

Application Type	Renewal
	Non-
Facility Type	Municipal
Major / Minor	Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No.	PA0096733
APS ID	1013620
Authorization ID	1309361

Applicant and Facility Information

Applicant Name	Mahee	o Goyal	Facility Name	Pleasant View MHP STP
Applicant Address	240 Mingo Road		Facility Address	Indian Creek Valley Road
	Royers	ford, PA 19468		Melcroft, PA 15462
Applicant Contact	Maheer	o Goyal	Facility Contact	Maheep Goyal
Applicant Phone	(610) 7	92-9396	Facility Phone	(610) 792-9396
Client ID	342295		Site ID	256454
Ch 94 Load Status	Not Overloaded		Municipality	Saltlick Township
Connection Status	No Limitations		County	Fayette
Date Application Recei	ved	March 18, 2020	EPA Waived?	Yes
Date Application Accepted		March 24, 2020	If No, Reason	
Purpose of Application		Renewal of an existing NPE	DES permit for the discharge of	treated sewage.

Summary of Review

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
х		Jonathan P. Peterman	
~		Jonathan P. Peterman / Project Manager	March 24, 2021
х		Nicholas W. Hartranft	
~		Nicholas W. Hartranft, P.E. / Environmental Engineer Manager	March 25, 2021

Discharge, Receivir	ng Waters and Water Supply Infor	rmation	
Outfall No. 001		Design Flow (MGD)	0.024
Latitude 40°	3' 31.24"	Longitude	-79º 21' 58.77"
Quad Name S	even Springs	Quad Code	1811
Wastewater Desci	ription: Sewage Effluent		
Receiving Waters	Indian Creek (HQ-CWF)	Stream Code	38235
NHD Com ID	69915897	RMI	17.6
Drainage Area	31.8	Yield (cfs/mi ²)	0.16
			Youghiogheny River at
Or a Flow (cfc)	5 1 2		Connellsville, PA Gage No.
Q7-10 FIOW (CIS)	1 440	Slope (ft/ft)	3082300
	10 E	Siope (1/17)	
Evicting Llos		Chapter 95 Class.	HQ-CWF
Existing Use		Existing Use Qualitier	
Exceptions to Use		Exceptions to Chiena	
Assessment Statu	Attaining Use(s)		
Cause(s) of Impai	rment <u>N/A</u>		
Source(s) of Impa	irment <u>N/A</u>		
TMDL Status	<u>N/A</u>	Name N/A	
Necreat Downstre	om Dublic Water Supply Intelse		
nearest Downstre			
PWS Waters	YOUGHIOGHENY RIVER	Flow at Intake (cfs)	
PWS RMI	47.14	Distance from Outfall (mi)	27

Changes Since Last Permit Issuance: The updated Q_{7-10} data was obtained from the updated stream gage information obtained from *Stuckey, M.H., and Roland, M.A., 2011, Selected Streamflow Statistics for Streamgage Locations In and Near Pennsylvania.* A Q_{7-10} analysis was conducted using a downstream stream gage (3082500) as the reference stream gage. The Q_{7-10} calculations, which are attached in Appendix A.

Other Comments: Attaining Use(s) however a 1997 survey by DEP's Aquatic Biologist determined the discharge is in a segment of stream impacted by mine drainage.

	Tı	reatment Facility Summar	у	
Freatment Facility Na	me: Pleasant View MHP S	STP		
WQM Permit No.	Issuance Date	Comments		
2672406 A-3	5/18/2018	Transfer		
2672406 A-2	1/1/2010	Transfer		
2672406 A-1	6/18/1998	Transfer		
2672406	2/6/1973	Initial Construction		
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
Sewage	Secondary	Septic Tank Sand Filter	Hypochlorite	0.01
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal
0.024	40	Not Overloaded	Dewatering	Landfill

Treatment System Components for Outfall 001:

- One (1) Bar screen.
- One (1) Equalization tank.
- Two (2) Submersible grinder pumps.
- One (1) Aeration tank.
- One (1) Clarifier.
- One (1) RAS Line.
- One (1) Skimmer.
- One (1) Erosion chlorinator.
- One (1) Chlorine contact tank.
- One (1) Outfall 001.

- One (1) Sludge Holding tank.

Sludge use and disposal description and location(s): Landfill

Changes Since Last Permit Issuance: None. Other Comments: None.

Anti-Backsliding

In accordance with 40 CFR 122.44(I)(1) and (2), this permit does not contain effluent limitations, standards, or conditions that are less stringent than the previous permit.

TMDL Impairment

The Department's Geographical Information System indicates that there are no associated TMDLs for Indian Creek and the stream is not impaired. No further TMDL review is required.

Existing Effluent Limitations and Monitoring Requirements

	Effluent Limitations				Monitoring Requirements			
Parameter	Mass (lbs/d	Units lav) ⁽¹⁾	Concentrations (mg/l)				Minimum ⁽²⁾	Required
	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	0.024	ххх	xxx	ххх	xxx	xxx	2/month	Measured
рН (S.U.)	xxx	xxx	6.0 Inst Min	xxx	xxx	9.0	1/day	Grab
Dissolved Oxygen	xxx	xxx	4.0 Inst Min	xxx	xxx	xxx	1/day	Grab
Total Residual Chlorine (TRC)	XXX	XXX	xxx	0.5	xxx	1.6	1/day	Grab
Carbonaceous Biochemical								
Oxygen Demand (CBOD5)	XXX	ххх	xxx	25.0	xxx	50.0	2/month	Grab
Total Suspended Solids	XXX	XXX	xxx	30.0	xxx	60.0	2/month	Grab
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml)				200 Geo		10000	2/110/101	Glab
May 1 - Sep 30	XXX	XXX	XXX	Mean	XXX	1000	2/month	Grab
Total Nitrogen	XXX	ххх	xxx	xxx	Report Daily Max	xxx	1/year	Grab
Ammonia- Nitrogen	XXX	XXX	xxx	Report	xxx	Report	2/month	Grab
Total Phosphorus	XXX	xxx	xxx	xxx	Report Daily Max	xxx	1/year	Grab

*The existing effluent limits for Outfall 001 were based on a design flow of 0.024 MGD.

Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	0.024
Latitude	40° 3' 18.00)"	Longitude	79° 21' 58.00"
Wastewater De	escription:	Treated domestic sewage		

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CPOD-	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations

To establish whether or not water-quality based effluent limitations (WQBELs) are required, the Department models instream conditions. In order to determine limitations for CBOD5, ammonia-N and dissolved oxygen, the Department utilizes the WQM 7.0 v1.0b model and in order to determine limitations for toxics, the Department utilizes the Toxic Screening Analysis Spreadsheet.

WQM 7.0 for Windows, Version 1.0b, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen

The model was run using the latest information on Q7-10 stream flow, background water quality, average annual design flow, and other discharge characteristics. The existing technology-based effluent limits for CBOD₅ (25 mg/l) and NH3-N (25 mg/l). The DO minimum daily average criterion from §93.7 (6.0 mg/L for CWF) was used for the in-stream objective for the model. The summary of the output is as follows:

Deremeter	Effluent Limit				
Parameter	30 Day Average	Maximum	Minimum		
CBOD5	25	N/A	N/A		
Ammonia-N	25	50	N/A		
Dissolved Oxygen	N/A	N/A	3		

The model indicated that the effluent limits for ammonia-nitrogen, CBOD5, and dissolved oxygen as shown above are still protective of water quality. These limits will remain.

Best Professional Judgment (BPJ) Limitations

See the Dissolved Oxygen section below.

Additional Considerations

None

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst the abovementioned technology, water quality, and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001) and/or BPJ.

Proposed Limits - Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date

	eter Mass Units (Ibs/day) ⁽¹⁾ Concentrations (mg/L)				Monitoring Requirements			
Parameter						Minimum ⁽²⁾	Required	
	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	0.024	xxx	xxx	xxx	xxx	xxx	2/month	Measured
pH (S.U.)	xxx	xxx	6.0 Inst Min	xxx	xxx	9.0	1/day	Grab
Dissolved Oxygen	xxx	xxx	4.0 Inst Min	xxx	xxx	xxx	1/day	Grab
Total Residual Chlorine (TRC)	XXX	XXX	xxx	XXX	xxx	0.02	1/day	Grab
Carbonaceous Biochemical Oxygen Demand	~~~		VVV	25.0	VVV	50.0	2/month	Grah
Total Suspended Solids	XXX	XXX	XXX	30.0	XXX	60.0	2/month	Grab
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	xxx	2000 Geo Mean	xxx	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	xxx	xxx	xxx	200 Geo Mean	xxx	1000	2/month	Grab
Total Nitrogen	xxx	xxx	XXX	xxx	Report Daily Max	XXX	1/year	Grab
Ammonia- Nitrogen	xxx	xxx	xxx	Report	xxx	Report	2/month	Grab
Total Phosphorus	XXX	XXX	xxx	XXX	Report Daily Max	xxx	1/year	Grab

*The proposed effluent limits for Outfall 001 were based on a design flow of 0.024 MGD.

Effluent Limit Determination for Outfall 001

General Information

The associated mass-based limits (lbs/day) for all parameters were based on the formula: design flow (average annual) (MGD) x concentration limit (mg/L) at design flow x conversion factor (8.34). All effluent limits were then rounded down in accordance with the rounding rules established in the *Technical Guidance for the Development and Specification of Effluent Limitations (362-0400-001)*, Chapter 5 - Specifying Effluent Limitations in NPDES Permits. The existing monitoring frequencies and sample types for these parameters generally correspond with the *Technical Guidance for the Development and Specification of Effluent Limitations (362-0400-001)*, Chapter 5 - Specifying Effluent Limitations in NPDES Permits. The existing monitoring frequencies and sample types for these parameters generally correspond with the *Technical Guidance for the Development and Specification of Effluent Limitations (362-0400-001)*, Table 6-3 and will remain.

<u>Flow</u>

Reporting of the daily maximum flow is consistent with monitoring requirements for other treatment plants and will remain.

Carbonaceous Biochemical Oxygen Demand (CBOD₅)

The results of the WQM 7.0 model show that the previously applied effluent limits for CBOD₅ are protective of water quality and will remain.

Total Suspended Solids (TSS)

The previously applied technology based secondary treatment standards (25 PA Code §92a.47 (a) (1&2)) for TSS will remain as well.

pН

CFR Title 40 §133.102(c) and 25 PA Code §95.2(1) provide the basis of effluent limitations for pH.

Total Residual Chlorine (TRC)

Under the authority of 25 Pa. Code § 93.4c, the use of chlorine for disinfection will generally not be authorized special protection watersheds. Given that the use of chlorine is approved, the average monthly effluent limitation will be set to 0.02 mg/l ("non-detect") and the associated Part C language will be used. Current policy dictates that the average monthly MDL in NPDES permits for TRC should be specified as 0.02 mg/L, which is believed to be reasonable for standardized TRC methods. A compliance schedule will be required for the permittee to meet this effluent limitation.

Fecal Coliforms

The existing fecal coliform limits with I-max limits were previously updated from the previous Chapter 92 code to correspond with what is specified in the updated 25 PA Code § 92a.47 (a)(4)&(5). The existing effluent limits will remain.

Ammonia-Nitrogen (NH3-N)

The results of the WQM 7.0 model show that the existing monitoring requirements for ammonia-nitrogen are appropriate and will remain.

Dissolved Oxygen (DO)

25 PA Code §93.7 provides specific water quality criteria for DO and monitoring for this parameter will ensure that the facility is not creating or contributing to an in-stream excursion below these water quality standards. The existing limit will remain.

Additional Considerations

A once a year M&R requirement for Total N and Total P is imposed on this facility as per Chapter 92.a.61.

Compliance History

<u>Summary of Inspections</u> -The most recent Clean Water Program onsite inspection for this facility was a Compliance Evaluation Inspection on 10/21/20. Effluent violations were noted on the inspection but the facility was operating properly.

<u>WMS Query Summary</u> - A WMS Query was run at *Reports* - *Violations & Enforcements* – *Open Violations for Client Report* to determine whether there are any unresolved violations associated with the client that will affect issuance of the permit (per CSL Section 609). This query revealed no open violations.

<u>eDMRs Summary</u> - Upon review of the eDMR's, the facility has generally been in compliance with the existing effluent limits.

Compliance History

DMR Data for Outfall 001 (from January 1, 2020 to December 31, 2020)

Parameter	DEC-20	NOV-20	OCT-20	SEP-20	AUG-20	JUL-20	JUN-20	MAY-20	APR-20	MAR-20	FEB-20	JAN-20
Flow (MGD)												
Average Monthly	0.0015	0.0015	0.0026	0.0015	0.0012	0.0019	0.0015	0.0027	0.0029	0.0058	0.0049	0.0047
pH (S.U.)												
Instantaneous												
Minimum	6.8	7.1	7.0	7.1	7.1	6.8	6.8	6.6	6.4	6.7	7.0	6.9
pH (S.U.)												
Instantaneous												
Maximum	7.3	7.8	7.7	7.8	7.6	7.6	7.3	7.0	7.1	7.3	7.8	7.4
DO (mg/L)												
Instantaneous												
Minimum	1.1	8.0	5.8	7.0	6.1	6.0	7.0	7.2	7.6	8.3	8.1	6.2
IRC (mg/L)					0.0						0.4	
	0.3	0.2	0.2	0.2	0.3	0.3	0.2	0.3	0.3	0.3	0.4	0.3
IRC (mg/L)												
Movimum	1.0	0.5	0.2	0.2	1 /	0.5	0.4	0.6	0.7	0.6	0.0	0.7
	1.0	0.5	0.5	0.5	1.4	0.5	0.4	0.0	0.7	0.0	0.9	0.7
CBOD5 (IIIg/L)	- 3 0	-20	- 20	-20	-20	-20	< 10.0	-20	- 10	3.0	3.0	6.0
	< 3.0	< 2.0	< 2.0	< 2.0	< 2.0	۲ 2.0	< 10.0	< 2.0	< 4.0	5.0	3.0	0.0
Maximum	4.0	< 20	< 20	2.0	< 20	< 20	18.0	< 20	6.0	3.0	3.0	9.0
TSS (mg/L)	4.0	< 2.0	< 2.0	2.0	< 2.0	< 2.0	10.0	< 2.0	0.0	0.0	0.0	0.0
Average Monthly	10.0	6.0	9.0	5.0	7.0	8.0	11.0	10.0	22.0	9.0	7.0	7.0
TSS (mg/L)		0.0	0.0	0.0		0.0				0.0		
Instantaneous												
Maximum	12.0	6.0	10.0	6.0	8.0	8.0	13.0	10.0	33.0	10.0	8.0	8.0
Fecal Coliform												
(No./100 ml)												
Geometric Mean	39.85	12.7	15.1	3.1	9.2	8.3	7.06	1.8	9.5	592.1	130.2	45.9
Fecal Coliform												
(No./100 ml)												
Instantaneous												
Maximum	387.3	160.7	228.2	3.1	27.2	11.0	16.1	3.1	14.5	1016.6	1413.6	55.6
Ammonia (mg/L)												
Average Monthly	< 0.12	< 0.10	0.22	< 0.11	< 1.3	< 0.10	< 0.10	0.61	< 0.11	1.2	< 0.10	0.13
Ammonia (mg/L)												
Instantaneous												
Maximum	0.13	< 0.10	0.34	0.11	2.50	< 0.10	< 0.10	0.74	0.12	1.8	0.10	0.15

	Tools and References Used to Develop Permit
	WQM for Windows Model (see Attachment B)
	PENTOXSD for Windows Model (see Attachment)
	TRC Model Spreadsheet (see Attachment C)
	Temperature Model Spreadsheet (see Attachment)
	Toxics Screening Analysis Spreadsheet (see Attachment
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
\square	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
\square	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
\square	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen
	and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
\boxtimes	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
\boxtimes	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
\boxtimes	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP:
	Other:

NPDES Permit No. PA0096733

APPENDIX A Q7-10 ANALYSIS AND STREAM DATA

Prepared in cooperation with the Pennsylvania Department of Environmental Protection

Selected Streamflow Statistics for Streamgage Locations in and near Pennsylvania

Open-File Report 2011–1070

U.S. Department of the Interior U.S. Geological Survey

NPDES Permit Fact Sheet Pleasant View MHP STP

18 Selected Streamflow Statistics for Streamgage Locations in and near Pennsylvania

Table 1. List of U.S. Geological Survey streamgage locations in and near Pennsylvania with updated streamflow statistics.—Continued

[Latitude and Longitude in decimal degrees; mi2, square miles]

Streamgage number	Streamgage name	Latitude	Longitude	Drainage area (mi²)	Regulated ¹
03070000	Cheat River at Rowlesburg, W.Va.	39.346	-79.665	939	N
03070420	Stony Fork Tributary near Gibbon Glade, Pa.	39.764	-79.587	.93	Ν
03070500	Big Sandy Creek at Rockville, W.Va.	39.616	-79.705	200	Ν
03072000	Dunkard Creek at Shannopin, Pa.	39.759	-79.971	229	Ν
03072655	Monongahela River near Masontown, Pa.	39.825	-79.923	4,440	Y
03072840	Tenmile Creek near Clarksville, Pa.	39.998	-80.042	133	Ν
03073000	South Fork Tenmile Creek at Jefferson, Pa.	39.923	-80.073	180	Ν
03074300	Lick Run at Hopwood, Pa.	39.868	-79.694	3.80	Ν
03074500	Redstone Creek at Waltersburg, Pa.	39.980	-79.764	73.7	Ν
03075070	Monongahela River at Elizabeth, Pa.	40.262	-79.901	5,340	Y
03075500	Youghiogheny River near Oakland, Md.	39.422	-79.424	134	Ν
03076500	Youghiogheny River at Friendsville, Md.	39.654	-79.408	295	LF
03076600	Bear Creek at Friendsville, Md.	39.656	-79.394	48.9	Ν
03077500	Youghiogheny River at Youghiogheny River Dam, Pa.	39.805	-79.364	436	Y
03078000	Casselman River at Grantsville, Md.	39.702	-79.136	62.5	Ν
03078500	Big Piney Run near Salisbury, Pa.	39.726	-79.048	24.5	N
03079000	Casselman River at Markleton, Pa.	39.860	-79.228	382	Ν
03080000	Laurel Hill Creek at Ursina, Pa.	39.820	-79.321	121	Ν
03081000	Youghiogheny River below Confluence, Pa.	39.828	-79.373	1,029	Y
03082200	Poplar Run near Normalville, Pa.	40.016	-79.426	9.27	Ν
03082500	Youghiogheny River at Connellsville, Pa.	40.018	-79.594	1,326	Y
03083000	Green Lick Run at Green Lick Reservoir, Pa.	40.105	-79.500	3.07	Ν
03083500	Youghiogheny River at Sutersville, Pa.	40.240	-79.806	1,715	Y
03084000	Abers Creek near Murrysville, Pa.	40.450	-79.714	4.39	Ν
03085000	Monongahela River at Braddock, Pa.	40.391	-79.858	7,337	Y
03085500	Chartiers Creek at Carnegie, Pa.	40.401	-80.096	257	Ν
03086000	Ohio River at Sewickley, Pa.	40.549	-80.206	19,500	Υ
03086500	Mahoning River at Alliance, Ohio	40.933	-81.095	89.2	Ν
03090500	Mahoning River bl Berlin Dam nr Berlin Center, Ohio	41.048	-81.001	248	Y
03091500	Mahoning River at Pricetown, Ohio	41.131	-80.971	273	Y
03092000	Kale Creek near Pricetown, Ohio	41.140	-80.995	21.9	Ν
03092090	West Branch Mahoning River near Ravenna, Ohio	41.161	-81.197	21.8	Ν
03092460	West Branch Mahoning River at Wayland, Ohio	41.157	-81.072	81.7	Y
03092500	West Branch Mahoning River near Newton Falls, Ohio	41.172	-81.021	96.3	Y
03093000	Eagle Creek at Phalanx Station, Ohio	41.261	-80.954	97.6	Ν
03094000	Mahoning River at Leavittsburg, Ohio	41.239	-80.881	575	Y
03095500	Mosquito Creek below Mosquito Creek Dam near Cortland, Ohio	41.300	-80.758	97.5	Y
03097550	Mahoning River at Ohio Edison P Plt at Niles, Ohio	41.173	-80.757	854	Υ
03098000	Mahoning River at Youngstown, Ohio	41.111	-80.673	898	Y
03098500	Mill Creek at Youngstown, Ohio	41.072	-80.690	66.3	Ν
03098600	Mahoning River below West Ave at Youngstown, Ohio	41.105	-80.663	978	Y
03099500	Mahoning River at Lowellville, Ohio	41.037	-80.536	1,073	Y
03100000	Shenango River near Turnersville, Pa.	41.513	-80.471	152	Ν
03101500	Shenango River at Pymatuning Dam, Pa.	41.498	-80.460	167	Y
03102000	Shenango River near Jamestown, Pa.	41.458	-80.425	181	Y

Table 2 31

Table 2. Selected low-flow statistics for streamgage locations in and near Pennsylvania.—Continued

[ft³/s; cubic feet per second; —, statistic not computed; <, less than]

Streamgage number	Period of record used in analysis ¹	Number of years used in analysis	1-day, 10-year (ft³/s)	7-day, 10-year (ft³/s)	7-day, 2-year (ft³/s)	30-day, 10-year (ft³/s)	30-day, 2-year (ft³/s)	90-day, 10-year (ft³/s)
03044000	³ 1941–1951	11	266	277	350	293	402	391
03045000	1941-2008	68	2.2	3.2	12.9	6.3	22.2	14.8
03045500	1921-1940	17	11.6	17.0	35.5	23.0	49.6	32.4
03047000	1943-1991	49	1.7	9.8	43.5	29.0	55.2	47.6
03047500	1909–1937	29	141	155	335	190	412	276
03048500	² 1943–2008	66	182	232	385	307	496	392
03049000	1942-2008	67	3.2	3.8	8.5	5.7	13.5	9.4
03049500	² 1967–2008	42	1,950	2,390	3,490	2,860	4,420	3,510
03049500	³ 1940–1965	26	1,030	1,200	1,600	1,380	2,000	1,850
03049800	1964-2008	45	<.1	<.1	.2	.1	.5	.3
503061500	1909-2008	83	.6	1.0	3.7	1.9	6.7	4.6
03062400	1966-2002	33	0	0	.1	<.1	.5	.1
03062500	1947-2008	28	.7	1.1	3.0	1.8	4.8	3.3
⁵ 03065000	1942-2008	64	10.4	12.4	34.8	20.7	64.0	54.9
⁵ 03066000	1923-2008	86	4.0	5.1	11.6	7.6	19.4	16.5
03068800	1975-2008	17	12.0	15.4	32.8	26.0	57.7	53.6
503069000	1912-1993	67	9.1	11.6	37.6	21.0	67.6	59.6
503069500	1914–2008	95	31.8	37.6	98.3	60.2	178	146
⁵ 03070000	1925-1996	72	35.8	40.2	114	66.8	209	173
03070420	1979–1995	17	0	<.1	<.1	<.1	.1	.1
503070500	1911-2008	94	2.3	2.9	13.2	5.5	22.9	14.8
03072000	1942-2008	67	1.2	1.7	5.4	2.7	9.5	5.7
03072655	1940-2008	69	295	484	845	618	1,150	944
03072840	1970–1979	10	1.9	2.7	5.5	4.9	9.2	9.3
03073000	1933–1995	63	.3	.4	1.8	1.0	4.0	2.8
03074300	1969–1979	11	<.1	.1	.2	.2	.4	.4
03074500	1944–2008	65	8.5	10.2	18.7	13.0	23.3	17.8
03075070	1935–2008	74	354	512	908	688	1,220	1,060
402075500	1943-2008	66	5.4	6.3	16.2	10.0	25.2	18.2
402076500	21941-2008	67	19.9	48.0	83.2	67.6	117	98.0
03076600	1966-2008	43	2.6	3.0	6.2	4.1	8.4	6.5
402078000	1945-1991	47	13.6	24.0	162	152	288	292
03078000	1949-2008	87	1.2	1.0	5.0 27.5	2.8	6.4 56.2	3.0
03079000	1922-2008	80	10.4	18.4	57.5 12.1	24.8	20.6	45.0
03081000	1920-2008	67	240	282	525	258	644	518
03082200	1942-2008	16	240	205	555	338	7	510
03082500	² 1926_2008	83	155	214	526	283	655	
03082500	³ 1910–1924	13	23.0	30.8	129	53.6	208	144
03083000	1943-1979	37	25.0	1	2	1	200	2
03083500	² 1926–2008	74	262	332	644	416	776	621
03084000	1951-1994	44	0	<1	2	2	5	3
03085000	1940-2004	65	1.060	1.230	1.950	1.440	2.380	1.950
03085500	1921-2008	80	26.7	30.8	52.4	36.5	62.4	48.5
03086000	1935–2008	74	2,760	3,060	5,030	3,650	6,230	4,930

StreamStats Report

Region ID: PA Workspace ID: PA20210226140612460000 Clicked Point (Latitude, Longitude): 40.05894, -79.36564 Time: 2021-02-26 09:06:29 -0500 Acme Donegal 70 Jones Mills Champi .White S UN H ILL Melcroft

Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	31.8	square miles
ELEV	Mean Basin Elevation	2124	feet

Low-Flow Statistics Parameters[100 Percent (31.8 square miles) Low Flow Region 4]

StreamStats Report

 Region ID:
 PA

 Workspace ID:
 PA20210226140757400000

 Clicked Point (Latitude, Longitude):
 40.05922, -79.36882

 Time:
 2021-02-26 09:08:13 -0500

Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	32.9	square miles
ELEV	Mean Basin Elevation	2107	feet

Low-Flow Statistics Parameters[100 Percent (32.9 square miles) Low Flow Region 4]

	Q7 40 A	nalvsis		
	\$7-10 7			
Facil	ity: Maheep Goyal	NPDES Permit No.:	PA0096733	
Outf	all: 001	RMI at Outfall:	17.6	Elev. 1440
Reference Str	eam Gage Information	Was Ecoflows Used?	No	•
Stream Name	Youghiogheny River	Correlation From Ecoflows		7
Reference Gage	3082500			_
Station Name	Youghiogheny River at Connellsville, PA	Check D	ilution Ratio	
Gage Drainage Area (sq. mi.)	1326	Discharge at Outfall (wf) (mgd)	().024
Q ₇₋₁₀ at gage (cfs)	214		sf (cfs)	wf (cfs)
Yield Ratio (cfs/mi ²)	0.1614	Dilution Ratio = sf/wf	5.1321	0.03713349
		Dilution Ratio =	138.207496	6 to 1
Q ₇	to at Outfall	Q _{7 40} at Down	stream Reach #	±1
	21.0		22.0	
Dramage Area at site (sq. mi.)	5 1321	Drainage Area at Reach (sq. ml.)	52.9 18.5	
Q_{7-10} at discharge site (crs)	2.2170		5 2007	
Low Elow Yield Ratio of 0.1	cfe/mi ² (For Approx, Comparison Only)	Q_{7-10} at reach (crs)	3.3097	
Contraction of the contraction o	2 1900	Q7-10 at reach (high)	5.4317 Eloy 1422	
Q ₇₋₁₀ at discharge site (cis)	3.1600		EIEV. 1432	
W7-10 at discharge site (high)	2.0003			
Q ₇₋₁₀ at Do	wnstream Reach #2	Q ₇₋₁₀ at Down	stream Reach #	\$3
Drainage Area at Reach (sq. mi.)	[Drainage Area @ Reach #2]	Drainage Area at Reach (sq. mi.)	[Drainage Area @	Reach #3]
RMI	[RMI @ Reach #2]	RMI	[RMI @ Reach #3]	
Q ₇₋₁₀ at reach (cfs)	#VALUE!	Q ₇₋₁₀ at reach (cfs)	#VALUE!	
Q ₇₋₁₀ at reach (mgd)	#VALUE!	Q ₇₋₁₀ at reach (mgd)	#VALUE!	
Pacin Characteristi	as Papart at [Sita / Pasah]	Decin Me	in at Outfa	п
Basin Characteristi	cs Report at [Site / Reach]	Basin wa	ip al Oulia	11
		[Insert Drainage Area	a Map from Stream	Stats]

	SWF Basi	o Strea n Coo	am de	Stre	eam Name		RMI	Elevatio (ft)	on Drai A (so	inage rea q mi)	Slope (ft/ft)	PWS Withdraw (mgd)	al	Apply FC
	19E	382	235 INDIA	N CREEK			18.50	0 1440	0.00	31.80	0.00000	0	.00	\checkmark
					St	ream Data	a							
Design Cond	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	<u>Tribu</u> Temp	<u>utary</u> pH	Tem	<u>Stream</u> p pł	Н	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C))		
Q7-10	0.100	0.00	5.13	0.000	0.000	0.0	0.00	0.00	20.00	7.00	0 (D.00 0	00.0	
Q1-10		0.00	0.00	0.000	0.000									
Q30-10		0.00	0.00	0.000	0.000									
					Di	scharge [Data							
			Name	e Permit Number		Existing Disc r Flow (mgd)	Permitte Disc Flow (mgd)	d Design Disc Flow (mgd)	Reserve Factor	Disc Temp (ºC)	e Dis p pl	sc H		
		Mahe	ep Goyal	PA	0096733	0.0240	0.0240	0.0240	0.000) 25	5.00	7.00		

Parameter Data Disc

Parameter Name

CBOD5

NH3-N

Dissolved Oxygen

Conc

(mg/L)

25.00

3.00

25.00

Trib

Conc

(mg/L)

2.00

8.24

0.00

Fate

Coef

1.50

0.00

0.70

(mg/L) (1/days)

0.00

0.00

0.00

Stream

Conc

Input Data WQM 7.0

	<u>sw</u>	<u>SWP Basin</u> <u>Stream Code</u> 19E 38235				<u>Stream Name</u> INDIAN CREEK						
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
18.500	5.13	0.00	5.13	.0371	0.00168	.681	33.73	49.52	0.22	0.245	20.04	7.00
Q1-1	0 Flow											
18.500	3.54	0.00	3.54	.0371	0.00168	NA	NA	NA	0.18	0.300	20.05	7.00
Q30-	10 Flow	1										
18.500	6.87	0.00	6.87	.0371	0.00168	NA	NA	NA	0.26	0.208	20.03	7.00

WQM 7.0 Hydrodynamic Outputs

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.69	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.34	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	6		

	<u>SWP Basin</u> 19E	Strea 3	a <u>m Code</u> 8235		<u>St</u> INC	<u>ream Name</u> DIAN CREEK		
NH3-N	Acute Alloc	atior	IS					
RMI	Discharge	Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
18.5	00 Maheep Goy	al	9.64	50	9.64	50	0	0
NH3-N	Chronic Alle	ocati	ons					
RMI	Discharge N	ame	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
18.5	00 Maheep Goy	al	1.91	25	1.91	25	0	0

RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Critical Reach	Percent Reduction
18.50	Maheep Goyal	25	25	25	25	3	3	0	0

Friday, February 26, 2021

<u>SWP Basin</u>	Stream Code			Stream Nam	e	
19E	38235			INDIAN CREE	ĸ	
RMI	Total Discharge Flow (mgd) Anal	ysis Temperat	ure (ºC)	Analysis pH
18.500	0.02	0.024				7.000
Reach Width (ft)	Reach De	pth (ft)		Reach WDRa	tio	Reach Velocity (fps)
33.726	0.68	1		49.516		0.225
Reach CBOD5 (mg/L)	Reach Kc (c (1/days) Reach NH3-N (mg/L)		Reach Kn (1/days)		
2.17	0.10	5		0.18		0.702
Reach DO (mg/L)	<u>Reach Kr (</u>	<u>1/days)</u>	ys) <u>Kr Equation</u>		<u>Reach DO Goal (mg/L)</u>	
8.205	3.60	1		Tsivoglou		6
Reach Travel Time (day	<u>s)</u>	Subreach	Results			
0.245	TravTime	CBOD5	NH3-N	D.O.		
	(days)	(mg/L)	(mg/L)	(mg/L)		
	0.024	2.16	0.18	8.24		
	0.049	2.15	0.17	8.24		
	0.073	2.15	0.17	8.24		
	0.098	2.14	0.17	8.24		
	0.122	2.14	0.16	8.24		
	0.147	2.13	0.16	8.24		
	0.171	2.13	0.16	8.24		
	0.196	2.12	0.16	8.24		
	0.220	2.12	0.15	8.24		
	0.245	2.11	0.15	8.24		

WQM 7.0 D.O.Simulation

	<u>SWP Basin</u> S 19E	stream Code 38235		<u>Stream Name</u> INDIAN CREE	<u>e</u> K			
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)	
18.500	Maheep Goya	I PA0096733	0.024	CBOD5	25			
				NH3-N	25	50		
				Dissolved Oxygen			3	

WQM 7.0 Effluent Limits

NPDES Permit No. PA0096733

1A	В	С	D	Е	F	G		
2	2 TRC EVALUATION Maheep Goyal PA0096733							
3	Input appropriate values in B4:B8 and E4:E7							
4	5.13 = Q stream (cfs)				0.5 = CV Daily			
5	0.024 = Q discharge (MGD)			0.5	5 = CV Hourly			
6	20	= no. sample	S	1	= AFC_Partial Mix Factor			
/	0.3 = Chlorine Demand of Stream			1	= CFC_Partial Mix Factor			
8	0	0 = Chlorine Demand of Discharge			AFC_Criteria Compliance Time (min)			
9	0.5 = BAT/BPJ Value		720	= CFC_Criteria Compliance Time (min)				
10	Course	Poforonoo	AFC Coloulations	0	=Decay Coeffici	CEC Coloulations		
10	Source	132	AFC Calculations	44.005	1 2 2 iii			
11 12	PENTOXSD TRG	IRC 1.3.2.III WLA atc = 44		44.095	5.10	WLA CIC = 42.962		
13	PENTOXSD TRG	PENTOXSD TRG 5.1b LTA afc= 1		16.431	5.1d	LTA cfc = 24.988		
14	4							
15	Source Effluent Limit Cal			Limit Calo	culations			
16	PENTOXSD TRG 5.1f AML MULT = 1.288							
17	'ENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.500 BAT/BPJ							
18	INST MAX LIMIT (mg/l) = 1.563							
	WLA afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc)) + Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)							
	LTAMULT afc	EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5)						
	LTA_afc	wla_afc*LTAMULT_afc						
		(.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) + Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)						
	WLA_cfc							
		EXF((U.5°LN(CV0^2/no_samples+1))-2.326°LN(CV0^2/no_samples+1)^0.5) w/a_cfc*LTAMULT_cfc						
	20.0							
	AML MULT	ML MULT EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1))						
	AVG MON LIMIT	MIN(BAT_BP	J,MIN(LTA_afc,LTA_c	fc)*AML_I	MULT)			
	INST MAX LIMIT	AX LIMIT 1.5*((av_mon_limit/AML_MULT)/LTAMULT_afc)						

NPDES Permit No. PA0096733

APPENDIX D FACILITY MAP AND SCHEMATIC

