum	15,334	μg/L	Discharge Conc ≤ 10% WQBEL
Total Antimony	N/A	N/A	Discharge Conc < TQL
Total Arsenic	1,953	μg/L	Discharge Conc ≤ 10% WQBEL
Total Barium	429,366	μg/L	Discharge Conc ≤ 10% WQBEL
Total Beryllium	N/A	N/A	No WQS
Total Boron	165,612	μg/L	Discharge Conc ≤ 10% WQBEL
Total Cadmium	60.7	μg/L	Discharge Conc ≤ 10% WQBEL
Total Chromium (III)	21,835	μg/L	Discharge Conc ≤ 10% WQBEL
Hexavalent Chromium	333	μg/L	Discharge Conc ≤ 10% WQBEL
Total Cobalt	1,942	μg/L	Discharge Conc < TQL
Total Copper	389	μg/L	Discharge Conc ≤ 10% WQBEL
Free Cyanide	450	μg/L	Discharge Conc ≤ 25% WQBEL
Total Cyanide	N/A	N/A	No WQS
Dissolved Iron	58,600	μg/L	Discharge Conc ≤ 10% WQBEL
Total Iron	293,000	μg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	931	μg/L	Discharge Conc < TQL
Total Manganese	195,333	μg/L	Discharge Conc ≤ 10% WQBEL
Total Mercury	9.77	μg/L	Discharge Conc < TQL
Total Nickel	12,631	μg/L	Discharge Conc ≤ 10% WQBEL
Total Phenols (Phenolics) (PWS)		μg/L	PWS Not Applicable
Total Selenium	975	μg/L	Discharge Conc < TQL
Total Silver	135	μg/L	Discharge Conc ≤ 10% WQBEL

Total Thallium	46.9	μg/L	Discharge Conc < TQL
Total Zing	3.227	µg/L	Discharge Conc ≤ 10% WQBEL
Total Molybdenum	N/A	N/A	No WQS
Acrolein	61.3	μg/L	Discharge Conc ≤ 25% WQBEL
Acrylonitrile	32.7	µg/L	Discharge Conc < TQL
Benzene	769	µg/L	Discharge Conc ≤ 25% WQBEL
Bromoform	2,755	µg/L	Discharge Conc ≤ 25% WQBEL
Carbon Tetrachloride	147	µg/L	Discharge Conc ≤ 25% WQBEL
Chlorobenzene	24.535	µg/L	Discharge Conc ≤ 25% WQBEL
Chlorodibromomethane	256	µg/L	Discharge Conc ≤ 25% WQBEL
Chloroethane	N/A	N/A	No WQS
2-Chloroethyl Vinyl Ether	368.028	µg/L	Discharge Conc < TQL
Chloroform	3,652	µg/L	Discharge Conc ≤ 25% WQBEL
Dichlorobromomethane	352	µg/L	Discharge Conc ≤ 25% WQBEL
1.1-Dichloroethane	N/A	N/A	No WQS
1,2-Dichloroethane	243	µg/L	Discharge Conc ≤ 25% WQBEL
1,1-Dichloroethylene	6,446	µg/L	Discharge Conc ≤ 25% WQBEL
1,2-Dichloropropane	224,906	μg/L	Discharge Conc ≤ 25% WQBEL
1,3-Dichloropropylene	218	µg/L	Discharge Conc ≤ 25% WQBEL
1.4-Dioxane	N/A	N/A	No WQS
Ethylbenzene	59,293	µg/L	Discharge Conc ≤ 25% WQBEL
Methyl Bromide	9,181	µg/L	Discharge Conc ≤ 25% WQBEL
Methyl Chloride	572.487	µg/L	Discharge Conc ≤ 25% WQBEL
Methylene Chloride	2,947	µg/L	Discharge Conc ≤ 25% WQBEL
1,1,2,2-Tetrachloroethane	109	µg/L	Discharge Conc ≤ 25% WQBEL
Tetrachloroethylene	442	µg/L	Discharge Conc ≤ 25% WQBEL
Toluene	34,758	µg/L	Discharge Conc ≤ 25% WQBEL
1,2-trans-Dichloroethylene	27,347	µg/L	Discharge Conc ≤ 25% WQBEL
1,1,1-Trichloroethane	61,338	µg/L	Discharge Conc ≤ 25% WQBEL
1.1.2-Trichloroethane	378	µg/L	Discharge Conc ≤ 25% WQBEL
Trichloroethylene	1.602	µg/L	Discharge Conc ≤ 25% WQBEL
Vinyl Chloride	16.0	μg/L	Discharge Conc ≤ 25% WQBEL
2-Chlorophenol	11,450	μg/L	Discharge Conc < TQL
2,4-Dichlorophenol	15.041	µg/L	Discharge Conc < TQL
2,4-Dimethylphenol	13,494	μg/L	Discharge Conc < TQL
4.6-Dinitro-o-Cresol	1.636	µg/L	Discharge Conc ≤ 25% WQBEL
2,4-Dinitrophenol	13,478	µg/L	Discharge Conc < TQL
2-Nitrophenol	163,568	μg/L	Discharge Conc < TQL
4-Nitrophenol	47,026	µg/L	Discharge Conc ≤ 25% WQBEL
p-Chloro-m-Cresol	3,271	µg/L	Discharge Conc < TQL
Pentachlorophenol	173	µg/L	Discharge Conc ≤ 25% WQBEL
Phenol	2,031,468	µg/L	Discharge Conc < TQL
2,4,6-Trichlorophenol	897	µg/L	Discharge Conc < TQL
Acenaphthene	1,697	µg/L	Discharge Conc ≤ 25% WQBEL
Acenaphthylene	N/A	N/A	No WQS

Anthracene	1,621,267	μg/L	Discharge Conc ≤ 25% WQBEL
Benzidine	0.055	μg/L	Discharge Conc < TQL
Benzo(a)Anthracene	2.43	μg/L	Discharge Conc < TQL
Benzo(a)Pyrene	2.43	μg/L	Discharge Conc < TQL
3,4-Benzofluoranthene	2.43	μg/L	Discharge Conc < TQL
Benzo(ghi)Perylene	N/A	N/A	No WQS
Benzo(k)Fluoranthene	2.43	μg/L	Discharge Conc < TQL
Bis(2-Chloroethoxy)Methane	N/A	N/A	No WQS
Bis(2-Chloroethyl)Ether	19.2	μg/L	Discharge Conc < TQL
Bis(2-Chloroisopropyl)Ether	273,467	μg/L	Discharge Conc ≤ 25% WQBEL
Bis(2-Ethylhexyl)Phthalate	769	μg/L	Discharge Conc ≤ 25% WQBEL
4-Bromophenyl Phenyl Ether	5,520	μg/L	Discharge Conc ≤ 25% WQBEL
Butyl Benzyl Phthalate	2,862	μg/L	Discharge Conc ≤ 25% WQBEL
2-Chloronaphthalene	195,333	μg/L	Discharge Conc ≤ 25% WQBEL
4-Chlorophenyl Phenyl Ether	N/A	N/A	No WQS
Chrysene	2.43	μg/L	Discharge Conc < TQL
Dibenzo(a,h)Anthrancene	2.43	μg/L	Discharge Conc < TQL
1.2-Dichlorobenzene	16,766	μg/L	Discharge Conc ≤ 25% WQBEL
1,3-Dichlorobenzene	7,156	μg/L	Discharge Conc ≤ 25% WQBEL
1.4-Dichlorobenzene	14.926	μg/L	Discharge Conc ≤ 25% WQBEL
3.3-Dichlorobenzidine	13.5	μg/L	Discharge Conc < TQL
Diethyl Phthalate	81,784	μg/L	Discharge Conc ≤ 25% WQBEL
Dimethyl Phthalate	51,115	μg/L	Discharge Conc ≤ 25% WQBEL
Di-n-Butyl Phthalate	2,249	μg/L	Discharge Conc ≤ 25% WQBEL
2.4-Dinitrotoluene	32.0	µg/L	Discharge Conc ≤ 25% WQBEL
2,6-Dinitrotoluene	32.0	μg/L	Discharge Conc ≤ 25% WQBEL
Di-n-Octyl Phthalate	N/A	N/A	No WQS
1.2-Diphenylhydrazine	23.1	µg/L	Discharge Conc < TQL
Fluoranthene	4.089	μg/L	Discharge Conc ≤ 25% WQBEL
Fluorene	214.867	µg/L	Discharge Conc ≤ 25% WQBEL
Hexachlorobenzene	0.18	µg/L	Discharge Conc < TQL
Hexachlorobutadiene	204	µg/L	Discharge Conc ≤ 25% WQBEL
Hexachlorocyclopentadiene	102	μg/L	Discharge Conc ≤ 25% WQBEL
Hexachloroethane	897	µg/L	Discharge Conc ≤ 25% WQBEL
Indeno(1,2,3-od)Pyrene	0.74	µg/L	Discharge Conc < TQL
Isophorone	6,837	µg/L	Discharge Conc ≤ 25% WQBEL
Naphthalene	2.862	μg/L	Discharge Conc ≤ 25% WQBEL
Nitrobenzene	3.321	µg/L	Discharge Conc ≤ 25% WQBEL
n-Nitrosodimethylamine	0.44	μg/L	Discharge Conc < TQL
n-Nitrosodi-n-Propylamine	3.2	μg/L	Discharge Conc < TQL
n-Nitrosodiphenylamine	2,114	μg/L	Discharge Conc ≤ 25% WQBEL
Phenanthrene	102	μg/L	Discharge Conc ≤ 25% WQBEL
Pyrene	162,127	μg/L	Discharge Conc ≤ 25% WQBEL
1.2.4-Trichlorobenzene	2.658	μg/L μg/L	Discharge Conc ≤ 25% WQBEL
1,2,4-Trichlorobenzeñe	2,000	µg/L	Discharge Cond = 20% WQBEL

Applicant: Bradys Run Sanitary Authority
Name of plant: Bradys Run Sanitary Authority STP

Permit Number: PA0095087

Municipality: Chippewa Township
County: Beaver County
Receiving stream: Bradys Run

The following program will calulate partial mix factors for acute and chronic conditions:

calculated fields

net stream flow (Qs cfs)= 640.35 discharge flow (Qd mgd)= 2.13 velocity (fps)= 0.108 width (feet) = 400 depth (feet) = 15 slope (ft/ft) = 0.00004

complete mix time (min) = 590.76

FOR ACUTE CONDITIONS: IF COMPLETE MIX TIME < 15 MINUTES

THEN PMF = 1, IF > 15 MINUTES CALCULATE PMFa

PMFa = 0.159 or 15.93 %

FOR CHRONIC CONDITIONS: IF COMPLETE MIX TIME < 720 MINUTES

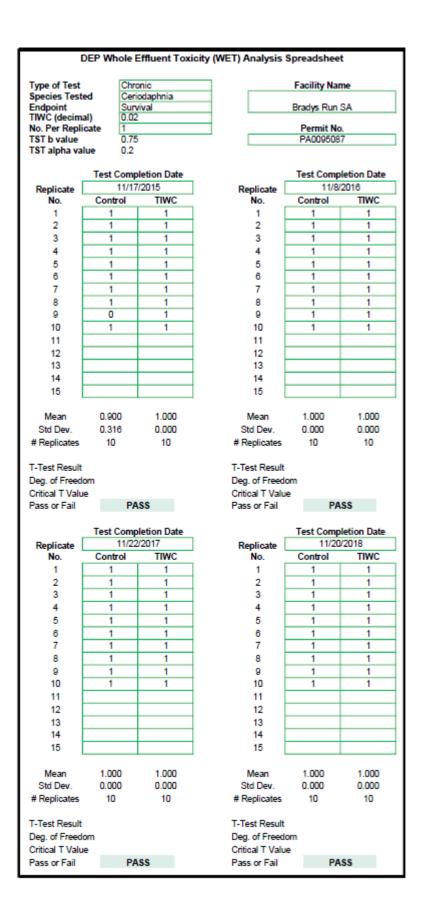
THEN PMF = 1, IF > 720 MINUTES CALCULATE PMFc

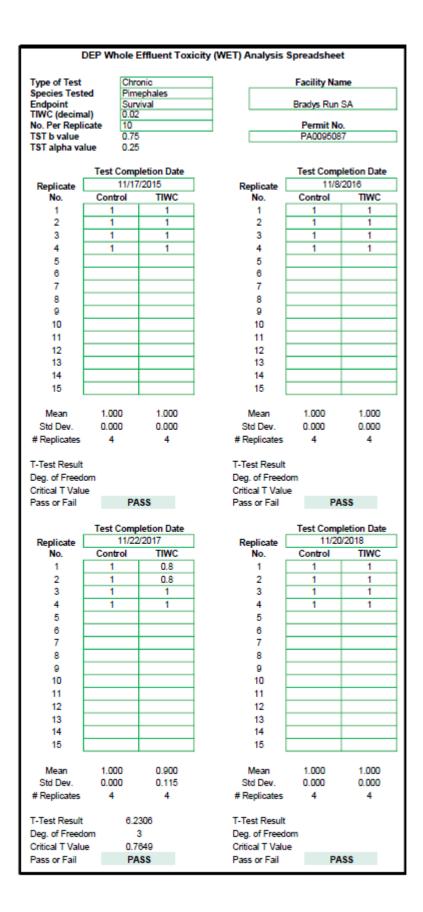
PMFc = 1.000 or 100.00 %

IWCc=[Qd * 1.547] / [(Qs*PMFc) + (Qd * 1.547)] = 0.0051

Target IWCc=IWCc/1= 0.005 0.51 %

IWCa=[Qd * 1.547]/[(Qs*PMFa)+(Qd * 1.547)] = 0.0313


Target IWCa=IWCa/0.3= 0.104 or 10.43 %


WET tests should pass if percentage for C.dubia LC50 and P.promelas LC50 are greater than the target IWCa (acute) or NOEC > target IWCc (chronic).

Program written by David Ponchione on April 8, 1999

Program run by: W. Mitchell on January 14, 2021

	DEP Whole	Effluent Toxi	icity (WET) Analysis	Spreadshee	ŧ
Type of Test				Facility Na	me
Species Test Endpoint		odaphnia roduction		Bradys Run	CA
TIWC (decim				brauys Run	SA.
No. Per Repl				Permit No	
TST b value TST alpha va	0.75 slue 0.2)		PA009508	37
131 aipiia va	iide 0.2				
	Test Comp	oletion Date		Test Comp	oletion Date
Replicate		/2015	Replicate		/2016
No.	Control	TIWC	No.	Control	пис
1	32	35	1	28	30
2	35 38	35 39	2 3	35 37	38
4	33	35	4	32	35
5	30	34	5	32	40
6	31	28	6	30	30
7	35	36	7	27	34
8	30	38	8	39	39
9	5	37	9	34	37
10	34	21	10	33	16
11			11		
12			12		
13			13		
14			14		
15			15		
Mean	30.300	33.800	Mean	32.700	33.800
Std Dev.	9.238	5.391	Std Dev.	3.773	7.208
# Replicates	10	10	# Replicates	10	10
# (Vepiloates	10	10	#TVeplicates	10	10
T-Test Result	30				
		893	T-Test Result	3.7	877
Deg. of Freed		893 17	T-Test Result Deg. of Freedo		877 13
Deg. of Freed Critical T Valu	iom 1			om 1	
_	lom 1 ue 0.8	17	Deg. of Freedo	om 1 e 0.8	13
Critical T Valu	lom 1 ue 0.8 PA	7 633 ISS	Deg. of Freedo Critical T Valu	om 1 e 0.8 PA	13 1702 ISS
Critical T Valu Pass or Fail	lom 1 ue 0.8 PA	633 ASS oletion Date	Deg. of Freedo Critical T Valu Pass or Fail	om 1 e 0.8 PA	13 1702 ASS Deletion Date
Critical T Valu Pass or Fail Replicate	lom 1 ue 0.8 PA Test Comp	7 633 ISS oletion Date 2/2017	Deg. of Freedo Critical T Valu Pass or Fail Replicate	om 1 e 0.8 PA Test Comp	13 1702 ASS Diletion Date 0/2018
Critical T Valu Pass or Fail Replicate No.	Test Comp 11/22 Control	7 633 ISS Diletion Date 9/2017 TIWC	Deg. of Freedo Critical T Valu Pass or Fail Replicate No.	om 1 e 0.8 PA Test Comp 11/20 Control	13 1702 NSS Deletion Date 1/2018 TIWC
Critical T Value Pass or Fail Replicate No.	Test Comp 11/22 Control 31	7 633 ISS Diletion Date 9/2017 TIWC 21	Deg. of Freedo Critical T Valu Pass or Fail Replicate No.	Test Comp 11/20 Control	13 1702 ASS Deletion Date 172018 TIWC 15
Critical T Valu Pass or Fail Replicate No.	Test Comp 11/22 Control	7 633 ISS Diletion Date 9/2017 TIWC	Deg. of Freedo Critical T Valu Pass or Fail Replicate No.	om 1 e 0.8 PA Test Comp 11/20 Control	13 1702 NSS Deletion Date 1/2018 TIWC
Critical T Valu Pass or Fail Replicate No. 1	Test Comp 11/22 Control 31 30	7 633 ASS oletion Date 2/2017 TIWC 21 25	Deg. of Freedo Critical T Value Pass or Fail Replicate [No. 1 2	0.8 PA Test Comp 11/20 Control 20 33	13 1702 ASS Deletion Date 172018 TIWC 15 30
Critical T Valu Pass or Fail Replicate No. 1 2 3	Test Comp 11/22 Control 31 30 19	7 633 8SS Deletion Date 2/2017 TIWC 21 25 15	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3	Test Comp 11/20 Control 20 33 27	13 1702 ASS Deletion Date 172018 TIWC 15 30 29
Critical T Valu Pass or Fail Replicate No. 1 2 3 4	Test Comp 11/22 Control 31 30 19 24	77 633 8SS Deletion Date 2/2017 TIWC 21 25 15 20	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4	Test Comp 11/20 Control 20 33 27 20	13 1702 ASS Diletion Date 172018 TIWC 15 30 29 30
Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5	Test Comp 11/22 Control 31 30 19 24 21	77 633 ASS Deletion Date 2/2017 TIWC 21 25 15 20 28	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5	Test Comp 11/20 Control 20 33 27 20 26	33 3702 ASS Diletion Date 0/2018 TIWC 15 30 29 30 33
Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7	Test Comp 11/22 Control 31 30 19 24 21 17 20 20	77 633 8SS Seletion Date 2/2017 TIWC 21 25 15 20 28 27 25 23	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8	Test Comp 11/20 Control 20 33 27 20 26 26 26 29	13 1702 ASS Deletion Date 1/2018 TIWC 15 30 29 30 33 33 29 30
Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8	Test Comp 11/22 Control 31 30 19 24 21 17 20 20	77 633 8SS bletion Date 9/2017 TIWC 21 25 15 20 28 27 25 23 19	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8	Test Comp 11/20 Control 20 33 27 20 26 26 26 29 30	13 1702 ASS Deletion Date 172018 TIWC 15 30 29 30 33 33 29 30 29
Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9	Test Comp 11/22 Control 31 30 19 24 21 17 20 20	77 633 8SS Seletion Date 2/2017 TIWC 21 25 15 20 28 27 25 23	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9	Test Comp 11/20 Control 20 33 27 20 26 26 26 29	13 1702 ASS Deletion Date 1/2018 TIWC 15 30 29 30 33 33 29 30
Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9	Test Comp 11/22 Control 31 30 19 24 21 17 20 20	77 633 8SS bletion Date 9/2017 TIWC 21 25 15 20 28 27 25 23 19	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11	Test Comp 11/20 Control 20 33 27 20 26 26 26 29 30	13 1702 ASS Deletion Date 172018 TIWC 15 30 29 30 33 33 29 30 29
Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11	Test Comp 11/22 Control 31 30 19 24 21 17 20 20	77 633 8SS bletion Date 9/2017 TIWC 21 25 15 20 28 27 25 23 19	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11	Test Comp 11/20 Control 20 33 27 20 26 26 26 29 30	13 1702 ASS Deletion Date 172018 TIWC 15 30 29 30 33 33 29 30 29
Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12	Test Comp 11/22 Control 31 30 19 24 21 17 20 20	77 633 8SS bletion Date 9/2017 TIWC 21 25 15 20 28 27 25 23 19	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test Comp 11/20 Control 20 33 27 20 26 26 26 29 30	13 1702 ASS Deletion Date 172018 TIWC 15 30 29 30 33 33 29 30 29
Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Test Comp 11/22 Control 31 30 19 24 21 17 20 20	77 633 8SS bletion Date 9/2017 TIWC 21 25 15 20 28 27 25 23 19	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Test Comp 11/20 Control 20 33 27 20 26 26 26 29 30	13 1702 ASS Deletion Date 172018 TIWC 15 30 29 30 33 33 29 30 29
Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12	Test Comp 11/22 Control 31 30 19 24 21 17 20 20	77 633 8SS bletion Date 9/2017 TIWC 21 25 15 20 28 27 25 23 19	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test Comp 11/20 Control 20 33 27 20 26 26 26 29 30	13 1702 ASS Deletion Date 172018 TIWC 15 30 29 30 33 33 29 30 29
Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Test Comp 11/22 Control 31 30 19 24 21 17 20 20	7 833 888 sletion Date 2/2017 TIWC 21 25 15 20 28 27 25 23 19 24	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Test Comp 11/20 Control 20 33 27 20 26 26 26 29 30 31	13 1702 ASS Deletion Date 172018 TIWC 15 30 29 30 33 33 29 30 29
Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Test Comp 11/22 Control 31 30 19 24 21 17 20 20 18 20	77 633 8SS bletion Date 9/2017 TIWC 21 25 15 20 28 27 25 23 19	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Test Comp 11/20 Control 20 33 27 20 26 26 26 29 30	33 7702 ASS ASS Detion Date 1/2018 TIWC 15 30 29 30 33 33 33 29 30 29 29 28
Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	Test Comp 11/22 Control 31 30 19 24 21 17 20 20 18 20 22.000 4.853	7 833 888 sletion Date 2/2017 TIWC 21 25 15 20 28 27 25 23 19 24	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	Test Comp 11/20 Control 20 33 27 20 26 26 26 29 30 31	13 1702 ASS ASS Detion Date 172018 TIWC 15 30 29 30 33 33 29 30 29 28
Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	Test Comp 11/22 Control 31 30 19 24 21 17 20 20 18 20 22,000 4,853 10	20 28 27 25 23 19 24 22.700 3.974 10	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	Test Comp 11/20 Control 20 33 27 20 26 26 26 29 30 31	13 1702 ASS Deletion Date 172018 TIWC 15 30 29 30 33 33 29 30 29 28 28 28 28 28 28 28 30 30 40 40 40 40 40 40 40 40 40 4
Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Test Comp 11/22 Control 31 30 19 24 21 17 20 20 18 20 22.000 4.853 10	20 28 27 25 23 19 24 22.700 3.974 10 383	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Test Comp 11/20 Control 20 33 27 20 26 26 26 29 30 31	13 1702 ASS Deletion Date 172018 TIWC 15 30 29 30 33 33 29 30 29 28 28 28 28 28 30 30 29 30 30 40 40 40 40 40 40 40 40 40 4
Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freed	Test Comp 11/22 Control 31 30 19 24 21 17 20 20 18 20 22.000 4.853 10	77 633 8SS bletion Date 9/2017 TIWC 21 25 15 20 28 27 25 23 19 24 22.700 3.974 10	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freedo	Test Comp 11/20 Control 20 33 27 20 26 26 26 29 30 31	13 1702 ASS Deletion Date 172018 TIWC 15 30 29 30 33 33 29 30 29 28 28 28 28 28 30 30 29 30 30 30 40 40 40 40 40 40 40 40 40 4
Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Test Composition 1.00 0.8 PA Test Composition 1.1/22 Control 31 30 19 24 21 17 20 20 18 20 20 4.853 10 3.6 dom 1.00 0.8 dom 1.00	20 28 27 25 23 19 24 22.700 3.974 10 383	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Test Comp 11/20 Control 20 33 27 20 26 26 26 29 30 31	13 1702 ASS Deletion Date 172018 TIWC 15 30 29 30 33 33 29 30 29 28 28 28 28 28 30 30 29 30 30 40 40 40 40 40 40 40 40 40 4

	DEP Whole	Effluent Toxi	city (WET) Analysis	Spreadshee	t
Type of Test	C	ronic	\neg	Facility Nar	me
Species Test		mephales		r donney real	
Endpoint		owth		Bradys Run	SA
TIWC (decim No. Per Repl				Permit No	
TST b value	0.7			PA009508	
TST alpha va	lue 0.1	25			
		npletion Date			letion Date
Replicate No.	Control	17/2015 TIWC	Replicate No.	Control	2016 TIWC
NO. 1	0.396	0.399	No. 1	0.384	0.44
2	0.391	0.401	2	0.491	0.44
3	0.403	0.419	3	0.388	0.494
4	0.404	0.357	4	0.383	0.471
5	5.151		5	0.000	2
6			6		
7			7		
8			8		
9			9		
10			10		
11			11		
12			12		
13			13		
14			14		
15			15		
	0.000	0.004		0.400	0.404
Mean	0.399	0.394	Mean	0.402	0.461
Std Dev.	0.006 4	0.026	Std Dev.	0.060	0.026
# Replicates	4	4	# Replicates	4	4
T-Test Result	. 7	.1373	T-Test Result	6.1	288
Deg. of Freed		3	Deg. of Freed		5
Critical T Valu		.7649	Critical T Valu		267
Pass or Fail		PASS	Pass or Fail		SS
	Test Con	npletion Date		Test Comp	letion Date
Replicate	11/3	22/2017	Replicate	11/20	10040
No.			M.		
	Control	TIWC	No.	Control	TIWC
1	0.316	TIWC 0.2667	1	0.399	TIWC 0.325
2	0.316 0.317	0.2667 0.249	1 2	0.399 0.387	TIWC 0.325 0.38
2	0.316 0.317 0.367	0.2667 0.249 0.308	1 2 3	0.399 0.387 0.348	0.325 0.38 0.308
2 3 4	0.316 0.317	0.2667 0.249	1 2 3 4	0.399 0.387	TIWC 0.325 0.38
2 3 4 5	0.316 0.317 0.367	0.2667 0.249 0.308	1 2 3 4 5	0.399 0.387 0.348	0.325 0.38 0.308
2 3 4 5	0.316 0.317 0.367	0.2667 0.249 0.308	1 2 3 4 5	0.399 0.387 0.348	0.325 0.38 0.308
2 3 4 5 6 7	0.316 0.317 0.367	0.2667 0.249 0.308	1 2 3 4 5 6 7	0.399 0.387 0.348	0.325 0.38 0.308
2 3 4 5 6 7	0.316 0.317 0.367	0.2667 0.249 0.308	1 2 3 4 5 6 7 8	0.399 0.387 0.348	0.325 0.38 0.308
2 3 4 5 6 7	0.316 0.317 0.367	0.2667 0.249 0.308	1 2 3 4 5 6 7	0.399 0.387 0.348	0.325 0.38 0.308
2 3 4 5 6 7 8	0.316 0.317 0.367	0.2667 0.249 0.308	1 2 3 4 5 6 7 8	0.399 0.387 0.348	0.325 0.38 0.308
2 3 4 5 6 7 8 9	0.316 0.317 0.367	0.2667 0.249 0.308	1 2 3 4 5 6 7 8 9	0.399 0.387 0.348	0.325 0.38 0.308
2 3 4 5 6 7 8 9 10	0.316 0.317 0.367	0.2667 0.249 0.308	1 2 3 4 5 6 7 8 9 10	0.399 0.387 0.348	0.325 0.38 0.308
2 3 4 5 6 7 8 9 10 11	0.316 0.317 0.367	0.2667 0.249 0.308	1 2 3 4 5 6 7 8 9 10 11	0.399 0.387 0.348	0.325 0.38 0.308
2 3 4 5 6 7 8 9 10 11 12	0.316 0.317 0.367	0.2667 0.249 0.308	1 2 3 4 5 6 7 8 9 10 11 12	0.399 0.387 0.348	0.325 0.38 0.308
2 3 4 5 6 7 8 9 10 11 12 13	0.316 0.317 0.367	0.2667 0.249 0.308	1 2 3 4 5 6 7 8 9 10 11 12 13	0.399 0.387 0.348	0.325 0.38 0.308
2 3 4 5 6 7 8 9 10 11 12 13 14 15	0.316 0.317 0.367 0.336	TIWC 0.2667 0.249 0.308 0.306	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	0.399 0.387 0.348 0.336	0.325 0.38 0.308 0.264
2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	0.316 0.317 0.367 0.336	0.2667 0.249 0.308 0.308 0.306	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	0.399 0.387 0.348 0.336	0.319 0.048
2 3 4 5 6 7 8 9 10 11 12 13 14 15	0.316 0.317 0.367 0.336	TIWC 0.2667 0.249 0.308 0.306	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	0.399 0.387 0.348 0.336	0.325 0.38 0.308 0.264
2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	0.316 0.317 0.367 0.336 0.334 0.024 4	0.2667 0.249 0.308 0.306 0.306	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	0.399 0.387 0.348 0.336 0.336	0.319 0.048 4
2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	0.316 0.317 0.367 0.336 0.336	0.2667 0.249 0.308 0.308 0.306	1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	0.399 0.387 0.348 0.336 0.336 0.368 0.030 4	0.319 0.048 4
2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	0.316 0.317 0.367 0.336 0.334 0.024 4	0.282 0.029 4	1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freed	0.399 0.387 0.348 0.336 0.336 0.330 4	0.319 0.048 4
2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	0.316 0.317 0.367 0.336 0.334 0.024 4	0.2667 0.249 0.308 0.308 0.306	1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	0.399 0.387 0.348 0.336 0.336 0.330 4 1.6 om 4	0.319 0.048 4

WET Summary and Evaluation

 Facility Name
 Bradys Run SA

 Permit No.
 PA0095087

 Design Flow (MGD)
 2.13

 Q₇₋₁₀ Flow (cfs)
 640.35

 PMFa
 0.159

 PMFc
 1

		Test Results (Pass/Fail)					
		Test Date	Test Date	Test Date	Test Date		
Species	Endpoint	11/17/15	11/8/16	11/22/17	11/20/18		
Ceriodaphnia	Reproduction	PASS	PASS	PASS	PASS		

		Test Results (Pass/Fail)					
		Test Date Test Date Test Date Test Da					
Species	Endpoint	11/17/15	11/8/16	11/22/17	11/20/18		
Ceriodaphnia	Survival	PASS	PASS	PASS	PASS		

		Test Results (Pass/Fail)						
		Test Date	Test Date	Test Date	Test Date			
Species	Endpoint	11/17/15	11/8/16	11/22/17	11/20/18			
Pimephales	Survival	PASS	PASS	PASS	PASS			

		Test Results (Pass/Fail)					
		Test Date Test Date Test Date Test Date					
Species	Endpoint	11/17/15	11/8/16	11/22/17	11/20/18		
Pimephales	Growth	PASS	PASS	PASS	PASS		

Reasonable Potential? NO

Permit Recommendations

Test Type Chronic

TIWC 1 % Effluent

Dilution Series 1, 2, 30, 60, 100 % Effluent

Permit Limit None

Permit Limit Species