

## Southwest Regional Office CLEAN WATER PROGRAM

| Application Type | Renewal   |
|------------------|-----------|
| Facility Type    | Municipal |
| Major / Minor    | Minor     |

# NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

| Application No.  | PA0096601 |
|------------------|-----------|
| APS ID           | 813026    |
| Authorization ID | 1264029   |

| plicant Name       | Lowe   | r Ten Mile Joint Sewer Authority | Facility Name    | Williamstown STP        |
|--------------------|--------|----------------------------------|------------------|-------------------------|
| plicant Address    | 144 C  | chartiers Road                   | Facility Address | Sr 2039 Main Street     |
|                    | Jeffer | son, PA 15344-4115               |                  | Jefferson, PA 15344     |
| olicant Contact    | Mr. k  | Cenneth Frameli                  | Facility Contact | Mr. Bruce Howard        |
| olicant Phone      | 724.8  | 83.2743                          | Facility Phone   | 724.883.2743            |
| ent ID             | 63436  | 3                                | Site ID          | 253753                  |
| 94 Load Status     | Existi | ng Hydraulic Overload            | Municipality     | East Bethlehem Township |
| nection Status     | No Li  | mitations                        | County           | Washington              |
| e Application Rece | eived  | March 4, 2019                    | EPA Waived?      | Yes                     |
| e Application Acce | epted  | March 6, 2019                    | If No, Reason    |                         |

### **Summary of Review**

The applicant has applied for a renewal of an existing NPDES Permit No. PA0096601, which was previously issued by the Department on October 27, 2014. That permit expired on October 31, 2019.

The receiving stream, Tenmile Creek, is currently classified as a WWF and is located in State Watershed No. 19-B.

WQM Permit No. 3086402 authorized the construction of the plant to treat an annual average design flow of 0.185 MGD. The existing treatment process consists of influent pump station, mechanical fine screening, a vortex grit separation system, four aerated lagoons, and chlorine disinfection. The design organic capacity is 405 lbs/day.

As reported in the 2017 Chapter 94 Municipal Wasteload Management Report, the STP exceeded its permitted hydraulic design capacity resulting in a hydraulic overload condition. In a letter dated June 11, 2018, the Department required the Authority to submit a CAP to reduce the overload condition at the STP. On august 16, 2018, The Authority submitted the CAP to the Department which consisted of preforming a Re-rating Study to determine the flows and loadings each unit can handle while remaining in compliance with their NPDES Permit. The Department approved the CAP on October 25, 2018, with a requirement of biannual progress reports.

The Re-rate Study was submitted to the Department on December 23, 2019 and was later approved on October 6, 2022. The facility Design Flow/Hydraulic Design Capacity used to prepare the annual Chapter 94 Municipal Wasteload Management Report will be increased from 0.185 MGD to 0.299 MGD. The organic design capacity will remain unchanged at 405 lbs. BOD<sub>5</sub> per day.

| Approve | Deny | Signatures                                                      | Date              |
|---------|------|-----------------------------------------------------------------|-------------------|
| ×       |      | William C. Mitchell, E.I.T. / Project Manager                   | October 17, 2022  |
| Х       |      | Mahbuba lasmin, Ph.D., P.E. / Environmental Engineering Manager | November 14, 2022 |

### **Summary of Review**

Conditions of the Re-rate Study approval were as followed:

- The Authority will submit a revised NPDES Permit Renewal Application to the Department prior to finalizing the draft permit.
- Submission of a WQM Permit Amendment Application, which includes the Williams STP Engineers Re-rate Report, to the Department within 90 day of the Re-rate Study Approval.

Act 537 Planning Approval is not required, as the increase in design flow is wet weather related.

The applicant has complied with Act 14 Notifications and no comments were received. The application states that the STP receives no IW wastewater contributions and does not receive hauled-in wastes. Application data indicates that there is a total of 17 commercial establishments connected to the collection system.

Sludge use and disposal description and location(s): Sewage sludge or biosolids produced by this facility are currently being managed under beneficial use permit PAG086112. The 2021 Chapter 94 Report states that no sludge was hauled from this facility for land application in 2021. Application data indicates that biosolids have been land applied at Watters Farm, Whitley Township, Greene County in 2017.

#### **Public Participation**

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

| Discharge, Receiving Waters and Water Supply Information |                               |                                                  |  |  |  |  |
|----------------------------------------------------------|-------------------------------|--------------------------------------------------|--|--|--|--|
|                                                          |                               |                                                  |  |  |  |  |
| Outfall No. 001                                          | Design Flow (MGD)             | 0.299                                            |  |  |  |  |
| Latitude 39° 58′ 46.00″                                  | Longitude                     | -80° 02' 02.00"                                  |  |  |  |  |
| Quad Name Mather                                         | Quad Code                     | 1905                                             |  |  |  |  |
| Wastewater Description: Sewage Effluent                  |                               |                                                  |  |  |  |  |
|                                                          |                               |                                                  |  |  |  |  |
| Receiving Waters Tenmile Creek (WWF)                     | Stream Code                   | 40285                                            |  |  |  |  |
| NHD Com ID 99413130                                      | RMI                           | 2.63                                             |  |  |  |  |
| Drainage Area 334                                        | Yield (cfs/mi²)               | 0.031736                                         |  |  |  |  |
| Q <sub>7-10</sub> Flow (cfs) 10.6                        | Q <sub>7-10</sub> Basis       | USGS StreamStats Version 1.2.22 (Attachment # 1) |  |  |  |  |
| Elevation (ft) 766                                       | Slope (ft/ft)                 | 0.0003                                           |  |  |  |  |
| Watershed No. 19-B                                       | Chapter 93 Class.             | WWF                                              |  |  |  |  |
| Existing Use                                             | Existing Use Qualifier        |                                                  |  |  |  |  |
| Exceptions to Use NONE                                   | Exceptions to Criteria        | NONE                                             |  |  |  |  |
| Assessment Status Attaining Use(s)                       |                               |                                                  |  |  |  |  |
| Cause(s) of Impairment                                   |                               |                                                  |  |  |  |  |
| Source(s) of Impairment                                  |                               |                                                  |  |  |  |  |
| TMDL Status                                              | Name                          |                                                  |  |  |  |  |
|                                                          |                               |                                                  |  |  |  |  |
| Background/Ambient Data                                  | Data Source                   |                                                  |  |  |  |  |
| pH (SU)                                                  |                               |                                                  |  |  |  |  |
| Temperature (°F)                                         |                               |                                                  |  |  |  |  |
| Hardness (mg/L)                                          |                               |                                                  |  |  |  |  |
| Other:                                                   |                               |                                                  |  |  |  |  |
| Nearest Downstream Public Water Supply Intake            | Tri-County Joint Municipal Au | thority                                          |  |  |  |  |
| PWS Waters Monongahela River                             | Flow at Intake (cfs)          |                                                  |  |  |  |  |
| PWS RMI                                                  | Distance from Outfall (mi)    |                                                  |  |  |  |  |

Changes Since Last Permit Issuance: Plant Re-rate approved, and the facility Design Flow/Hydraulic Design Capacity used to prepare the annual Chapter 94 Municipal Wasteload Management Report has increased from 0.185 MGD to 0.299 MGD. The organic design capacity will remain unchanged at 405 lbs. BOD₅ per day.

Other Comments: N/A

| Treatment Facility Summary                                          |  |  |  |  |  |  |  |
|---------------------------------------------------------------------|--|--|--|--|--|--|--|
|                                                                     |  |  |  |  |  |  |  |
|                                                                     |  |  |  |  |  |  |  |
|                                                                     |  |  |  |  |  |  |  |
|                                                                     |  |  |  |  |  |  |  |
| Annual<br>(MGD)                                                     |  |  |  |  |  |  |  |
| , ,                                                                 |  |  |  |  |  |  |  |
| 9 (2018)                                                            |  |  |  |  |  |  |  |
|                                                                     |  |  |  |  |  |  |  |
|                                                                     |  |  |  |  |  |  |  |
| solids<br>Disposal                                                  |  |  |  |  |  |  |  |
| lids were<br>pplied at<br>Watters<br>Whitley<br>nip, Green<br>bunty |  |  |  |  |  |  |  |
| 1                                                                   |  |  |  |  |  |  |  |

Changes Since Last Permit Issuance: Plant Re-rate approved, and the facility Design Flow/Hydraulic Design Capacity used to prepare the annual Chapter 94 Municipal Wasteload Management Report has increased from 0.185 MGD to 0.299 MGD. The organic design capacity will remain unchanged at 405 lbs. BOD₅ per day.

Other Comments: WQM Permit No. 3086402 authorized the construction of the plant to treat an annual average design flow of 0.185 MGD. The existing treatment process consists of influent pump station, mechanical fine screening, a vortex grit separation system, four aerated lagoons, and chlorine disinfection.

Conditions of the Re-rate Study approval are as followed:

- The Authority will submit a revised NPDES Permit Renewal Application and GIF to the Department prior to finalizing the draft permit.
- Submission of a WQM Permit Amendment Application, which includes the Williams STP Engineers Re-rate Report, within 90 day of the Re-rate Study Approval.

### **Compliance History**

#### **Operations Compliance Check Summary Report**

Facility: Williamstown STP

NPDES Permit No.: PA0096601

**Compliance Review Period:** 8/2017-8/2022

**Inspection Summary:** 

| INSPECTED DATE | INSP TYPE                                      | AGENCY                                    | INSPECTION<br>RESULT DESC |
|----------------|------------------------------------------------|-------------------------------------------|---------------------------|
| 07/16/2021     | Biosolids Processor<br>Compliance Eval<br>Insp | PA Dept of<br>Environmental<br>Protection | No Violations Noted       |
| 07/16/2021     | Compliance<br>Evaluation                       | PA Dept of<br>Environmental<br>Protection | No Violations Noted       |
| 07/16/2021     | Administrative/File<br>Review                  | PA Dept of<br>Environmental<br>Protection | No Violations Noted       |

#### **Violation Summary:**

No violations noted

#### **Open Violations by Client ID:**

No open violations for Client ID 63436

### **Enforcement Summary:**

No enforcements executed during review period

### **Effluent Violation Summary:**

| Mon Pd    | OUTFAL |                              |        |        |         | STAT_BASE_COD   |
|-----------|--------|------------------------------|--------|--------|---------|-----------------|
| End       | L      | PARAMETER<br>Total Suspended | SAMPLE | PERMIT | UNIT    | Е               |
| 2/28/2019 | 1      | Solids                       | 53.4   | 46     | lbs/day | Average Monthly |

<u>Compliance Status:</u> Facility is currently in compliance with no open violations or pending enforcements, but a CAP is in effect due to hydraulic overload. Review of CAP to follow with summary to follow in a separate email.

**Completed by:** Amanda Schmidt

Completed date: 9/13/22

## Compliance History

## DMR Data for Outfall 001 (from August 1, 2021 to July 31, 2022)

| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | JUL-22 | JUN-22 | MAY-22 | APR-22 | MAR-22 | FEB-22 | JAN-22 | DEC-21 | NOV-21 | OCT-21 | SEP-21 | AUG-21 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Flow (MGD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |        |        |        |        |        |        |        |        |        |        |        |
| Average Monthly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.12   | 0.17   | 0.212  | 0.234  | 0.233  | 0.282  | 0.236  | 0.151  | 0.129  | 0.102  | 0.155  | 0.132  |
| Flow (MGD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |        |        |        |        |        |        |        |        |        |        |        |
| Daily Maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.14   | 0.77   | 0.246  | 1.34   | 0.41   | 0.350  | 0.410  | 0.250  | 0.200  | 0.203  | 0.210  | 0.190  |
| pH (S.U.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        |        |        |        |        |        |        |        |        |        |        |
| Minimum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.8    | 6.8    | 6.7    | 7.4    | 7.2    | 7.4    | 7.3    | 7.3    | 7.1    | 6.4    | 6.5    | 6.7    |
| pH (S.U.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        |        |        |        |        |        |        |        |        |        |        |
| Maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.0    | 7.2    | 7.8    | 7.8    | 8.0    | 7.9    | 7.9    | 7.7    | 7.5    | 7.2    | 7.3    | 7.1    |
| DO (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        |        |        |        |        |        |        |        |        |        |        |
| Minimum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.2    | 6.7    | 8.0    | 8.1    | 8.20   | 9.1    | 8.4    | 8.9    | 9.3    | 6.1    | 7.4    | 7.1    |
| TRC (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |        |        |        |        |        |        |        |        |        |        |        |
| Average Monthly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.24   | 0.24   | 0.3    | 0.26   | 0.3    | 0.2    | 0.3    | 0.3    | 0.3    | 0.3    | 0.2    | 0.2    |
| TRC (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |        |        |        |        |        |        |        |        |        |        |        |
| Instantaneous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |        |        |        |        |        |        |        |        |        |        |        |
| Maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.3    | 0.3    | 0.4    | 0.4    | 0.4    | 0.5    | 0.5    | 0.5    | 0.5    | 0.4    | 0.4    | 0.4    |
| CBOD5 (lbs/day)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |        |        |        |        |        |        |        |        |        |        |        |
| Average Monthly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.4    | 10.7   | 5.1    | 7.1    | 5.0    | 5      | 5      | 4      | 3.0    | 2.3    | 4.6    | 2.3    |
| CBOD5 (lbs/day)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |        |        |        |        |        |        |        |        |        |        |        |
| Weekly Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.4    | 10.7   | 5.1    | 7.1    | 5.0    | 5      | 5      | 4      | 3.0    | 2.3    | 4.6    | 2.3    |
| CBOD5 (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |        |        |        |        |        |        |        |        |        |        |        |
| Average Monthly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.3    | 5      | 3.0    | 3.3    | 2.3    | 2.3    | 2.5    | 2.9    | 3.2    | 2.2    | 3.8    | 2      |
| CBOD5 (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |        |        |        |        |        |        |        |        |        |        |        |
| Weekly Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.3    | 5      | 3.0    | 3.3    | 2.3    | 2.3    | 2.5    | 2.9    | 3.2    | 2.2    | 3.8    | 2      |
| BOD5 (lbs/day)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |        |        |        |        |        |        |        |        |        |        |        |
| Raw Sewage Influent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |        |        |        |        |        |        |        |        |        |        |        |
| <br>br/> Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 405    | 000    | 405    | 007    | - 4    | 454    | 00     | 00.0   | 445    | 00     | 0.4    | 400    |
| Monthly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 125    | 233    | 135    | 627    | 51     | 151    | 80     | 66.9   | 115    | 82     | 94     | 100    |
| BOD5 (lbs/day)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |        |        |        |        |        |        |        |        |        |        |        |
| Raw Sewage Influent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 04.4   | 540    | 470    | 0040   | 00     | 0.45.0 | 400    | 00.7   | 000    | 00     | 450    | 444    |
| <br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br> | 214    | 510    | 170    | 2216   | 92     | 245.8  | 136    | 80.7   | 206    | 89     | 158    | 114    |
| BOD5 (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |        |        |        |        |        |        |        |        |        |        |        |
| Raw Sewage Influent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |        |        |        |        |        |        |        |        |        |        |        |
| <br><br>Average Monthly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 126    | 146    | 107    | 75     | 32     | 80.5   | 58.4   | 49.9   | 112    | 77.6   | 72     | 69     |
| BOD5 (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 120    | 140    | 107    | 75     | 32     | 60.5   | 30.4   | 49.9   | 112    | 77.0   | 12     | 69     |
| Raw Sewage Influent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |        |        |        |        |        |        |        |        |        |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 126    | 146    | 107    | 75     | 32     | 80.5   | 58.4   | 49.9   | 112    | 77.6   | 72     | 69     |
| <br>br/> Weekly Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120    | 140    | 107    | 70     | 32     | 0.00   | JØ.4   | 49.9   | 112    | 0.11   | 12     | 09     |

# NPDES Permit Fact Sheet Williamstown STP

| T00 (II / I )                        |      |      |      | ı    | ı        | ı     | Γ    | ı     |      | Γ   | 1    |     |
|--------------------------------------|------|------|------|------|----------|-------|------|-------|------|-----|------|-----|
| TSS (lbs/day)                        | 5.4  | 4.7  | 8.6  | 8.8  | 10.6     | 10.2  | 10.4 | 7.0   | 5.9  | 6   | 44.0 | 5.8 |
| Average Monthly                      | 5.4  | 4.7  | 8.6  | 8.8  | 10.6     | 10.2  | 10.4 | 7.0   | 5.9  | б   | 11.8 | 5.8 |
| TSS (lbs/day)                        |      |      |      |      |          |       |      |       |      |     |      |     |
| Raw Sewage Influent                  |      |      |      |      |          |       |      |       |      |     |      |     |
| <br><br>Average                      | 143  | 196  | 131  | 595  | 55       | 251.4 | 187  | 84.9  | 169  | 121 | 33   | 169 |
| Monthly TSS (lba/dov)                | 143  | 190  | 131  | 393  | 33       | 231.4 | 107  | 04.9  | 109  | 121 | 33   | 169 |
| TSS (lbs/day)<br>Raw Sewage Influent |      |      |      |      |          |       |      |       |      |     |      |     |
| <pre><br/><br/></pre>                | 240  | 382  | 178  | 1996 | 82       | 487.7 | 210  | 198.1 | 346  | 168 | 36   | 245 |
| TSS (lbs/day)                        | 240  | 302  | 170  | 1990 | 02       | 407.7 | 210  | 190.1 | 340  | 100 | 30   | 245 |
| Weekly Average                       | 5.4  | 4.7  | 8.6  | 8.8  | 10.6     | 10.2  | 10.4 | 7.0   | 5.9  | 6   | 11.8 | 5.8 |
| TSS (mg/L)                           | 5.4  | 4.7  | 0.0  | 0.0  | 10.6     | 10.2  | 10.4 | 7.0   | 5.9  | O   | 11.0 | 5.6 |
| Average Monthly                      | 5.2  | 5.0  | 5.0  | 5.0  | 5        | 5     | 5    | 5     | 5    | 5.7 | 9    | 5   |
| TSS (mg/L)                           | 5.2  | 3.0  | 3.0  | 3.0  | 3        | 3     | 3    | J     | 3    | 5.7 | 9    | 3   |
| Raw Sewage Influent                  |      |      |      |      |          |       |      |       |      |     |      |     |
| <br><br><br>Average                  |      |      |      |      |          |       |      |       |      |     |      |     |
| Monthly                              | 145  | 127  | 95   | 80   | 34       | 122   | 101  | 55    | 134  | 115 | 27   | 132 |
| TSS (mg/L)                           | 140  | 127  | - 50 | 00   | 0-7      | 122   | 101  | - 55  | 104  | 110 |      | 102 |
| Raw Sewage Influent                  |      |      |      |      |          |       |      |       |      |     |      |     |
| <br><br><br>Weekly Average           | 145  | 127  | 95   | 80   | 34       | 122   | 101  | 55    | 134  | 115 | 27   | 132 |
| TSS (mg/L)                           | 1 10 |      | - 55 | - 55 | <u> </u> |       | 101  | - 55  |      | 110 |      | 102 |
| Weekly Average                       | 5.2  | 5.0  | 5.0  | 5.0  | 5        | 5     | 5    | 5     | 5    | 5.7 | 9    | 5   |
| Fecal Coliform                       |      |      |      |      |          |       |      |       |      |     |      |     |
| (CFU/100 ml)                         |      |      |      |      |          |       |      |       |      |     |      |     |
| Geometric Mean                       | 1.3  | 6.0  | 6.7  | 1.1  | 14.5     | 12.7  | 353  | 90.2  | 19.9 | 9.4 | 42   | 5.8 |
| Fecal Coliform                       |      |      |      |      |          |       |      |       |      |     |      |     |
| (CFU/100 ml)                         |      |      |      |      |          |       |      |       |      |     |      |     |
| Instantaneous                        |      |      |      |      |          |       |      |       |      |     |      |     |
| Maximum                              | 193  | 64   | 98   | 2    | 54       | 122   | 930  | 194   | 252  | 124 | 189  | 96  |
| Total Nitrogen (mg/L)                |      |      |      |      |          |       |      |       |      |     |      |     |
| Daily Maximum                        |      |      |      |      |          |       |      | 59.5  |      |     |      |     |
| Ammonia (lbs/day)                    |      |      |      |      |          |       |      |       |      |     |      |     |
| Average Monthly                      | 0.7  | 0.11 | 4.0  | 20.1 | 17.5     | 28.9  | 34   | 27.4  | 11.6 | 0.5 | 2.2  | 0.2 |
| Ammonia (lbs/day)                    |      |      |      |      |          |       |      |       |      |     |      |     |
| Weekly Average                       | 0.7  | 0.11 | 4.0  | 20.1 | 17.5     | 28.9  | 34   | 27.4  | 11.6 | 0.5 | 2.2  | 0.2 |
| Ammonia (mg/L)                       |      |      |      |      | _        |       |      |       |      |     |      |     |
| Average Monthly                      | 0.7  | 0.1  | 4.8  | 9.0  | 5        | 14    | 15.7 | 19    | 10.2 | 0.4 | 1.4  | 0.2 |
| Ammonia (mg/L)                       |      | 1    |      |      | _        |       |      |       |      |     |      |     |
| Weekly Average                       | 0.7  | 0.1  | 4.8  | 9.0  | 5        | 14    | 15.7 | 19    | 10.2 | 0.4 | 1.4  | 0.2 |
| Total Phosphorus                     |      |      |      |      |          |       |      |       |      |     |      |     |
| (mg/L)                               |      |      |      |      |          |       |      |       |      |     |      |     |
| Daily Maximum                        |      |      |      |      |          |       |      | 3.29  |      |     |      |     |

| Development of Effluent Limitations |                                         |                   |                 |  |  |  |  |
|-------------------------------------|-----------------------------------------|-------------------|-----------------|--|--|--|--|
| Outfall No.                         | 001                                     | Design Flow (MGD) | 0.299           |  |  |  |  |
| Latitude                            | 39° 58' 46.00"                          | Longitude         | -80° 02' 02.00" |  |  |  |  |
| Wastewater D                        | Wastewater Description: Sewage Effluent |                   |                 |  |  |  |  |

#### **Technology-Based Limitations**

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

| Pollutant               | Limit (mg/l)    | SBC             | Federal Regulation | State Regulation |
|-------------------------|-----------------|-----------------|--------------------|------------------|
| CBOD <sub>5</sub>       | 25              | Average Monthly | 133.102(a)(4)(i)   | 92a.47(a)(1)     |
| СВОО5                   | 40              | Average Weekly  | 133.102(a)(4)(ii)  | 92a.47(a)(2)     |
| Total Suspended         | 30              | Average Monthly | 133.102(b)(1)      | 92a.47(a)(1)     |
| Solids                  | 45              | Average Weekly  | 133.102(b)(2)      | 92a.47(a)(2)     |
| pH                      | 6.0 – 9.0 S.U.  | Min – Max       | 133.102(c)         | 95.2(1)          |
| Fecal Coliform          |                 |                 |                    |                  |
| (5/1 - 9/30)            | 200 / 100 ml    | Geo Mean        | -                  | 92a.47(a)(4)     |
| Fecal Coliform          |                 |                 |                    |                  |
| (5/1 - 9/30)            | 1,000 / 100 ml  | IMAX            | -                  | 92a.47(a)(4)     |
| Fecal Coliform          |                 |                 |                    |                  |
| (10/1 – 4/30)           | 2,000 / 100 ml  | Geo Mean        | -                  | 92a.47(a)(5)     |
| Fecal Coliform          |                 |                 |                    |                  |
| (10/1 – 4/30)           | 10,000 / 100 ml | IMAX            | -                  | 92a.47(a)(5)     |
| Total Residual Chlorine | 0.5             | Average Monthly | -                  | 92a.48(b)(2)     |

Comments: The discharge was evaluated using WQM 7.0 Version 1.1 & TRC\_CALC (Attachments 2, 3, and 5) to evaluate CBOD $_5$ , Ammonia Nitrogen, Dissolved Oxygen, and TRC parameters. The modeling results show the above technology based effluent limitations for CBOD $_5$  and TRC are appropriate.

#### Water Quality-Based Limitations

A "Reasonable Potential Analysis" (TMS Version 1.3) was conducted.

The following limitations were determined through water quality modeling for the facility (Attachments 2, 3, and 4):

| Parameter         | Limit (mg/l) | SBC             | Model               |
|-------------------|--------------|-----------------|---------------------|
| Ammonia-Nitrogen  |              |                 |                     |
| (Nov 1 to Apr 30) | 25.0         | Average Monthly | WQM 7.0 Version 1.1 |
| Ammonia-Nitrogen  |              |                 |                     |
| (May 1 to Oct 31) | 11.0         | Average Monthly | WQM 7.0 Version 1.1 |

Comments: DMR data above confirms that the applicant can comply with the revised ammonia-nitrogen limits, which are based upon updated criteria and StreamStat data (Attachment 1).

The TMS recommended monitoring for total copper because the discharge concentration is greater than 10% of the WQBEL.

### **Best Professional Judgment (BPJ) Limitations**

Comments: A minimum Dissolved Oxygen (DO) limit of 4.0 mg/L should be established based on BPJ to ensure adequate operation and maintenance (Section I.A, Note 6, SOP for Clean Water Program, Establishing Effluent Limitations for Individual Sewage Permits, Final November 9, 2012, Revised March 24, 2021, Version 1.9)

#### **Anti-Backsliding**

Section 402(o) of the Clean Water Act (CWA), enacted in the Water Quality Act of 1987, establishes anti-backsliding rules governing two situations. The first situation occurs when a permittee seeks to revise a Technology-Based effluent

## NPDES Permit Fact Sheet Williamstown STP

limitation based on BPJ to reflect a subsequently promulgated effluent guideline which is less stringent. The second situation addressed by Section 402(o) arises when a permittee seeks relaxation of an effluent limitation which is based upon a State treatment standard of water quality standard.

Previous limits can be used pursuant to EPA's anti-backsliding regulation 40 CFR 122.44 (I) Reissued permits. (1) Except as provided in paragraph (I)(2) of this section when a permit is renewed or reissued. Interim effluent limitations, standards or conditions must be at least as stringent as the final effluent limitations, standards, or conditions in the previous permit (unless the circumstances on which the previous permit was based have materially and substantially changed since the time the permit was issued and would constitute cause for permit modification or revocation and reissuance under §122.62). (2) In the case of effluent limitations established on the basis of Section 402(a)(1)(B) of the CWA, a permit may not be renewed, reissued, or modified on the basis of effluent guidelines promulgated under section 304(b) subsequent to the original issuance of such permit, to contain effluent limitations which are less stringent than the comparable effluent limitations in the previous permit.

The facility is not seeking to revise the previously permitted effluent limits.

### **Additional Considerations**

Monitoring frequency for the proposed effluent limits are based upon Table 6-3, Self-Monitoring Requirements for Sewage Dischargers, from the Departments Technical Guidance for the Development and Specification of Effluent Limitations and Other Permit Conditions in NPDES Permits (Document No. 362-0400-001).

For POTWs, mass loading limits will be established for CBOD5, TSS, NH3-N, and where necessary Total P and Total N. In general, average monthly mass loading limits will be established for CBOD5, TSS, NH3-N, and where necessary Total P and Total N, and average weekly mass loading limits will be established for CBOD5 and TSS (Section IV, SOP for Clean Water Program, Establishing Effluent Limitations for Individual Sewage Permits, Final November 9, 2012, Revised March 24, 2021, Version 1.9)

For POTWs with design flows greater than 2,000 GPD and for non-municipal sewage facilities that service municipalities or portions thereof, the application manager will establish influent BOD5 and TSS monitoring in the permit using the same frequency and sample type as is used for other effluent parameters (Section IV.E.8, SOP for Clean Water Program, New and Reissuance Sewage Individual NPDES Permit Applications, Final November 9, 2012, Revised February 3, 2022, Version 2.0).

Sewage discharges will include monitoring, at a minimum, for E. Coli, in new and reissued permits, with a monitoring frequency of 1/quarter for facilities with design flows of >= 0.05 MGD and < 1.0 MGD per Chapter 92a.61.

Nutrient monitoring is required to establish the nutrient load from the wastewater treatment facility and the impacts that load may have on the quality of the receiving stream(s). A 1/year monitoring requirement for Total Nitrogen & Total Phosphorus has been added to the permit per Chapter 92a.61.

### **Proposed Effluent Limitations and Monitoring Requirements**

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

### Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

|                             |                    |                   | Effluent L      | imitations         |                   |                     | Monitoring Re            | quirements        |
|-----------------------------|--------------------|-------------------|-----------------|--------------------|-------------------|---------------------|--------------------------|-------------------|
| Parameter                   | Mass Units         | (lbs/day) (1)     |                 | Concentrat         | ions (mg/L)       |                     | Minimum (2)              | Required          |
| Farameter                   | Average<br>Monthly | Weekly<br>Average | Minimum         | Average<br>Monthly | Weekly<br>Average | Instant.<br>Maximum | Measurement<br>Frequency | Sample<br>Type    |
| El (110E)                   |                    | Report            | 2007            | V0.07              | VOAV              | 2007                | 4/                       |                   |
| Flow (MGD)                  | Report             | Daily Max         | XXX             | XXX                | XXX               | XXX                 | 1/week                   | Metered           |
| pH (S.U.)                   | XXX                | XXX               | 6.0<br>Inst Min | XXX                | XXX               | 9.0                 | 1/day                    | Grab              |
| DO                          | XXX                | XXX               | 4.0<br>Inst Min | XXX                | XXX               | XXX                 | 1/day                    | Grab              |
| TRC                         | XXX                | XXX               | XXX             | 0.5                | XXX               | 1.6                 | 1/day                    | Grab              |
| CBOD5                       | 60.0               | 95.0              | XXX             | 25.0               | 40.0              | 50                  | 1/week                   | 8-Hr<br>Composite |
| BOD5                        |                    |                   |                 |                    |                   |                     |                          | 8-Hr              |
| Raw Sewage Influent         | Report             | Report            | XXX             | Report             | Report            | XXX                 | 1/week                   | Composite         |
| TSS                         |                    |                   |                 |                    |                   |                     |                          | 8-Hr              |
| Raw Sewage Influent         | Report             | Report            | XXX             | Report             | Report            | XXX                 | 1/week                   | Composite         |
| TSS                         | 70.0               | 110.0             | XXX             | 30.0               | 45.0              | 60                  | 1/week                   | 8-Hr<br>Composite |
| Fecal Coliform (No./100 ml) | 70.0               | 110.0             | ^^^             | 2000               | 45.0              | 60                  | 1/Week                   | Composite         |
| Oct 1 - Apr 30              | xxx                | xxx               | xxx             | Geo Mean           | xxx               | 10000               | 1/week                   | Grab              |
| Fecal Coliform (No./100 ml) |                    |                   |                 | 200                |                   |                     |                          |                   |
| May 1 - Sep 30`             | XXX                | XXX               | XXX             | Geo Mean           | XXX               | 1000                | 1/week                   | Grab              |
| E. Coli (No./100 ml)        | XXX                | XXX               | XXX             | XXX                | XXX               | Report              | 1/quarter                | Grab              |
| ,                           |                    |                   |                 |                    | Report            |                     | '                        | 8-Hr              |
| Total Nitrogen              | XXX                | XXX               | XXX             | XXX                | Daily Max         | XXX                 | 1/year                   | Composite         |
| Ammonia-Nitrogen            |                    |                   |                 |                    | _                 |                     |                          | 8-Hr              |
| Nov 1 - Apr 30              | 62.3               | XXX               | XXX             | 25.0               | XXX               | 50                  | 1/week                   | Composite         |
| Ammonia-Nitrogen            |                    |                   |                 |                    |                   |                     |                          | 8-Hr              |
| May 1 - Oct 31              | 27.4               | XXX               | XXX             | 11.0               | XXX               | 22                  | 1/week                   | Composite         |

### Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

|                  |                    |                   | Effluent L | imitations         |                   |                     | Monitoring Red           | quirements     |
|------------------|--------------------|-------------------|------------|--------------------|-------------------|---------------------|--------------------------|----------------|
| Parameter        | Mass Units         | (lbs/day) (1)     |            | Concentra          | tions (mg/L)      |                     | Minimum <sup>(2)</sup>   | Required       |
| Farameter        | Average<br>Monthly | Weekly<br>Average | Minimum    | Average<br>Monthly | Weekly<br>Average | Instant.<br>Maximum | Measurement<br>Frequency | Sample<br>Type |
|                  |                    |                   |            |                    | Report            |                     |                          | 8-Hr           |
| Total Phosphorus | XXX                | XXX               | XXX        | XXX                | Daily Max         | XXX                 | 1/year                   | Composite      |
|                  |                    |                   |            |                    | Report            |                     |                          | 24-Hr          |
| Total Copper     | Report             | XXX               | XXX        | Report             | Daily Max         | XXX                 | 1/week                   | Composite      |

Compliance Sampling Location: Outfall 001

Other Comments: N/A

## Attachment 1 - USGS StreamStats Report

## StreamStats Report - PA0096601

Region ID: PA

PA20220831140938968000 Workspace ID:

Clicked Point (Latitude, Longitude): 39.98006, -80.03302

2022-08-31 10:10:02 -0400



Collapse All

| Parameter Code | Parameter Description                   | Value | Unit         |
|----------------|-----------------------------------------|-------|--------------|
| DRNAREA        | Area that drains to a point on a stream | 334   | square miles |
| ELEV           | Mean Basin Elevation                    | 1184  | feet         |

> Low-Flow Statistics

Low-Flow Statistics Parameters [Low Flow Region 4]

| Parameter Code | Parameter Name       | Value | Units        | Min Limit | Max Limit |
|----------------|----------------------|-------|--------------|-----------|-----------|
| DRNAREA        | Drainage Area        | 334   | square miles | 2.26      | 1400      |
| ELEV           | Mean Basin Elevation | 1184  | feet         | 1050      | 2580      |

### Low-Flow Statistics Flow Report [Low Flow Region 4]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

| Statistic               | Value | Unit   | SE | ASEp |
|-------------------------|-------|--------|----|------|
| 7 Day 2 Year Low Flow   | 20.8  | ft^3/s | 43 | 43   |
| 30 Day 2 Year Low Flow  | 30.6  | ft^3/s | 38 | 38   |
| 7 Day 10 Year Low Flow  | 10.6  | ft^3/s | 66 | 66   |
| 30 Day 10 Year Low Flow | 14.6  | ft^3/s | 54 | 54   |
| 90 Day 10 Year Low Flow | 22.4  | ft^3/s | 41 | 41   |

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006–5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.10.1

StreamStats Services Version: 1.2.22

NSS Services Version: 2.2.1

## Attachment 2 - WQM 7.0 Version 1.1 - Warmer Period

### Input Data WQM 7.0

|                          | SWP<br>Basin |                      |                | Stre                    | eam Name                |             | RMI                               |              | vation<br>(ft) | Drainage<br>Area<br>(sq mi) |                      | lope<br>t/ft) | PW<br>Withda<br>(mg | rawal | Apply<br>FC |
|--------------------------|--------------|----------------------|----------------|-------------------------|-------------------------|-------------|-----------------------------------|--------------|----------------|-----------------------------|----------------------|---------------|---------------------|-------|-------------|
|                          | 19B          | 40                   | 285 TENMI      | LE CREE                 | ΕK                      |             | 2.63                              | 30           | 767.00         | 334.                        | 0.0 0.0              | 00000         |                     | 0.00  | <b>~</b>    |
|                          |              |                      |                |                         | Str                     | ream Dat    | a                                 |              |                |                             |                      |               |                     |       |             |
| Design<br>Cond.          | LFY          | Trib<br>Flow         | Stream<br>Flow | Rch<br>Trav<br>Time     | Rch<br>Velocity         | WD<br>Ratio | Rch<br>Width                      | Rch<br>Depth | Tem            | Tributary                   | Н                    | Tem           | Stream<br>p         | pH    |             |
| Cond.                    | (cfsm)       | (cfs)                | (cfs)          | (days)                  | (fps)                   |             | (ft)                              | (ft)         | (°C            | )                           |                      | (°C           | )                   |       |             |
| Q7-10<br>Q1-10<br>Q30-10 | 0.032        | 0.00<br>0.00<br>0.00 | 0.00           | 0.000<br>0.000<br>0.000 | 0.000<br>0.000<br>0.000 | 0.0         | 130.20                            | 0.0          | 00 2           | 5.00                        | 7.00                 | (             | 0.00                | 0.00  |             |
|                          |              |                      |                |                         | Di                      | scharge l   | Data                              |              |                |                             |                      |               |                     |       |             |
|                          |              |                      | Name           | Per                     | mit Number              | Disc        | Permitte<br>Disc<br>Flow<br>(mgd) | Dis<br>Flo   | c Res          | erve T<br>ctor              | Disc<br>Temp<br>(°C) |               | sc<br>H             |       |             |
|                          |              | Willia               | amstown TP     | PA                      | 0096601                 | 0.299       | 0.299                             | 0.0          | 0000           | 0.000                       | 20.00                | 0             | 7.00                |       |             |
|                          |              |                      |                |                         | Pa                      | rameter l   | Data                              |              |                |                             |                      |               |                     |       |             |
|                          |              |                      |                | aramete                 | r Namo                  |             |                                   | Trib<br>Conc | Stream<br>Conc | Fate<br>Coef                |                      |               |                     |       |             |
|                          |              |                      |                | aramete                 | rvame                   | (m          | g/L) (n                           | ng/L)        | (mg/L)         | (1/days)                    |                      |               |                     |       |             |
|                          |              |                      | CBOD5          |                         |                         |             | 25.00                             | 2.00         | 0.00           | 1.50                        | )                    |               |                     |       |             |
|                          |              |                      | Dissolved      | Oxygen                  |                         |             | 4.00                              | 8.24         | 0.00           | 0.00                        | )                    |               |                     |       |             |
|                          |              |                      | NH3-N          |                         |                         |             | 11.00                             | 0.00         | 0.00           | 0.70                        | )                    |               |                     |       |             |

## Input Data WQM 7.0

|                          | SWP<br>Basin |                      |                      | Stre                    | eam Name                |             | RMI                               | Ele          | evation<br>(ft) | Drainage<br>Area<br>(sq mi) |                      | ope<br>Vft)      | PWS<br>Vithdrawal<br>(mgd) | Apply<br>FC |
|--------------------------|--------------|----------------------|----------------------|-------------------------|-------------------------|-------------|-----------------------------------|--------------|-----------------|-----------------------------|----------------------|------------------|----------------------------|-------------|
|                          | 19B          | 402                  | 285 TENM             | ILE CREE                | ΕK                      |             | 2.00                              | 00           | 766.00          | 334.                        | 30 0.0               | 0000             | 0.00                       | <b>~</b>    |
|                          |              |                      |                      |                         | Str                     | ream Dat    | a                                 |              |                 |                             |                      |                  |                            |             |
| Design<br>Cond.          | LFY          | Trib<br>Flow         | Stream<br>Flow       | Rch<br>Trav<br>Time     | Rch<br>Velocity         | WD<br>Ratio | Rch<br>Width                      | Rch<br>Depth |                 | Tributary<br>ip p           | Н                    | <u>S</u><br>Temp | tream<br>pH                |             |
| Cond.                    | (cfsm)       | (cfs)                | (cfs)                | (days)                  | (fps)                   |             | (ft)                              | (ft)         | (°C             | )                           |                      | (°C)             |                            |             |
| Q7-10<br>Q1-10<br>Q30-10 | 0.032        | 0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00 | 0.000<br>0.000<br>0.000 | 0.000<br>0.000<br>0.000 | 0.0         | 225.78                            | 0.0          | 00 2            | 5.00                        | 7.00                 | 0.0              | 00 0.00                    | 1           |
|                          |              |                      |                      |                         | Di                      | scharge l   | Data                              |              |                 |                             |                      |                  |                            |             |
|                          |              |                      | Name                 | Per                     | mit Number              | Disc        | Permitto<br>Disc<br>Flow<br>(mgd) | Dis<br>Flo   | sc Res          | erve T<br>ctor              | Disc<br>Femp<br>(°C) | Disc<br>pH       |                            |             |
|                          |              |                      |                      |                         |                         | 0.000       | 0.000                             | 0.0          | 0000            | 0.000                       | 0.00                 | 7.               | .00                        |             |
|                          |              |                      |                      |                         | Pa                      | rameter l   | Data                              |              |                 |                             |                      |                  |                            |             |
|                          |              |                      | F                    | Paramete                | r Name                  |             |                                   | Trib<br>Conc | Stream<br>Conc  | Fate<br>Coef                |                      |                  |                            |             |
|                          |              |                      |                      |                         |                         | (m          | g/L) (n                           | ng/L)        | (mg/L)          | (1/days)                    |                      |                  |                            |             |
|                          |              |                      | CBOD5                |                         |                         |             | 25.00                             | 2.00         | 0.00            | 1.50                        | )                    |                  |                            |             |
|                          |              |                      | Dissolved            | Oxygen                  |                         |             | 3.00                              | 8.24         | 0.00            | 0.00                        | )                    |                  |                            |             |
|                          |              |                      | NH3-N                |                         |                         |             | 25.00                             | 0.00         | 0.00            | 0.70                        | 1                    |                  |                            |             |

## WQM 7.0 Hydrodynamic Outputs

|       | SW                      | P Basin              | Strea                          | m Code                            |                           |               |               | Stream       | Name              |                                 |                          |                |   |
|-------|-------------------------|----------------------|--------------------------------|-----------------------------------|---------------------------|---------------|---------------|--------------|-------------------|---------------------------------|--------------------------|----------------|---|
|       |                         | 19B                  | 4                              | 0285                              |                           |               | Т             | ENMILE       | CREEK             |                                 |                          |                |   |
| RMI   | Stream<br>Flow<br>(cfs) | PWS<br>With<br>(cfs) | Net<br>Stream<br>Flow<br>(cfs) | Disc<br>Analysis<br>Flow<br>(cfs) | Reach<br>Slope<br>(ft/ft) | Depth<br>(ft) | Width<br>(ft) | W/D<br>Ratio | Velocity<br>(fps) | Reach<br>Trav<br>Time<br>(days) | Analysis<br>Temp<br>(°C) | Analysis<br>pH |   |
|       | (CIS)                   | (GS)                 | (CIS)                          | (CIS)                             | (IUIL)                    | (11)          | (11)          |              | (ips)             | (uays)                          | (0)                      |                | _ |
| Q7-1  | 0 Flow                  |                      |                                |                                   |                           |               |               |              |                   |                                 |                          |                |   |
| 2.630 | 10.60                   | 0.00                 | 10.60                          | .4626                             | 0.00030                   | .477          | 130.2         | 272.76       | 0.18              | 0.216                           | 24.79                    | 7.00           |   |
| Q1-1  | 0 Flow                  |                      |                                |                                   |                           |               |               |              |                   |                                 |                          |                |   |
| 2.630 | 6.78                    | 0.00                 | 6.78                           | .4626                             | 0.00030                   | NA            | NA            | NA           | 0.14              | 0.274                           | 24.68                    | 7.00           |   |
| Q30-  | 10 Flow                 | ,                    |                                |                                   |                           |               |               |              |                   |                                 |                          |                |   |
| 2.630 | 14.42                   | 0.00                 | 14.42                          | .4626                             | 0.00030                   | NA            | NA            | NA           | 0.21              | 0.183                           | 24.84                    | 7.00           |   |

## WQM 7.0 Modeling Specifications

| Parameters         | Both   | Use Inputted Q1-10 and Q30-10 Flows | <b>~</b> |
|--------------------|--------|-------------------------------------|----------|
| WLA Method         | EMPR   | Use Inputted W/D Ratio              | <b>~</b> |
| Q1-10/Q7-10 Ratio  | 0.64   | Use Inputted Reach Travel Times     | ✓        |
| Q30-10/Q7-10 Ratio | 1.36   | Temperature Adjust Kr               |          |
| D.O. Saturation    | 90.00% | Use Balanced Technology             | <b>~</b> |
| D.O. Goal          | 5      |                                     |          |

Tuesday, October 4, 2022 Version 1.1 Page 1 of 1

2.63 Williamstown TP

## WQM 7.0 Wasteload Allocations

| SWP Basin | Stream Code | Stream Name   |
|-----------|-------------|---------------|
| 19B       | 40285       | TENMILE CREEK |

25

25

11

| RMI    | Discharge Name                  | Baseline<br>Criterion<br>(mg/L) | Baseline<br>WLA<br>(mg/L) | Multiple<br>Criterion<br>(mg/L) | Multiple<br>WLA<br>(mg/L) | Critical<br>Reach         | Percent<br>Reduction |
|--------|---------------------------------|---------------------------------|---------------------------|---------------------------------|---------------------------|---------------------------|----------------------|
| 2.630  | ) Williamstown TP               | 11.37                           | 22                        | 11.37                           | 22                        | 0                         | 0                    |
| H3-N C | Chronic Allocati Discharge Name | ons Baseline Criterion (mg/L)   | Baseline<br>WLA<br>(mg/L) | Multiple<br>Criterion<br>(mg/L) | Multiple<br>WLA<br>(mg/L) | Critical<br>Reach         | Percent<br>Reduction |
| 2.630  | ) Williamstown TP               | 1.38                            | 11                        | 1.38                            | 11                        | 0                         | 0                    |
| ssolve | d Oxygen Alloc                  | ations                          |                           |                                 |                           |                           |                      |
| RMI    | Discharge Nan                   | <u>C</u>                        |                           | <u>NH3-N</u><br>Baseline Mu     | <u>Dissol</u>             | ved Oxyger<br>ne Multiple | Critical             |

## WQM 7.0 D.O.Simulation

| <u>SWP Basin</u> <u>S</u><br>19B                                          | tream Code<br>40285                                                                       |                                      | 1               | Stream Name<br>TENMILE CREEK                                                                       | K                                             |
|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------|-----------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------|
| RMI<br>2.630<br>Reach Width (ft)<br>130.200<br>Reach CBOD5 (mg/L)<br>2.96 | Total Discharge<br>0.29<br><u>Reach De</u><br>0.47<br><u>Reach Kc</u><br>0.46<br>Reach Kr | 9<br>epth (ft)<br>7<br>(1/days)<br>3 |                 | lysis Temperature<br>24.791<br>Reach WDRatio<br>272.761<br>leach NH3-N (mg/<br>0.46<br>Kr Equation | 7.000<br><u>Reach Velocity (fps)</u><br>0.178 |
| Reach DO (mg/L)<br>8.063<br>Reach Travel Time (days)                      | 0.36                                                                                      | 5                                    |                 | Tsivoglou                                                                                          | 5                                             |
| 0.216                                                                     | TravTime<br>(days)                                                                        | Subreach<br>CBOD5<br>(mg/L)          | NH3-N<br>(mg/L) | D.O.<br>(mg/L)                                                                                     |                                               |
|                                                                           | 0.022                                                                                     |                                      | 0.45            | 7.57                                                                                               |                                               |
|                                                                           | 0.043<br>0.065                                                                            |                                      | 0.44            | 7.57<br>7.57                                                                                       |                                               |
|                                                                           | 0.087                                                                                     | 2.82                                 | 0.43            | 7.57                                                                                               |                                               |
|                                                                           | 0.108                                                                                     | 2.78                                 | 0.41            | 7.57                                                                                               |                                               |
|                                                                           | 0.130                                                                                     | 2.75                                 | 0.40            | 7.51<br>7.43                                                                                       |                                               |
|                                                                           | 0.151<br>0.173                                                                            | 2.71<br>2.68                         | 0.39<br>0.39    | 7.45<br>7.35                                                                                       |                                               |
|                                                                           | 0.195                                                                                     |                                      | 0.38            | 7.27                                                                                               |                                               |
|                                                                           | 0.216                                                                                     | 2.61                                 | 0.37            | 7.19                                                                                               |                                               |

Tuesday, October 4, 2022 Version 1.1 Page 1 of 1

## WQM 7.0 Effluent Limits

|                 |                  |                               |                                          | -                                                                                                                                                                                             |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                         |
|-----------------|------------------|-------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name            | Permit<br>Number | Disc<br>Flow<br>(mgd)         | Parameter                                | Effl. Limit<br>30-day Ave.<br>(mg/L)                                                                                                                                                          |                                                                                                                                                                                                                                                                 | Effl. Limit<br>Minimum<br>(mg/L)                                                                                                                                                                                                                                        |
| Williamstown TP | PA0096601        | 0.299                         | CBOD5                                    | 25                                                                                                                                                                                            |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                         |
|                 |                  |                               | NH3-N                                    | 11                                                                                                                                                                                            | 22                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                         |
|                 |                  |                               | Dissolved Oxygen                         |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                 | 4                                                                                                                                                                                                                                                                       |
|                 | 19B 40<br>Name   | 19B 40285  Name Permit Number | 19B 40285  Name Permit Flow Number (mgd) | 19B         40285         TENMILE CRE           Name         Permit Number         Plow (mgd)         Parameter           Williamstown TP         PA0096601         0.299         CBOD5 NH3-N | 19B         40285         TENMILE CREEK           Name         Permit Number         Disc Flow (mgd)         Parameter         20-day Ave. (mg/L)           Williamstown TP         PA0096601         0.299         CBOD5         25           NH3-N         11 | Name         Permit Number         Disc Flow (mgd)         Parameter         Effl. Limit 30-day Ave. (mg/L)         Effl. Limit Maximum (mg/L)           Williamstown TP         PA0096601         0.299         CBOD5         25           NH3-N         11         22 |

## Attachment 3 - WQM 7.0 Version 1.1 - Colder Period

### Input Data WQM 7.0

|                          | SWP<br>Basin |                      |                | Stre                    | eam Name                |             | RMI                               |              | vation<br>(ft) | Drainag<br>Area<br>(sq mi |                      | lope<br>ft/ft) | PW<br>Withdi<br>(mg | rawal | Apply<br>FC |
|--------------------------|--------------|----------------------|----------------|-------------------------|-------------------------|-------------|-----------------------------------|--------------|----------------|---------------------------|----------------------|----------------|---------------------|-------|-------------|
|                          | 19B          | 40                   | 285 TENM       | ILE CREE                | ΕK                      |             | 2.63                              | 30           | 767.00         | 334                       | .00 0.               | 00000          |                     | 0.00  | <b>~</b>    |
|                          |              |                      |                |                         | St                      | ream Dat    | a                                 |              |                |                           |                      |                |                     |       |             |
| Design<br>Cond.          | LFY          | Trib<br>Flow         | Stream<br>Flow | Rch<br>Trav<br>Time     | Rch<br>Velocity         | WD<br>Ratio | Rch<br>Width                      | Rch<br>Depth | Tem            | Tributan<br>ip            | ⊻<br>pH              | Tem            | Stream<br>p         | pH    |             |
| Cona.                    | (cfsm)       | (cfs)                | (cfs)          | (days)                  | (fps)                   |             | (ft)                              | (ft)         | (°C            | )                         |                      | (°C            | )                   |       |             |
| Q7-10<br>Q1-10<br>Q30-10 | 0.063        | 0.00<br>0.00<br>0.00 | 0.00           | 0.000<br>0.000<br>0.000 | 0.000<br>0.000<br>0.000 | 0.0         | 130.20                            | 0.0          | 0              | 5.00                      | 7.00                 | (              | 0.00                | 0.00  |             |
|                          |              |                      |                |                         | Di                      | scharge     | Data                              |              |                |                           |                      |                |                     |       |             |
|                          |              |                      | Name           | Per                     | mit Number              | Disc        | Permitte<br>Disc<br>Flow<br>(mgd) | Disk<br>Flo  | c Res<br>w Fa  | erve                      | Disc<br>Temp<br>(°C) |                | sc<br>H             |       |             |
|                          |              | Willia               | amstown TF     | PA                      | 0096601                 | 0.299       | 0.299                             | 0.0          | 000            | 0.000                     | 15.0                 | 0              | 7.00                |       |             |
|                          |              |                      |                |                         | Pa                      | arameter    | Data                              |              |                |                           |                      |                |                     |       |             |
|                          |              |                      |                | Paramete                | r Name                  |             |                                   | Trib :       | Stream<br>Conc | Fate<br>Coef              |                      |                |                     |       |             |
|                          |              |                      |                |                         |                         | (m          | ıg/L) (n                          | ng/L)        | (mg/L)         | (1/days                   | )                    |                |                     |       |             |
|                          |              |                      | CBOD5          |                         |                         |             | 25.00                             | 2.00         | 0.00           | 1.5                       | 0                    |                |                     |       |             |
|                          |              |                      | Dissolved      | Oxygen                  |                         |             | 4.00                              | 12.51        | 0.00           | 0.0                       | 0                    |                |                     |       |             |
|                          |              |                      | NH3-N          |                         |                         |             | 25.00                             | 0.00         | 0.00           | 0.7                       | 0                    |                |                     |       |             |

## Input Data WQM 7.0

|                          | SWP    | Chron                |                      |                         |                         |                  | RMI          |              |                | Designation                 | Class            | PV                  | ue.                 | Annly       |
|--------------------------|--------|----------------------|----------------------|-------------------------|-------------------------|------------------|--------------|--------------|----------------|-----------------------------|------------------|---------------------|---------------------|-------------|
|                          | Basir  |                      |                      | Stre                    | eam Name                |                  | KMI          |              | (ft)           | Drainage<br>Area<br>(sq mi) | Slope<br>(ft/ft) | Withd               | vs<br>Irawal<br>gd) | Apply<br>FC |
|                          | 19B    | 402                  | 285 TENM             | ILE CRE                 | ΕK                      |                  | 2.0          | 00           | 766.00         | 334.30                      | 0.00000          | )                   | 0.00                | <b>v</b>    |
|                          |        |                      |                      |                         | St                      | ream Dat         | a            |              |                |                             |                  |                     |                     |             |
| Design                   | LFY    | Trib<br>Flow         | Stream<br>Flow       | Rch<br>Trav<br>Time     | Rch<br>Velocity         | WD<br>Ratio      | Rch<br>Width | Rch<br>Depth |                | <u>Tributary</u><br>p pH    | Ter              | <u>Strear</u><br>mp | n<br>pH             |             |
| Cond.                    | (cfsm) | (cfs)                | (cfs)                | (days)                  | (fps)                   |                  | (ft)         | (ft)         | (°C            | )                           | (°(              | C)                  |                     |             |
| Q7-10<br>Q1-10<br>Q30-10 | 0.063  | 0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00 | 0.000<br>0.000<br>0.000 | 0.000<br>0.000<br>0.000 | 0.0              | 225.78       | 0.0          | 00 8           | 5.00 7.                     | 00               | 0.00                | 0.00                |             |
|                          |        |                      |                      |                         |                         | scharge (        | Data .       |              |                |                             |                  |                     | 1                   |             |
|                          |        |                      | Name                 | Per                     | mit Number              | Existing<br>Disc |              | Dis<br>Flo   | ic Res         | Dis<br>erve Ter<br>ctor     | np               | )isc<br>pH          |                     |             |
|                          |        |                      |                      |                         |                         | 0.0000           | 0.00         | 0.0          | 0000           | 0.000                       | 0.00             | 7.00                |                     |             |
|                          |        |                      |                      |                         | Pa                      | rameter l        |              |              |                |                             |                  |                     |                     |             |
|                          |        |                      | ,                    | Paramete                | r Name                  |                  |              | Trib<br>Conc | Stream<br>Conc | Fate<br>Coef                |                  |                     |                     |             |
|                          |        |                      |                      |                         |                         | (m               | g/L) (       | mg/L)        | (mg/L)         | (1/days)                    |                  |                     |                     |             |
|                          |        |                      | CBOD5                |                         |                         | :                | 25.00        | 2.00         | 0.00           | 1.50                        |                  |                     |                     |             |
|                          |        |                      | Dissolved            | Oxygen                  |                         |                  | 3.00         | 8.24         | 0.00           | 0.00                        |                  |                     |                     |             |
|                          |        |                      | NH3-N                |                         |                         | :                | 25.00        | 0.00         | 0.00           | 0.70                        |                  |                     |                     |             |

## WQM 7.0 Hydrodynamic Outputs

|               | SW                      | P Basin<br>19B       |                                | m Code<br>0285                    |                           | Stream Name TENMILE CREEK |               |              |                   |                                 |                          |                |
|---------------|-------------------------|----------------------|--------------------------------|-----------------------------------|---------------------------|---------------------------|---------------|--------------|-------------------|---------------------------------|--------------------------|----------------|
| RMI           | Stream<br>Flow<br>(cfs) | PWS<br>With<br>(cfs) | Net<br>Stream<br>Flow<br>(cfs) | Disc<br>Analysis<br>Flow<br>(cfs) | Reach<br>Slope<br>(ft/ft) | Depth<br>(ft)             | Width<br>(ft) | W/D<br>Ratio | Velocity<br>(fps) | Reach<br>Trav<br>Time<br>(days) | Analysis<br>Temp<br>(°C) | Analysis<br>pH |
| Q7-1<br>2.630 | 0 Flow<br>21.20         | 0.00                 | 21.20                          | .4626                             | 0.00030                   | .642                      | 130.2         | 202.94       | 0.26              | 0.148                           | 5.21                     | 7.00           |
| Q1-1<br>2.630 | 0 Flow<br>13.57         | 0.00                 | 13.57                          | .4626                             | 0.00030                   | NA                        | NA            | NA           | 0.20              | 0.189                           | 5.33                     | 7.00           |
| Q30-<br>2.630 | 10 Flow<br>28.83        | 0.00                 | 28.83                          | .4626                             | 0.00030                   | NA                        | NA            | NA           | 0.31              | 0.125                           | 5.16                     | 7.00           |

Tuesday, October 4, 2022 Version 1.1 Page 1 of 1

## WQM 7.0 Modeling Specifications

| Parameters         | Both   | Use Inputted Q1-10 and Q30-10 Flows | <b>~</b> |
|--------------------|--------|-------------------------------------|----------|
| WLA Method         | EMPR   | Use Inputted W/D Ratio              | ✓        |
| Q1-10/Q7-10 Ratio  | 0.64   | Use Inputted Reach Travel Times     | ✓        |
| Q30-10/Q7-10 Ratio | 1.36   | Temperature Adjust Kr               |          |
| D.O. Saturation    | 90.00% | Use Balanced Technology             | <b>V</b> |
| D.O. Goal          | 5      |                                     |          |

Tuesday, October 4, 2022 Version 1.1 Page 1 of 1

## WQM 7.0 Wasteload Allocations

|       | SWP Basin<br>19B |        | am <u>Code</u><br>0285          |                           |    | _                               | ream Nam<br>MILE CRE      | _  |                   |                      |
|-------|------------------|--------|---------------------------------|---------------------------|----|---------------------------------|---------------------------|----|-------------------|----------------------|
| NH3-N | Acute Alloc      | ation  | s                               |                           |    |                                 |                           |    |                   |                      |
| RMI   | Discharge        | Name   | Baseline<br>Criterion<br>(mg/L) | Baseline<br>WLA<br>(mg/L) |    | Multiple<br>Criterion<br>(mg/L) | Multiple<br>WLA<br>(mg/L) |    | Critical<br>Reach | Percent<br>Reduction |
| 2.63  | 0 Williamstown   | n TP   | 24.1                            |                           | 50 | 24.1                            |                           | 50 | 0                 | 0                    |
| IH3-N | Chronic All      | ocatio | ons                             |                           |    |                                 |                           |    |                   |                      |
| RMI   | Discharge N      |        | Baseline<br>Criterion<br>(mg/L) | Baseline<br>WLA<br>(mg/L) |    | Multiple<br>Criterion<br>(mg/L) | Multiple<br>WLA<br>(mg/L) |    | Critical<br>Reach | Percent<br>Reduction |
|       |                  |        | 4.38                            |                           | 25 | 4.38                            |                           | 25 | 0                 | 0                    |

#### **Dissolved Oxygen Allocations**

|      |                 | CBC                |                    |                    | 3-N     | Dissolve           | d Oxygen | Critical | Percent   |
|------|-----------------|--------------------|--------------------|--------------------|---------|--------------------|----------|----------|-----------|
| RMI  | Discharge Name  | Baseline<br>(mg/L) | Multiple<br>(mg/L) | Baseline<br>(mg/L) | mulupie | Baseline<br>(mg/L) | Muluple  | Reach    | Reduction |
| 2.63 | Williamstown TP | 25                 | 25                 | 25                 | 25      | 4                  | 4        | 0        | 0         |

## WQM 7.0 D.O.Simulation

| SWP Basin St             | tream Code<br>40285 |          | 1               | Stream Name<br>TENMILE CREEK |                      |
|--------------------------|---------------------|----------|-----------------|------------------------------|----------------------|
| <u>RMI</u>               | Total Discharge     |          | i) Ana          | lysis Temperature            |                      |
| 2.630                    | 0.29                | 9        |                 | 5.214                        | 7.000                |
| Reach Width (ft)         | Reach De            |          |                 | Reach WDRatio                | Reach Velocity (fps) |
| 130.200                  | 0.64                | 2        |                 | 202.939                      | 0.259                |
| Reach CBOD5 (mg/L)       | Reach Kc (          |          | R               | each NH3-N (mg/l             |                      |
| 2.49                     | 0.30                |          |                 | 0.53                         | 0.224                |
| Reach DO (mg/L)          | Reach Kr (          |          |                 | Kr Equation                  | Reach DO Goal (mg/L) |
| 12.328                   | 0.53                | 2        |                 | Tsivoglou                    | 5                    |
| Reach Travel Time (days) |                     | Subreach | Reculte         |                              |                      |
| 0.148                    | TravTime<br>(days)  |          | NH3-N<br>(mg/L) | D.O.<br>(mg/L)               |                      |
|                          | 0.015               | 2.49     | 0.53            | 11.39                        |                      |
|                          | 0.030               | 2.48     | 0.53            | 11.39                        |                      |
|                          | 0.045               | 2.47     | 0.53            | 11.39                        |                      |
|                          | 0.059               | 2.47     | 0.53            | 11.39                        |                      |
|                          | 0.074               | 2.46     | 0.53            | 11.39                        |                      |
|                          | 0.089               | 2.46     | 0.52            | 11.39                        |                      |
|                          | 0.104               | 2.45     | 0.52            | 11.39                        |                      |
|                          | 0.119               | 2.45     | 0.52            | 11.39                        |                      |
|                          | 0.134               | 2.44     | 0.52            | 11.39                        |                      |
|                          | 0.148               | 2.43     | 0.52            | 11.39                        |                      |

Tuesday, October 4, 2022 Version 1.1 Page 1 of 1

## WQM 7.0 Effluent Limits

|       |                 | <u>im Code</u><br>0285 |                       | Stream Name<br>TENMILE CRE |                                      |                                  |                                  |
|-------|-----------------|------------------------|-----------------------|----------------------------|--------------------------------------|----------------------------------|----------------------------------|
| RMI   | Name            | Permit<br>Number       | Disc<br>Flow<br>(mgd) | Parameter                  | Effl. Limit<br>30-day Ave.<br>(mg/L) | Effl. Limit<br>Maximum<br>(mg/L) | Effl. Limit<br>Minimum<br>(mg/L) |
| 2.630 | Williamstown TP | PA0096601              | 0.299                 | CBOD5                      | 25                                   |                                  |                                  |
|       |                 |                        |                       | NH3-N                      | 25                                   | 50                               |                                  |
|       |                 |                        |                       | Dissolved Oxygen           |                                      |                                  | 4                                |
|       |                 |                        |                       |                            |                                      |                                  |                                  |

## Attachment 4 - TMS Version 1.3



Toxics Management Spreadsheet Version 1.3, March 2021

## Discharge Information

| Instructions  | Disch   | sarge Stream                    |                                         |                  |
|---------------|---------|---------------------------------|-----------------------------------------|------------------|
|               |         |                                 |                                         |                  |
| Facility:     | William | stown STP                       | NPDES Permit No.: pa0096601             | Outfall No.: 001 |
|               |         |                                 |                                         |                  |
| Evaluation Ty | ype:    | Major Sewage / Industrial Waste | Wastewater Description: Sewage Effluent |                  |
|               |         |                                 |                                         |                  |

| Discharge Characteristics |                  |          |     |                 |                          |  |  |    |  |  |
|---------------------------|------------------|----------|-----|-----------------|--------------------------|--|--|----|--|--|
| Design Flow               | Hardness (mg/l)* | pH (SU)* | P   | artial Mix Fa   | Complete Mix Times (min) |  |  |    |  |  |
| (MGD)*                    | naruness (mg/l)  | рн (30)  | AFC | AFC CFC THH CRL |                          |  |  | Qh |  |  |
| 0.299                     | 100              | 7        |     |                 |                          |  |  |    |  |  |

|       |                                 |       |    |                     | (      | O If le    | ft blank       | 0.5 lf le   | eft blank    | 0             | ) if left blan | k   | 1 If lef         | t blank        |
|-------|---------------------------------|-------|----|---------------------|--------|------------|----------------|-------------|--------------|---------------|----------------|-----|------------------|----------------|
|       | Discharge Pollutant             | Units | Ma | x Discharge<br>Conc |        | rib<br>onc | Stream<br>Conc | Daily<br>CV | Hourly<br>CV | Strea<br>m CV | Fate<br>Coeff  | FOS | Criteri<br>a Mod | Chem<br>Transl |
|       | Total Dissolved Solids (PWS)    | mg/L  |    | 330                 | Į      | Щ          |                |             |              |               |                |     |                  |                |
| 7     | Chloride (PWS)                  | mg/L  |    | 34                  | -      | $\square$  |                |             |              |               |                |     |                  |                |
| Group | Bromide                         | mg/L  | ٧  | 0.6                 | +      | $\square$  |                |             |              |               |                |     |                  |                |
| ြင်   | Sulfate (PWS)                   | mg/L  |    | 63.3                |        | H          |                |             |              |               |                |     |                  |                |
|       | Fluoride (PWS)                  | mg/L  |    |                     |        | П          |                |             |              |               |                |     |                  |                |
|       | Total Aluminum                  | μg/L  |    |                     | Į.     | П          |                |             |              |               |                |     |                  |                |
| 1     | Total Antimony                  | μg/L  |    |                     | 7      | H          |                |             |              |               |                |     |                  |                |
| 1     | Total Arsenic                   | μg/L  |    |                     | 7      | H          |                |             |              |               |                |     |                  |                |
| 1     | Total Barium                    | μg/L  |    |                     | 7      | Ħ          |                |             |              |               |                |     |                  |                |
| 1     | Total Beryllium                 | μg/L  |    |                     |        | П          |                |             |              |               |                |     |                  |                |
| 1     | Total Boron                     | μg/L  |    |                     |        |            |                |             |              |               |                |     |                  |                |
| 1     | Total Cadmium                   | μg/L  |    |                     |        | $\Box$     |                |             |              |               |                |     |                  |                |
| 1     | Total Chromium (III)            | μg/L  |    |                     |        | H          |                |             |              |               |                |     |                  |                |
| 1     | Hexavalent Chromium             | μg/L  |    |                     |        | Ħ          |                |             |              |               |                |     |                  |                |
| 1     | Total Cobalt                    | μg/L  |    |                     |        | $\sqcap$   |                |             |              |               |                |     |                  |                |
| 1     | Total Copper                    | µg/L  | <  | 10                  |        | П          |                |             |              |               |                |     |                  |                |
| 2     | Free Cyanide                    | μg/L  |    |                     | #      | H          |                |             |              |               |                |     |                  |                |
| Group | Total Cyanide                   | μg/L  |    |                     | +      | H          |                |             |              |               |                |     |                  |                |
| 16    | Dissolved Iron                  | µg/L  |    |                     | $\top$ | Ħ          |                |             |              |               |                |     |                  |                |
|       | Total Iron                      | μg/L  |    |                     |        | П          |                |             |              |               |                |     |                  |                |
| 1     | Total Lead                      | μg/L  | <  | 0.5                 |        | П          |                |             |              |               |                |     |                  |                |
| 1     | Total Manganese                 | µg/L  |    |                     |        | H          |                |             |              |               |                |     |                  |                |
| 1     | Total Mercury                   | µg/L  |    |                     |        | Ħ          |                |             |              |               |                |     |                  |                |
| 1     | Total Nickel                    | μg/L  |    |                     |        | Ħ          |                |             |              |               |                |     |                  |                |
| 1     | Total Phenols (Phenolics) (PWS) | μg/L  |    |                     |        |            |                |             |              |               |                |     |                  |                |
| 1     | Total Selenium                  | μg/L  |    |                     | #      | Ħ          |                |             |              |               |                |     |                  |                |
| 1     | Total Silver                    | μg/L  |    |                     | +      | H          | -              |             |              |               |                |     |                  |                |
| 1     | Total Thallium                  | μg/L  |    |                     | Ħ      | Ħ          |                |             |              |               |                |     |                  |                |
| 1     | Total Zinc                      | μg/L  | <  | 10                  | $\top$ | $\forall$  |                |             |              |               |                |     |                  |                |
|       | Total Molybdenum                | μg/L  |    |                     |        |            |                |             |              |               |                |     |                  |                |
|       | Acrolein                        | μg/L  | <  |                     |        | Ħ          |                |             |              |               |                |     |                  |                |
|       | Acrylamide                      | μg/L  | <  |                     |        | Ħ          |                |             |              |               |                |     |                  |                |
|       | Acrylonitrile                   | μg/L  | <  |                     |        | Ħ          |                |             |              |               |                |     |                  |                |
|       | Benzene                         | µg/L  | <  |                     |        | $\forall$  |                |             |              |               |                |     |                  |                |
|       | Bromoform                       | µg/L  | <  |                     |        |            |                |             |              |               |                |     |                  |                |

| ı        | Carbon Tetrachloride            | uall | < |   |   |                   |   |  |  |  |           |                   |
|----------|---------------------------------|------|---|---|---|-------------------|---|--|--|--|-----------|-------------------|
|          | Chlorobenzene                   | μg/L | _ |   |   |                   |   |  |  |  | $\exists$ | +                 |
|          |                                 | µg/L | < | H | H | H                 | _ |  |  |  | $\forall$ | +                 |
|          | Chlorodibromomethane            | μg/L | < | H | ⊬ | Н                 | _ |  |  |  | +         | +++               |
|          | Chloroethane                    | μg/L | - | H | H | H                 | _ |  |  |  | H         | +                 |
|          | 2-Chloroethyl Vinyl Ether       | μg/L | < |   | Е | $\overline{\Box}$ |   |  |  |  | Ħ         | $\rightarrow$     |
|          | Chloroform                      | μg/L | < |   |   |                   |   |  |  |  | #         | $\Box$            |
|          | Dichlorobromomethane            | μg/L | < | L | Ļ | Щ                 | _ |  |  |  | 4         | 44                |
|          | 1,1-Dichloroethane              | μg/L | < | H | H | Н                 | _ |  |  |  | 4         | +++               |
| က        | 1,2-Dichloroethane              | μg/L | < |   | H | H                 |   |  |  |  | $\dashv$  | +                 |
| Ì₿       | 1,1-Dichloroethylene            | μg/L | < |   |   |                   | _ |  |  |  | Ħ         | -                 |
| Group    | 1,2-Dichloropropane             | μg/L | < |   |   |                   |   |  |  |  | #         | $\Box$            |
| ľ        | 1,3-Dichloropropylene           | μg/L | < |   |   |                   |   |  |  |  |           | $\perp$           |
|          | 1,4-Dioxane                     | μg/L | < | L | L | Ш                 |   |  |  |  | 4         | +                 |
|          | Ethylbenzene                    | µg/L | < |   | H | Н                 |   |  |  |  | $\dashv$  | +                 |
|          | Methyl Bromide                  | μg/L | < |   |   |                   |   |  |  |  | $\pm$     |                   |
|          | Methyl Chloride                 | μg/L | < |   |   |                   |   |  |  |  |           |                   |
|          | Methylene Chloride              | μg/L | < |   |   |                   |   |  |  |  |           |                   |
|          | 1,1,2,2-Tetrachloroethane       | μg/L | < |   | L | Ш                 |   |  |  |  | $\dashv$  | $\bot$            |
|          | Tetrachloroethylene             | μg/L | < | _ |   |                   |   |  |  |  | $\dashv$  |                   |
|          | Toluene                         | μg/L | < | F | F | H                 |   |  |  |  |           | +                 |
| 1        | 1,2-trans-Dichloroethylene      | μg/L | < |   |   |                   |   |  |  |  |           |                   |
|          | 1,1,1-Trichloroethane           | μg/L | < |   |   |                   |   |  |  |  |           |                   |
|          | 1,1,2-Trichloroethane           | μg/L | < |   | L |                   |   |  |  |  | $\Box$    | $\Box$            |
|          | Trichloroethylene               | μg/L | < | F | F | $\Box$            |   |  |  |  | $\Box$    | $\mp$             |
|          | Vinyl Chloride                  | μg/L | < | F | F | Н                 |   |  |  |  | H         |                   |
|          | 2-Chlorophenol                  | μg/L | < | F | П | П                 |   |  |  |  | Ħ         | 777               |
|          | 2,4-Dichlorophenol              | µg/L | < |   |   |                   |   |  |  |  |           |                   |
|          | 2,4-Dimethylphenol              | μg/L | < |   |   |                   |   |  |  |  | $\Box$    |                   |
|          | 4.6-Dinitro-o-Cresol            | μg/L | < | F |   | Ħ                 |   |  |  |  | H         | +                 |
| 4        | 2,4-Dinitrophenol               | μg/L | < | F | H | Ħ                 |   |  |  |  | Ħ         | ++1               |
| -        | 2-Nitrophenol                   | μg/L | < | Ħ | H | Ħ                 |   |  |  |  | Ħ         | ++1               |
| 18       | 4-Nitrophenol                   | μg/L | < | T |   | Н                 |   |  |  |  |           | +                 |
|          | p-Chloro-m-Cresol               | μg/L | < |   |   |                   |   |  |  |  |           | $\blacksquare$    |
|          | Pentachlorophenol               | μg/L | < | F | H |                   |   |  |  |  | Ħ         | ##                |
|          | Phenol                          | μg/L | < | F | H | Ħ                 |   |  |  |  | Ħ         | ++1               |
|          | 2,4,6-Trichlorophenol           | μg/L | < | Н |   | Н                 |   |  |  |  | $\vdash$  | +                 |
| $\vdash$ | Acenaphthene                    | μg/L | < | Г | Т | П                 |   |  |  |  | m         | $\overline{}$     |
|          | Acenaphthylene                  | μg/L | < |   |   |                   |   |  |  |  |           | $\overline{\Box}$ |
|          | Anthracene                      | µg/L | < | H | H | Ħ                 |   |  |  |  | Ħ         | ##                |
|          | Benzidine                       | μg/L | < | Ħ | H | Ħ                 | + |  |  |  | H         | ##                |
|          | Benzo(a)Anthracene              | μg/L | < | Н |   | Н                 |   |  |  |  | $\vdash$  | -                 |
|          | Benzo(a)Pyrene                  | µg/L | < | F | H | Ħ                 |   |  |  |  | Ħ         | ***               |
|          | 3.4-Benzofluoranthene           | μg/L | < |   |   |                   |   |  |  |  |           | $\blacksquare$    |
|          | Benzo(ghi)Perylene              | µg/L | < | H | H | Ħ                 | _ |  |  |  | H         | ##                |
|          | Benzo(k)Fluoranthene            | µg/L | < |   | - | H                 |   |  |  |  | +         | ++                |
| 1        | Bis(2-Chloroethoxy)Methane      | µg/L | < |   |   |                   |   |  |  |  |           | +                 |
| 1        | Bis(2-Chloroethyl)Ether         | µg/L | < |   |   |                   |   |  |  |  |           |                   |
|          | Bis(2-Chloroisopropyl)Ether     | µg/L | < |   |   |                   |   |  |  |  | $\exists$ | $\blacksquare$    |
|          | Bis(2-Ethylhexyl)Phthalate      | µg/L | < | H | H | Ħ                 | - |  |  |  | H         | +                 |
|          | 4-Bromophenyl Phenyl Ether      | μg/L | < | H | H | H                 | + |  |  |  | H         | +                 |
|          | Butyl Benzyl Phthalate          | μg/L | < | Н | ┝ | Н                 | _ |  |  |  | H         |                   |
|          | 2-Chloronaphthalene             |      | _ | F | H | Ħ                 | _ |  |  |  | Ħ         | +                 |
| 1        | 4-Chlorophenyl Phenyl Ether     | µg/L | < |   | E |                   |   |  |  |  |           |                   |
| 1        |                                 | μg/L | _ |   |   |                   | - |  |  |  | H         |                   |
| 1        | Chrysene<br>Dihannia hMathannan | μg/L | < | H |   | H                 | + |  |  |  | -         | +++               |
| 1        | Dibenzo(a,h)Anthrancene         | µg/L | < | H | - | H                 |   |  |  |  | -         | +++               |
| 1        | 1,2-Dichlorobenzene             | μg/L | < | F |   |                   | _ |  |  |  |           | +++               |
| 1        | 1,3-Dichlorobenzene             | μg/L | < |   |   |                   |   |  |  |  |           | +                 |
| 2        | 1,4-Dichlorobenzene             | µg/L | < |   |   |                   |   |  |  |  |           | $\Box$            |
| Ĭ        | 3,3-Dichlorobenzidine           | μg/L | < |   |   |                   |   |  |  |  |           |                   |
| Group    | Diethyl Phthalate               | μg/L | < |   | - | H                 |   |  |  |  |           | ++                |
| 1        | Dimethyl Phthalate              | μg/L | < |   |   |                   |   |  |  |  |           | -                 |
|          | Di-n-Butyl Phthalate            | μg/L | < |   |   |                   |   |  |  |  |           |                   |
| 1        | 2,4-Dinitrotoluene              | μg/L | < |   |   |                   |   |  |  |  |           |                   |
|          |                                 |      |   |   |   |                   |   |  |  |  |           |                   |

|       | 2,6-Dinitrotoluene        | uall   | < |   |   |           |   | I |  |  |           |                           |
|-------|---------------------------|--------|---|---|---|-----------|---|---|--|--|-----------|---------------------------|
|       | Di-n-Octyl Phthalate      | μg/L   | < | П |   | $\square$ |   |   |  |  | Н         |                           |
|       |                           | µg/L   | < | Н | _ | H         |   |   |  |  | H         | $\rightarrow$             |
|       | 1,2-Diphenylhydrazine     | μg/L   | _ | Н | _ | H         |   |   |  |  | Н         |                           |
|       | Fluoranthene              | μg/L   | < | H | _ | H         |   |   |  |  | H         |                           |
|       | Fluorene                  | μg/L   | < | H |   | H         |   |   |  |  | H         |                           |
|       | Hexachlorobenzene         | μg/L   | < |   |   | Ħ         |   |   |  |  |           | $\Rightarrow$             |
|       | Hexachlorobutadiene       | μg/L   | < |   |   |           |   |   |  |  |           |                           |
|       | Hexachlorocyclopentadiene | μg/L   | < | Ц |   | Щ         |   |   |  |  | Ц         | $\perp$                   |
|       | Hexachloroethane          | μg/L   | < | Ы |   | Ш         |   |   |  |  |           |                           |
|       | Indeno(1,2,3-cd)Pyrene    | μg/L   | < | Н |   |           |   |   |  |  | $\exists$ |                           |
|       | Isophorone                | μg/L   | < | Н |   | H         |   |   |  |  | Н         |                           |
|       | Naphthalene               | μg/L   | < | П |   | П         |   |   |  |  | П         | $\neg \neg$               |
|       | Nitrobenzene              | μg/L   | < |   |   |           |   |   |  |  |           |                           |
|       | n-Nitrosodimethylamine    | μg/L   | < |   |   | П         |   |   |  |  |           |                           |
|       | n-Nitrosodi-n-Propylamine | μg/L   | < | Ħ |   | H         |   |   |  |  | Ħ         |                           |
|       | n-Nitrosodiphenylamine    | μg/L   | < | H |   | H         |   |   |  |  | Ħ         |                           |
|       | Phenanthrene              | μg/L   | < | Ħ |   | Ħ         |   |   |  |  | Ħ         |                           |
|       | Pyrene                    | μg/L   | < | Н | _ | H         |   |   |  |  | Н         |                           |
|       | 1,2,4-Trichlorobenzene    | μg/L   | < | Ħ |   | Ħ         |   |   |  |  | Ħ         |                           |
|       | Aldrin                    |        | < |   |   |           |   |   |  |  |           |                           |
|       | alpha-BHC                 | µg/L   | < |   |   | H         |   |   |  |  |           |                           |
|       |                           | μg/L   |   | Н | _ | ₩         |   |   |  |  | Н         | $\rightarrow$             |
|       | beta-BHC                  | μg/L   | < | H |   | H         |   |   |  |  |           |                           |
|       | gamma-BHC                 | μg/L   | < | Н |   | H         |   |   |  |  | Н         |                           |
|       | delta BHC                 | μg/L   | < | Н |   |           |   |   |  |  |           |                           |
|       | Chlordane                 | μg/L   | < |   |   |           |   |   |  |  |           |                           |
|       | 4,4-DDT                   | μg/L   | < |   |   |           |   |   |  |  |           |                           |
|       | 4,4-DDE                   | μg/L   | < | Ц |   | Щ         |   |   |  |  | Ц         |                           |
|       | 4,4-DDD                   | μg/L   | < | Ы |   | H         | _ |   |  |  | Н         |                           |
|       | Dieldrin                  | μg/L   | < | Н |   | H         | _ |   |  |  | Н         |                           |
|       | alpha-Endosulfan          | μg/L   | < | П |   | П         |   |   |  |  | П         |                           |
|       | beta-Endosulfan           | μg/L   | < | П |   | Ħ         |   |   |  |  | Ħ         | $\Box$                    |
| 9     | Endosulfan Sulfate        | μg/L   | < |   |   |           |   |   |  |  |           |                           |
| Group | Endrin                    | μg/L   | < |   |   | П         |   |   |  |  |           |                           |
| ĕ     | Endrin Aldehyde           | μg/L   | < | H |   | H         |   |   |  |  | Ħ         |                           |
| _     | Heptachlor                | μg/L   | < | Ħ |   | H         |   |   |  |  | H         |                           |
|       | Heptachlor Epoxide        | μg/L   | < | Н |   | H         |   |   |  |  | Н         |                           |
|       | PCB-1016                  | μg/L   | < | Н | _ | H         |   |   |  |  | Н         |                           |
|       | PCB-1221                  | μg/L   | < |   |   |           |   |   |  |  |           |                           |
|       | PCB-1232                  | µg/L   | < |   |   | $\square$ |   |   |  |  | П         |                           |
|       | PCB-1232                  | μg/L   | < | H | _ | H         | _ |   |  |  | H         | $\Rightarrow \Rightarrow$ |
|       |                           |        | _ | Н | _ | ₩         | _ |   |  |  | Н         |                           |
|       | PCB-1248                  | μg/L   | < | H | _ | H         |   |   |  |  | H         | $\rightarrow$             |
|       | PCB-1254                  | μg/L   | < | H |   | H         |   |   |  |  | H         |                           |
|       | PCB-1260                  | μg/L   | < | Н |   | Ħ         |   |   |  |  | П         |                           |
|       | PCBs, Total               | μg/L   | < |   |   |           |   |   |  |  |           |                           |
|       | Toxaphene                 | μg/L   | < |   |   |           |   |   |  |  |           |                           |
|       | 2,3,7,8-TCDD              | ng/L   | < |   |   | Ш         |   |   |  |  |           |                           |
|       | Gross Alpha               | pCi/L  |   |   |   |           |   |   |  |  |           |                           |
| 7     | Total Beta                | pCi/L  | < |   |   |           |   |   |  |  |           |                           |
| d     | Radium 226/228            | pCi/L  | < |   |   |           |   |   |  |  |           |                           |
|       | Total Strontium           | μg/L   | < |   |   | Ħ         |   |   |  |  |           |                           |
| O     | Total Uranium             | μg/L   | < |   |   |           |   |   |  |  |           |                           |
|       | Osmotic Pressure          | mOs/kg |   |   |   |           |   |   |  |  |           |                           |
|       |                           |        |   |   |   | H         |   |   |  |  |           |                           |
|       |                           |        |   | H |   | H         |   |   |  |  |           |                           |
|       |                           |        |   |   |   | H         |   |   |  |  |           |                           |
|       |                           |        |   |   |   |           |   |   |  |  |           |                           |
|       |                           |        |   |   |   |           |   |   |  |  |           |                           |
|       |                           |        |   |   |   |           |   |   |  |  |           |                           |
|       |                           |        |   |   |   | H         |   |   |  |  |           |                           |
|       |                           |        |   |   |   |           |   |   |  |  |           |                           |
|       |                           |        |   | H |   | H         |   |   |  |  |           |                           |
|       |                           |        |   | H |   |           |   |   |  |  |           |                           |
|       |                           |        |   |   |   |           |   |   |  |  |           |                           |
|       |                           |        |   |   |   |           |   |   |  |  |           |                           |
|       |                           | _      |   |   |   |           |   |   |  |  |           |                           |



Toxics Management Spreadsheet Version 1.3, March 2021

## Stream / Surface Water Information

Williamstown STP, NPDES Permit No. pa0096601, Outfall 001

|                    | rater Haine. | Tenmile Cr                     | eek     |            |              |             | No. Rea       | ches to Mo         | del:            | 1                   | ×         | tewide Criteri<br>at Lakes Crit |          |          |          |
|--------------------|--------------|--------------------------------|---------|------------|--------------|-------------|---------------|--------------------|-----------------|---------------------|-----------|---------------------------------|----------|----------|----------|
| Location           | Stream Co    | de' RMI                        | Elevati | ion DA (mi | ²)* Slo      | ope (ft/ft) |               | Withdrawal<br>MGD) | Apply F         |                     | _         | SANCO Crite                     |          |          |          |
| Point of Discharge | 040285       | 2.63                           | 3 767   | 334        |              | 0.0003      |               |                    | Yes             | ;                   |           |                                 |          |          |          |
| End of Reach 1     | 040285       | 2                              | 766     | 334.3      | 3            |             |               |                    | Yes             |                     |           |                                 |          |          |          |
| Q 7-10<br>Location | RMI          | LFY<br>(cfs/mi <sup>2</sup> )* | Flow    | r (cfs)    | W/D<br>Ratio |             | Depth<br>(ft) | Velocit            | i ravei<br>Time | Tributa<br>Hardness | ary<br>pH | Strea<br>Hardness*              | m<br>pH* | Analys   | is<br>pH |
| Point of Discharge | 2.63         | 0.031736                       | Stream  | Indutary   | Ratio        | 130.2       | (11)          | y (fps)            | (days)          | naruness            | pn        | 100                             | 7 PH     | naroness | рг       |
| End of Reach 1     | 2            | 0.031736                       |         |            |              | 225.78      |               |                    |                 |                     |           |                                 |          |          |          |
| Qn                 |              |                                | ·       |            |              |             |               |                    |                 |                     |           |                                 |          |          |          |
| Location           | RMI          | LFY                            |         | (cfs)      | W/D          | Width       |               | Velocit            | Time            | Tributa             |           | Stream                          |          | Analys   |          |
|                    |              | (cfs/mi <sup>2</sup> )         | Stream  | Tributary  | Ratio        | (ft)        | (ft)          | y (fps)            | (days)          | Hardness            | pН        | Hardness                        | pН       | Hardness | p⊦       |
|                    |              |                                |         |            |              |             |               |                    |                 |                     |           |                                 |          |          |          |
| Point of Discharge | 2.63         |                                |         |            |              |             |               |                    |                 |                     |           |                                 |          |          |          |



Toxics Management Spreadsheet Version 1.3, March 2021

### **Model Results**

#### Williamstown STP, NPDES Permit No. pa0096601, Outfall 001

| Instructions                             | s Results                                                                              |                      | RETURN                                         | N TO INPUT                                                                                                 | rs )                | SAVE AS PD                                                                                            | F) [                                                                     | PRINT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        | ) Inputs  | ○ Results                                                                | O Limits                                        |                            |
|------------------------------------------|----------------------------------------------------------------------------------------|----------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------|--------------------------------------------------------------------------|-------------------------------------------------|----------------------------|
| <b>✓</b> Hydrod                          | dynamics                                                                               |                      |                                                |                                                                                                            |                     |                                                                                                       |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |           |                                                                          |                                                 |                            |
| Q 7-10                                   |                                                                                        |                      |                                                |                                                                                                            |                     |                                                                                                       |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |           |                                                                          |                                                 |                            |
| RMI                                      | Stream<br>Flow (cfs)                                                                   | PWS With<br>(cfs)    |                                                | Net Strean<br>Flow (cfs)                                                                                   |                     | rge Analysis<br>ow (cfs)                                                                              | Slope (ft/ft)                                                            | Depth (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Width (ft)                                             | W/D Ratio | Velocity<br>(fps)                                                        | Time                                            | Complete Mix Time<br>(min) |
| 2.63                                     | 10.60                                                                                  |                      |                                                | 10.60                                                                                                      |                     | 0.463                                                                                                 | 0.0003                                                                   | 0.477                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 130.2                                                  | 74.727    | 0.178                                                                    | 0.216                                           | 3733.642                   |
| 2                                        | 10.61                                                                                  |                      | -                                              | 10.609344                                                                                                  | 8                   |                                                                                                       |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |           |                                                                          |                                                 |                            |
| Q <sub>h</sub>                           |                                                                                        |                      |                                                |                                                                                                            |                     |                                                                                                       |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |           |                                                                          |                                                 |                            |
| RMI                                      | Stream<br>Flow (cfs)                                                                   | PWS With<br>(cfs)    |                                                | Net Strean<br>Flow (cfs)                                                                                   |                     | rge Analysis<br>ow (cfs)                                                                              | Slope (ft/ft)                                                            | Depth (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Width (ft)                                             | W/D Ratio | Velocity<br>(fps)                                                        | Time                                            | Complete Mix Time (min)    |
| 2.63                                     | 58.49                                                                                  |                      |                                                | 58.49                                                                                                      |                     | 0.463                                                                                                 | 0.0003                                                                   | 0.997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 130.2                                                  | 130.608   | 0.454                                                                    | 0.085                                           | 1326.743                   |
| 2                                        |                                                                                        |                      |                                                |                                                                                                            |                     |                                                                                                       |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |           |                                                                          |                                                 |                            |
|                                          | 58.538<br>load Allocation                                                              | ons                  |                                                | 58.54                                                                                                      |                     |                                                                                                       |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |           |                                                                          |                                                 |                            |
|                                          | oad Allocatio                                                                          |                      | Sueam                                          | 58.54                                                                                                      | PMF:                | 0.063                                                                                                 |                                                                          | Hardness (r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        | 00        | Analysis pH:                                                             |                                                 |                            |
| √ Wastel                                 | oad Allocatio                                                                          |                      | Cone                                           | 15                                                                                                         |                     | Fate                                                                                                  | wqc w                                                                    | IO OF:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ng/l): 1                                               | 00        |                                                                          | 7.00<br>omments                                 |                            |
| ✓ Wasteld ✓ AF                           | oad Allocation  C  Pollutants  ssolved Solid                                           | CC                   | Conc<br>(up/L)                                 | Stream CV 0                                                                                                | Trib Conc           | Fate Coef (                                                                                           | WQC W(µg/L) (                                                            | /Q Obj<br>(μg/L) WL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Α (μg/L)<br>N/A                                        | 00        |                                                                          |                                                 |                            |
| ✓ Wasteld ✓ AF  Total Diagram            | Pollutants ssolved Solid Chloride (PWS                                                 | CC<br>is (PWS)<br>S) | Conc<br>(ug/l )<br>0                           | Stream<br>CV<br>0                                                                                          | Trib Conc           | Fate Coef 0                                                                                           | WQC W (µg/L) ( N/A N/A                                                   | /Q Obj WL<br>(µg/L) WL<br>N/A N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A (μg/L) N/A N/A                                       | 00        |                                                                          |                                                 |                            |
| ✓ Wasteld ✓ AF  Total Diagram            | Pollutants ssolved Solid Chloride (PWS                                                 | cc<br>ls (PWS)<br>S) | Conc<br>(voll)<br>0<br>0                       | Stream<br>CV<br>0                                                                                          | Trib Conc           | Fate Coef 0                                                                                           | WQC W (µg/L) ( N/A N/A N/A                                               | /Q Obj WL (µg/L) WL N/A N/A N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A (μg/L)  N/A  N/A  N/A                                | 00        | C                                                                        | omments                                         |                            |
| ✓ Wasteld ✓ AF  Total Diagram            | Pollutants ssolved Solid Chloride (PWS Sulfate (PWS Total Copper                       | cc<br>ls (PWS)<br>S) | Cone<br>(vall)<br>0<br>0<br>0                  | Stream CV 0 0 0 0 0                                                                                        | Trib Conc           | Fate Coef 0 0 0 0 1                                                                                   | WQC W<br>(µg/L) (<br>N/A<br>N/A<br>N/A<br>13.439                         | /Q Obj<br>(µg/L) WL<br>N/A<br>N/A<br>N/A<br>14.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Α (μg/L)  N/A  N/A  N/A  34.3                          |           | Chem Transi                                                              | omments                                         |                            |
| ✓ Wasteld  ✓ AF  Total Diagram           | Pollutants ssolved Solid Chloride (PWS                                                 | cc<br>ls (PWS)<br>S) | Conc<br>(voll)<br>0<br>0                       | Stream<br>CV<br>0                                                                                          | Trib Conc           | Fate Coef 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                       | WQC W (µg/L) ( N/A N/A N/A                                               | /Q Obj WL (µg/L) WL N/A N/A N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A (μg/L) N/A N/A N/A                                   |           | C                                                                        | lator of 0.98                                   | applied                    |
| ✓ Wasteld  ✓ AF  Total Diagram           | Pollutants ssolved Solid Chloride (PWS Sulfate (PWS Total Copper Total Lead Total Zinc | is (PWS)             | One (wall) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Stream   CV   0   0   0   0   0   0   0   0   0                                                            | Trib Conc           | Fate Coef 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                       | WQC W<br>(µg/L) N/A<br>N/A<br>N/A<br>N/A<br>13.439<br>94.581             | /Q Obj WL (µg/L) WL N/A N/A N/A 14.0 81.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A (µg/L)  N/A  N/A  N/A  N/A  34.3  200  294           |           | Chem Transl                                                              | lator of 0.96<br>ator of 0.978                  | applied                    |
| ✓ Wasteld  ✓ AF  Total Die               | Pollutants ssolved Solid Chloride (PWS Sulfate (PWS Total Copper Total Lead Total Zinc | is (PWS)             | Conc  O  O  O  O  T (min):                     | 15   Stream CV                                                                                             | Trib Cone<br>(µg/L) | Fate Coef 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | WQC W (µg/L) (// N/A N/A N/A N/A N/A 13.439 14.581 17.180  Analysi WQC W | /Q Obj WL (µg/L) WL N/A N/A N/A N/A 14.0 81.6 120 s Hardness (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A (µg/L)  N/A  N/A  N/A  N/A  34.3  200  294           |           | Chem Transl<br>Chem Transl<br>Chem Transl<br>Chem Transl<br>Analysis pH: | lator of 0.96<br>ator of 0.978                  | applied                    |
| ✓ Wasteld ✓ AF  Total Dia  C  ∴  C  ✓ CF | Pollutants ssolved Solid Chloride (PWS Sulfate (PWS Total Copper Total Lead Total Zinc | ls (PWS)<br>S)<br>S) | Cone (unit) 0 0 0 0 0 0 0 0 T (min):           | Stream   CV   0   0   0   0   0   0   0     720     Stream   Stream   CV   CV   CV   CV   CV   CV   CV   C | Trib Conc<br>(µg/L) | Fate Coef 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | WQC W (µg/L) (// N/A N/A N/A N/A N/A 13.439 14.581 17.180  Analysi WQC W | /Q Obj WL (µg/L) WL N/A N/A N/A 14.0 81.6 120 s Hardness (µg/Q Obj W/Q | A (μg/L)  N/A  N/A  N/A  N/A  34.3  200  294  mg/l): 1 |           | Chem Transl<br>Chem Transl<br>Chem Transl<br>Chem Transl<br>Analysis pH: | lator of 0.96<br>ator of 0.978<br>ator of 0.978 | applied                    |

Model Results 10/4/2022 Page 5

| Sulfate (PWS) | 0 | 0 | 0 | N/A     | N/A  | N/A   |                                  |
|---------------|---|---|---|---------|------|-------|----------------------------------|
| Total Copper  | 0 | 0 | 0 | 8.956   | 9.33 | 103   | Chem Translator of 0.96 applied  |
| Total Lead    | 0 | 0 | 0 | 2.517   | 3.18 | 35.2  | Chem Translator of 0.791 applied |
| Total Zinc    | 0 | 0 | 0 | 118.139 | 120  | 1,326 | Chem Translator of 0.986 applied |

✓ THH CCT (min): 720 PMF: 0.439 Analysis Hardness (mg/l): N/A Analysis pH: N/A

| Pollutants                   | Conc | Stream<br>CV | Trib Conc<br>(µg/L) | Fate<br>Coef | WQC<br>(µg/L) | WQ Obj<br>(µg/L) | WLA (µg/L) | Comments |
|------------------------------|------|--------------|---------------------|--------------|---------------|------------------|------------|----------|
| Total Dissolved Solids (PWS) | 0    | 0            |                     | 0            | 500,000       | 500,000          | N/A        |          |
| Chloride (PWS)               | 0    | 0 .          |                     | 0            | 250,000       | 250,000          | N/A        |          |
| Sulfate (PWS)                | 0    | 0 -          |                     | 0            | 250,000       | 250,000          | N/A        |          |
| Total Copper                 | 0    | 0            |                     | 0            | N/A           | N/A              | N/A        |          |
| Total Lead                   | 0    | 0            |                     | 0            | N/A           | N/A              | N/A        |          |
| Total Zinc                   | 0    | 0 .          |                     | 0            | N/A           | N/A              | N/A        |          |

✓ CRL CCT (min): 720 PMF: 0.737 Analysis Hardness (mg/l): N/A Analysis pH: N/A

| Pollutants                   | Conc | Stream<br>CV | Trib Conc<br>(µg/L) | Fate<br>Coef | WQC<br>(µg/L) | WQ Obj<br>(µg/L) | WLA (µg/L) | Comments |
|------------------------------|------|--------------|---------------------|--------------|---------------|------------------|------------|----------|
| Total Dissolved Solids (PWS) | 0    | 0            |                     | 0            | N/A           | N/A              | N/A        |          |
| Chloride (PWS)               | 0    | 0            |                     | 0            | N/A           | N/A              | N/A        |          |
| Sulfate (PWS)                | 0    | 0 -          |                     | 0            | N/A           | N/A              | N/A        |          |
| Total Copper                 | 0    | 0            |                     | 0            | N/A           | N/A              | N/A        |          |
| Total Lead                   | 0    | 0            |                     | 0            | N/A           | N/A              | N/A        |          |
| Total Zinc                   | 0    | 0            |                     | 0            | N/A           | N/A              | N/A        |          |

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month:



|              | Mass             | Limits           |        | Concentra | ition Limits |       |                    |                |                                    |
|--------------|------------------|------------------|--------|-----------|--------------|-------|--------------------|----------------|------------------------------------|
| Pollutants   | AML<br>(lbs/day) | MDL<br>(lbs/day) | AML    | MDL       | IMAX         | Units | Governing<br>WQBEL | WQBEL<br>Basis | Comments                           |
| Total Copper | Report           | Report           | Report | Report    | Report       | μg/L  | 22.0               | AFC            | Discharge Conc > 10% WQBEL (no RP) |

#### ☑ Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

|   | Pollutants                   | Governing<br>WQBEL | Units | Comments           |
|---|------------------------------|--------------------|-------|--------------------|
| ſ | Total Dissolved Solids (PWS) | N/A                | N/A   | PWS Not Applicable |
|   | Chloride (PWS)               | N/A                | N/A   | PWS Not Applicable |
| Γ | Bromide                      | N/A                | N/A   | No WQS             |

Model Results 10/4/2022 Page 6

# NPDES Permit Fact Sheet Williamstown STP

| Sulfate (PWS) | N/A | N/A  | PWS Not Applicable         |
|---------------|-----|------|----------------------------|
| Total Lead    | N/A | N/A  | Discharge Conc < TQL       |
| Total Zinc    | 188 | μg/L | Discharge Conc ≤ 10% WQBEL |

## Attachment 5 - TRC CALC

Copy of TRC\_CALC

### TRC EVALUATION

| 10.6                          | = Q stream (d | cfs)                                           | 0.5             | = CV Daily      |                       |  |  |  |
|-------------------------------|---------------|------------------------------------------------|-----------------|-----------------|-----------------------|--|--|--|
| 0.299                         | = Q discharg  | e (MGD)                                        | 0.5             | = CV Hourly     |                       |  |  |  |
| 30                            | = no. sample  | s                                              | 1               | = AFC_Partial N | lix Factor            |  |  |  |
| 0.3                           | = Chlorine D  | emand of Stream                                | 1               | = CFC_Partial N | lix Factor            |  |  |  |
| (                             | = Chlorine D  | emand of Discharge                             | 15              | = AFC_Criteria  | Compliance Time (min) |  |  |  |
| 0.5                           | = BAT/BPJ V   | alue                                           | 720             | = CFC_Criteria  | Compliance Time (min) |  |  |  |
|                               | = % Factor o  | of Safety (FOS)                                |                 | =Decay Coeffici | ient (K)              |  |  |  |
| Source                        | Reference     | AFC Calculations                               |                 | Reference       | CFC Calculations      |  |  |  |
| TRC                           | 1.3.2.iii     | WLA afc =                                      | 7.329           | 1.3.2.iii       | WLA cfc = 7.138       |  |  |  |
| PENTOXSD TRG                  | 5.1a          | LTAMULT afc =                                  | 0.373           | 5.1c            | LTAMULT cfc = 0.581   |  |  |  |
| PENTOXSD TRG                  | 5.1b          | LTA_afc=                                       | 2.731           | 5.1d            | LTA_cfc = 4.150       |  |  |  |
|                               |               |                                                |                 |                 |                       |  |  |  |
| Source                        |               | Efflue                                         | nt Limit Calcul | ations          |                       |  |  |  |
| PENTOXSD TRG                  | 5.1f          |                                                | AML MULT =      | 1.231           |                       |  |  |  |
| PENTOXSD TRG                  | 5.1g          | AVG MON I                                      | LIMIT (mg/l) =  | 0.500           | BAT/BPJ               |  |  |  |
| INST MAX LIMIT (mg/l) = 1.635 |               |                                                |                 |                 |                       |  |  |  |
|                               |               |                                                |                 |                 |                       |  |  |  |
|                               |               |                                                |                 |                 |                       |  |  |  |
|                               |               | 0 4 N - MAEO W 40                              |                 |                 |                       |  |  |  |
| WLA afc                       |               | C_tc)) + [(AFC_Yc*Qs*<br>C_Yc*Qs*Xs/Qd)]*(1-F( |                 | AFC_tc))        |                       |  |  |  |
| LTAMULT afc                   | •             | cvh^2+1))-2.326*LN(cvl                         | •               |                 |                       |  |  |  |
| LTAMOLT alc                   | wla afc*LTAN  |                                                | 11-2+1/-0.5)    |                 |                       |  |  |  |
| LIA_alc                       | wia_aic ETAii | IOLI_aic                                       |                 |                 |                       |  |  |  |
| WLA_cfc                       | ( 011/e(-k*CF | C_tc) + [(CFC_Yc*Qs*                           | 011/Qd*e(-k*    | CEC tell        |                       |  |  |  |
|                               |               | C Yc*Qs*Xs/Qd)]*(1-F                           | -               |                 |                       |  |  |  |
| LTAMULT_cfc                   | •             | cvd^2/no_samples+1))-                          |                 | ^2/no_samples+1 | 1)^0.5)               |  |  |  |
| LTA_cfc                       | wla_cfc*LTAN  |                                                |                 |                 |                       |  |  |  |
| l <sup>-</sup>                | _             | _                                              |                 |                 |                       |  |  |  |
| AML MULT                      | EXP(2.326*Lf  | N((cvd^2/no_samples+1                          | )^0.5)-0.5*LN   | cvd^2/no_sample | es+1))                |  |  |  |
| AVG MON LIMIT                 | MIN(BAT_BP    | J,MIN(LTA_afc,LTA_cfc                          | )*AML_MULT      | )               |                       |  |  |  |
| INST MAX LIMIT                | 1.5*((av_mon  | _limit/AML_MULT)/LT                            | AMULT_afc)      |                 |                       |  |  |  |
|                               |               |                                                |                 |                 |                       |  |  |  |