

Southwest Regional Office CLEAN WATER PROGRAM

 Application Type
 Renewal

 Facility Type
 Municipal

 Major / Minor
 Major

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0096211

 APS ID
 1074687

 Authorization ID
 1415837

		Applicant and F	acility Information	
Applicant Name	Munici County	pal Authority of Westmoreland /	Facility Name	Darragh STP
Applicant Address	124 Pa	rk and Pool Road	Facility Address	Route 136 & Evanstown Road
	New St	anton, PA 15672		Darragh, PA 15625
Applicant Contact	Norma	n Stout	Facility Contact	Norman Stout
Applicant Phone	(724) 7	55-5800	Facility Phone	(724) 755-5800
Client ID	64197		Site ID	3335
Ch 94 Load Status	Not Ov	erloaded	Municipality	Hempfield Township
Connection Status	No Lim	itations	County	Westmoreland
Date Application Rece	eived	October 28, 2022	EPA Waived?	No
Date Application Acce	pted	November 16, 2022	If No, Reason	Major Facility
Purpose of Application	า	NPDES permit renewal.		

Summary of Review

The PA Department of Environmental Protection (PADEP/Department) received an NPDES permit renewal application from Gibson-Thomas Engineering on behalf of Municipal Authority of Westmoreland County (MAWC/Permittee) on October 28, 2022 for permittee's Darragh STP (facility), located in Hempfield Township, Westmoreland County. This is a major sewage facility with design flow of 1.12 MGD that discharges into Little Sewickley Creek (TSF) in state watershed 19-D. The current permit will expire on April 30, 2023. The terms and conditions of the current permit is automatically extended since the renewal application was received at least 180 days prior to the expiration date. Renewal NPDES permit applications under Clean Water program are not covered by PADEP's PDG per 021-2100-001.

This fact sheet is developed in accordance with 40 CFR §124.56.

Changes in this renewal: <u>Added:</u> quarterly Total Copper and Total Zinc monitoring, mass limit for NH3-N, E-Coli, UV Imin. Removed: Total Cobalt limit, Total Bromide monitoring, UV AML and MDL monitoring

Sludge use and disposal description and location(s): Thickened biosolids are sent to Greenridge Reclamation landfill in Scottdale, PA.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulataion within the geographical area of the discharge.

Approve	Deny	Signatures	Date
\checkmark		Reza H Chowdhury, E.I.T. / Project Manager	March 9, 2023
х		<i>Pravin Patel</i> Pravin C Patel, P.E. / Environmental Engineer Manager	03/13/2023

Discharge, Receiving Waters and Water Supply Inform	mation				
Outfall No. 001	Design Flow (MGD)	1.12			
Latitude 40° 15' 51"	Longitude	-79º 40' 47			
Quad Name Irwin	Quad Code 1608				
Wastewater Description: Sewage Effluent					
Receiving Waters Little Sewickley Creek (TSF)	Stream Code	37557			
NHD Com ID 69912693	RMI	6.91			
Drainage Area <u>14.9 mi²</u>	Yield (cfs/mi ²)	0.193			
Q ₇₋₁₀ Flow (cfs)2.88	Q7-10 Basis	Please see below			
Elevation (ft) 933.73	Slope (ft/ft)				
Watershed No. 19-D	Chapter 93 Class.	TSF			
Existing Use	Existing Use Qualifier	Ch. 93			
Exceptions to Use None	Exceptions to Criteria	N/A			
Assessment Status Attaining Use(s)					
Cause(s) of Impairment					
Source(s) of Impairment					
TMDL Status Final	Name Sewickley C	reek Watershed			
Background/Ambient Data	Data Source				
pH (SU)	WQN # 0706, median Jul-Sep				
Temperature (°C) 22.95	WQN # 0706, median Jul-Sep				
Hardness (mg/L)95.5	WQN # 0706, median Jul-Sep	, 1962-2019			
Other:					
Nearest Downstream Public Water Supply Intake	WCMA McKeesport, McKeesp	port City, Allegheny County			
PWS Waters Youghiogheny River	Flow at Intake (cfs)				
PWS RMI <u>1.37</u>	Distance from Outfall (mi)	24.97			

Changes Since Last Permit Issuance: None

Other Comments:

Streamflow:

The nearest USGS StreamGage (gage number 03083500) data was analyzed to determine the low flow statistics at the discharge point. USGS's web based watershed delineation tool StreamStats (accessible at

<u>https://streamstats.usgs.gov/ss/</u>, accessed on January 18, 2023) was utilized to determine the drainage area at discharge point. The StreamStats report shows the drainage area at the discharge point is 14.9 mi². Data from the streamgage shows Q_{7-10} , Q_{1-10} , and Q_{30-10} to be 332 cfs, 262 cfs, and 416 cfs, respectively for the reporting year 1925-2008. The drainage area at this streamgage was found to be 1,715 mi². These values were obtained from the latest USGS streamflow report ⁽¹⁾.

 $\begin{array}{c} Q_{7\text{-}10} \text{ runoff rate (low flow yield): } 332 \text{ cfs/1,715 mi}^2 \text{ or } 0.193 \text{ cfs/mi}^2 \\ Q_{7\text{-}10} \text{ at Outfall 001: } 0.193 * 14.9 \text{ or } 2.88 \text{ cfs} \\ Q_{30\text{-}10}\text{:} Q_{7\text{-}10}\text{: } 416/332 \text{ or } 1.25 \\ Q_{1\text{-}10}\text{:} Q_{7\text{-}10}\text{: } 262/332 \text{ or } 0.79 \end{array}$

Stuckey, M.H., Roland, M.A., 2011, Selected streamflow statistics for streamgage locations in and near Pennsylvania: U.S. Geological Survey Scientific Investigations Report 2011-1070, PP 18, PP 31.

PWS Intake:

The nearby downstream PWS intake is Westmoreland County Municipal Authority on Youghiogheny River in McKeesport City, which is approximately 24.97 miles downstream of discharge point. Due to the distance, dilution of Youghiogheny River, and effluent limitations, it is expected that the discharge will not adversely impact the PWS intake.

Wastewater Characteristics:

A pH of 6.5 (daily eDMR data, median July- September 2021-2022), default temperature of 25°C (Default per 391-2000-007), and Hardness value of 134 mg/l (application data) will be used for modeling, if needed.

Background data:

The nearby WQN station is WQN0706 on Youghiogheny River at Sutersville. Stream data was analyzed from this station for the reporting period 1962 through 2019 during July-September. This resulted in a median pH of 7.2, stream temperature of 22.95°C, and stream hardness of 95.5 mg/l.

Sewickley Creek Watershed TMDL:

The receiving watershed, Sewickley Creek Watershed, has an EPA approved TMDL for AMD. The current permit has quarterly monitoring requirements for AMD parameters (Total Aluminum, Total Iron, and Total Manganese). The existing monitoring requirements will be carried over unless there is a numeric limit warranted from modeling efforts.

Antidegradation (93.4):

The effluent limits for this discharge have been developed to ensure that existing in-stream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. The receiving streams are designated as Trout Stocking (TSF.) No High-Quality stream or Exceptional Value water is impacted by this discharge; therefore, no Antidegradation Analysis is performed for the discharge.

	Tr	eatment Facility Summar	у	
reatment Facility Na	me: Darragh STP			
WQM Permit No.	Issuance Date			
6586217 T	11/17/2017			
6586407 A	11/04/2010			
6568407	5/1/1987			
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
Sewage	Tertiary	Sequencing Batch Reactor W/Sol Removal	Ultraviolet	1.12
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs./day)	Load Status	Biosolids Treatment	Use/Disposa
1.12	2335	Not Overloaded	Other WWTP	Landfill

Changes Since Last Permit Issuance: None

Treatment Plant Description

The Municipal Authority of Westmoreland County (MAWC) owns and operates a Major wastewater treatment plant named Darragh STP, located in Hempfield Township, Westmoreland County. The facility has tertiary SBR treatment with UV disinfection. The treated effluent is discharged into Little Sewickley Creek (TSF) through Outfall 001. Per the application, flow passes through bar screen and grit removal, then enters the one of 4 SBR units each consisting of an aeration tank and a sludge tank, then flow passes through UV unit for disinfection prior to discharge. There is no stormwater outfall from this facility. The ownership of the STP was transferred from Hempfield Township Municipal Authority to MAWC during the last renewal. The average annual design flow and hydraulic design capacity is 1.12 MGD and organic loading capacity is 2,335 lbs./day based on 250 mg/l influent BOD5 concentration. The facility receives flows from the below contributing municipalities:

TRIBUTARY INFORMATION								
		Type of Se						
Municipalities Served	Flow Contribution (%)	Separate (%)	Combined (%)	Population				
Hempfield Township	92	100	0	5396				
Borough of Arona	7	100	0	414				
Sewickley Township	1	100	0	76				

There is no industrial/commercial significant or categorical industrial waste being discharge into MAWC's collection system that ends up in Darragh STP. The facility, however, is implementing an approved pretreatment program administered by EPA and most recent approval of local limits is July 14, 2020.

The facility uses caustic soda if needed for pH control.

Biosolids management: Sludge is gravity thickened then sent to the centrifuge for dewatering prior to disposal at Greenridge Reclamation landfill in Scottdale, PA.

Compliance History

DMR Data for Outfall 001 (from December 1, 2021 to November 30, 2022)

Parameter	NOV-22	OCT-22	SEP-22	AUG-22	JUL-22	JUN-22	MAY-22	APR-22	MAR-22	FEB-22	JAN-22	DEC-21
Flow (MGD)												
Average Monthly	0.468	0.37	0.376	0.416	0.413	0.455	0.724	0.611	0.54	0.925	0.608	0.528
Flow (MGD)												
Daily Maximum	1.349	0.867	0.554	0.722	0.758	0.899	3.55	1.331	0.755	3.368	1.836	1.096
pH (S.U.)												
Minimum	6.09	6.24	6.3	6.25	6.14	6.14	6.37	6.48	6.56	6.37	6.33	6.31
pH (S.U.)												
Maximum	6.64	6.79	6.95	6.7	6.63	6.89	7.16	6.98	7.12	7.21	7.09	6.78
DO (mg/L)												
Minimum	9.98	8.91	7.38	6.33	7.43	6.82	7.48	8.33	9.23	8.03	6.49	7.43
CBOD5 (lbs/day)												
Average Monthly	< 10.2	< 6.9	< 6.7	< 6.8	7.7	13.5	13.5	15.2	14.6	< 29.2	< 13.6	< 10.7
CBOD5 (lbs/day)												
Weekly Average	16.0	< 8.3	8.1	< 7.7	9.0	21.0	30.5	26.4	18.9	60.6	26.0	22.6
CBOD5 (mg/L)												
Average Monthly	< 2.8	< 2.4	< 2.2	< 2.0	2.2	3.0	2.5	2.5	3.2	< 3.1	< 3.1	< 2.3
CBOD5 (mg/L)												
Weekly Average	3.6	< 2.6	2.7	< 2.0	2.3	4.0	3.7	3.0	4.2	4.3	5.8	3.1
BOD5 (lbs/day)												
Raw Sewage Influent	005	007	570	0.45	000	4044	070	375	700	1010	004	700
Average Monthly	685	607	573	645	993	1011	673	775	793	1242	621	723
BOD5 (lbs/day)												
Raw Sewage Influent	1005	007	700	4000	4004	0000	4004	4050	4000	5055	0.07	4075
Weekly Average	1005	697	703	1222	1631	2362	1694	1350	1030	5255	807	1075
BOD5 (mg/L)												
Raw Sewage Influent	196	209	192	190	284	244	141	138	176	130	148	178
Average Monthly BOD5 (mg/L)	190	209	192	190	204	244	141	130	170	130	140	170
Raw Sewage Influent												
Weekly Average	263	255	244	370	462	392	232	221	205	187	216	257
TSS (lbs/day)	203	200	244	570	402	552	252	221	203	107	210	201
Average Monthly	10.0	6.1	< 3.1	< 7.1	< 6.5	< 4.9	9.8	< 50.0	< 8.3	< 44.6	< 14.0	< 13.2
TSS (lbs/day)	10.0	0.1	< 0.1	< /.i	< 0.0	< 1.0	0.0	< 00.0	< 0.0	< 11 .0	< 14.0	< 10.Z
Raw Sewage Influent												
Average Monthly	817	715	767	999	1331	1639	714	1125	1030	1280	527	838
TSS (lbs/day)	0									.200	02.	
Raw Sewage Influent												
Weekly Average	1205	1107	1273	1955	2644	3208	1044	1954	1717	4607	940	1225

NPDES Permit No. PA0096211

TSS (lbs/day)												
Weekly Average	< 16.9	11.5	6.0	18.3	< 16.8	10.7	16.4	< 177.9	13.5	111.5	< 25.7	< 38.6
TSS (mg/L)												
Average Monthly	2.8	2.1	< 1.0	< 2.1	< 1.9	< 1.1	2.0	< 5.2	< 1.8	< 5.0	< 3.0	< 2.6
TSS (mg/L)												
Raw Sewage Influent												
Average Monthly	240	247	259	298	368	373	156	199	228	152	129	215
TSS (mg/L)												
Raw Sewage Influent												
Weekly Average	408	388	436	592	540	616	232	320	332	228	264	292
TSS (mg/L)												
Weekly Average	< 4.1	4.0	2.0	5.5	< 5.6	2.5	3.0	< 16.1	3.0	10.0	< 5.0	< 5.5
Fecal Coliform (No./100												
ml)												
Geometric Mean	< 3.0	< 2.0	< 2	< 2	< 2	< 3	< 3	< 2	< 4	< 7	< 2	< 3
Fecal Coliform (No./100												
ml) IMAX	26	6	5	4.0	5	62	10	9	19	21	7	10
UV Transmittance (%)												
Average Monthly	74.5	73.3	72.4	73.5	72.9	74.1	76.1	77.6	80.2	81.1	78.8	75.9
UV Transmittance (%)												
Daily Maximum	79.4	78.6	74.7	76.5	75.1	78.1	84.5	82.4	86.6	87.1	86.2	81.3
Total Nitrogen (lbs/day)												
Daily Maximum			33.0			29.0			33			40
Total Nitrogen (mg/L)												
Daily Maximum			8.7			6.17			7.37			11.6
Ammonia (mg/L)												
Average Monthly	< 0.1	< 0.1	< 0.1	< 0.3	< 0.3	< 0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.5	< 0.3
Ammonia (mg/L) IMAX	0.16	< 0.1	0.1	1.73	1.27	0.34	0.16	0.12	0.28	0.22	< 0.8	0.8
Total Phosphorus												
(lbs/day)									_			
Daily Maximum			11.0			7.0			5			18
Total Phosphorus												
(mg/L)												5 4
Daily Maximum			3.0			1.4			1.1			5.4
Total Aluminum												
(lbs/day)			0.00			0.0			0.0			
Daily Maximum			0.06			0.2			0.2			0.1
Total Aluminum (mg/L)			0.045			0.054			0.005			0.000
Daily Maximum			0.015			0.051			0.035			0.038
Total Cobalt (lbs/day)	10.00	10.01	< 0.02	10.00	< 0.02	< 0.02	10.00	10.02	. 0.00	< 0.03	10.00	10.00
Average Monthly	< 0.02	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.03	< 0.03	< 0.02	< 0.03	< 0.02	< 0.02
Total Cobalt (lbs/day)	. 0. 00	. 0. 00	. 0. 00	. 0. 00	. 0.00	. 0. 00		. 0.00	. 0.00	.0.04	. 0. 00	.004
Daily Maximum	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.03	< 0.04	< 0.03	< 0.03	< 0.04	< 0.02	< 0.04
Total Cobalt (mg/L)	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.00F	< 0.00F	< 0.005	< 0.00F	< 0.00F	< 0.005
Average Monthly	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005

NPDES Permit No. PA0096211

Total Cobalt (mg/L)												
Daily Maximum	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Total Iron (lbs/day)												
Daily Maximum			0.09			0.2			0.2			0.3
Total Iron (mg/L)												
Daily Maximum			0.025			0.051			0.0352			0.0825
Total Manganese												
(lbs/day)												
Daily Maximum			0.02			0.02			0.04			0.02
Total Manganese												
(mg/L)												
Daily Maximum			0.005			0.005			0.009			0.006
Bromide (lbs/day)												
Average Monthly	< 0.4	< 0.3	< 0.3	< 0.4	< 0.3	< 0.4	< 0.5	< 0.5	< 0.5	< 0.5	< 0.4	< 0.5
Bromide (lbs/day)												
Daily Maximum	< 0.5	< 0.3	< 0.3	< 0.4	< 0.4	< 0.6	< 0.9	< 0.6	< 0.5	< 0.8	< 0.5	< 0.8
Bromide (mg/L)												
Average Monthly	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Bromide (mg/L)												
Daily Maximum	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1

Existing Effluent Limits and Monitoring Requirements

			Monitoring Requirements					
Parameter	Mass Unit	s (Ibs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Falameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	xxx	xxx	xxx	Continuous	Recorded
рН (S.U.)	XXX	XXX	6.0	xxx	9.0 Max	xxx	1/day	Grab
Dissolved Oxygen	XXX	XXX	6.0	XXX	XXX	XXX	1/day	Grab
CBOD5 Nov 1 - Apr 30	233.5	355.0	XXX	25.0	38.0	50	2/week	24-Hr Composite
CBOD5 May 1 - Oct 31	140.1	214.8	XXX	15.0	23.0	30	2/week	24-Hr Composite
BOD5 Raw Sewage Influent	Report	Report	XXX	Report	Report	xxx	2/week	24-Hr Composite
Total Suspended Solids	280.2	420.3	xxx	30.0	45.0	60	2/week	24-Hr Composite
Total Suspended Solids Raw Sewage Influent	Report	Report	XXX	Report	Report	ххх	2/week	24-Hr Composite

			Effluent	Limitations			Monitoring Requirements	
Parameter	Mass Unit	s (Ibs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Parameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Fecal Coliform (No./100 ml)				2000				
Oct 1 - Apr 30	XXX	XXX	XXX	Geo Mean	XXX	10000	2/week	Grab
Fecal Coliform (No./100 ml)				200				
May 1 - Sep 30	XXX	XXX	XXX	Geo Mean	XXX	1000	2/week	Grab
Ultraviolet light transmittance (%)	xxx	ХХХ	XXX	Report	Report Daily Max	XXX	1/day	Measured
Total Nitrogen	xxx	Report Daily Max	XXX	xxx	Report Daily Max	XXX	1/quarter	24-Hr Composite
Ammonia-Nitrogen		-						24-Hr
Nov 1 - Apr 30	XXX	XXX	XXX	6.0	XXX	12.0	2/week	Composite
Ammonia-Nitrogen								24-Hr
May 1 - Oct 31	XXX	XXX	XXX	2.0	XXX	4.0	2/week	Composite
Total Phosphorus	xxx	Report Daily Max	XXX	XXX	Report Daily Max	XXX	1/quarter	24-Hr Composite
	,,,,,	Report	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7000	Report	7000		24-Hr
Aluminum, Total	XXX	Daily Max	XXX	XXX	Daily Max	XXX	1/quarter	Composite
,		0.49			0.052			
Cobalt, Total	0.24	Daily Max	XXX	0.026	Daily Max	XXX	1/week	Composite
· · · · ·		Report			Report			24-Hr
Iron, Total	XXX	Daily Max	XXX	XXX	Daily Max	XXX	1/quarter	Composite
		Report			Report			24-Hr
Manganese, Total	XXX	Daily Max	XXX	XXX	Daily Max	XXX	1/quarter	Composite
i		Report			Report			24-Hr
Bromide	Report	Daily Max	XXX	Report	Daily Max	XXX	1/week	Composite

Summary of inspection:

August 9, 2022: CEI conducted. No violation noted. The facility appeared well maintained and operated efficiently. The effluent appeared clear at time of inspection. Equipment updates include two new composite samplers, new blower, new DO probes, effluent #2 pump out for repair, VFDs ordered, new lights, digester #4 out, SBR cleaning etc.

April 22, 2021: CEI conducted. No violation identified. The facility appeared to be well maintained.

July 3, 2019: CEI conducted. No violation noted. The facility appeared to be well maintained.

July 10, 2018: CEI conducted. No violation noted. The facility appeared to be well maintained.

May 12, 2017: CEI conducted. No violation noted. The facility appeared to be well maintained and in good operating condition.

Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	1.12
Latitude	40º 15' 51.00	n	Longitude	-79° 40' 47.00"
Wastewater De	escription:	Sewage Effluent	-	

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform (5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform (5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform (10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform (10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations

WQM 7.0:

The following data were used in the attached computer model (WQM 7.0) of the stream:

Discharge pHDischarge Temperature	6.5 25°C	(median July-Sep, 2021-22, eDMR data) (Default)
 Discharge Hardness Stream pH Stream Temperature Stream Hardness 	134 mg/l 7.2 22.95°C 95.5 mg/l	(Application data) (WQN0706, median Jul-Sep 1962-2019) (WQN0706, median Jul-Sep 1962-2019) (WQN0706, median Jul-Sep 1962-2019)

The following two nodes were used in modeling:

At the outfall 001 on Lit	tle Sewickley Creek (37557)
Elevation:	933.73 ft (USGS TNM 2.0 viewer, 1/18/2023)
Drainage Area:	14.9 mi ² (StreamStat Version 3.0, 1/18/2023)
River Mile Index:	6.93 (PA DEP eMapPA)
Low Flow Yield:	0.193 cfs/mi ²
Discharge Flow:	1.12 MGD
At confluence with And	rews Run (37575)
Elevation:	901.45 ft (USGS TNM 2.0 viewer, 1/18/2023)
Drainage Area:	20.0 mi ² (StreamStat Version 3.0, 1/18/2023)
River Mile Index:	4.5 (PA DEP eMapPA)
Low Flow Yield:	0.193 cfs/mi ²
Discharge Flow:	0.0 MGD
	Elevation: Drainage Area: River Mile Index: Low Flow Yield: Discharge Flow: At confluence with And Elevation: Drainage Area: River Mile Index: Low Flow Yield:

<u>Ammonia (NH₃-N), Carbonaceous Biochemical Oxygen Demand (CBOD5), & Dissolved Oxygen (DO):</u> WQM 7.0 version 1.0b is a water quality model designed to assist DEP to determine appropriate effluent limits for CBOD₅, NH₃-N and DO. The model simulates two basic processes. In the NH₃-N module, the model simulates the mixing and degradation of NH₃-N in the stream and compares calculated instream NH₃-N concentrations to NH₃-N water

quality criteria. In the D.O. module, the model simulates the mixing and consumption of D.O. in the stream due to the degradation of $CBOD_5$ and NH_3N and compares calculated instream D.O. concentrations to D.O. water quality criteria. The model was utilized for this permit renewal by using Q_{7-10} and current background water quality levels of the stream.

<u>NH₃-N:</u>

WQM 7.0 suggested NH₃-N limit of 2.0 mg/l as monthly average and 4.0 mg/l as IMAX limit during summer to protect water quality standards. These values are the same as existing permitted limits. The existing winter season limits of 6.0 mg/l as average monthly and 12 mg/l as IMAX limit will be carried over in this renewal. The current permit doesn't have mass-based limits. 40 CFR 122.45(f) requires that effluent limitations be expressed in terms of mass, if possible. DEP's SOP (BCW-PMT-033, V 1.9) clarifies that POTWs are subjected to mass limits for ammonia-N. 40 CFR 122.45(b) requires that effluent limitations for POTWs be calculated based on the design flow of the facility. The mass-based limits are expressed in pounds per day and are calculated as follows:

Mass based limits (lbs./day) = concentration limit (mg/l) * Average Annual Design Flow (MGD) * 8.34

Based on above discussion, the calculated summer season's average monthly mass limit is 18.68 lbs./day and winter season's average monthly mass limit is 56 lbs./day.

CBOD₅:

The WQM 7.0 model suggests a monthly average CBOD₅ limit of 15 mg/l which suggests the existing limits are still protective. The existing concentration-based and mass-based limits will be carried over. The current permit has seasonal limits. Seasonal limit for CBOD₅ is allowed in PADEP's technical guidance (362-0400-001, page 30).

Dissolved Oxygen (DO):

A minimum of 6.0 mg/L for D.O. is necessary to protect the designated use of the receiving stream and is supported by the output from WQM 7.0 modeling and consistent with Ch. 93.7. This limit will be applied in the draft permit.

Toxics:

Based on the available data, PADEP utilizes Toxics Management Spreadsheet (TMS) to (1) evaluate reasonable potential for toxic pollutants to cause or contribute to an excursion above the water quality standards and (2) develop WQBELs for those such toxic pollutants (i.e., 40 CFR § 122.44(d)(1)(i)). It is noteworthy that some of these pollutants that may be reported as "non-detect", but still exceeded the criteria, were determined to be candidates for modeling because the method detection levels used to analyze those pollutants were higher than target QLs and/or the most stringent Chapter 93 criteria. The model then recommended the appropriate action for the Pollutants of Concerns based on the following logic:

1. In general, establish limits in the draft permit where the effluent concentration determined in B.1 or B.2 equals or exceeds 50% of the WQBEL (i.e., RP is demonstrated). Use the average monthly, maximum daily and instantaneous maximum (IMAX) limits for the permit as recommended by the TMS (or, if appropriate, use a multiplier of 2 times the average monthly limit for the maximum daily limit and 2.5 times the average monthly limit for IMAX).

2. For non-conservative pollutants, in general, establish monitoring requirements where the effluent concentration determined in B.1 or B.2 is between 25% - 50% of the WQBEL.

3. For conservative pollutants, in general, establish monitoring requirements where the effluent concentration determined in B.1 or B.2 is between 10% - 50% of the WQBEL.

NOTE 4 – If the effluent concentration determined in B.1 or B.2 is "non-detect" at or below the target quantitation limit (TQL) for the pollutant as specified in the TMS and permit application, the pollutant may be eliminated as a candidate for WQBELs or monitoring requirements unless 1) a more sensitive analytical method is available for the pollutant under 40 CFR Part 136 where the quantitation limit for the method is less than the applicable water quality criterion and 2) a detection at the more sensitive method may lead to a determination that an effluent limitation is necessary, considering available dilution at design conditions.

NOTE 5 – If the effluent concentration determined in B.1 or B.2 is a detection below the TQL but above or equal to the applicable water quality criterion, WQBELs or monitoring may be established for the pollutant.

4. Application managers may, on a site- and pollutant-specific basis, deviate from these guidelines where there is specific rationale that is documented in the fact sheet.

Output from TMS is provided below:

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month:	4
No. Samples/Month.	4

	Mass	Limits		Concentra	tion Limits		1		
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Copper	Report	Report	Report	Report	Report	µg/L	25.8	AFC	Discharge Conc > 10% WQBEL (no RP)
Total Zinc	Report	Report	Report	Report	Report	µg/L	218	AFC	Discharge Conc > 10% WQBEL (no RP)

Each of the parameters are discussed below:

<u>Total Copper:</u> TMS suggests monitoring for Total Copper based on model input concentration of 9 ug/l. A quarterly monitoring requirement will provide sufficient effluent results for a Reasonable Potential analysis during next permit term.

<u>Total Zinc:</u> TMS suggests monitoring for Total Zinc based on model input concentration of 42.9 ug/l. A quarterly monitoring requirement will provide sufficient effluent results for a Reasonable Potential analysis during next permit term.

Existing Parameters without RP demonstration:

<u>Total Cobalt:</u> Current permit has limits on Total Cobalt which was an RP demonstration in the past and continued due to anti-backsliding prohibition. TMS modeling didn't identify Total Cobalt as pollutant of concern, even at maximum discharge concentration out of 52 sample results. 40 CFR 402(o)(2) lists acceptable exceptions for backsliding. Specifically, 402(o)(2)(B)(ii) states *"information is available which was not available at the time of permit issuance (other than revised regulations, guidance, or test methods) and which would have justified the application of a less stringent effluent limitation at the time of permit issuance"* The submitted sample results are considered as new information which was not available during the time when the numeric limit was imposed. Under the authority of the stated regulation, it is recommended that the limits requirement for Total Cobalt be removed.

<u>Total Aluminum, Total Iron, and Total Manganese:</u> As stated in page 3 of this report, existing monitoring for these three TMDL pollutants will be continued unless TMS suggests numeric limit. Since no RP is demonstrated, existing monitoring will be continued.

<u>Total Bromide:</u> Current permit has monitoring requirement. Since no RP is demonstrated, existing monitoring requirement will be removed.

Additional Considerations

Fecal Coliform:

The recent coliform guidance in 25 Pa. code § 92a.47.(a)(4) requires a summer technology limit of 200/100 ml as a geometric mean and an instantaneous maximum not greater than 1,000/100ml and § 92a.47.(a)(5) requires a winter limit of 2,000/100ml as a geometric mean and an instantaneous maximum not greater than 10,000/100ml. These are existing limits and will be carried over.

E. Coli:

Pa Code 25 § 92a. 61 requires monitoring of E. Coli. DEP's SOP titled "Establishing Effluent Limitations for Individual Sewage Permits (BCW-PMT-033, revised March 24, 2021) recommends monthly E. Coli monitoring for major sewage dischargers. This requirement will be applied from this permit term.

<u>рН:</u>

The TBEL for pH is above 6.0 and below 9.0 S.U. (40 CFR §133.102(c) and Pa Code 25 §§ 95.2(1), 92a.47) which are existing limits and will be carried over.

Total Suspended Solids (TSS):

There is no water quality criterion for TSS. The existing limits of 30 mg/L average monthly, 45 mg/l average weekly, and 60 mg/L instantaneous maximum will remain in the permit based on the minimum level of effluent quality attainable by secondary treatment, 25 Pa. Code § 92a.47 and 40CFR 133.102(b). The mass based average monthly and weekly

average limits are calculated to be 280.2 lbs./day and 420.3 lbs./day respectively, which are the same as were in existing permit and will be carried over.

UV Disinfection:

PADEP's SOP BCW-PMT-033 recommends UV parameter monitoring where UV is used as a method of disinfection, with the same frequency as would be if Chlorine is used for disinfection. The current permit has UV Transmittance monitoring in % as average monthly and daily maximum. The Domestic Wastewater Facilities Manual (draft, dated August 2017) states "The (UV) system should be designed based on the treated wastewater maximum suspended solids concentration, minimum UV transmittance and peak instantaneous flow rate...." And "In absence of more information on required inactivation, the minimum design UV dose for activated sludge secondary effluents with an effluent fecal coliform concentration of 200/100 ml is 30 mJ/cm2 MS2 at a UVT of 65% per 1 cm." This translates to the necessity of reporting minimum transmittance rather than average monthly or daily maximum UVT values. Therefore, the current average monthly and daily maximum values will be replaced by instantaneous minimum UVT as %. The sampling type is also changed from "measured" to "recorded".

Flow and Influent BOD₅, CBOD₅, and TSS Monitoring Requirement:

The requirement to monitor the volume of effluent will remain in the draft permit per 40 CFR § 122.44(i)(1)(ii). Influent BOD₅ and TSS monitoring requirements are established in the permit per the requirements set in Pa Code 25 Chapter 94.

Best Professional Judgement (BPJ):

Total Phosphorus:

The current permit has monitoring requirements for Total Phosphorus which is consistent with Pa Code 25 Ch. 92a.61 and will be carried over.

<u>Total Nitrogen:</u> Pa Code 25 § 92a.61 requires monitoring, at a minimum, for all sewage facilities. Current monitoring requirement will be continued.

Monitoring Frequency and Sample Types:

Otherwise specified above, the monitoring frequency and sample type of compliance monitoring for existing parameters are recommended by DEP's SOP and Permit Writers Manual and/or on a case-by-case basis using best professional judgment (BPJ).

Anti-Backsliding

The proposed limits are at least as stringent as are in existing permit, unless otherwise stated; therefore, anti-backsliding is not applicable.

Whole Effluent Toxicity (WET)

For Outfall , **Acute Chronic** WET Testing was completed:

For the permit renewal application (4 tests).

] Quarterly throughout the permit term.

Quarterly throughout the permit term and a TIE/TRE was conducted.

Other: 4 quarterly for 1st year, annually thereafter, Phase 1 TRE conducted.

The dilution series used for the tests was: 100%, 87%, 73%, 37%, and 18%. The Target Instream Waste Concentration (TIWC) to be used for analysis of the results is: 73%.

Summary of Four Most Recent Test Results

(NOTE – Enter results into one table, depending on which data analysis method was used).

TST Data Analysis

 \boxtimes

(NOTE – In lieu of recording information below, the application manager may attach the DEP WET Analysis Spreadsheet).

	Ceriodaphnia	Results (Pass/Fail)	Pimephales Re	sults (Pass/Fail)
Test Date	Survival	Reproduction	Survival	Growth
5/22/2018	Pass	Pass	Pass	Pass
8/7/2018	Pass	Pass	Pass	Pass
11/6/2018	Pass	Pass	Pass	Pass
3/4/2019	Pass	Pass	Pass	Pass
5/21/2019	Pass	Fail	Fail	Fail
7/2/2019	Pass	Pass	Fail	<mark>Fail</mark>
9/3/2019	Pass	Pass	Pass	Pass
11/26/2019	Pass	Pass	Pass	Pass
3/9/2020	Pass	Pass	Pass	Pass
5/25/2020	Pass	Pass	Pass	Pass
5/24/2021	Pass	Pass	Pass	Pass
5/23/2022	Pass	Pass	Pass	Pass

* A "passing" result is that in which the replicate data for the TIWC is not statistically significant from the control condition. This is exhibited when the calculated t value ("T-Test Result") is greater than the critical t value. A "failing" result is exhibited when the calculated t value ("T-Test Result") is less than the critical t value.

Is there reasonable potential for an excursion above water quality standards based on the results of these tests? (*NOTE* – *In general, reasonable potential is determined anytime there is at least one test failure in the previous four tests*).

🗌 YES 🖾 NO

Comments: A Phase 1 TRE was triggered due to retest failure on 3rd Q 2019. The Phase 1 TRE required quarterly testing. All 4 quarterly tests passed, and the test frequency reduced to annually. Phase 1 TRE report was submitted to PADEP on June 2020. A TIE was also initiated concurrently. The TRE trigger immediately resulted in an in-plant survey to identify possible causes of toxicity related to changes in process or chemicals used. The Plant Operations indicated there were no changes to plant chemicals or operational procedures. In conjunction with the biological testing laboratory, the permittee instituted an accelerated testing schedule of once every two weeks for three months, in addition to their existing testing frequency, to identify additional samples exhibiting toxicity to perform TIE procedures. All additional tests till date (June 2020) showed no aquatic toxicity. The lack of toxicity in retesting indicates that the original toxicity was an isolated incident which is also evident from later annual testings.

Evaluation of Test Type, IWC and Dilution Series for Renewed Permit

Acute Partial Mix Factor (PMFa): 0.975 Chronic Partial Mix Factor (PMFc): 1

1. Determine IWC – Acute (IWCa):

(Q_d x 1.547) / ((Q₇₋₁₀ x PMFa) + (Q_d x 1.547))

[(1.12 MGD x 1.547) / ((2.88 cfs x 0.975) + (1.12 MGD x 1.547))] x 100 = 38.16%

Is IWCa < 1%? YES X NO (YES - Acute Tests Required OR NO - Chronic Tests Required)

If the discharge is to the tidal portion of the Delaware River, indicate how the type of test was determined:

Type of Test for Permit Renewal: Chronic

2a. Determine Target IWCa (If Acute Tests Required)

TIWCa = IWCa / 0.3 = %

2b. Determine Target IWCc (If Chronic Tests Required)

(Q_d x 1.547) / (Q₇₋₁₀ x PMFc) + (Q_d x 1.547)

[(1.12 MGD x 1.547) / ((2.88 cfs x 1) + (1.12 MGD x 1.547))] x 100 = 37.56%

3. Determine Dilution Series

(NOTE – check Attachment C of WET SOP for dilution series based on TIWCa or TIWCc, whichever applies). Dilution Series = 100%, 69%, 38%, 19%, and 10%.

WET Limits

Has reasonable potential been determined? YES
NO

Will WET limits be established in the permit? \Box YES \boxtimes NO

If WET limits will be established, identify the species and the limit values for the permit (TU).

If WET limits will not be established, but reasonable potential was determined, indicate the rationale for not establishing WET limits:

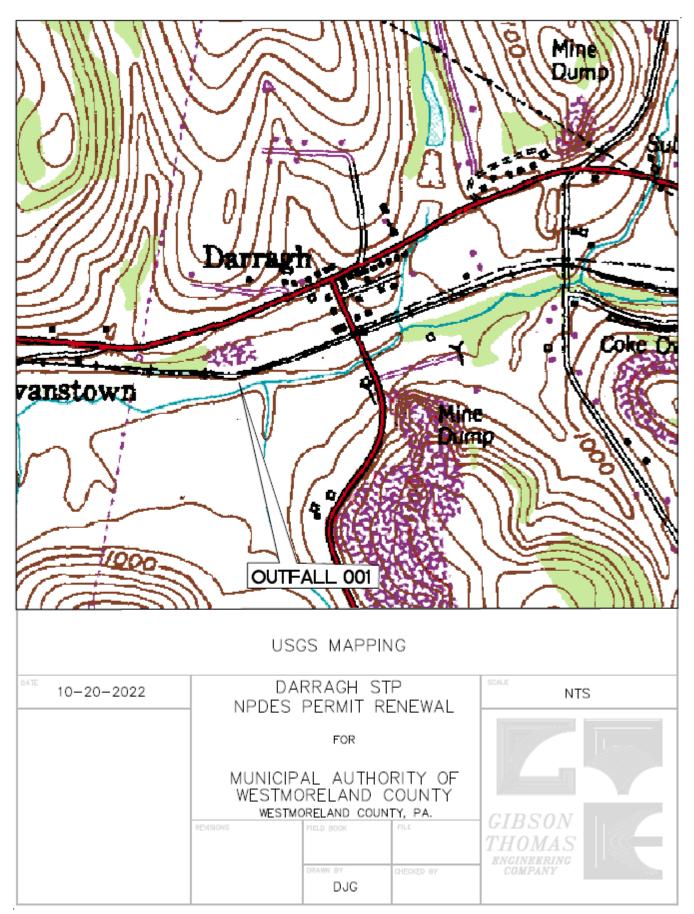
Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

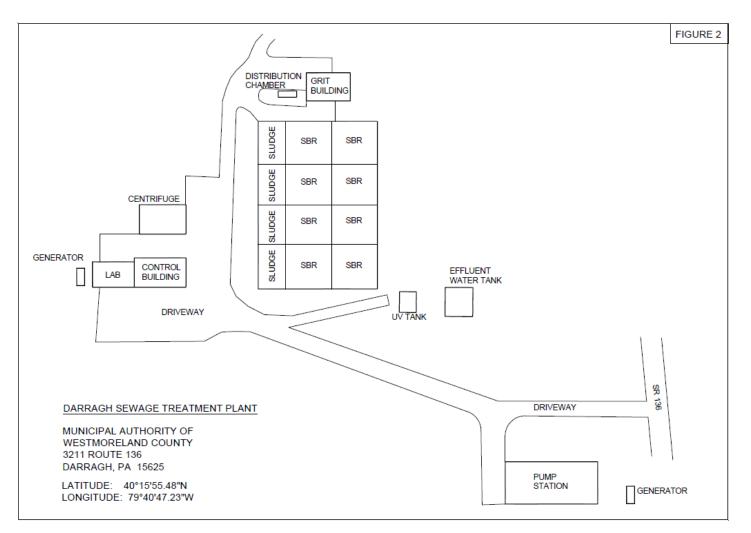
			Effluent Lir	nitations			Monitoring Re	quirements
Parameter	Mass Units (lbs/day) ⁽¹⁾ Concentrations (mg/L)				Minimum ⁽²⁾	Required		
Falance	Average Monthly	Weekly Average	Instantaneous Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	xxx	Continuous	Recorded
рН (S.U.)	XXX	xxx	6.0 Daily Min	XXX	9.0 Daily Max	ххх	1/day	Grab
Dissolved Oxygen	XXX	xxx	6.0 Daily Min	XXX	XXX	ххх	1/day	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5) Nov 1 - Apr 30	233.5	355.0	xxx	25.0	38.0	50	2/week	24-Hr Composite
Carbonaceous Biochemical Oxygen Demand (CBOD5) May 1 - Oct 31	140.1	214.8	xxx	15.0	23.0	30	2/week	24-Hr Composite
Biochemical Oxygen Demand (BOD5) Raw Sewage Influent	Report	Report	xxx	Report	Report	xxx	2/week	24-Hr Composite
Biochemical Oxygen Demand (BOD5)	Report	Report	XXX	Report	Report	xxx	2/week	24-Hr Composite
Total Suspended Solids Raw Sewage Influent	Report	Report	XXX	Report	Report	XXX	2/week	24-Hr Composite
Total Suspended Solids	280.2	420.3	XXX	30.0	45.0	60	2/week	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/week	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/month	Grab
Ultraviolet light transmittance (%)	XXX	xxx	Report	XXX	xxx	xxx	1/day	Recorded

		Effluent Limitations							
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrati	ions (mg/L)		Minimum ⁽²⁾	Required	
Falameter	Average Monthly	Weekly Average	Instantaneous Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type	
		Report			Report			24-Hr	
Total Nitrogen	XXX	Daily Max	XXX	XXX	Daily Max	XXX	1/quarter	Composite	
Ammonia-Nitrogen								24-Hr	
Nov 1 - Apr 30	56.0	XXX	XXX	6.0	XXX	12	2/week	Composite	
Ammonia-Nitrogen								24-Hr	
May 1 - Oct 31	18.68	XXX	XXX	2.0	XXX	4	2/week	Composite	
		Report			Report			24-Hr	
Total Phosphorus	XXX	Daily Max	XXX	XXX	Daily Max	XXX	1/quarter	Composite	
								24-Hr	
Zinc, Total (ug/L)	XXX	XXX	XXX	Report	Report	XXX	1/quarter	Composite	
		Report			Report			24-Hr	
Aluminum, Total	XXX	Daily Max	XXX	XXX	Daily Max	XXX	1/quarter	Composite	
				Report	Report			24-Hr	
Copper, Total (ug/L)	XXX	XXX	XXX	Avg Qrtly	Daily Max	XXX	1/quarter	Composite	
		Report			Report			24-Hr	
Iron, Total	XXX	Daily Max	XXX	XXX	Daily Max	XXX	1/quarter	Composite	
		Report			Report			24-Hr	
Manganese, Total	XXX	Daily Max	XXX	XXX	Daily Max	XXX	1/quarter	Composite	


Compliance Sampling Location: At Outfall 001

Other Comments: None

Tools and References Used to Develop Permit
WOM for Windows Model (see Attachment 1997)
WQM for Windows Model (see Attachment) Toxics Management Spreadsheet (see Attachment)
TRC Model Spreadsheet (see Attachment)
Temperature Model Spreadsheet (see Attachment)
Water Quality Toxics Management Strategy, 361-0100-003, 4/06. Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
Pennsylvania CSO Policy, 385-2000-011, 9/08.
Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
Implementation Guidance Design Conditions, 391-2000-006, 9/97.
Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
Design Stream Flows, 391-2000-023, 9/98.
Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
SOP:
Other:


3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0096211

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0096211

PA0096211 at 001

Collapse All

Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	14.9	square miles
ELEV	Mean Basin Elevation	1165	feet

> Low-Flow Statistics

Low-Flow Statistics Parameters [Low Flow Region 4]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	14.9	square miles	2.26	1400
ELEV	Mean Basin Elevation	1165	feet	1050	2580

Low-Flow Statistics Flow Report [Low Flow Region 4]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, ASEp: Average Standard Error of Prediction, SE: Standard Error (other - see report)

Statistic	Value	Unit	SE	ASEp
7 Day 2 Year Low Flow	0.595	ft*3/s	43	43
30 Day 2 Year Low Flow	1.01	ft^3/s	38	38
7 Day 10 Year Low Flow	0.226	ft^3/s	66	66
30 Day 10 Year Low Flow	0.394	ft^3/s	54	54
90 Day 10 Year Low Flow	0.702	ft^3/s	41	41

Low-Flow Statistics Citations

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0096211

PA0096211 at node 2

Collapse All

> Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	20	square miles
ELEV	Mean Basin Elevation	1145	feet

> Low-Flow Statistics

Low-Flow Statistics Parameters [Low Flow Region 4]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	20	square miles	2.26	1400
ELEV	Mean Basin Elevation	1145	feet	1050	2580

Low-Flow Statistics Flow Report [Low Flow Region 4]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, ASEp: Average Standard Error of Prediction, SE: Standard Error (other - see report)

Statistic	Value	Unit	SE	ASEp	
7 Day 2 Year Low Flow	0.82	ft*3/s	43	43	
30 Day 2 Year Low Flow	1.37	ft^3/s	38	38	
7 Day 10 Year Low Flow	0.322	ft^3/s	66	66	
30 Day 10 Year Low Flow	0.548	ft^3/s	54	54	
90 Day 10 Year Low Flow	0.959	ft*3/s	41	41	

Low-Flow Statistics Citations

Input Data WQM 7.0

	SWP Basir			Stre	am Name		RMI		vation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	19D	375	557 LITTL	E SEWICI	KLEY CRE	EK	6.93	30	933.73	14.90	0.00000	0.00	\checkmark
					S	tream Da	ta						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Terr	<u>Tributary</u> np pH	Tem	<u>Stream</u> p pH	
cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°C)	
Q7-10	0.193	0.00	0.00	0.000	0.000	0.0	0.00	0.0	0 2	2.95 7.3	20 (0.00 0.00)
Q1-10		0.00	0.00	0.000	0.000								
Q30-10		0.00	0.00	0.000	0.000								

	013	scharge D		_ .				
Name	Permit Number	Disc	Permitted Disc Flow (mgd)	Design Disc Flow (mgd)	Res	erve T ctor	Disc emp (°C)	Disc pH
Darragh STP	PA0096211	1.1200	1.1200	1.120	0 0	0.000	25.00	6.5
	Par	rameter D	ata					
	arameter Name	Dis Co	-		eam onc	Fate Coef		
Pi	arameter Name	(mg	/L) (mg	/L) (m	ng/L)	(1/days)		
CBOD5		1	5.00 2	2.00	0.00	1.50)	
Dissolved C	xygen		6.00 8	8.24	0.00	0.00)	
NH3-N			2.00 0	0.00	0.00	0.70)	

	SWP Basin	Strea Coo		Stre	am Name		RMI	Ele	vation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	19D	375	557 LITTL	E SEWICI	KLEY CRE	EK	4.50	0	901.45	20.00	0.00000	0.00	\checkmark
					S	tream Da	ta						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Terr	<u>Tributary</u> p pH	Tem	<u>Stream</u> p pH	
cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°C)	
27-10	0.193	0.00	0.00	0.000	0.000	0.0	0.00	0.0	0 2	2.95 7.5	50 (0.00 0.00	
21-10		0.00	0.00	0.000	0.000								
230-10		0.00	0.00	0.000	0.000								

Input Data WQM 7.0

	Dis	charge D	ata					
Name	Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	Design Disc Flow (mgd)	Reser Fact	ve Te or	isc emp ℃)	Disc pH
		0.0000	0.0000	0.000	0.0 0.0	000	25.00	7.00
	Par	rameter D	ata					
Pa	rameter Name	Dis Co	-		ream Conc	Fate Coef		
Fa	rameter Name	(mg	/L) (mg	/L) (r	ng/L) (1/days)		
CBOD5		2	5.00	2.00	0.00	1.50		
Dissolved O:	xygen	;	3.00	8.24	0.00	0.00		
NH3-N		2	5.00	0.00	0.00	0.70		

		WQM /			M 7.0 Hydrodynamic Outputs							
	SW	P Basin	Strea	m Code				Stream	Name			
		19D	3	7557			LITTLE	SEWICI	KLEY CR	EEK		
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1(0 Flow											
6.930	2.88	0.00	2.88	1.7326	0.00252	.645	27.71	42.94	0.26	0.576	23.72	6.80
Q1-1(0 Flow											
6.930	2.27	0.00	2.27	1.7326	0.00252	NA	NA	NA	0.24	0.623	23.84	6.76
Q30-'	10 Flow											
6.930	3.59	0.00	3.59	1.7326	0.00252	NA	NA	NA	0.28	0.531	23.62	6.84

WOM 7.0 Hydrodynamic Outputs

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0096211

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	\checkmark
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.79	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.25	Temperature Adjust Kr	\checkmark
D.O. Saturation	90.00%	Use Balanced Technology	\checkmark
D.O. Goal	6		

Tuesday, January 24, 2023

Version 1.0b

Page 1 of 1

	SWP Basin	Strea	am Code			St	ream Nam	e		
	19D	3	7557			LITTLE SE	EWICKLEY	r C	REEK	
NH3-N	Acute Alloc	ation	s							
RMI	Discharge	Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)		Multiple Criterion (mg/L)	Multiple WLA (mg/L)		Critical Reach	Percent Reduction
6.9	30 Darragh STR	•	8.35	i	4	8.35		4	0	0
NH3-N	Chronic All	ocati	ons							
RMI	Discharge N		Baseline Criterion (mg/L)	Baseline WLA (mg/L)		Multiple Criterion (mg/L)	Multiple WLA (mg/L)		Critical Reach	Percent Reduction
6.9	30 Darragh STR	•	1.63	3	2	1.63		2	0	0

			CBC		NH	3-N	Dissolved	i Oxygen	Critical	Percent
_	RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	multiple	Daseine	muluple	Reach	Reduction
	6.93 (Darragh STP	15	15	2	2	6	6	0	0

<u>SWP Basin</u> 19D	Stream Code 37557		итти	Stream Name E SEWICKLEY CR	EEK
RMI	Total Discharg	e Flow (mgd	i) <u>Ana</u>	lysis Temperature	(°C) Analysis pH
6.930	1.12	20		23.721	6.801
Reach Width (ft)	Reach De	epth (ft)		Reach WDRatio	Reach Velocity (fps)
27.711	0.64	15		42.944	0.258
Reach CBOD5 (mg/L)	Reach Kc	(1/days)	R	each NH3-N (mg/L	.) Reach Kn (1/days)
6.89	1.08			0.75	0.932
Reach DO (mg/L)	Reach Kr			Kr Equation	Reach DO Goal (mg/L)
7.400	6.72	29		Tsivoglou	6
Reach Travel Time (days)	Subreact	Results		
0.576	TravTime		NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.058	6.39	0.71	7.01	
	0.115	5.93	0.68	6.80	
	0.173	5.51	0.64	6.71	
	0.230	5.11	0.61	6.69	
	0.288	4.75	0.57	6.71	
	0.346	4.41	0.54	6.77	
	0.403	4.09	0.52	6.85	
	0.461	3.80	0.49	6.93	
	0.519		0.46	7.02	
	0.576		0.44	7.11	

WQM 7.0 D.O.Simulation

		Stream Code		2			
	19D	37557		LITTLE SEWICKLEY	CREEK		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
6.930	Darragh STP	PA0096211	1.120	CBOD5	15		
				NH3-N	2	4	
				Dissolved Oxygen			6

WQM 7.0 Effluent Limits

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0096211

Toxics Management Spreadsheet Version 1.3, March 2021

Discharge Information

Instructions)ischarge Stream							
Facility: Da	rragh STP			NPDES Per	mit No.: PA	0096211	Outfall	No.: 001
Evaluation Type	Major Sewage /	Industrial Wast	ie 👘	Wastewater	Description:	Treated sev	vage	
			Discharge	Characterist	ics			
Design Flow			P	artial Mix Fa	actors (PMF	5)	Complete Mi	x Times (min)
(MGD)*	Hardness (mg/l)*	pH (SU)*	AFC	CFC	THH	CRL	Q ₇₋₁₀	Qh
1.12	134	6.5						

					0 If le	ft blank	0.5 lf le	eft blank	6) if left blani	k	1 lf lef	t blank
	Discharge Pollutant	Units	Ma	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L		393		-							
5	Chloride (PWS)	mg/L		95.5									
Group	Bromide	mg/L	<	0.065									
5	Sulfate (PWS)	mg/L		58.5		-							
	Fluoride (PWS)	mg/L				-							
	Total Aluminum	µg/L		11									
	Total Antimony	µg/L		0.431									
	Total Arsenic	µg/L		0.754									
	Total Barium	µg/L		38									
	Total Beryllium	µg/L	<	1									
	Total Boron	µg/L		233									
	Total Cadmium	µg/L	<	0.12		-							
	Total Chromium (III)	µg/L											
	Hexavalent Chromium	µg/L	<	0.1									
	Total Cobalt	µg/L		0.521									
	Total Copper	µg/L		9									
2	Free Cyanide	µg/L		1									
Group	Total Cyanide	µg/L	<	3									
20	Dissolved Iron	µg/L	<	15									
ľ	Total Iron	µg/L		15.5									
	Total Lead	µg/L		0.19									
	Total Manganese	µg/L		5									
	Total Mercury	µg/L	<	0.2									
	Total Nickel	µg/L		4									
	Total Phenols (Phenolics) (PWS)	µg/L		2.8									
	Total Selenium	µg/L		0.695									
	Total Silver	µg/L	<	0.0619									
	Total Thallium	µg/L	<	0.0601									
	Total Zinc	µg/L		42.9									
	Total Molybdenum	µg/L	<	4									
	Acrolein	µg/L	<	0.9									
	Acrylamide	µg/L	<										
	Acrylonitrile	µg/L	<	0.3									
	Benzene	µg/L	<	0.04									
	Bromoform	µg/L	<	0.1									

						_						
	Carbon Tetrachloride	µg/L	<	0.1	Ę,							
	Chlorobenzene	µg/L		0.07								
	Chlorodibromomethane	µg/L	<	0.08	\vdash	+	H					
	Chloroethane	µg/L	<	0.06	Hì	Ť	t					
	2-Chloroethyl Vinyl Ether	µg/L	<	0.1			Ì					
	Chloroform	µg/L		0.1	\Box		Ļ					
	Dichlorobromomethane	µg/L	<	0.08	H		H					
	1,1-Dichloroethane	µg/L	<	0.06	Ħ	+	Ħ					
	1,2-Dichloroethane	µg/L	<	0.08	Ħ		Ť					
	1,1-Dichloroethylene	µg/L	<	0.07		-						
Group	1,2-Dichloropropane	µg/L	<	0.1	Ħ	+	Ħ					╟┼┼┤
ō	1,3-Dichloropropylene	µg/L	<	0.6	Ħ	+	H					╠┼┼┤
	1.4-Dioxane	µg/L	_	0.1	Hì	÷	H			<u> </u>		
	Ethylbenzene	µg/L	<	0.06		+	E					
	Methyl Bromide	µg/L	<	0.00	⊨	+	H				<u> </u>	
			<	0.09	+	+	Н	 				
	Methyl Chloride	µg/L	_		Ħ	+	Ħ				<u> </u>	
	Methylene Chloride	µg/L	<	0.1	Þ	÷	È	 				
	1,1,2,2-Tetrachloroethane	µg/L	<	0.1	H	_	Ļ	 				
	Tetrachloroethylene	µg/L	<	0.09	H		H					
	Toluene	µg/L	<	0.06	H	-	H					
	1,2-trans-Dichloroethylene	µg/L	<	0.1	H		Ì					
	1,1,1-Trichloroethane	µg/L	<	0.06								
	1,1,2-Trichloroethane	µg/L	<	0.08	Ц							
	Trichloroethylene	µg/L	<	0.1	H		H					
	Vinyl Chloride	µg/L	<	0.1			F					
	2-Chlorophenol	µg/L	<	0.164			Ì					
	2,4-Dichlorophenol	µg/L	<	0.204								
	2,4-Dimethylphenol	µg/L	<	0.344	Ħ	+	H					╟┼┼┤
	4.6-Dinitro-o-Cresol	µg/L	<	1.11	Ħ	+	Ħ					╠┼┼┼
4	2,4-Dinitrophenol	µg/L	<	1.72	Hì	÷	Ħ					
Group	2-Nitrophenol	μg/L	<	0.21			Ē					
2	4-Nitrophenol	μg/L	<	0.129	H	+	H					
O	p-Chloro-m-Cresol		<	0.236	+	+	Н					
		µg/L	<	0.230	H	╪	Ħ					
	Pentachlorophenol	µg/L					Ē					
	Phenol	µg/L	<	0.183	H	_	Ļ	 				
<u> </u>	2,4,6-Trichlorophenol	µg/L	<	0.208	⊨	+	╞	 				
	Acenaphthene	µg/L	<	0.321	Ħ	+	Ħ					
	Acenaphthylene	µg/L	<	0.319		1						
	Anthracene	µg/L	<	0.299	\square	_						
	Benzidine	µg/L	<	0.558	\vdash	+	H					
	Benzo(a)Anthracene	µg/L	<	0.248	\vdash		H					
	Benzo(a)Pyrene	µg/L	<	0.228	Ľì	Ť	Ĺ					
	3,4-Benzofluoranthene	µg/L	٨	0.248								
	Benzo(ghi)Perylene	µg/L	٨	0.376	\vdash							
	Benzo(k)Fluoranthene	µg/L	<	0.306	H		F					
	Bis(2-Chloroethoxy)Methane	µg/L	<	0.214	F		Í.					
	Bis(2-Chloroethyl)Ether	µg/L	<	0.247								
	Bis(2-Chloroisopropyl)Ether	µg/L	<	0.247	Ħ	+	Ħ					
	Bis(2-Ethylhexyl)Phthalate	µg/L	<	0.145	Ħ	+	Ħ					
	4-Bromophenyl Phenyl Ether	µg/L	<	0.361	Ħ	-	Ť					
	Butyl Benzyl Phthalate	µg/L	<	0.954	Ħ		Ħ					
	2-Chloronaphthalene	μg/L	<	0.322	Ħ							
	4-Chlorophenyl Phenyl Ether	μg/L	<	311	H		H					
			<		H		+					
	Chrysene Diberze(a b)Anthrancene	µg/L		0.467	Ħ		Ē					
	Dibenzo(a,h)Anthrancene	µg/L	<	0.378			Ļ					
	1,2-Dichlorobenzene	µg/L	<	0.178								
	1,3-Dichlorobenzene	µg/L	<	0.39	H	-	\vdash					
ŝ	1,4-Dichlorobenzene	µg/L	<	0.427	H							
-	3,3-Dichlorobenzidine	µg/L	<	0.681	Ľ		Ē					
5		µg/L	<	0.777								
roup	Diethyl Phthalate	P8/L										
_	Diethyl Phthalate Dimethyl Phthalate	µg/L	<	0.468								
Group			< <	0.468 2.47								

								-	 		 		
_	,6-Dinitrotoluene	µg/L	<	0.41	Ļ	Ц	_		 				
	i-n-Octyl Phthalate	µg/L		1.39									
1,	,2-Diphenylhydrazine	µg/L	<	0.482		_							
F	luoranthene	µg/L	<	0.573		극							
F	luorene	µg/L	<	0.284		ī							
H	lexachlorobenzene	µg/L	<	0.382									
	lexachlorobutadiene	µg/L	<	0.243		4	_						
	lexachlorocyclopentadiene	µg/L	<	0.369	Ħ	=	=	+	 				
_ _	lexachloroethane		<	0.433	H	÷	-	+	 				┼┼┼┼
	ndeno(1,2,3-cd)Pyrene	µg/L	<	0.358	Ħ	÷	=	+	 	 			
		µg/L			Ĥ	Ŧ	Ì	_	 				
	sophorone	µg/L	<	0.234		ļ	_		 	 			
	laphthalene	µg/L	<	0.234	\square	4	_	4					
_ _	litrobenzene	µg/L	<	0.222		4							
n	-Nitrosodimethylamine	µg/L	<	0.219		\uparrow		-					
n	-Nitrosodi-n-Propylamine	µg/L	<	0.386		Ē	7						
n	-Nitrosodiphenylamine	µg/L	<	0.338									
	henanthrene	µg/L	<	0.385	II.	∃	_		 				
_ _	yrene	µg/L	<	0.539	Ħ	=	=	+	 				
	,2,4-Trichlorobenzene	µg/L	<	0.25	H	÷	+	+	 				╞┼┼┼
_			<	0.20	Ħ	÷	+	+	 	 			
	Idrin	µg/L			F	Ŧ	Ŧ	1					
	lpha-BHC	µg/L	<	ļ		ļ			 				
	eta-BHC	µg/L	<					-					
	amma-BHC	µg/L	<		\vdash			_					
d	elta BHC	µg/L	<			7		-					
C	hlordane	µg/L	<			7		T					
4	4-DDT	µg/L	<		T	T	Ť						
	4-DDE	µg/L	<			E			 				
	,4-DDD	µg/L	<		Et.	∃	_	+	 				
)ieldrin		<		H	╡	-	+	 				
_ _		µg/L			\vdash	+	-	+	 		 		
_ _	lpha-Endosulfan	µg/L	<		Ħ	4	=	+	 	 			
	eta-Endosulfan	µg/L	<		F	Ì		-					
9 E	ndosulfan Sulfate	µg/L	<										
Group	ndrin	µg/L	<		\square	4							
δE	ndrin Aldehyde	µg/L	<			7		-					
	leptachlor	µg/L	<			7	-	-					
H	leptachlor Epoxide	µg/L	<		T	Ť	Ť	+					
	CB-1016	µg/L	<		Ē	Ť	Ť	-					
_ _	CB-1221	µg/L	<			Ę	=						
	CB-1221		<		H	╡	-	+	 				
		µg/L			\vdash	+	-	+	 				
_	PCB-1242	µg/L	<	ļ	Þ	4	=	+	 				
	CB-1248	µg/L	<	ļ	Ħ	4			 				
	CB-1254	µg/L	<			Ì	Ì	_					
_	CB-1260	µg/L	<										
	CBs, Total	µg/L	<			4		-					
	oxaphene	µg/L	<		F	7	-	-					
	,3,7,8-TCDD	ng/L	<		T	Ť		T					
	Bross Alpha	pCi/L			Ì	Ĵ	Ì	T					
-	otal Beta	pCi/L	<		Ħ	Ę	Ħ	+					
2 d	adium 226/228	pCi/L	<		H	+	+	+					
	otal Strontium		<		H	+	+	+					
δĻ		µg/L			Ħ	÷	=	+	 				
-	otal Uranium	µg/L	<		Ĥ	Ŧ	Ì	-	 				
0	Ismotic Pressure	mOs/kg		ļ	Ц,	ļ	_		 				
			\square		Ц	4							
								-					
					F	-		T					
					Ť	Ť	7	T					
			\vdash			∃			 				
					Ħ	4	1	+					
					H	4	-	+					
					H	4	+	+					
			1 1	(1	-	-	-					
					+	+	-	+					

Stream / Surface Water Information

Toxics Management Spreadsheet Version 1.3, March 2021

Darragh STP, NPDES Permit No. PA0096211, Outfall 001

Instructions Discharge Stream

Receiving Surface Water Name: Little Sewickley Creek

No. Reaches to Model:	1
-----------------------	---

Location	Stream Code*	RMI*	Elevation (ft)*	DA (mi ²)"	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*
Point of Discharge	037557	6.93	933.73	14.9			Yes
End of Reach 1	037557	4.5	901.45	20			Yes

Statewide Criteria
 Great Lakes Criteria
 ORSANCO Criteria

Q	7-10

~ /-10															
Location	RMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time	Tributa	ary	Stream	m	Analys	is
Location	TSWI1	(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness*	pH*	Hardness	pН
Point of Discharge	6.93	0.193										95.5	7.2		
End of Reach 1	4.5	0.193										95.5	7.2		

Qn

Location	RMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time	Tributa	ary	Stream	m	Analys	is
Location	TSIMI	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness	pН	Hardness	pН
Point of Discharge	6.93														
End of Reach 1	4.5														

Stream / Surface Water Information

2/17/2023

Toxics Management Spreadsheet Version 1.3, March 2021

Model Results

Darragh STP, NPDES Permit No. PA0096211, Outfall 001

Instructions Results	RETURN	TO INPU	тѕ)	SAVE AS	PDF	PRINT	A (0)	ll ◯ Inputs ◯ Results ◯ Limits
Hydrodynamics								
Wasteload Allocations								
✓ AFC co	Г (min): 1	15	PMF:	0.975	Ana	lysis Hardne	ss (mg/l):	110.2 Analysis pH: 6.80
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	750	750	1,964	
Total Antimony	0	0		0	1,100	1,100	2,881	
Total Arsenic	0	0		0	340	340	890	Chem Translator of 1 applied
Total Barium	0	0		0	21,000	21,000	55,000	
Total Boron	0	0		0	8,100	8,100	21,214	
Total Cadmium	0	0		0	2.213	2.35	6.17	Chem Translator of 0.94 applied
Hexavalent Chromium	0	0		0	16	16.3	42.7	Chem Translator of 0.982 applied
Total Cobalt	0	0		0	95	95.0	249	
Total Copper	0	0		0	14.727	15.3	40.2	Chem Translator of 0.96 applied
Free Cyanide	0	0		0	22	22.0	57.6	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	71.774	92.4	242	Chem Translator of 0.777 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	1.400	1.65	4.31	Chem Translator of 0.85 applied
Total Nickel	0	0		0	508.336	509	1,334	Chem Translator of 0.998 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	Chem Translator of 0.922 applied
Total Silver	0	0		0	3.802	4.47	11.7	Chem Translator of 0.85 applied
Total Thallium	0	0		0	65	65.0	170	
Total Zinc	0	0		0	127.232	130	341	Chem Translator of 0.978 applied
Acrolein	0	0		0	3	3.0	7.86	
Acrylonitrile	0	0		0	650	650	1,702	

Model Results

2/17/2023

Benzene	0	0	0	640	640	1,676	
Bromoform	0	ō	- o	1.800	1.800	4,714	
Carbon Tetrachloride	0	0	0	2,800	2.800	7,333	
Chlorobenzene	0	ŏ	ŏ	1.200	1.200	3,143	
Chlorodibromomethane	0	ŏ	- <u></u>	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0	0	18.000	18.000	47,143	
Chloroform	0	0		1,900	1,900	47,143	
Dichlorobromomethane	0	0	0	1,900 N/A			
1.2-Dichloroethane	0	0	0	15,000	N/A 15.000	N/A 39,285	
	-	-	-	-			
1,1-Dichloroethylene	0	0	0	7,500	7,500	19,643	
1,2-Dichloropropane	0	0	0	11,000	11,000	28,809	
1,3-Dichloropropylene	0	0	0	310	310	812	
Ethylbenzene	0	0	0	2,900	2,900	7,595	
Methyl Bromide	0	0	- 0	550	550	1,440	
Methyl Chloride	0	0	0	28,000	28,000	73,333	
Methylene Chloride	0	0	0	12,000	12,000	31,428	
1,1,2,2-Tetrachloroethane	0	0	0	1,000	1,000	2,619	
Tetrachloroethylene	0	0	- 0	700	700	1,833	
Toluene	0	0	0	1,700	1,700	4,452	
1,2-trans-Dichloroethylene	0	0	0	6,800	6,800	17,809	
1,1,1-Trichloroethane	0	0	0	3,000	3,000	7,857	
1,1,2-Trichloroethane	0	0	0	3,400	3,400	8,905	
Trichloroethylene	0	0	0	2,300	2,300	6,024	
Vinyl Chloride	0	0	0	N/A	N/A	N/A	
2-Chlorophenol	0	0	- 0	560	560	1,467	
2,4-Dichlorophenol	0	0	0	1,700	1,700	4,452	
2,4-Dimethylphenol	0	0	0	660	660	1,729	
4,6-Dinitro-o-Cresol	0	0	0	80	80.0	210	
2,4-Dinitrophenol	0	0	- 0	660	660	1,729	
2-Nitrophenol	0	0	0	8,000	8,000	20,952	
4-Nitrophenol	0	0	0	2,300	2,300	6,024	
p-Chloro-m-Cresol	0	0	0	160	160	419	
Pentachlorophenol	0	0	0	7.110	7.11	18.6	
Phenol	0	0	0	N/A	N/A	N/A	
2.4.6-Trichlorophenol	0	0	0	460	460	1,205	
Acenaphthene	ō	ō	0	83	83.0	217	
Anthracene	0	0	0	N/A	N/A	N/A	
Benzidine	0	0	0	300	300	786	
Benzo(a)Anthracene	0	0	0	0.5	0.5	1.31	
Benzo(a)Pyrene	0	ŏ	- O	N/A	N/A	N/A	
3.4-Benzofluoranthene	0	ŏ	ŏ	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	ŏ	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	ŏ	ŏ	30.000	30.000	78.571	
Bis(2-Chloroisopropyl)Ether	0	ŏ	0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	0	4,500	4,500	11,786	
4-Bromophenyl Phenyl Ether	0	0	0	270	270	707	
4-Bromophenyi Phenyi Ether Butyl Benzyl Phthalate	0	0	0	270	270	367	
2-Chloronaphthalene	0	0		140 N/A	140 N/A	367 N/A	
2-Onioronaphthalene	U	U	U	DV/A	DVA	DV/A	ļ

Model Results

2/17/2023

Chrysene	0	0		0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0		0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0		0	820	820	2,148	
1,3-Dichlorobenzene	0	0		0	350	350	917	
1,4-Dichlorobenzene	0	0		0	730	730	1,912	
3,3-Dichlorobenzidine	0	0		0	N/A	N/A	N/A	
Diethyl Phthalate	0	0		0	4,000	4,000	10,476	
Dimethyl Phthalate	0	0		0	2,500	2,500	6,548	
Di-n-Butyl Phthalate	0	0		0	110	110	288	
2,4-Dinitrotoluene	0	0		0	1,600	1,600	4,190	
2,6-Dinitrotoluene	0	0		0	990	990	2,593	
1,2-Diphenylhydrazine	0	0		0	15	15.0	39.3	
Fluoranthene	0	0		0	200	200	524	
Fluorene	0	0		0	N/A	N/A	N/A	
Hexachlorobenzene	0	0		0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0		0	10	10.0	26.2	
Hexachlorocyclopentadiene	0	0		0	5	5.0	13.1	
Hexachloroethane	0	0		0	60	60.0	157	
Indeno(1,2,3-cd)Pyrene	0	0		0	N/A	N/A	N/A	
Isophorone	0	0		0	10,000	10,000	26,190	
Naphthalene	0	0		0	140	140	367	
Nitrobenzene	0	0		0	4,000	4.000	10,476	
n-Nitrosodimethylamine	0	0		0	17,000	17,000	44,524	
n-Nitrosodi-n-Propylamine	0	0		0	N/A	N/A	N/A	
n-Nitrosodiphenvlamine	0	0		0	300	300	786	
n-Nitrosodiphenylamine Phenanthrene	0	0		0	300 5	300 5.0	786	
Phenanthrene	-	-		-				
	0	0		0	5	5.0	13.1	
Phenanthrene Pyrene 1,2,4-Trichlorobenzene	0 0 0 T (min): 15.	0	PMF:	0	5 N/A 130	5.0 N/A	13.1 N/A 340	109.98 Analysis pH: 6.80
Phenanthrene Pyrene 1,2,4-Trichlorobenzene CFC CC	0 0 0 T (min): 15.	0	PMF: Trib Conc	0	5 N/A 130	5.0 N/A 130	13.1 N/A 340 ss (mg/l):	
Phenanthrene Pyrene 1,2,4-Trichlorobenzene	0 0 T (min): 15. Stream Conc	0 0 0 763		0 0 1	5 N/A 130	5.0 N/A 130 Ilysis Hardne	13.1 N/A 340	
Phenanthrene Pyrene 1,2,4-Trichlorobenzene CFC CC	0 0 0 T (min): 15.	0 0 0 .763 Stream	Trib Conc	0 0 0 1 Fate	5 N/A 130 Ana WQC	5.0 N/A 130 Ilysis Hardne WQ Obj	13.1 N/A 340 ss (mg/l):	
Phenanthrene Pyrene 1.2.4-Trichlorobenzene CFC CC1 Pollutants	0 0 T (min): 15. Stream Conc	0 0 0 763 Stream CV	Trib Conc	0 0 0 1 Fate Coef	5 N/A 130 MQC (µg/L)	5.0 N/A 130 Ilysis Hardne WQ Obj (µg/L)	13.1 N/A 340 ss (mg/l): WLA (µg/L)	
Phenanthrene Pyrene 1,2,4-Trichlorobenzene CFC CCT Pollutants Total Dissolved Solids (PWS)	0 0 T (min): 15. Stream Conc (unl) 0	0 0 .763 Stream CV 0	Trib Conc	0 0 0 1 Fate Coef 0	5 N/A 130 MQC (µg/L) N/A	5.0 N/A 130 Ilysis Hardne WQ Obj (µg/L) N/A	13.1 N/A 340 ss (mg/l): WLA (µg/L) N/A	
Phenanthrene Pyrene 1,2,4-Trichlorobenzene CFC CCT Pollutants Total Dissolved Solids (PWS) Chloride (PWS)	0 0 T (min): 15. Suream Conc (unl) 0 0	0 0 763 Stream CV 0 0	Trib Conc	0 0 1 Fate Coef 0 0	5 N/A 130 Ana WQC (µg/L) N/A N/A	5.0 N/A 130 Nysis Hardne WQ Obj (µg/L) N/A N/A	13.1 N/A 340 ss (mg/l): WLA (μg/L) N/A N/A	
Phenanthrene Pyrene 1.2.4-Trichlorobenzene CFC CC Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS)	0 0 T (min): 15. Sueam Conc (und) 0 0 0	0 0 763 Stream CV 0 0 0	Trib Conc	0 0 0 1 Fate Coef 0 0 0	5 N/A 130 Max (µg/L) N/A N/A N/A	5.0 N/A 130 Nysis Hardne WQ Obj (µg/L) N/A N/A N/A	13.1 N/A 340 ss (mg/l): WLA (µg/L) N/A N/A N/A	
Phenanthrene Pyrene 1,2,4-Trichlorobenzene CFC CCT Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Aluminum	0 0 0 T (min): 15. Suream Conc (und) 0 0 0 0	0 0 763 Stream CV 0 0 0 0	Trib Conc	0 0 1 Fate Coef 0 0 0 0	5 N/A 130 Max (µg/L) N/A N/A N/A N/A	5.0 N/A 130 Ilysis Hardne WQ Obj (µg/L) N/A N/A N/A N/A	13.1 N/A 340 ss (mg/l): WLA (µg/L) N/A N/A N/A N/A	Comments
Phenanthrene Pyrene 1.2.4-Trichlorobenzene CFC CCT Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Aluminum Total Aluminum Total Antimony Total Arsenic	0 0 0 T (min): 15. Stream Conc (unfl) 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Trib Conc	0 0 1 Fate Coef 0 0 0 0 0 0 0	5 N/A 130 Ana WQC (µg/L) N/A N/A N/A N/A N/A 220 150	5.0 N/A 130 N/Sis Hardne WQ Obj (µg/L) N/A N/A N/A N/A N/A 220 150	13.1 N/A 340 ss (mg/l): WLA (µg/L) N/A N/A N/A N/A 585 399	
Phenanthrene Pyrene 1.2.4-Trichlorobenzene CFC CC1 Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Aluminum Total Antimony Total Antimony Total Arsenic Total Barium	0 0 0 T (min): 15. Sureann Conc (und) 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Trib Conc	0 0 1 Fate Coef 0 0 0 0 0 0 0 0 0	5 N/A 130 WQC (μg/L) N/A N/A N/A N/A N/A 220 150 4,100	5.0 N/A 130 N/Sis Hardne WQ Obj (µg/L) N/A N/A N/A N/A N/A 220 150 4,100	13.1 N/A 340 ss (mg/l): WLA (µg/L) N/A N/A N/A N/A 585 399 10,905	Comments
Phenanthrene Pyrene 1.2.4-Trichlorobenzene ✓ CFC CCT Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron	0 0 0 5ueam Conc (unll) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 763 Stream CV 0 0 0 0 0 0 0 0 0 0 0	Trib Conc	0 0 1 Fate Coef 0 0 0 0 0 0 0 0 0 0	5 N/A 130 WQC (μg/L) N/A N/A N/A N/A N/A 150 4,100 1,600	5.0 N/A 130 N/Sis Hardne WQ Obj (µg/L) N/A N/A N/A N/A N/A 150 150 4,100 1,600	13.1 N/A 340 ss (mg/l): WLA (µg/L) N/A N/A N/A N/A N/A 585 399 10,905 4,256	Comments Chem Translator of 1 applied
Phenanthrene Pyrene 1.2.4-Trichlorobenzene CFC CC Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Aluminum Total Antimony Total Arsenic Total Barium Total Barium Total Boron Total Cadmium	0 0 0 T (min): 15. Sueam Conc (unl) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 763 Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0	Trib Conc	0 0 1 Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0	5 N/A 130 WQC (µg/L) N/A N/A N/A N/A N/A 220 150 4,100 1,600 0.263	5.0 N/A 130 N/Sis Hardnee WQ Obj (µg/L) N/A N/A N/A N/A N/A N/A 220 150 4,100 1,600 0.29	13.1 N/A 340 ss (mg/l): WLA (μg/L) N/A N/A N/A N/A N/A N/A 585 399 10,905 4,256 0.77	Comments Chem Translator of 1 applied Chem Translator of 0.905 applied
Phenanthrene Pyrene 1,2,4-Trichlorobenzene CFC CCT Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Aluminum Total Antimony Total Arsenic Total Barium Total Barium Total Barium Total Cadmium Hexavalent Chromium	0 0 0 T (min): 15. Suream Conc (unt) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 763 Stream CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Trib Conc	0 0 1 Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 N/A 130 WQC (µg/L) N/A N/A N/A N/A N/A 220 150 1,600 0.263 10	5.0 N/A 130 N/S Hardne WQ Obj (µg/L) N/A N/A N/A N/A N/A N/A 220 150 4,100 1,600 0.29 10.4	13.1 N/A 340 ss (mg/l): WLA (μg/L) N/A N/A N/A N/A N/A N/A 585 399 10,905 4,256 0.77 27.6	Comments Chem Translator of 1 applied
Phenanthrene Pyrene 1,2,4-Trichlorobenzene CFC CCT Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Aluminum Total Antimony Total Arsenic Total Barium Total Barium Total Boron Total Cadmium Hexavalent Chromium Total Cobalt	0 0 0 T (min): 15. Stream Conc (und) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 763 763 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Trib Conc	0 0 1 Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 N/A 130 Ana WQC (µg/L) N/A N/A N/A N/A N/A 220 150 4,100 1,600 0.263 10 19	5.0 N/A 130 N/A VQ Obj (µg/L) N/A N/A N/A N/A 220 150 4.100 1.600 0.29 10.4 19.0	13.1 N/A 340 ss (mg/l): WLA (μg/L) N/A N/A N/A N/A N/A N/A 585 399 10,905 4,256 0.77 27.6 50.5	Comments Chem Translator of 1 applied Chem Translator of 0.905 applied Chem Translator of 0.962 applied
Phenanthrene Pyrene 1.2.4-Trichlorobenzene CFC CC Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Aluminum Total Aluminum Total Antimony Total Assenic Total Barium Total Barium Total Boron Total Boron Total Cadmium Hexavalent Chromium Total Cobalt Total Copper	0 0 0 T (min): 15. Stream Conc (unfl) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 763 763 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Trib Conc	0 0 0 1 Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 N/A 130 WQC (µg/L) N/A N/A N/A N/A N/A 220 150 4,100 1,800 0.263 10 19 9,714	5.0 N/A 130 N/A N/A N/A N/A N/A N/A N/A N/A N/A 150 4,100 1,800 0.29 10.4 19.0 10.1	13.1 N/A 340 ss (mg/l): WLA (µg/L) N/A N/A N/A N/A N/A N/A N/A N/A 585 399 10,905 4,256 0.77 27.8 50.5 28.9	Comments Chem Translator of 1 applied Chem Translator of 0.905 applied
Phenanthrene Pyrene 1,2,4-Trichlorobenzene CFC CCT Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Aluminum Total Antimony Total Arsenic Total Barium Total Barium Total Boron Total Cadmium Hexavalent Chromium Total Cobalt	0 0 0 T (min): 15. Stream Conc (und) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 763 763 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Trib Conc	0 0 1 Fate Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 N/A 130 Ana WQC (µg/L) N/A N/A N/A N/A N/A 220 150 4,100 1,600 0.263 10 19	5.0 N/A 130 N/A VQ Obj (µg/L) N/A N/A N/A N/A 220 150 4.100 1.600 0.29 10.4 19.0	13.1 N/A 340 ss (mg/l): WLA (μg/L) N/A N/A N/A N/A N/A N/A 585 399 10,905 4,256 0.77 27.6 50.5	Comments Chem Translator of 1 applied Chem Translator of 0.905 applied Chem Translator of 0.962 applied

Model Results

2/17/2023

Total Iron	0	0	0	1,500	1,500	3,990	WQC = 30 day average; PMF = 1
Total Lead	0	0	0	2.791	3.59	9.55	Chem Translator of 0.777 applied
Total Manganese	0	0	0	N/A	N/A	N/A	
Total Mercury	0	0	0	0.770	0.91	2.41	Chem Translator of 0.85 applied
Total Nickel	0	0	0	56.363	56.5	150	Chem Translator of 0.997 applied
Total Phenols (Phenolics) (PWS)	0	0	0	N/A	N/A	N/A	
Total Selenium	0	0	0	4.600	4.99	13.3	Chem Translator of 0.922 applied
Total Silver	0	0	0	N/A	N/A	N/A	Chem Translator of 1 applied
Total Thallium	0	0	0	13	13.0	34.6	
Total Zinc	0	0	0	128.051	130	345	Chem Translator of 0.986 applied
Acrolein	0	0	0	3	3.0	7.98	
Acrylonitrile	0	0	0	130	130	346	
Benzene	0	0	0	130	130	346	
Bromoform	0	0	0	370	370	984	
Carbon Tetrachloride	0	0	0	560	560	1,489	
Chlorobenzene	0	0	0	240	240	638	
Chlorodibromomethane	0	0	0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0	0	3,500	3,500	9,309	
Chloroform	0	0	0	390	390	1,037	
Dichlorobromomethane	0	0	0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0	0	3,100	3,100	8,245	
1,1-Dichloroethylene	0	0	0	1,500	1,500	3,990	
1,2-Dichloropropane	0	0	0	2,200	2,200	5,851	
1,3-Dichloropropylene	0	0	0	61	61.0	162	
Ethylbenzene	0	0	0	580	580	1,543	
Methyl Bromide	0	0	0	110	110	293	
Methyl Chloride	0	0	0	5,500	5,500	14,628	
Methylene Chloride	0	0	0	2,400	2,400	6,383	
1,1,2,2-Tetrachloroethane	0	0	0	210	210	559	
Tetrachloroethylene	0	0	0	140	140	372	
Toluene	0	0	0	330	330	878	
1,2-trans-Dichloroethylene	0	0	0	1,400	1,400	3,724	
1,1,1-Trichloroethane	0	0	0	610	610	1,622	
1,1,2-Trichloroethane	0	0	0	680	680	1,809	
Trichloroethylene	0	0	0	450	450	1,197	
Vinyl Chloride	0	0	0	N/A	N/A	N/A	
2-Chlorophenol	0	0	0	110	110	293	
2,4-Dichlorophenol	0	0	0	340	340	904	
2,4-Dimethylphenol	0	0	0	130	130	346	
4,6-Dinitro-o-Cresol	0	0	0	16	16.0	42.6	
2,4-Dinitrophenol	0	0	0	130	130	346	
2-Nitrophenol	0	0	0	1,600	1,600	4,256	
4-Nitrophenol	0	0	0	470	470	1,250	
p-Chloro-m-Cresol	0	0	0	500	500	1,330	
Pentachlorophenol	0	0	0	5,455	5.46	14.5	

Model Results

2/17/2023

Phenol	0	0		0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0		0	91	91.0	242	
Acenaphthene	0	0		ō	17	17.0	45.2	
Anthracene	0	0	+++	0	N/A	N/A	N/A	
Benzidine	0	0		0	59	59.0	157	
Benzo(a)Anthracene	0	0		ō	0.1	0.1	0.27	
Benzo(a)Pyrene	0	0		0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0	+++	0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0		0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0		0	6,000	6,000	15,958	
Bis(2-Chloroisopropyl)Ether	0	0	+++	0	0,000 N/A	0,000 N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0		0	910	910	2,420	
4-Bromophenyl Phenyl Ether	0	0		0	54	54.0	144	
Butyl Benzyl Phthalate	0	0	+++	0	35	35.0	93.1	
	0	-		-			93.1 N/A	
2-Chloronaphthalene	-	0		0	N/A	N/A		
Chrysene	0	0		0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0		0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0		0	160	160	426	
1,3-Dichlorobenzene	0	0		0	69	69.0	184	
1,4-Dichlorobenzene	0	0		0	150	150	399	
3,3-Dichlorobenzidine	0	0		0	N/A	N/A	N/A	
Diethyl Phthalate	0	0		0	800	800	2,128	
Dimethyl Phthalate	0	0		- 0	500	500	1,330	
Di-n-Butyl Phthalate	0	0		0	21	21.0	55.9	
2,4-Dinitrotoluene	0	0		0	320	320	851	
2,6-Dinitrotoluene	0	0		0	200	200	532	
1,2-Diphenylhydrazine	0	0		0	3	3.0	7.98	
Fluoranthene	0	0		0	40	40.0	106	
Fluorene	0	0		0	N/A	N/A	N/A	
Hexachlorobenzene	0	0		0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0		0	2	2.0	5.32	
Hexachlorocyclopentadiene	0	0		- 0	1	1.0	2.66	
Hexachloroethane	0	0		0	12	12.0	31.9	
Indeno(1,2,3-cd)Pyrene	0	0		0	N/A	N/A	N/A	
Isophorone	0	0		- 0	2,100	2,100	5,585	
Naphthalene	0	0		0	43	43.0	114	
Nitrobenzene	0	0		0	810	810	2,154	
n-Nitrosodimethylamine	0	0		- 0	3,400	3,400	9,043	
n-Nitrosodi-n-Propylamine	0	0		0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0		0	59	59.0	157	
Phenanthrene	0	0		0	1	1.0	2.66	
Pyrene	0	0		0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0		0	26	26.0	69.2	
<i>⊡ THH</i> cc	T (min): 15.	.763	 PMF:	1	Ana	alysis Hardne	ss (mg/l):	N/A Analysis pH: N/A

Model Results

2/17/2023

Pollutants	Conc	Stream		Fate	WQC	WQ Obj	WLA (µg/L)	Comments
	(ug/L)	CV	(µg/L)	Coef	(µg/L)	(µg/L)	(pg/c)	oon in cito
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A	
Chloride (PWS)	0	0		0	250,000	250,000	N/A	
Sulfate (PWS)	0	0		0	250,000	250,000	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	5.6	5.6	14.9	
Total Arsenic	0	0		0	10	10.0	26.6	
Total Barium	0	0		0	2,400	2,400	6,383	
Total Boron	0	0		0	3,100	3,100	8,245	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Free Cyanide	0	0		0	4	4.0	10.6	
Dissolved Iron	0	0		0	300	300	798	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	1,000	1,000	2,660	
Total Mercury	0	0		0	0.050	0.05	0.13	
Total Nickel	0	0		0	610	610	1,622	
Total Phenols (Phenolics) (PWS)	0	0		0	5	5.0	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	0.24	0.24	0.64	
Total Zinc	0	0		0	N/A	N/A	N/A	
Acrolein	0	0		0	3	3.0	7.98	
Acrylonitrile	0	0		0	N/A	N/A	N/A	
Benzene	0	0		0	N/A	N/A	N/A	
Bromoform	0	0		0	N/A	N/A	N/A	
Carbon Tetrachloride	0	0		0	N/A	N/A	N/A	
Chlorobenzene	0	0		0	100	100.0	266	
Chlorodibromomethane	0	0		0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0		0	N/A	N/A	N/A	
Chloroform	0	0		0	5.7	5.7	15.2	
Dichlorobromomethane	0	0		0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0		0	N/A	N/A	N/A	
1,1-Dichloroethylene	0	0		0	33	33.0	87.8	
1,2-Dichloropropane	0	0		0	N/A	N/A	N/A	
1,3-Dichloropropylene	0	0		0	N/A	N/A	N/A	
Ethylbenzene	0	0		0	68	68.0	181	
Methyl Bromide	0	0		0	100	100.0	266	
Methyl Chloride	0	0		0	N/A	N/A	N/A	
Methylene Chloride	0	0		0	N/A	N/A	N/A	

Model Results

2/17/2023

1,1,2,2-Tetrachloroethane	0	0				0	N/A	N/A	N/A	
Tetrachloroethylene	0	0				0	N/A	N/A	N/A	
Toluene	0	0				0	57	57.0	152	
1,2-trans-Dichloroethylene	0	0		++	+	0	100	100.0	266	
1,1,1-Trichloroethane	0	0				0	10,000	10,000	26,597	
1,1,2-Trichloroethane	0	0				0	N/A	N/A	N/A	
Trichloroethylene	0	0	11	++	H	0	N/A	N/A	N/A	
Vinyl Chloride	0	0			Ì	0	N/A	N/A	N/A	
2-Chlorophenol	0	0		++	-	0	30	30.0	79.8	
2,4-Dichlorophenol	0	0				0	10	10.0	26.6	
2,4-Dimethylphenol	0	0				0	100	100.0	266	
4,6-Dinitro-o-Cresol	0	0				0	2	2.0	5.32	
2,4-Dinitrophenol	0	0				0	10	10.0	26.6	
2-Nitrophenol	0	0				0	N/A	N/A	N/A	
4-Nitrophenol	0	0				0	N/A	N/A	N/A	
p-Chloro-m-Cresol	0	0				0	N/A	N/A	N/A	
Pentachlorophenol	0	0				0	N/A	N/A	N/A	
Phenol	0	0				0	4,000	4,000	10,639	
2,4,6-Trichlorophenol	0	0				0	N/A	N/A	N/A	
Acenaphthene	0	0				0	70	70.0	186	
Anthracene	0	0				0	300	300	798	
Benzidine	0	0				0	N/A	N/A	N/A	
Benzo(a)Anthracene	0	0				0	N/A	N/A	N/A	
Benzo(a)Pyrene	0	0				0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0				0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0				0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0				0	N/A	N/A	N/A	
Bis(2-Chloroisopropyl)Ether	0	0				0	200	200	532	
Bis(2-Ethylhexyl)Phthalate	0	0				0	N/A	N/A	N/A	
4-Bromophenyl Phenyl Ether	0	0				0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0				0	0.1	0.1	0.27	
2-Chloronaphthalene	0	0				0	800	800	2,128	
Chrysene	0	0			1	0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0				0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0				0	1,000	1,000	2,660	
1,3-Dichlorobenzene	0	0				0	7	7.0	18.6	
1,4-Dichlorobenzene	0	0				0	300	300	798	
3,3-Dichlorobenzidine	0	0				0	N/A	N/A	N/A	
Diethyl Phthalate	0	0				0	600	600	1,596	
Dimethyl Phthalate	0	0				0	2,000	2,000	5,319	
Di-n-Butyl Phthalate	0	0				0	20	20.0	53.2	
2,4-Dinitrotoluene	0	0				0	N/A	N/A	N/A	
2,6-Dinitrotoluene	0	0			-	0	N/A	N/A	N/A	
1,2-Diphenylhydrazine	0	0				0	N/A	N/A	N/A	
Fluoranthene	0	0				0	20	20.0	53.2	

Model Results

2/17/2023

Fluence	•			•	50	50.0	100			
Fluorene	0	0		0	50	50.0	133			
Hexachlorobenzene	0	0		0	N/A	N/A	N/A			
Hexachlorobutadiene	0	0		0	N/A	N/A	N/A			
Hexachlorocyclopentadiene	0	0		0	4	4.0	10.6			
Hexachloroethane	0	0		0	N/A	N/A	N/A			
Indeno(1,2,3-cd)Pyrene	0	0		0	N/A	N/A	N/A			
Isophorone	0	0		0	34	34.0	90.4			
Naphthalene	0	0		0	N/A	N/A	N/A			
Nitrobenzene	0	0		0	10	10.0	26.6			
n-Nitrosodimethylamine	0	0		0	N/A	N/A	N/A			
n-Nitrosodi-n-Propylamine	0	0		0	N/A	N/A	N/A			
n-Nitrosodiphenylamine	0	0		0	N/A	N/A	N/A			
Phenanthrene	0	0		0	N/A	N/A	N/A			
Pyrene	0	0		0	20	20.0	53.2			
1,2,4-Trichlorobenzene	0	0		0	0.07	0.07	0.19			
CRL CCT (min): 12.687 PMF: 1 Analysis Hardness (mg/l): N/A Analysis pH: N/A										
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments		
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A			
Chloride (PWS)	0	0		0	N/A	N/A	N/A			
Sulfate (PWS)	0	0		0	N/A	N/A	N/A			
Total Aluminum	0	0		0	N/A	N/A	N/A			
Total Antimony	0	0		0	N/A	N/A	N/A			
Total Arsenic	0	0		0	N/A	N/A	N/A			
Total Barium	0	0		0	N/A	N/A	N/A			
Total Boron	0	0		0	N/A	N/A	N/A			
Total Cadmium	0	0		0	N/A	N/A	N/A			
Hexavalent Chromium	0	0		0	N/A	N/A	N/A			
Total Cobalt	0	0		0	N/A	N/A	N/A			
Total Copper	0	0		0	N/A	N/A	N/A			
Free Cyanide	0	0		0	N/A	N/A	N/A			
Dissolved Iron	0	0		0	N/A	N/A	N/A			
Total Iron	0	0		0	N/A	N/A	N/A			
Total Lead	0	0		0	N/A	N/A	N/A			
Total Manganese	0	0		0	N/A	N/A	N/A			
Total Mercury	0	0		0	N/A	N/A	N/A			
Total Nickel	0	0		0	N/A	N/A	N/A			
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A			
Total Selenium		0		0	N/A	N/A	N/A			
	0	U U								
Total Silver	0	0		0	N/A	N/A	N/A			
Total Silver Total Thallium	_	-		0	N/A N/A	N/A N/A	N/A N/A			
	0	0								

Model Results

2/17/2023

Acrylonitrile	0	0	0	0.06	0.06	0.71	
Benzene	0	0	0	0.58	0.58	6.84	
Bromoform	0	0	- ŭ	7	7.0	82.6	
Carbon Tetrachloride	0	0	0	0.4	0.4	4.72	
Chlorobenzene	0	0	0	N/A	N/A	N/A	
Chlorodibromomethane	0	0	0	0.8	0.8	9.44	
2-Chloroethyl Vinyl Ether	0	0	0	N/A	N/A	8.44 N/A	
2-Chloroform	0	0	0	N/A N/A	N/A	N/A	
Dichlorobromomethane	0	0	0	0.95	0.95	11.2	
1.2-Dichloroethane	0	0	_	9,9	9,9	11.2	
		0	0	9.9 N/A	9.9 N/A	117 N/A	
1,1-Dichloroethylene	0	-	0				
1,2-Dichloropropane	0	0	0	0.9	0.9	10.6	
1,3-Dichloropropylene	0	0	0	0.27	0.27	3.18	
Ethylbenzene	0	0	0	N/A	N/A	N/A	
Methyl Bromide	0	0	0	N/A	N/A	N/A	
Methyl Chloride	0	0	0	N/A	N/A	N/A	
Methylene Chloride	0	0	0	20	20.0	236	
1,1,2,2-Tetrachloroethane	0	0	0	0.2	0.2	2.36	
Tetrachloroethylene	0	0	0	10	10.0	118	
Toluene	0	0	0	N/A	N/A	N/A	
1,2-trans-Dichloroethylene	0	0	0	N/A	N/A	N/A	
1,1,1-Trichloroethane	0	0	0	N/A	N/A	N/A	
1,1,2-Trichloroethane	0	0	- 0	0.55	0.55	6.49	
Trichloroethylene	0	0	0	0.6	0.6	7.08	
Vinyl Chloride	0	0	0	0.02	0.02	0.24	
2-Chlorophenol	0	0	0	N/A	N/A	N/A	
2,4-Dichlorophenol	0	0	0	N/A	N/A	N/A	
2,4-Dimethylphenol	0	0	0	N/A	N/A	N/A	
4,6-Dinitro-o-Cresol	0	0	0	N/A	N/A	N/A	
2,4-Dinitrophenol	0	0	0	N/A	N/A	N/A	
2-Nitrophenol	0	0	0	N/A	N/A	N/A	
4-Nitrophenol	0	0	0	N/A	N/A	N/A	
p-Chloro-m-Cresol	0	0	0	N/A	N/A	N/A	
Pentachlorophenol	0	0	0	0.030	0.03	0.35	
Phenol	0	0	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	1.5	1.5	17.7	
Acenaphthene	0	0	0	N/A	N/A	N/A	
Anthracene	0	0	0	N/A	N/A	N/A	
Benzidine	0	0	0	0.0001	0.0001	0.001	
Benzo(a)Anthracene	0	0	0	0.001	0.001	0.012	
Benzo(a)Pyrene	0	0	0	0.0001	0.0001	0.001	
3,4-Benzofluoranthene	0	0	0	0.001	0.001	0.012	
Benzo(k)Fluoranthene	0	0	0	0.01	0.01	0.12	
		_	-				
Bis(2-Chloroethyl)Ether	0	0	0	0.03	0.03	0.35	

Model Results

2/17/2023

			_				
_	0		0				
0	0		0	N/A	N/A	N/A	
0	0		- 0	N/A	N/A	N/A	
0	0		0	N/A	N/A	N/A	
0	0		0	0.12	0.12	1.42	
0	0		- 0	0.0001	0.0001	0.001	
0	0		0	N/A	N/A	N/A	
0	0		0	N/A	N/A	N/A	
0	0		- 0	N/A	N/A	N/A	
0	0		0	0.05	0.05	0.59	
0	0		0	N/A	N/A	N/A	
0	0		- 0	N/A	N/A	N/A	
0	0		0	N/A	N/A	N/A	
0	0		0	0.05	0.05	0.59	
0	0		- 0	0.05	0.05	0.59	
0	0		0	0.03	0.03	0.35	
0	0		0	N/A	N/A	N/A	
0	0		- 0	N/A	N/A	N/A	
0	0		0	0.00008	0.00008	0.0009	
0	0		0	0.01	0.01	0.12	
0	0		0	N/A	N/A	N/A	
0	0		0	0.1	0.1	1.18	
0	0		- 0	0.001	0.001	0.012	
0	0		0	N/A	N/A	N/A	
0	0		0	N/A	N/A	N/A	
0	0		- 0	N/A	N/A	N/A	
0	0		0	0.0007	0.0007	0.008	
0	0		0	0.005	0.005	0.059	
0	0		0	3.3	3.3	38.9	
0	0		0	N/A	N/A	N/A	
0	0		0	N/A	N/A	N/A	
0	0		- 0	N/A	N/A	N/A	
		0 0 0 0		0 0	0 0 0 N/A 0 0 0 N/A 0 0 0 0 N/A 0 0 0 0 N/A 0 0 0 0 0.12 0 0 0 0 0.0001 0 0 0 0 N/A 0 0 0 0 0.05 0 0 0 0 0.03 0 0 0 0 0.03 0 0 0 0 0.01 0 0 0 0 0.01<	0 0 N/A N/A N/A 0 0 0 N/A N/A N/A 0 0 0 N/A N/A N/A 0 0 0 0 N/A N/A 0 0 0 0 0.12 0.12 0 0 0 0 0.0001 0.0001 0 0 0 N/A N/A 0 0 0 N/A N/A 0 0 0 N/A N/A 0 0 0 0 0.05 0.05 0 0 0 0 0.05 0.05 0 0 0 0 0.0008 0.0008 0 0	0 0 0 N/A N/A N/A N/A 0 0 0 N/A N/A N/A N/A 0 0 0 0 N/A N/A N/A 0 0 0 0 0.12 0.12 1.42 0 0 0 0.0001 0.0001 0.001 0.001 0 0 0 0 N/A N/A N/A 0 0 0 N/A N/A N/A N/A 0 0 0 0 N/A N/A N/A 0 0 0 0 0.05 0.05 0.59 0 0 0 0 0.05 0.05 0.59 0 0 0 0.05 0.05 0.59 0 0 0 0.03 0.33 0.35 0 0 0 0.00008 0.0009 0 0

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits	Concentration Limits						
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Copper	Report	Report	Report	Report	Report	µg/L	25.8	AFC	Discharge Conc > 10% WQBEL (no RP)
Total Zinc	Report	Report	Report	Report	Report	µg/L	218	AFC	Discharge Conc > 10% WQBEL (no RP)

☑ Other Pollutants without Limits or Monitoring

Model Results

2/17/2023

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments		
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable		
Chloride (PWS)	N/A	N/A	PWS Not Applicable		
Bromide	N/A	N/A	No WQS		
Sulfate (PWS)	N/A	N/A	PWS Not Applicable		
Total Aluminum	1,259	µg/L	Discharge Conc ≤ 10% WQBEL		
Total Antimony	14.9	µg/L	Discharge Conc ≤ 10% WQBEL		
Total Arsenic	26.6	µg/L	Discharge Conc ≤ 10% WQBEL		
Total Barium	6,383	µg/L	Discharge Conc ≤ 10% WQBEL		
Total Beryllium	N/A	N/A	No WQS		
Total Boron	4,256	µg/L	Discharge Conc ≤ 10% WQBEL		
Total Cadmium	0.77	µg/L	Discharge Conc < TQL		
Hexavalent Chromium	27.4	µg/L	Discharge Conc < TQL		
Total Cobalt	50.5	µg/L	Discharge Conc ≤ 10% WQBEL		
Free Cyanide	10.6	µg/L	Discharge Conc ≤ 25% WQBEL		
Total Cyanide	N/A	N/A	No WQS		
Dissolved Iron	798	µg/L	Discharge Conc < TQL		
Total Iron	3,990	µg/L	Discharge Conc ≤ 10% WQBEL		
Total Lead	9.55	µg/L	Discharge Conc ≤ 10% WQBEL		
Total Manganese	2,660	µg/L	Discharge Conc ≤ 10% WQBEL		
Total Mercury	0.13	µg/L	Discharge Conc < TQL		
Total Nickel	150	µg/L	Discharge Conc ≤ 10% WQBEL		
Total Phenols (Phenolics) (PWS)		µg/L	PWS Not Applicable		
Total Selenium	13.3	µg/L	Discharge Conc ≤ 10% WQBEL		
Total Silver	7.51	µg/L	Discharge Conc < TQL		
Total Thallium	0.64	µg/L	Discharge Conc < TQL		
Total Molybdenum	N/A	N/A	No WQS		
Acrolein	5.04	µg/L	Discharge Conc < TQL		
Acrylonitrile	0.71	µg/L	Discharge Conc < TQL		
Benzene	6.84	µg/L	Discharge Conc < TQL		
Bromoform	82.6	µg/L	Discharge Conc < TQL		
Carbon Tetrachloride	4.72	µg/L	Discharge Conc < TQL		
Chlorobenzene	266	µg/L	Discharge Conc ≤ 25% WQBEL		
Chlorodibromomethane	9.44	µg/L	Discharge Conc < TQL		
Chloroethane	N/A	N/A	No WQS		
2-Chloroethyl Vinyl Ether	9,309	µg/L	Discharge Conc < TQL		
Chloroform	15.2	µg/L	Discharge Conc ≤ 25% WQBEL		
Dichlorobromomethane	11.2	µg/L	Discharge Conc < TQL		
1,1-Dichloroethane	N/A	N/A	No WQS		
1,2-Dichloroethane	117	µg/L	Discharge Conc < TQL		
1,1-Dichloroethylene	87.8	µg/L	Discharge Conc < TQL		

Model Results

2/17/2023

1,2-Dichloropropane	10.6	µg/L	Discharge Conc < TQL
1,3-Dichloropropylene	3.18	µg/L	Discharge Conc ≤ 25% WQBEL
1,4-Dioxane	N/A	N/A	No WQS
Ethylbenzene	181	µg/L	Discharge Conc < TQL
Methyl Bromide	266	µg/L	Discharge Conc < TQL
Methyl Chloride	14,628	µg/L	Discharge Conc < TQL
Methylene Chloride	236	µg/L	Discharge Conc < TQL
1,1,2,2-Tetrachloroethane	2.36	µg/L	Discharge Conc < TQL
Tetrachloroethylene	118	µg/L	Discharge Conc < TQL
Toluene	152	µg/L	Discharge Conc < TQL
1,2-trans-Dichloroethylene	266	µg/L	Discharge Conc < TQL
1,1,1-Trichloroethane	1,622	µg/L	Discharge Conc < TQL
1,1,2-Trichloroethane	6.49	µg/L	Discharge Conc < TQL
Trichloroethylene	7.08	µg/L	Discharge Conc < TQL
Vinyl Chloride	0.24	µg/L	Discharge Conc < TQL
2-Chlorophenol	79.8	µg/L	Discharge Conc < TQL
2,4-Dichlorophenol	26.6	µg/L	Discharge Conc < TQL
2,4-Dimethylphenol	266	µg/L	Discharge Conc < TQL
4,6-Dinitro-o-Cresol	5.32	µg/L	Discharge Conc < TQL
2,4-Dinitrophenol	26.6	µg/L	Discharge Conc < TQL
2-Nitrophenol	4,256	µg/L	Discharge Conc < TQL
4-Nitrophenol	1,250	µg/L	Discharge Conc < TQL
p-Chloro-m-Cresol	269	µg/L	Discharge Conc < TQL
Pentachlorophenol	0.35	µg/L	Discharge Conc < TQL
Phenol	10,639	µg/L	Discharge Conc < TQL
2,4,6-Trichlorophenol	17.7	µg/L	Discharge Conc < TQL
Acenaphthene	45.2	µg/L	Discharge Conc < TQL
Acenaphthylene	N/A	N/A	No WQS
Anthracene	798	µg/L	Discharge Conc < TQL
Benzidine	0.001	µg/L	Discharge Conc < TQL
Benzo(a)Anthracene	0.012	µg/L	Discharge Conc < TQL
Benzo(a)Pyrene	0.001	µg/L	Discharge Conc < TQL
3,4-Benzofluoranthene	0.012	µg/L	Discharge Conc < TQL
Benzo(ghi)Perylene	N/A	N/A	No WQS
Benzo(k)Fluoranthene	0.12	µg/L	Discharge Conc < TQL
Bis(2-Chloroethoxy)Methane	N/A	N/A	No WQS
Bis(2-Chloroethyl)Ether	0.35	µg/L	Discharge Conc < TQL
Bis(2-Chloroisopropyl)Ether	532	µg/L	Discharge Conc < TQL
Bis(2-Ethylhexyl)Phthalate	3.77	µg/L	Discharge Conc < TQL
4-Bromophenyl Phenyl Ether	144	µg/L	Discharge Conc < TQL
Butyl Benzyl Phthalate	0.27	µg/L	Discharge Conc < TQL
2-Chloronaphthalene	2,128	µg/L	Discharge Conc < TQL
4-Chlorophenyl Phenyl Ether	N/A	N/A	No WQS
Chrysene	1.42	µg/L	Discharge Conc < TQL
Dibenzo(a,h)Anthrancene	0.001	µg/L	Discharge Conc < TQL

Model Results

2/17/2023

1,2-Dichlorobenzene	426	µg/L	Discharge Conc < TQL
1,3-Dichlorobenzene	18.6	µg/L	Discharge Conc < TQL
1,4-Dichlorobenzene	399	µg/L	Discharge Conc < TQL
3,3-Dichlorobenzidine	0.59	µg/L	Discharge Conc < TQL
Diethyl Phthalate	1,596	µg/L	Discharge Conc < TQL
Dimethyl Phthalate	1,330	µg/L	Discharge Conc < TQL
Di-n-Butyl Phthalate	53.2	µg/L	Discharge Conc < TQL
2,4-Dinitrotoluene	0.59	µg/L	Discharge Conc < TQL
2,6-Dinitrotoluene	0.59	µg/L	Discharge Conc < TQL
Di-n-Octyl Phthalate	N/A	N/A	No WQS
1,2-Diphenylhydrazine	0.35	µg/L	Discharge Conc < TQL
Fluoranthene	53.2	µg/L	Discharge Conc < TQL
Fluorene	133	µg/L	Discharge Conc < TQL
Hexachlorobenzene	0.0009	µg/L	Discharge Conc < TQL
Hexachlorobutadiene	0.12	µg/L	Discharge Conc < TQL
Hexachlorocyclopentadiene	2.66	µg/L	Discharge Conc < TQL
Hexachloroethane	1.18	µg/L	Discharge Conc < TQL
Indeno(1,2,3-cd)Pyrene	0.012	µg/L	Discharge Conc < TQL
Isophorone	90.4	µg/L	Discharge Conc < TQL
Naphthalene	114	µg/L	Discharge Conc < TQL
Nitrobenzene	26.6	µg/L	Discharge Conc < TQL
n-Nitrosodimethylamine	0.008	µg/L	Discharge Conc < TQL
n-Nitrosodi-n-Propylamine	0.059	µg/L	Discharge Conc < TQL
n-Nitrosodiphenylamine	38.9	µg/L	Discharge Conc < TQL
Phenanthrene	2.66	µg/L	Discharge Conc < TQL
Pyrene	53.2	µg/L	Discharge Conc < TQL
1,2,4-Trichlorobenzene	0.19	µg/L	Discharge Conc < TQL

Model Results

2/17/2023

WET Summary and Evaluation

Facility Name	Darragh STP	
Permit No.	PA0096211	
Design Flow (MGD)	1.12	
Q ₇₋₁₀ Flow (cfs)	2.88	
PMFa	0.975	
PMF _c	1	

		Test Results (Pass/Fail)							
	[Test Date	Test Date	Test Date	Test Date				
Species	Endpoint	5/22/18	8/7/18	11/6/18	3/4/19				
Ceriodaphnia	Reproduction	PASS	PASS	PASS	PASS				

		Test Results (Pass/Fail)			
		Test Date	Test Date	Test Date	Test Date
Species	Endpoint	3/22/18	8/7/18	11/6/18	3/4/19
Ceriodaphnia	Survival	PASS	PASS	PASS	PASS

		Test Results (Pass/Fail)			
		Test Date	Test Date	Test Date	Test Date
Species	Endpoint	5/22/18	8/7/18	11/20/18	3/5/19
Pimephales	Survival	PASS	PASS	PASS	PASS

		Test Results (Pass/Fail)			
		Test Date	Test Date	Test Date	Test Date
Species	Endpoint	5/22/18	8/7/18	11/20/18	3/5/19
Pimephales	Growth	PASS	PASS	PASS	PASS

Reasonable Potential? NO

Permit Recommendations

Test Type	Chronic	•
TIWC	38	% Effluent
Dilution Series	10, 19,	38, 69, 100 % Effluent
Permit Limit	None	
Permit Limit Species		

WET Summary and Evaluation

Facility Name	Darragh STP	
Permit No.	PA0096211	
Design Flow (MGD)	1.12	
Q ₇₋₁₀ Flow (cfs)	2.88	
PMFa	0.975	
PMF _c	1	

		Test Results (Pass/Fail)			
	[Test Date	Test Date	Test Date	Test Date
Species	Endpoint	5/21/19	7/2/19	9/3/19	11/26/19
Ceriodaphnia	Reproduction	FAIL	PASS	PASS	PASS

		Test Results (Pass/Fail)			
		Test Date	Test Date	Test Date	Test Date
Species	Endpoint	5/21/19	7/2/19	9/3/19	11/26/19
Ceriodaphnia	Survival	PASS	PASS	PASS	PASS

		Test Results (Pass/Fail)			
		Test Date	Test Date	Test Date	Test Date
Species	Endpoint	5/21/19	7/2/19	9/3/19	11/26/19
Pimephales	Survival	FAIL	FAIL	PASS	PASS

		Test Results (Pass/Fail)			
		Test Date	Test Date	Test Date	Test Date
Species	Endpoint	5/21/19	7/2/19	9/3/19	11/26/19
Pimephales	Growth	FAIL	FAIL	PASS	PASS

Reasonable Potential? YES

Permit Recommendations

Test Type	Chronic
TIWC	38 % Effluent
Dilution Series	10, 19, 38, 69, 100 % Effluent
Permit Limit	2.6 TUc
Permit Limit Species	Ceridaphnia dubia, Pimephales promelas

WET Summary and Evaluation

Facility Name	Darragh STP	
Permit No.	PA0096211	
Design Flow (MGD)	1.12	
Q ₇₋₁₀ Flow (cfs)	2.88	
PMFa	0.975	
PMF _c	1	

		Test Results (Pass/Fail)			
	[Test Date	Test Date	Test Date	Test Date
Species	Endpoint	3/9/20	5/25/20	5/24/21	5/23/22
Ceriodaphnia	Reproduction	PASS	PASS	PASS	PASS

		Test Results (Pass/Fail)			
		Test Date	Test Date	Test Date	Test Date
Species	Endpoint	3/9/20	5/25/20	5/24/21	5/24/22
Ceriodaphnia	Survival	PASS	PASS	PASS	PASS

		Test Results (Pass/Fail)			
		Test Date	Test Date	Test Date	Test Date
Species	Endpoint	3/10/20	5/26/20	5/25/21	5/24/22
Pimephales	Survival	PASS	PASS	PASS	PASS

		Test Results (Pass/Fail)			
		Test Date	Test Date	Test Date	Test Date
Species	Endpoint	3/10/20	5/26/20	5/25/21	5/24/22
Pimephales	Growth	PASS	PASS	PASS	PASS

Reasonable Potential? NO

Permit Recommendations

Test Type	Chronic		
TIWC	38	% Effluent	
Dilution Series	10, 19,	38, 69, 100 % Effluent	
Permit Limit	None		
Permit Limit Species			