

Application Type	Renewal
	Non-
Facility Type	Municipal
Major / Minor	Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No.	PA0096334
APS ID	1063826
Authorization ID	1396950

Applicant and Facility Information

Applicant Name Clelian Heights School for Exceptiona		Facility Name	Clelian Heights School for Exceptional Children STP
Applicant Address	135 Clelian Heights Lane	Facility Address	135 Clelian Heights Lane
	Greensburg, PA 15601-6665		Greensburg, PA 15601-6665
Applicant Contact	Sister Deborah Lopez	Facility Contact	Mr. Jason Garner
Applicant Phone	724.837.8120	Facility Phone	724.396.8786
Client ID	45162	Site ID	243260
Ch 94 Load Status	Not Overloaded	Municipality	Hempfield Township
Connection Status		County	Westmoreland
Date Application Recei	ved May 19, 2022	EPA Waived?	Yes
Date Application Accept	oted	If No, Reason	
Purpose of Application	Application for the renewal of an NF	DES permit for the dis	charge of treated Sewage.

Summary of Review

The applicant has applied for a renewal of an existing NPDES Permit, PA0096334, which was previously issued by the Department on October 21, 2017. That permit expires on October 31, 2022.

WQM Permit No. 467S053 authorized construction of an extended aeration STP with an annual average design flow of 0.009 MGD. The facility serves an existing school and consists of flow EQ, an extended aeration basin, a final clarifier, and chlorine disinfection.

The receiving stream, dry channel to UNT of Beaver Run, is currently classified as a HQ-CWF, located in State Watershed No. 18-B.

The applicant has complied with Act 14 Notifications and no comments were received.

Sludge use and disposal description and location(s): The sludge is hauled off-site for further disposal at a Regional WWTP.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request

Approve	Deny	Signatures	Date
х		William C. Mitchell, E.I.T. / Project Manager	October 13, 2022
х		Maнво Manager Mahbuba lasmin, Ph.D., P.E. / Environmental Engineering Manager	October 14, 2022

Summary of Review

or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Discharge, Receiving	Water	s and Water Supply Inform	ation		
			_		
Outfall No. 001			6	Flow (MGD)	0.009
	2' 24.00		Longitu		-79º 33' 54.00"
	ensburg	0	Quad C	Code	
Wastewater Descrip	tion:	Sewage Effluent			
Receiving Waters	Unnar (HQ-C	ned Tributary to Beaver Run	Stream Co	ode	43038
NHD Com ID	99407	1			0.91
Drainage Area	0.18		Yield (cfs/	mi²)	0.02566
Q ₇₋₁₀ Flow (cfs)	0.0046	52	Q7-10 Basis	-	USGS StreamStats Report
Elevation (ft)	1434		Slope (ft/ft	t)	0.05072
Watershed No.	18-B		Chapter 9	3 Class.	TSF
Existing Use			Existing U	se Qualifier	
Exceptions to Use	NONE		Exception	s to Criteria	NONE
Assessment Status		Impaired			
Cause(s) of Impairm	nent	SILTATION, PATHOGENS			
Source(s) of Impairn	nent	GRAZING RELATED AGR	IC, SOURCE UN		
TMDL Status		Final	Name	Kiskiminetas Watersheds	-Conemaugh River TMDL
Background/Ambien pH (SU)	it Data		Data Source		
Temperature (°F)					
Hardness (mg/L)					
Other:					
Nearest Downstrear	n Public	c Water Supply Intake	MAWC Sweene	ey Plant – Beav	ver Run Reservoir
PWS Waters B	eaver F	Run	Flow at Intak	e (cfs)	
PWS RMI 7	.09		Distance fror	n Outfall (mi)	

Changes Since Last Permit Issuance: NONE

Other Comments: The discharge is to the Kiskiminetas-Conemaugh River Watersheds, which has a Final TMDL, and is impaired by sediment, metals, and pH. No WLAs have been developed, as verified in Appendix C & G of the TMDL, and this sewage discharge is not expected to contribute to the stream impairment for which abandoned mine drainage is source of such impairment. A 1/year monitoring requirement is imposed for the parameters of Total Iron, Total Manganese and Total Aluminum per Chapter 92.a.61. This data will be reevaluated during the next permit renewal cycle to see if limitation or continued monitoring will be required.

	Tre	atment Facility Summa	ry	
Freatment Facility Na	me: Clelian Hts School For	Exceptional Children STP		
WQM Permit No.	Issuance Date			
467S053	06/06/2001			
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
	Secondary with Ammonia and			
Sewage	Phosphorus Reduction	Extended Aeration	Tablet Chlorination	0.009
	Organia Conscitu			Dissolida
Hydraulic Capacity (MGD)	Organic Capacity (Ibs/day)	Load Status	Biosolids Treatment	Biosolids Use/Disposal
· · ·				Pumped/Haule
				to Regional
0.009		Not Overloaded	Sludge Digester Tank	WWTP

Changes Since Last Permit Issuance: NONE

Other Comments: N/A

Compliance History

Operations Compliance Check Summary Report

Facility: Clelian Heights STP

NPDES Permit No.: PA0096334

Compliance Review Period: 9/2017 – 9/2022

Inspection Summary:

INSP ID	INSPECTED DATE	INSP TYPE	AGENCY	INSPECTION RESULT DESC
3236032	08/17/2021	Administrative/File Review	PA Dept of Environmental Protection	No Violations Noted
<u>3233092</u>	08/10/2021	Compliance Evaluation	PA Dept of Environmental Protection	Violation(s) Noted
<u>2885164</u>	04/04/2019	Compliance Evaluation	PA Dept of Environmental Protection	No Violations Noted

Violation Summary:

VIOL	VIOLATION	VIOLATION	VIOLATION TYPE	RESOLVED
ID	DATE	TYPE	DESC	DATE
926191	08/10/2021	92A.44	NPDES - Violation of effluent limits in Part A of permit	08/10/2021

Open Violations by Client ID:

No open violations for client id 45162

Enforcement Summary:

				ENF
	ENF	EXECUTED	ENF	CLOSED
ENF ID	TYPE	DATE	FINALSTATUS	DATE
396538	FLNOV	08/10/2021	Administrative Close Out	07/12/2022

DMR Violation Summary:

BEGIN	END	PARAMETER	SAMPLE	PERMIT	UNIT	STAT_BASE_CODE
6/1/22	6/30/22	Total Phosphorus	2.4	2	mg/L	Average Monthly
4/1/21	4/30/21	Total Phosphorus	2.3	2	mg/L	Average Monthly
4/1/21	4/30/21	Total Phosphorus	4.2	4	mg/L	Instantaneous Maximum
3/1/21	3/31/21	Total Phosphorus	2.8	2	mg/L	Average Monthly
2/1/21	2/28/21	Total Phosphorus	2.4	2	mg/L	Average Monthly
2/1/21	2/28/21	Total Suspended Solids	112	60	mg/L	Instantaneous Maximum
2/1/21	2/28/21	Total Suspended Solids	76	30	mg/L	Average Monthly
12/1/20	12/31/20	Total Suspended Solids	34.7	30	mg/L	Average Monthly
4/1/20	4/30/20	Total Phosphorus	2.1	2	mg/L	Average Monthly
2/1/20	2/29/20	Ammonia-Nitrogen	21.4	10	mg/L	Average Monthly
2/1/20	2/29/20	Ammonia-Nitrogen	36.1	20	mg/L	Instantaneous Maximum
2/1/20	2/29/20	Fecal Coliform	3056	2000	No./100 m	Geometric Mean
2/1/20	2/29/20	Fecal Coliform	93400	10000	No./100 m	Instantaneous Maximum
2/1/20	2/29/20	Total Phosphorus	2.9	2	mg/L	Average Monthly
2/1/20	2/29/20	Total Suspended Solids	61.8	30	mg/L	Average Monthly
2/1/20	2/29/20	Total Suspended Solids	86	60	mg/L	Instantaneous Maximum
12/1/19	12/31/19	Fecal Coliform	48392	10000	No./100 m	Instantaneous Maximum
5/1/19	5/31/19	Total Phosphorus	2.1	2	mg/L	Average Monthly
11/1/18	11/30/18	Total Phosphorus	2.7	2	mg/L	Average Monthly
11/1/18	11/30/18	Total Phosphorus	4.9	4	mg/L	Instantaneous Maximum
11/1/18	11/30/18	Total Suspended Solids	41.2	30	mg/L	Average Monthly
11/1/18	11/30/18	Total Suspended Solids	62.8	60	mg/L	Instantaneous Maximum

Compliance Status:

DMR exceedances. Possible CACP prior to permit issuance

Completed by: John Murphy

Completed date: 9/19/2022

Other Comments: This case was discussed with Operations and for now a CACP will not be pursued. This facility will be recommended to the Department's Technical Assistance Program.

Compliance History

DMR Data for Outfall 001 (from August 1, 2021 to July 31, 2022)

Parameter	JUL-22	JUN-22	MAY-22	APR-22	MAR-22	FEB-22	JAN-22	DEC-21	NOV-21	OCT-21	SEP-21	AUG-21
Flow (MGD)												
Average Monthly	0.003	0.004	0.002	0.003	0.002	0.004	0.003	0.003	0.003	0.003	0.003	0.002
Flow (MGD)												
Daily Maximum	0.003	0.004	0.002	0.003	0.002	0.004	0.003	0.003	0.003	0.003	0.003	0.002
pH (S.U.)												
Instantaneous												
Minimum	6.4	6.3	6.2	6.2	6.4	6.7	7.4	7.4	6.6	6.5	6.6	7.2
pH (S.U.)												
Instantaneous												
Maximum	7.4	8.0	7.6	7.8	8.1	7.9	8.2	8.1	7.8	7.7	7.4	7.8
DO (mg/L)												
Instantaneous												
Minimum	7.7	7.5	7.8	8.1	7.6	8.9	8.1	7.9	7.6	7.4	7.2	7.5
TRC (mg/L)												
Average Monthly	0.2	0.2	0.3	0.4	0.2	0.3	0.3	0.3	0.4	0.3	0.4	0.4
TRC (mg/L)												
Instantaneous												
Maximum	0.4	0.9	1.2	1.1	1.6	0.74	1.6	0.9	1.2	0.6	0.8	1.5
CBOD5 (mg/L)												
Average Monthly	< 3.0	< 5.2	< 3.7	< 4.1	< 4.3	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
CBOD5 (mg/L)												
Instantaneous												
Maximum	< 3.0	7.4	4.3	5.2	5.6	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
TSS (mg/L)												
Average Monthly	8.6	17.6	12.8	16.2	12.4	11.4	16.0	8.6	27.5	9.8	1.7	11.0
TSS (mg/L)												
Instantaneous												
Maximum	9.6	18.0	7.2	23.2	14.8	12.8	16.8	13.6	31.0	16.6	2.1	16.0
Fecal Coliform												
(No./100 ml)												
Geometric Mean	2.5	75	< 1	< 1	< 1	< 1	< 1	< 2	< 6	< 7	< 2	< 4
Fecal Coliform												
(No./100 ml)												
Instantaneous												
Maximum	3.1	225	< 1.0	< 1	< 1	< 1	< 1	< 4	30	34	< 2	< 4
Total Nitrogen (mg/L)												
Daily Maximum								< 40.87				

NPDES Permit No. PA0096334

Ammonia (mg/L)												
Average Monthly	< 0.1	0.2	< 0.10	< 0.1	< 0.4	0.7	1.6	0.5	0.7	< 0.1	< 0.1	< 0.1
Ammonia (mg/L)												
Instantaneous												
Maximum	< 0.1	0.2	< 0.10	0.1	0.6	1.2	2.2	0.6	0.9	< 0.1	< 0.1	< 0.1
Total Phosphorus												
(mg/L)												
Average Monthly	1.3	2.4	1.4	2.0	0.9	1.2	1.9	1.9	1.8	0.6	1.7	0.9
Total Phosphorus												
(mg/L)												
Instantaneous												
Maximum	1.6	2.7	1.2	2.9	1.1	1.3	1.9	2.6	2.6	0.9	2.1	1.0

Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	0.009
Latitude	40° 22' 24.00"		Longitude	-79º 33' 54.00"
Wastewater De	escription: Sew	age Effluent		

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Comments: The discharge was evaluated using WQM 7.0 Version 1.1 to evaluate CBOD₅, Ammonia Nitrogen and Dissolved Oxygen parameters. The modeling results show technology based effluent limitations for CBOD₅ are appropriate.

This facility was permitted prior to final publication of the Department's Policy and Procedure for Evaluating Wastewater Dischargers to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers (391-2000-014) & Water Quality Antidegradation Implementation Guidance (391-0300-002). The receiving stream is impaired by siltation and pathogens, and this discharge is not expected to contribute to the impairment.

DMR data confirm that more stringent advanced technology based effluent limitation, found in documents 391-2000-014 & 391-0300-002, cannot be achieved and would only apply if the existing facility is expanded or if the receiving stream is impaired and the point source discharge contributes to the impairment.

Water Quality-Based Limitations

The following limitations were determined through water quality modeling (Attachment # 2, 3, and 4):

Parameter	Limit (mg/l)	SBC	Model
Ammonia-Nitrogen			
(Nov 1 to Apr 30)	6.7	Average Monthly	WQM 7.0 Version 1.1
Ammonia-Nitrogen			
(May 1 to Oct 31)	2.7	Average Monthly	WQM 7.0 Version 1.1
Dissolved Oxygen	6.0 (Minimum)	Average Monthly	WQM 7.0 Version 1.1
TRC	0.05	Average Monthly	TRC_CALC

Comments: DMR data above confirms that the applicant can comply with the revised ammonia-nitrogen limits, which are based upon updated criteria and StreamStat data (Attachment # 1).

DMR data above confirms that the applicant cannot comply with the revised more stringent TRC limits and they will be given 1 year to comply. It is recommended that the WQM Permit be amended to install a tablet dechlorinator or UV disinfection system.

Best Professional Judgment (BPJ) Limitations

Comments: N/A

Anti-Backsliding

Section 402(o) of the Clean Water Act (CWA), enacted in the Water Quality Act of 1987, establishes anti-backsliding rules governing two situations. The first situation occurs when a permittee seeks to revise a Technology-Based effluent limitation based on BPJ to reflect a subsequently promulgated effluent guideline which is less stringent. The second situation addressed by Section 402(o) arises when a permittee seeks relaxation of an effluent limitation which is based upon a State treatment standard of water quality standard.

Previous limits can be used pursuant to EPA's anti-backsliding regulation 40 CFR 122.44 (I) Reissued permits. (1) Except as provided in paragraph (I)(2) of this section when a permit is renewed or reissued. Interim effluent limitations, standards or conditions must be at least as stringent as the final effluent limitations, standards, or conditions in the previous permit (unless the circumstances on which the previous permit was based have materially and substantially changed since the time the permit was issued and would constitute cause for permit modification or revocation and reissuance under §122.62). (2) In the case of effluent limitations established on the basis of Section 402(a)(1)(B) of the CWA, a permit may not be renewed, reissued, or modified on the basis of effluent guidelines promulgated under section 304(b) subsequent to the original issuance of such permit, to contain effluent limitations which are less stringent than the comparable effluent limitations in the previous permit.

The facility is not seeking to revise the previously permitted effluent limits.

Additional Considerations

Monitoring frequency for the proposed effluent limits are based upon Table 6-3, Self-Monitoring Requirements for Sewage Dischargers, from the Departments Technical Guidance for the Development and Specification of Effluent Limitations and Other Permit Conditions in NPDES Permits (362-0400-001).

For pH, Dissolved Oxygen (DO) and TRC, a monitoring frequency of "daily when discharging" has been imposed in accordance with section E.2 of Department SOP – New and Reissuance Individual Sewage NPDES Permits Revised, February 3, 2022.

Sewage discharges will include monitoring, at a minimum, for *E. Coli*, in new and reissued permits, with a monitoring frequency of 1/year for facilities with a design flows of 0.002 – 0.05 MGD.

The Beaver Run Reservoir is located downstream of this discharge. A Lake Phosphorus Study was conducted by the Department in 1987, which recommended a Total Phosphorus limit of 2.0 mg/L be imposed on all upstream point source discharges per Chapter 96.5(c). A Total Phosphorus limit of 2.0 mg/L will again be established for this facility.

Nutrient monitoring is required to establish the nutrient load from the wastewater treatment facility and the impacts that load may have on the quality of the receiving stream(s). A 1/year monitoring requirement for Total N has been added to the permit per Chapter 92.a.61. The receiving stream is not impaired by nutrients and the nearest downstream potable water intake is the MAWC Sweeney Plant, which and is over 10 miles downstream. This surface water intake should not be impacted by this minor sewage discharger and no Total N limitation will be imposed on this facility.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through 12th Month.

		Effluent Limitations								
Parameter	Parameter Mass Units (Ibs/day) ⁽¹⁾ Concentrations (mg/L)							Required		
Parameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type		
							Daily when			
TRC	XXX	XXX	XXX	0.5	XXX	1.6	Discharging	Grab		

Compliance Sampling Location: 001

Other Comments: N/A

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: 13th Month through Permit Expiration Date.

		Effluent Limitations								
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required				
Parameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type		
							Daily when			
TRC	XXX	XXX	XXX	0.05	XXX	0.18	Discharging	Grab		

Compliance Sampling Location: 001

Other Comments: N/A

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Parameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	0.009	XXX	XXX	XXX	XXX	XXX	1/week	Measured
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	Daily when Discharging	Grab
DO	ххх	xxx	6.0 Inst Min	xxx	xxx	xxx	Daily when Discharging	Grab
CBOD5	XXX	xxx	xxx	25.0	xxx	50.0	2/month	Grab
TSS	ххх	ххх	ххх	30.0	XXX	60.0	2/month	Grab
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	ХХХ	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab
E. Coli (No./100 ml)	ххх	xxx	xxx	xxx	xxx	Report	1/year	Grab
Total Nitrogen	XXX	XXX	xxx	XXX	Report Daily Max	XXX	1/year	Grab
Ammonia Nov 1 - Apr 30	XXX	XXX	XXX	6.7	XXX	13.4	2/month	Grab
Ammonia May 1 - Oct 31	XXX	XXX	XXX	2.7	XXX	5.4	2/month	Grab
Total Phosphorus	ХХХ	xxx	xxx	2.0	xxx	4.0	2/month	Grab
Total Aluminum	XXX	xxx	xxx	xxx	Report Daily Max	xxx	1/year	Grab
Total Iron	ХХХ	XXX	XXX	xxx	Report Daily Max	XXX	1/year	Grab

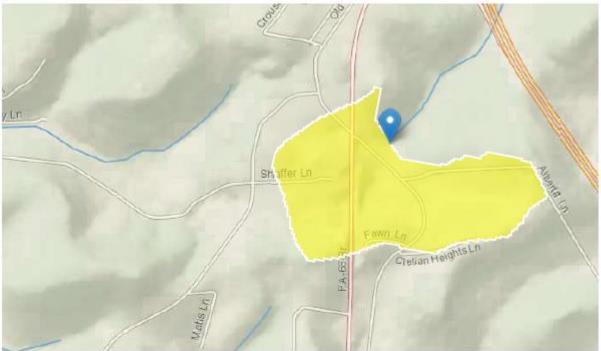
Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

		Monitoring Red	quirements						
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required			
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type	
					Report				
Total Manganese	XXX	XXX	XXX	XXX	Daily Max	XXX	1/year	Grab	

Compliance Sampling Location: 001

Other Comments: N/A

Attachment #1 – USGS StreamStats Report


StreamStats Report - PA0096334

 Region ID:
 PA

 Workspace ID:
 PA20220915181911508000

 Clicked Point (Latitude, Longitude):
 40.37629, -79.57142

 Time:
 2022-09-15 14:19:31 -0400

Collapse All

Basin Characteri	3003		
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	0.18	square miles
ELEV	Mean Basin Elevation	1356	feet
PRECIP	Mean Annual Precipitation	41	inches

> Low-Flow Statistics

Low-Flow Statistics Parameters [99.1 Percent (0.18 square miles) Low Flow Region 3]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.18	square miles	2.33	1720
ELEV	Mean Basin Elevation	1356	feet	898	2700
PRECIP	Mean Annual Precipitation	41	inches	38.7	47.9

Low-Flow Statistics Disclaimers [99.1 Percent (0.18 square miles) Low Flow Region 3]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors. Weighted flows were not calculated. Users should be careful to evaluate the applicability of the provided estimates. Percentage of area falls outside where region is undefined. Whole estimates have been provided using available regional equations.

Low-Flow Statistics Flow Report [99.1 Percent (0.18 square miles) Low Flow Region 3]

Statistic	Value	Unit
7 Day 2 Year Low Flow	0.0141	ft^3/s
30 Day 2 Year Low Flow	0.0215	ft^3/s
7 Day 10 Year Low Flow	0.00462	ft^3/s
30 Day 10 Year Low Flow	0.00728	ft^3/s
90 Day 10 Year Low Flow	0.0114	ft^3/s

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.10.1 StreamStats Services Version: 1.2.22 NSS Services Version: 2.2.1

Attachment #2 – WQM 7.0 Version 1.1 – Warmer Period

	SWP Basin			Stre	eam Name		RMI	Ele	evation (ft)	Drainage Area (sq mi)	Slop (ft/ft	With	VS drawal Igd)	Apply FC
	18B	430	38 Trib 43	3038 of B	eaver Run		0.9	10	1434.00	0.1	8 0.00	000	0.00	\checkmark
					Sti	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	n Tem	<u>Tributary</u> p pH	н [.]	<u>Strea</u> Temp	m pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.026	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.(00 2	0.00 7	.00	0.00	0.00	
					Di	scharge (Data						٦	
			Name	Per	rmit Number	Disc	Permitt Disc Flow (mgd	Dis Flo	sč Res	erve Te ctor	isc emp °C)	Disc pH		
		Clelia	n Heights	PA	0096334	0.0090	0.00	90 0.0	0000	0.000	20.00	7.00	-	
					Pa	rameter l	Data							
				Paramete	Name			Trib Conc	Stream Conc	Fate Coef				
				-aramete	r Name	(m	g/L) (r	mg/L)	(mg/L)	(1/days)				
			CBOD5			:	25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			4.00	9.01	0.00	0.00				
			NH3-N				4.20	0.00	0.00	0.70				

Input Data WQM 7.0

Version 1.1

	SWP Basir			Str	eam Name		RMI		evation (ft)	Drainage Area (sq mi)	Slop	With	WS drawal 1gd)	Appl FC
	18B	430	038 Trib 4	3038 of B	eaver Run		0.0	10	1193.00	0.6	32 0.00	000	0.00	\checkmark
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ten	Tributary np p		<u>Strea</u> Temp	m pH	
oona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.026	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.0	00 2	0.00	7.00	0.00	0.00	
					Di	ischarge l	Data						7	
			Name	Per	rmit Number	Disc	Permitt Disc Flow (mgd	Dis Fic	sč Res ow Fa	serve T Ictor	Disc Temp (°C)	Disc pH		
						0.000	0.00	00 0.0	0000	0.000	25.00	7.00	-	
					Pa	arameter	Data							
				Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
				aramete	a mante	(m	ng/L) (i	mg/L)	(mg/L)	(1/days)				
	-		CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N			:	25.00	0.00	0.00	0.70				

Input Data WQM 7.0

Friday, September 16, 2022

L

Version 1.1

Page 2 of 2

		right rie frydrodynamie outputs										
	<u>sw</u>	<u>P Basin</u> 18B		i <mark>m Code</mark> 3038			Trib 4	Stream	<u>Name</u> Beaver R			
		IOD	4	3030			1110 4	3030 01	Deaver N	un		
RMI	Stream Flow	PWS With	Net Stream Flow		Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
0.910	0.00	0.00	0.00	.0139	0.05072	.281	1.66	5.92	0.04	1.382	20.00	7.00
Q1-1	0 Flow											
0.910	0.00	0.00	0.00	.0139	0.05072	NA	NA	NA	0.04	1.456	20.00	7.00
Q30-	10 Flow	<i>i</i>										
0.910	0.01	0.00	0.01	.0139	0.05072	NA	NA	NA	0.04	1.317	20.00	7.00

WQM 7.0 Hydrodynamic Outputs

Friday, September 16, 2022

Version 1.1

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	\checkmark
WLA Method	EMPR	Use Inputted W/D Ratio	\checkmark
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	\checkmark
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	
D.O. Saturation	90.00%	Use Balanced Technology	\checkmark
D.O. Goal	6		

Friday, September 16, 2022

Version 1.1

	SWP Basin S	tream Code		Stream Name							
	18B	43038		Trib 430	38 of Beaver	Run					
NH3-N	Acute Allocat	ions									
RMI	Discharge Na	Baseline me Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction				
0.91	10 Clelian Heights	16.76	8.4	16.76	8.4	0	0				
NH3-N	Chronic Alloc	ations									
RMI	Discharge Nam	Baseline e Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction				
0.91	10 Clelian Heights	1.89	2.74	1.89	2.74	0	0				

			CBC			3-N	Dissolved	d Oxygen	Critical	Percent
	RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple	Baseline	Multiple	Reach	Reduction
-	0.91	Clelian Heights	25	25	2.74	2.74	6	6	0	0

Friday, September 16, 2022

Version 1.1

SWP Basin	Stream Code			Stream Name				
18B	43038	43038 Trib 43038 of Beaver Run						
RMI	Total Discharge	e Flow (mgd	i) <u>Ana</u> i	lysis Temperature	e (°C) Analysis pH			
0.910	0.00	99		20.000	7.000			
Reach Width (ft)	Reach De	epth (ft)		Reach WDRatio	Reach Velocity (fps)			
1.661	0.28	31		5.920	0.040			
Reach CBOD5 (mg/L) Reach Kc	(1/days)	R	each NH3-N (mg	/L) Reach Kn (1/days)			
19.27	1.38			2.06	0.700			
Reach DO (mg/L)	Reach Kr			Kr Equation	Reach DO Goal (mg/L)			
6.750	26.2	85		Owens	6			
Reach Travel Time (day	<u>vs)</u>	Subreact	Results					
1.382	TravTime		NH3-N	D.O.				
	(days)	(mg/L)	(mg/L)	(mg/L)				
	0.138	15.92	1.87	7.59				
	0.276	13.16	1.69	7.85				
	0.415	10.87	1.54	8.06				
	0.553	8.99	1.40	8.24				
	0.691	7.42	1.27	8.24				
	0.829	6.14	1.15	8.24				
	0.967	5.07	1.04	8.24				
	1,105	4.19	0.95	8.24				
	1.244		0.86	8.24				
	1.382		0.78	8.24				

WQM 7.0 D.O.Simulation

Friday, September 16, 2022

Version 1.1

	SWP Basin Strea	m Code		Stream Name			
	18B 43	3038		Trib 43038 of Beav	er Run		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
0.910	Clelian Heights	PA0096334	0.009	CBOD5	25		
				NH3-N	2.74	5.48	
				Dissolved Oxygen			6

WQM 7.0 Effluent Limits

Friday, September 16, 2022

Version 1.1

Dissolved Oxygen

NH3-N

Attachment #3 – WQM 7.0 Version 1.1 – Colder Period

	SWP Basin			Stre	eam Name		RMI	Elevat (ft)	A	rea	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	18B	430	38 Trib 43	3038 of B	eaver Run		0.91	0 143	34.00	0.18 0	.00000	0.00	\checkmark
					St	ream Data	a						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	<u>Tribu</u> Temp	utary pH	Temp	Stream pH	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.051	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	5.00	7.00	0.	00 0.00	
					Di	scharge D)ata						
			Name	Per	mit Number	Disc	Permitte Disc Flow (mgd)	ed Design Disc Flow (mgd)	Reserve Factor	Disc Temp (°C)	Dis pH		
		Clelia	n Heights	PA	0096334	0.0090	0.009	0 0.000	0 0.000) 15.	00 7	.00	
					Pa	arameter D	Data						
				Paramete	r Name		onc C	onc C		pef			
	-		CBOD5				g/L) (m 25.00	ng/L) (m 2.00		ays) 1.50			

6.00

10.00

12.51

0.00

0.00

0.00

0.00

0.70

Input Data WQM 7.0

Friday, September 16, 2022

	SWP Basin			Stre	am Name		RMI		vation (ft)	Drainage Area (sq mi)		ope t/ft)	PW: Withdr (mg	awal	Apply FC
	18B	430	038 Trib 43	3038 of Be	eaver Run		0.01	10 1	193.00	0.	62 0.0	00000		0.00	\checkmark
					St	ream Dat	a								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Terr	Tributary p p	н	Tem	<u>Stream</u> P	pН	
cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C))		
Q7-10 Q1-10 Q30-10	0.051	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.0	0	5.00	7.00	C	0.00	0.00	
					Di	scharge l	Data								
			Name	Per	mit Number	Disc	Permitte Disc Flow (mgd)	Disc	č Res w Fa	erve T ctor	Disc Temp (°C)	Dis pl			
						0.000	0.000	0.0	000	0.000	25.00)	7.00		
					Pa	rameter	Data								
				Parameter	r Name			Trib : Conc	Stream Conc	Fate Coef					
				arameter	rivanie	(m	ng/L) (n	ng/L)	(mg/L)	(1/days)					
			CBOD5				25.00	2.00	0.00	1.50)				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00)				
			NH3-N				25.00	0.00	0.00	0.70					

Input Data WQM 7.0

Friday, September 16, 2022

Version 1.1

Page 2 of 2

		WQI	WI 7.0	пуш	ouyn	annic	Out	วนเร					
SW	P Basin	Strea	m Code		Stream Name								
	18B	43038			Trib 43038 of Beaver Run								
Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH		
(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)			
) Flow													
0.01	0.00	0.01	.0139	0.05072	.292	1.76	6.02	0.05	1.220	11.01	7.00		
) Flow													
0.01	0.00	0.01	.0139	0.05072	NA	NA	NA	0.04	1.331	12.02	7.00		
10 Flow	,												
0.01	0.00	0.01	.0139	0.05072	NA	NA	NA	0.05	1.132	10.26	7.00		
		0.01	.0139	0.05072	NA	NA	NA	0.05	1.132	10.26			
	Stream Flow (cfs)) Flow 0.01) Flow 0.01 0 Flow	Flow With (cfs) (cfs)) Flow 0.01 0.00) Flow 0.01 0.00 10 Flow	SWP Basin Stread 18B 4 Stream PWS Flow Net Stream Flow (cfs) (cfs) (cfs)) Flow 0.01 0.00 0.01) Flow 0.01 0.00 0.01 0 Flow 0.01 0.00 0.01 0 Flow 0.01 0.00 0.01	SWP Basin Stream Code 18B 43038 Stream PWS Flow Net Stream Disc Flow (cfs) (cfs) (cfs) 0 0 Flow 0.01 0.00 0.01 .0139 0 Flow 0.01 0.00 0.01 .0139 0 Flow 0.01 0.00 0.01 .0139 0 Flow 0.01 0.00 0.01 .0139	SWP Basin Stream Code 18B 43038 Stream PWS Flow Net Stream Disc Flow Reach Flow (cfs) (cfs) (cfs) (cfs) (ft/ft)) Flow 0.01 0.00 0.01 .0139 0.05072) Flow 0.01 0.00 0.01 .0139 0.05072 0 Flow 0.01 0.00 0.01 .0139 0.05072 0 Flow 0.01 0.00 0.01 .0139 0.05072	SWP Basin Stream Code 18B 43038 Stream PWS Flow Net With Disc Stream Reach Flow Depth (cfs) (cfs) (cfs) (ft) (ft) (fbw 0.01 0.00 0.01 .0139 0.05072 .292 Flow 0.01 0.00 0.01 .0139 0.05072 NA 0 Flow 0.01 0.00 0.01 .0139 0.05072 NA 0 Flow 0.01 0.00 0.01 .0139 0.05072 NA	SWP Basin Stream Code 18B 43038 Trib 4 Stream PWS Flow Net With Disc Stream Reach Flow Depth Width (cfs) (cfs) (cfs) (cfs) (ft) (ft) 0 Flow 0.01 0.00 0.01 .0139 0.05072 .292 1.76 0 Flow 0.01 0.00 0.01 .0139 0.05072 NA NA 10 Flow 0.01 0.00 0.01 .0139 0.05072 NA NA	SWP Basin Stream Code Stream 18B 43038 Trib 43038 of Stream PWS Flow Net With Disc Stream Reach Flow Depth Width W/D Ratio (cfs) (cfs) (cfs) (ft) (ft) (ft) 0 Flow 0.01 0.00 0.01 .0139 0.05072 .292 1.76 6.02 0 Flow 0.01 0.00 0.01 .0139 0.05072 NA NA NA 0 Flow 0.01 0.00 0.01 .0139 0.05072 NA NA NA 0 Flow 0.01 0.00 0.01 .0139 0.05072 NA NA NA	18B 43038 Trib 43038 of Beaver R Stream PWS Flow Net With Disc Stream Reach Analysis Depth Width W/D Ratio Velocity Ratio (cfs) (cfs) (cfs) (ft) (ft) (ft) (ft) PIow 0.01 0.00 0.01 .0139 0.05072 .292 1.76 6.02 0.05 PIow 0.01 0.00 0.01 .0139 0.05072 NA NA NA 0.04 0 Flow 0.01 0.00 0.01 .0139 0.05072 NA NA NA 0.04	SWP BasinStream CodeStream Name18B43038Trib 43038 of Beaver RunStreamPWS FlowNet Flow Flow (cfs)Disc Flow Flow (cfs)Reach (ft)Depth (th)Width Ratio (ft)W/D Velocity Reach Trav Time (fps)O Flow 0.010.000.01.01390.05072.2921.766.020.051.220O Flow 0.010.010.01.01390.05072NANANA0.041.33110 Flow	SWP Basin Stream Code Stream Name 18B 43038 Trib 43038 of Beaver Run Stream PWS Flow Net Flow Disc Flow Reach Flow Depth Width W/D Ratio Velocity (fps) Reach Trav Time Analysis Temp (cfs) (cfs) (cfs) (ff) (ft) (ft) (fps) (days) (°C) 0 Flow 0.01 0.00 0.01 .0139 0.05072 .292 1.76 6.02 0.05 1.220 11.01 0 Flow 0.01 0.00 0.01 .0139 0.05072 NA NA NA 0.04 1.331 12.02 10 Flow 0.01 0.00 0.01 .0139 0.05072 NA NA NA 0.04 1.331 12.02		

WQM 7.0 Hydrodynamic Outputs

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	\checkmark
WLA Method	EMPR	Use Inputted W/D Ratio	\checkmark
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	\checkmark
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	
D.O. Saturation	90.00%	Use Balanced Technology	\checkmark
D.O. Goal	6		

Friday, September 16, 2022

Version 1.1

	SWP Basin S	tream Code		St	ream Name		
	18B	43038		Trib 430	38 of Beaver	Run	
NH3-N	Acute Allocati	ons					
RMI	Discharge Na	Baseline me Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
0.9	10 Clelian Heights	24.1	20	24.1	20	0	0
NH3-N	Chronic Alloc	ations					
RMI	Discharge Nam	Baseline e Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
0.9	10 Clelian Heights	3.54	6.73	3.54	6.73	0	0

Dissolved Oxygen Allocations

		CBOD5			3-N	Dissolved	l Oxygen	Critical	Percent
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple	Daseline	Multiple	Reach	Reduction
0.91 C	lelian Heights	25	25	6.73	6.73	6	6	0	0

Friday, September 16, 2022

WQM 7.0 D.O.Simulation								
SWP Basin	Stream Code			Stream Na	me			
18B	43038	Trib 43038 of Beaver Run						
RMI	Total Discharge	e Flow (mgd	i) Ana	lysis Tempe	rature (°C)	Analysis pH		
0.910	0.00	0.009		11.012		7.000		
Reach Width (ft)	Reach De	each Depth (ft)		Reach WD	Ratio	Reach Velocity (fps)		
1.758	0.29	0.292		6.017		0.045		
Reach CBOD5 (mg/L)	Reach Kc	Reach Kc (1/days)		each NH3-N	l (mg/L)	Reach Kn (1/days)		
15.83		1.361		4.04		0.350		
Reach DO (mg/L)		Reach Kr (1/days)		Kr Equation		Reach DO Goal (mg/L)		
8.597	26.4	26.495		Owens		6		
Reach Travel Time (day	<u>s)</u>	Subreact	Results					
1.220	TravTime		NH3-N	D.O.				
	(days)	(mg/L)	(mg/L)	(mg/L)				
	0.122	14.18	3.88	9.91				
	0.244	12.70	3.71	9.91				
	0.366	11.38	3.56	9.91				
	0.488	10.20	3.41	9.91				
	0.610	9.14	3.27	9.91				
	0.732	8.19	3.13	9.91				
	0.854	7.33	3.00	9.91				
	0.976	6.57	2.87	9.91				
	1.098	5.89	2.75	9.91				
	1.220	5.27	2.64	9.91				

WQM 7.0 D.O.Simulation

WQM 7.0 Effluent Limits								
SWP Basin St	Stream Code		Stream Name					
18B	43038	Trib 43038 of Beaver Run						
Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)		
Clelian Heights	PA0096334	0.009	CBOD5	25				
			NH3-N	6.73	13.46			
			Dissolved Oxygen			6		
	18B Name	SWP Basin Stream Code 18B 43038 Name Permit Number	SWP Basin Stream Code 18B 43038 Name Permit Number	SWP Basin Stream Code Stream Name 18B 43038 Trib 43038 of Beav Name Permit Number Disc Flow (mgd) Parameter Clelian Heights PA0096334 0.009 CBOD5 NH3-N	SWP Basin Stream Code Stream Name 18B 43038 Trib 43038 of Beaver Run Name Permit Number Disc Flow (mgd) Parameter Effl. Limit 30-day Ave. (mg/L) Clelian Heights PA0096334 0.009 CBOD5 25 NH3-N 6.73	SWP Basin Stream Code Stream Name 18B 43038 Trib 43038 of Beaver Run Name Permit Number Disc Flow (mgd) Parameter Effl. Limit 30-day Ave. (mg/L) Effl. Limit Maximum (mg/L) Clelian Heights PA0096334 0.009 CBOD5 25 NH3-N 6.73 13.46		

Friday, September 16, 2022

Version 1.1

Attachment #4 – TRC CALC

Copy of TRC_CALC

TRC EVALUATION

0.00462	= Q stream (cfs)		0.5	= CV Daily			
0.009	= Q discharg	e (MGD)	0.5	= CV Hourly			
30	= no. samples		1	= AFC_Partial Mix Factor			
0.3	= Chlorine De	emand of Stream	1	= CFC_Partial N	lix Factor		
0	= Chlorine D	emand of Discharge	15	= AFC_Criteria Compliance Time (min)			
0.5	= BAT/BPJ V	alue	720	= CFC_Criteria Compliance Time (min)			
	= % Factor of Safety (FOS)			=Decay Coefficient (K)			
Source	Reference	AFC Calculations		Reference	CFC Calculations		
TRC	1.3.2.iii	WLA afc =	0.125	1.3.2.iii	WLA cfc = 0.114		
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581		
PENTOXSD TRG	5.1b	LTA_afc=	0.047	5.1d	LTA_cfc = 0.066		
Source		Efflue	nt Limit Calcu	lations			
PENTOXSD TRG	PENTOXSD TRG 5.1f AML MULT = 1.231						
PENTOXSD TRG	PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.057 AFC						
INST MAX LIMIT (mg/l) = 0.187							
WLA afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc)) + Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)							
LTAMULT afc	AMULT afc EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5)						
LTA_afc wla_afc*LTAMULT_afc							
WLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) + Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)							
LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5)							
LTA_cfc wia_cfc"LTAMULT_cfc							
AML MULT	AML MULT EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1))						
AVG MON LIMIT	AVG MON LIMIT MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)						
INST MAX LIMIT 1.5*((av_mon_limit/AML_MULT)/LTAMULT_afc)							

Page 1