

 Application Type
 Renewal

 Facility Type
 Industrial

 Major / Minor
 Minor

# NPDES PERMIT FACT SHEET INDIVIDUAL INDUSTRIAL WASTE (IW) AND IW STORMWATER

 Application No.
 PA0096792

 APS ID
 771656

 Authorization ID
 912776

# **Applicant and Facility Information**

| Applicant Name          | The Techs Industries, Inc.                        | Facility Name    | MetalTech Plant           |
|-------------------------|---------------------------------------------------|------------------|---------------------------|
| Applicant Address       | 2400 2nd Avenue                                   | Facility Address | 300 Mifflin Road          |
|                         | Pittsburgh, PA 15219-3116                         |                  | Pittsburgh, PA 15207-1910 |
| Applicant Contact       | Darin Ball                                        | Facility Contact | Same as Applicant         |
| Applicant Phone         | 412-368-4800 ext. 4868                            | Facility Phone   | Same as Applicant         |
| Client ID               | 77634                                             | Site ID          | 249568                    |
| SIC Code                | 3479                                              | Municipality     | Pittsburgh City           |
| SIC Description         | Manufacturing - Metal Coating and Allied Services | County           | Allegheny                 |
| Date Application Recei  | ved                                               | EPA Waived?      | Yes                       |
| Date Application Accept | oted March 27, 2012                               | If No, Reason    |                           |
| Purpose of Application  | NPDES Permit coverage renewal                     |                  |                           |

# Summary of Review

The Department received a renewal NPDES permit application from Civil and Environmental Consultants, Inc. on behalf of the Techs Industries, Inc on January 30, 2012 for their MetalTech Plant. The site has an SIC code of 3479, Metal Coating, Engraving, and Allied Services to Manufactures. The facility operates a continuous hot dip zinc galvanizing line. Raw steel coils are purchased from outside vendors, processed on the galvanizing line, and then stored onsite until they are sold. MetalTech obtains the site's water from the local municipal supply. The site has two outfalls, Outfall 001 and Outfall 002. Both Outfalls discharge to the Monongahela River, designated in 25 Pa Code Chapter 93 as a Warm Water Fishery. Outfall 001 discharges non-contact cooling water (NCCW) and stormwater. The NCCW discharges via Outfall 001 are regulated at an Internal Monitoring Point, IMP 101. Outfall 002 discharges stormwater.

The site was last inspected on May 27, 2021, no violations were noted.

The permittee has no open violations.

It is recommended that a Draft NPDES Permit be published for public comment in response to this application.

# Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

| Approve | Deny | Signatures                                              | Date               |
|---------|------|---------------------------------------------------------|--------------------|
| х       |      | Adam Olesnanik / Project Manager                        | September 7, 2021  |
| х       |      | Michael E. Fifth, P.E. / Environmental Engineer Manager | September 20, 2021 |

| ischarge, Recei                    | ving Wate  | rs and Water Supply Infor | rmation                      |                           |  |
|------------------------------------|------------|---------------------------|------------------------------|---------------------------|--|
|                                    |            |                           |                              |                           |  |
| Outfall No. 0                      | 01 (IMP 10 | 1)                        | Design Flow (MGD)            | 0.28                      |  |
| Latitude 4                         |            |                           | Longitude                    | -79º 58' 12"              |  |
| Quad Name                          | Pittsburgh | East                      | Quad Code                    | 1506                      |  |
| Wastewater De                      | scription: | Noncontact Cooling Wate   | er (NCCW), Stormwater        |                           |  |
| Receiving Wate                     | ers Mono   | ongahela River (WWF)      | Stream Code                  | 37185                     |  |
| NHD Com ID                         |            | 39847                     | RMI                          | 2.68                      |  |
| Drainage Area                      | 7370       |                           | Yield (cfs/mi <sup>2</sup> ) | 0.167                     |  |
| Q <sub>7-10</sub> Flow (cfs) 1,230 |            | )                         | Q7-10 Basis                  | US Army Corp of Engineers |  |
| Elevation (ft) 704                 |            | Slope (ft/ft)             | 0.001                        |                           |  |
| Watershed No.                      | 19-A       |                           | Chapter 93 Class.            | WWF                       |  |
| Existing Use                       |            |                           | Existing Use Qualifier       |                           |  |
| Exceptions to U                    | se         |                           | Exceptions to Criteria       |                           |  |
| Assessment Sta                     | atus       | Impaired                  |                              |                           |  |
| Cause(s) of Imp                    | pairment   | Pathogens, Polychlorinat  | ted Biphenyls (PCBS)         |                           |  |
| Source(s) of Im                    | pairment   | Source Unknown            |                              |                           |  |
| TMDL Status                        |            | Final                     | Name Monongahela River TMDL  |                           |  |
|                                    |            |                           |                              |                           |  |
| Nearest Downs                      | tream Publ | ic Water Supply Intake    | West View Water Authority    |                           |  |
| PWS Waters                         | Ohio Ri    | ver                       | Flow at Intake (cfs)         | 4,730                     |  |
| PWS RMI                            | 976.23     |                           | Distance from Outfall (mi)   | 7.45                      |  |

# NPDES Permit Fact Sheet Metaltech Plant

| ischarge, Recei              | ving Wate            | rs and Water Supply Info | rmation                      |                           |  |
|------------------------------|----------------------|--------------------------|------------------------------|---------------------------|--|
|                              |                      |                          |                              |                           |  |
| Outfall No. 0                | 02                   |                          | Design Flow (MGD)            | 0.0                       |  |
| Latitude 4                   | 0º 26' 01"           |                          | Longitude                    | -79º 58' 16"              |  |
| Quad Name                    | Pittsburgh           |                          | Quad Code                    | 1506                      |  |
| Wastewater De                | scription:           | Stormwater               |                              |                           |  |
| Receiving Wate               | ers Mono             | ongahela River (WWF)     | Stream Code                  | 37185                     |  |
| NHD Com ID 134839847         |                      | RMI                      | 2.68                         |                           |  |
| Drainage Area                | 7370                 |                          | Yield (cfs/mi <sup>2</sup> ) | 0.167                     |  |
| Q <sub>7-10</sub> Flow (cfs) | -10 Flow (cfs) 1,230 |                          | Q7-10 Basis                  | US Army Corp of Engineers |  |
| Elevation (ft)               | 704                  |                          | Slope (ft/ft)                | 0.001                     |  |
| Watershed No.                | 19-A                 |                          | Chapter 93 Class.            | WWF                       |  |
| Existing Use                 |                      |                          | Existing Use Qualifier       |                           |  |
| Exceptions to U              | lse                  |                          | Exceptions to Criteria       |                           |  |
| Assessment Sta               | atus                 | Impaired                 |                              |                           |  |
| Cause(s) of Imp              | pairment             | Pathogens, Polychlorina  | ted Biphenyls (PCBS)         |                           |  |
| Source(s) of Im              | pairment             | Source Unknown           |                              |                           |  |
| TMDL Status                  |                      | Final                    | Name Monongahela River TMDL  |                           |  |
|                              |                      |                          |                              |                           |  |
| Nearest Downs                | tream Publ           | ic Water Supply Intake   | West View Water Authority    |                           |  |
| PWS Waters                   | Ohio Ri              | ver                      | Flow at Intake (cfs)         | 4,730                     |  |
| PWS RMI                      | 976.23               |                          | Distance from Outfall (mi)   | 7.45                      |  |

#### **Development of Effluent Limitations**

| Outfall No.   | 001         | Design Flow (MGD)                           | 0.28         |
|---------------|-------------|---------------------------------------------|--------------|
| Latitude      | 40º 26' 1"  | Longitude                                   | -79º 58' 12" |
| Wastewater De | escription: | Noncontact Cooling Water (NCCW), Stormwater |              |

The non-contact cooling water discharges will be regulated at the internal monitoring point IMP 101.

# Technology-Based Effluent limitations:

Outfall 001 will be subject to PAG-03 General Stormwater Permit conditions as a minimum requirement because each outfall discharges stormwater. Based on the site's SIC code, the corresponding appendix that would apply to the facility is Appendix U of the PAG-03. The proposed monitoring requirements are shown in Table 1 below. The benchmark values list below are not effluent limitation, and exceedances so not constitutes permit violations. However, if the permittee's sampling demonstrates exceedances of benchmark values for two consecutive monitoring periods, the permit shall submit a corrective action plan. This requirement will be included in Part C of the permit.

|                                     | Monitoring Rec | Benchmark   |        |
|-------------------------------------|----------------|-------------|--------|
| Parameters                          | Minimum        |             | Values |
| T di difictoro                      | Measurement    | _           |        |
|                                     | Frequency      | Sample Type |        |
| pH (S.U))                           | 1 / 6 Months   | Grab        | XXX    |
| Total Suspended Solids (TSS) (mg/L) | 1 / 6 Months   | Grab        | 100    |
| Nitrate + Nitrite-Nitrogen (mg/L)   | 1 / 6 Months   | Grab        | XXX    |
| Total Aluminum (mg/L)               | 1 / 6 Months   | Grab        | XXX    |
| Total Iron (mg/L)                   | 1 / 6 Months   | Grab        | XXX    |
| Total Zinc (mg/L)                   | 1 / 6 Months   | Grab        | XXX    |

# Table 1: PAG-03 Appendix (U) Monitoring Requirements

# Water Quality-Based Effluent limitations:

Water quality analyses are typically performed under low-flow (Q7-10) conditions. Stormwater discharges occur at variable rates and frequencies but not however during Q7-10 conditions. Since the discharges from Outfalls 001 are composed of stormwater, a formal water quality analysis cannot be accurately conducted. Accordingly, water quality-based effluent limitations based on water quality analyses are not proposed.

# Anti-Backsliding

Previous limits can be used pursuant to EPA's anti-backsliding regulation, 40 CFR 122.44(I) and are displayed below in Table 2. These limitations are currently imposed on Outfall 001. Effluent goals were included in a Part C conditions for these parameters at these outfalls.

### Table 2. Current Limitations at Outfall 001

| Parameter              | Monthly<br>Average | Daily<br>Maximum | Measurement<br>Frequency | Sample<br>Type |
|------------------------|--------------------|------------------|--------------------------|----------------|
| Flow (mgd)             | Monitor            | Monitor          | 1/Quarter                | Estimate       |
| Total Suspended Solids | Monitor            | Monitor          | 1/Quarter                | Grab           |
| Zinc                   | Monitor            | Monitor          | 1/Quarter                | Grab           |

# **Proposed Final Effluent Limitations**

The proposed effluent monitoring requirements for Outfall 001 are displayed in Table 3 below, they are the most stringent values from the above effluent limitation development. The monitoring frequency for the existing monitoring requirements has been changed from 1/quarter to semi-annually to reflect that monitoring frequency in the PAG-03 general permit. The flow monitoring requirement has been removed from the permit because flow monitoring on stormwater discharges is generally not practical. The Draft Permit requires a Corrective Action Plan when there are two consecutive exceedances of the benchmark values, which are also included in the Part C condition. The benchmark values are displayed below in Table 10. These values are not effluent limitations, an exceedance of the benchmark value is not a violation. As described above, if there are two consecutive exceedances of the benchmark value, a Corrective Action Plan must be conducted to evaluate site stormwater controls and BMPs. Benchmark monitoring is a feedback tool, along with routine inspections and visual assessments, for assessing the effectiveness of stormwater controls and BMPs. An exceedance of the benchmark provides permittees with an indication that the facility's controls may not be sufficiently controlling pollutants in stormwater.

| Parameter                              | Max Daily Benchmark<br>Concentration Values (mg/L) |       | Measurement<br>Frequency | Sample<br>Type |
|----------------------------------------|----------------------------------------------------|-------|--------------------------|----------------|
| pH (S.U))                              | Report                                             | XXX   | 1/6 Months               | Grab           |
| Total Suspended Solids (TSS)<br>(mg/L) | Report                                             | 100.0 | 1/6 Months               | Grab           |
| Nitrate + Nitrite-Nitrogen (mg/L)      | Report                                             | XXX   | 1/6 Months               | Grab           |
| Total Aluminum (mg/L)                  | Report                                             | XXX   | 1/6 Months               | Grab           |
| Total Iron (mg/L)                      | Report                                             | XXX   | 1/6 Months               | Grab           |
| Total Zinc (mg/L)                      | Report                                             | XXX   | 1/6 Months               | Grab           |

#### Table 3: Proposed Effluent Monitoring Requirements for Outfall 001

# **Development of Effluent Limitations**

| IMP No.       | 101         |                                 | Design Flow (MGD) | 0.28         |
|---------------|-------------|---------------------------------|-------------------|--------------|
| Latitude      | 40º 26' 1"  |                                 | Longitude         | -79º 58' 12" |
| Wastewater De | escription: | Noncontact Cooling Water (NCCW) |                   |              |
|               |             |                                 |                   |              |

### **Technology Based Limitations**

# Regulatory Effluent Standards and Monitoring Requirements

Flow monitoring is required pursuant to 25 Pa. Code § 92a.61(d)(1).

Temperature limits will be imposed per the Department's "*Implementation Guidance for Temperature Criteria*." As a policy, DEP normally imposes a maximum temperature limit of 110°F on discharges that contain residual heat. The limit is intended as a safety measure to protect sampling personnel or anyone who may come into contact with the heated discharge where it enters the receiving water.

Pennsylvania regulations at 25 Pa. Code § 92a.48(b) require the imposition of technology-based TRC limits for facilities that use chlorination and that are not already subject to TRC limits based on applicable federal ELGs or a facility-specific BPJ evaluation.

Effluent standards for pH are also imposed on industrial wastes by 25 Pa. Code § 95.2(1) as indicated in Table 4.

#### Table 4: Regulatory Effluent Standards and Monitoring Requirements for IMP 101

| Parameter               | Monthly Average | Daily Maximum                          | IMAX | Units |  |  |
|-------------------------|-----------------|----------------------------------------|------|-------|--|--|
| Flow                    | Monitor         | and Report                             | XXX  | MGD   |  |  |
| Total Residual Chlorine | 0.5             | 1.0                                    | -    | mg/L  |  |  |
| Temperature             | XXX             | XXX                                    | 110  | °F    |  |  |
| pH                      | Not le          | Not less than 6.0 nor greater than 9.0 |      |       |  |  |

# Water Quality-Based Limitations

#### Toxic Pollutants Water Quality Analysis

The discharges from IMP 101 are non-contact cooling water and are non-process discharges, therefore a toxic pollutant water quality analysis was not conducted for the discharge from IMP 101.

#### Thermal WQBELs for Heated Discharges

Thermal WQBELs are evaluated using a DEP program called "Thermal Discharge Limit Calculation Spreadsheet" created with Microsoft Excel for Windows. The program calculates temperature WLAs through the application of a heat transfer equation, which takes two forms in the program depending on the source of the facility's cooling water. In Case 1, intake water to a facility is from the receiving stream. In Case 2, intake water is from a source other than the receiving stream (e.g., municipal water supply). The determination of which case applies to a given discharge is determined by the input data which include the receiving stream flow rate (Q<sub>7-10</sub> or the minimum regulated flow for large rivers), the stream intake flow rate, external source intake flow rates, consumptive flow rates and site-specific ambient stream temperatures. Case 1 limits are generally expressed as heat rejection rates while Case 2 limits are usually expressed as temperatures.

Since the temperature criteria from 25 Pa. Code Chapter 93.7(a) are expressed on monthly and semi-monthly bases for three different aquatic life-uses—cold water fishes, warm water fishes and trout stocking—the program generates monthly and semi-monthly limits for each use. DEP selects the output that corresponds to the aquatic life-use of the receiving stream and consequently which limits apply to the discharge. Temperature WLAs are bounded by an upper limit of 110°F for the safety of sampling personnel and anyone who may come into contact with the heated discharge where it enters the receiving water. If no WLAs below 110°F are calculated, an instantaneous maximum limit of 110°F is recommended by the program.

Discharges from IMP are classified under Case 2 because water is obtained from water supply. The flow rate used for modeling is the maximum discharge flow reported from IMP 101, 0.93 MGD. The results of the thermal analysis, included in Attachment B, indicate that no WQBELs for temperature are required at IMP 101.

# NPDES Permit Fact Sheet Metaltech Plant

# Total Residual Chlorine

To determine if WQBELs are required for discharges containing total residual chlorine (TRC), a discharge evaluation is performed using a DEP program called TRC\_CALC created with Microsoft Excel for Windows. TRC\_CALC calculates TRC Waste Load Allocations (WLAs) through the application of a mass balance model which considers TRC losses due to stream and discharge chlorine demands and first-order chlorine decay. Input values for the program include flow rates and chlorine demands for the receiving stream and the discharge, the number of samples taken per month, coefficients of TRC variability, partial mix factors, and an optional factor of safety. The mass balance model calculates WLAs for acute and chronic criteria that are then converted to long term averages using calculated multipliers. The multipliers are functions of the number of samples taken per month and the TRC variability coefficients (normally kept at default values unless site specific information is available). The most stringent limitation between the acute and chronic long-term averages is converted to an average monthly limit for comparison to the BAT average monthly limit of 0.5 mg/l from 25 Pa. Code § 92a.48(b)(2). The more stringent of these average monthly TRC limitations is imposed in the permit. The results of the modeling, included in Attachment C, indicate that no WQBELs are required for TRC

# Anti-backsliding

Previous limits can be used pursuant to EPA's anti-backsliding regulation, 40 CFR 122.44(I) and are displayed below in Table 5.

# Table 5. Existing Effluent Limitations at IMP 101

| Parameter        | Monthly<br>Average                     | Daily<br>Maximum | Instantaneous<br>Maximum | Measurement<br>Frequency | Sample<br>Type |
|------------------|----------------------------------------|------------------|--------------------------|--------------------------|----------------|
| Flow (MGD)       | Monitor                                | Monitor          |                          | 2/Month                  | Measure        |
| Temperature (°F) |                                        |                  | 110                      | 2/Month                  | I-S            |
| pH (S.U.)        | Not less than 6.0 nor greater than 9.0 |                  |                          | 2/Month                  | Grab           |

# Proposed Effluent Limitations for IMP 101

The proposed effluent limitations and monitoring requirements for IMP 101 are shown below in Table 6. The limits are the most stringent values from the above limitation analysis.

# Table 6. Proposed Effluent Limitations at IMP 101

| Parameter                      | Instant.<br>Minimum | Monthly<br>Average | Daily<br>Maximum | Instant.<br>Maximum | Measurement<br>Frequency | Sample<br>Type |
|--------------------------------|---------------------|--------------------|------------------|---------------------|--------------------------|----------------|
| Flow (MGD)                     |                     | Monitor            | Monitor          |                     | 2/Month                  | Measure        |
| Total Residual Chlorine (mg/L) |                     | 0.5                | 1.0              |                     | 2/Month                  | Grab           |
| Temperature (°F)               |                     |                    |                  | 110                 | 2/Month                  | I-S            |
| pH (S.U.)                      | 6.0                 |                    |                  | 9.0                 | 2/Month                  | Grab           |

|              | Development of Effluent Limitations |            |                   |              |  |  |  |  |
|--------------|-------------------------------------|------------|-------------------|--------------|--|--|--|--|
| Outfall No.  | 002                                 |            | Design Flow (MGD) | 0.0          |  |  |  |  |
| Latitude     | 40º 26' 1"                          |            | Longitude         | -79º 58' 16" |  |  |  |  |
| Wastewater D | escription:                         | Stormwater |                   |              |  |  |  |  |

# Technology-Based Effluent limitations:

Outfall 002 will be subject to PAG-03 General Stormwater Permit conditions as a minimum requirement because each outfall discharges stormwater. Based on the site's SIC code, the corresponding appendix that would apply to the facility is Appendix U of the PAG-03. The proposed monitoring requirements are shown in Table 7 below. The benchmark values list below are not effluent limitation, and exceedances so not constitutes permit violations. However, if the permittee's sampling demonstrates exceedances of benchmark values for two consecutive monitoring periods, the permit shall submit a corrective action plan. This requirement will be included in Part C of the permit.

# Table 7: PAG-03 Appendix (U) Monitoring Requirements

|                                     | Monitoring Rec | Benchmark   |        |
|-------------------------------------|----------------|-------------|--------|
| Parameters                          | Minimum        |             | Values |
| Farameters                          | Measurement    |             |        |
|                                     | Frequency      | Sample Type |        |
| pH (S.U))                           | 1 / 6 Months   | Grab        | XXX    |
| Total Suspended Solids (TSS) (mg/L) | 1 / 6 Months   | Grab        | 100    |
| Nitrate + Nitrite-Nitrogen (mg/L)   | 1 / 6 Months   | Grab        | XXX    |
| Total Aluminum (mg/L)               | 1 / 6 Months   | Grab        | XXX    |
| Total Iron (mg/L)                   | 1 / 6 Months   | Grab        | XXX    |
| Total Zinc (mg/L)                   | 1 / 6 Months   | Grab        | XXX    |

# Water Quality-Based Effluent limitations:

Water quality analyses are typically performed under low-flow (Q7-10) conditions. Stormwater discharges occur at variable rates and frequencies but not however during Q7-10 conditions. Since the discharges from Outfalls 002 are composed of stormwater, a formal water quality analysis cannot be accurately conducted. Accordingly, water quality-based effluent limitations based on water quality analyses are not proposed.

# Anti-Backsliding

Previous limits can be used pursuant to EPA's anti-backsliding regulation, 40 CFR 122.44(I) and are displayed below in Table 8. These limitations are currently imposed on Outfall 002. Effluent goals were included in a Part C conditions for these parameters at these outfalls.

# Table 8. Current Limitations at Outfall 002

| Parameter              | Monthly<br>Average | Daily<br>Maximum | Measurement<br>Frequency | Sample<br>Type |
|------------------------|--------------------|------------------|--------------------------|----------------|
| Flow (mgd)             | Monitor            | Monitor          | 1/Quarter                | Estimate       |
| Total Suspended Solids | Monitor            | Monitor          | 1/Quarter                | Grab           |
| Zinc                   | Monitor            | Monitor          | 1/Quarter                | Grab           |

# **Proposed Final Effluent Limitations**

The proposed effluent monitoring requirements for Outfall 002 are displayed in Table 9 below, they are the most stringent values from the above effluent limitation development. The monitoring frequency for the existing monitoring requirements has been changed from 1/quarter to semi-annually to reflect that monitoring frequency in the PAG-03 general permit. The flow monitoring requirement has been removed from the permit because flow monitoring on stormwater discharges is generally not practical. The Draft Permit requires a Corrective Action Plan when there are two consecutive exceedances of the benchmark values, which are also included in the Part C condition. The benchmark values are displayed below in Table 9. These values are not effluent limitations, an exceedance of the benchmark value is not a violation. As described above, if there are two consecutive exceedances of the benchmark value, a Corrective Action Plan must be conducted to evaluate site stormwater controls and BMPs. Benchmark monitoring is a feedback tool, along with routine inspections and visual assessments, for assessing the effectiveness of stormwater controls and BMPs. An exceedance of the benchmark provides permittees with an indication that the facility's controls may not be sufficiently controlling pollutants in stormwater

| Parameter                              | Max Daily<br>Concentration | Benchmark<br>Values (mg/L) | Measurement<br>Frequency | Sample<br>Type |
|----------------------------------------|----------------------------|----------------------------|--------------------------|----------------|
| pH (S.U))                              | Report                     | XXX                        | 1/6 Months               | Grab           |
| Total Suspended Solids (TSS)<br>(mg/L) | Report                     | 100.0                      | 1/6 Months               | Grab           |
| Nitrate + Nitrite-Nitrogen (mg/L)      | Report                     | XXX                        | 1/6 Months               | Grab           |
| Total Aluminum (mg/L)                  | Report                     | XXX                        | 1/6 Months               | Grab           |
| Total Iron (mg/L)                      | Report                     | XXX                        | 1/6 Months               | Grab           |
| Total Zinc (mg/L)                      | Report                     | XXX                        | 1/6 Months               | Grab           |

### Table 9: Proposed Effluent Monitoring Requirements Outfall 002

|                   | Tools and References Used to Develop Permit                                                                                                                                                                        |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | WQM for Windows Model (see Attachment                                                                                                                                                                              |
| $\overline{\Box}$ | Toxics Management Spreadsheet (see Attachment)                                                                                                                                                                     |
| $\overline{\Box}$ | TRC Model Spreadsheet (see Attachment )                                                                                                                                                                            |
| $\overline{\Box}$ | Temperature Model Spreadsheet (see Attachment)                                                                                                                                                                     |
| $\overline{\Box}$ | Water Quality Toxics Management Strategy, 361-0100-003, 4/06.                                                                                                                                                      |
| $\overline{\Box}$ | Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.                                                                                                             |
|                   | Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.                                                                                                                                                |
|                   | Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.                                                                                                                  |
|                   | Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.                                                                                                                       |
|                   | Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.                                                                                                      |
|                   | Pennsylvania CSO Policy, 385-2000-011, 9/08.                                                                                                                                                                       |
|                   | Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.                                                                                                                                        |
|                   | Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.                                                                                           |
|                   | Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.                                                                                                                                              |
|                   | Implementation Guidance Design Conditions, 391-2000-006, 9/97.                                                                                                                                                     |
|                   | Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.                                                    |
|                   | Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.                                                                             |
|                   | Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.                                                                   |
|                   | Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.                                                              |
|                   | Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.                                                                                                                                    |
|                   | Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.                                             |
|                   | Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.                                                                                                                           |
|                   | Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.                                                                                                                                              |
|                   | Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.                                                                                                       |
|                   | Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.       |
|                   | Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.                                                                               |
|                   | Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999. |
|                   | Design Stream Flows, 391-2000-023, 9/98.                                                                                                                                                                           |
|                   | Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.                                     |
|                   | Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.                                                                                                                         |
|                   | Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.                                                                                                                   |
|                   | SOP:                                                                                                                                                                                                               |
|                   | Other:                                                                                                                                                                                                             |

# **Attachments**

Attachment A: USGS Streams Stats Report

Attachment B: IMP 101 Temperature Model Spreadsheet Evaluation

Attachment C: IMP 101 TRC Spreadsheet Evaluation

Attachment A:

USGS Streams Stats Report

# StreamStats Report

| Region ID: PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |                               |                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------|----------------|
| Workspace ID: PA2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10903175229121000                        |                               |                |
| Clicked Point (Latitude, L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ongitude): 40.43285, -79.                | 97049                         |                |
| Time: 2021-09-03 13:5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 52:54 -0400                              |                               |                |
| 1-1-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          | 15 M                          | and t          |
| Mansfield                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | the second                               | State College                 | - The          |
| and a start of the | Pittsburgh                               | * PENNSYLVAN                  | IA             |
| Lot of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 Hesbergin                              | Altoona Harrisburg            | Reading        |
| онго                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          | the life of the second second | Phili          |
| mbus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          | 1 STONE A                     | FUID           |
| AT I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          | Sala Shi I area               | 124            |
| ZIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OHIO?                                    | a the off the second          | Concernant -   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P                                        | MARYLAND                      | Baltimore      |
| matin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          | TRI AND                       | ·              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | BULLY NO KAY                  | Da 92          |
| A CAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          | Washington, D.C.              | Annapoli       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | washington, D.C.              | 2 120          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | RITTAL S                      | and the second |
| Charleston                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Harrisonb                                | ourg                          | 48.            |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | Staunton                      | 1997 BER       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EX SEAMIND                               | VIRGINIA                      |                |
| Contraction of the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | all and all alles                        |                               | Tes .          |
| WEST V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IRGINIA                                  |                               | 2              |

| Basin Characteristics |                                         |       |              |
|-----------------------|-----------------------------------------|-------|--------------|
| Parameter Code        | Parameter Description                   | Value | Unit         |
| DRNAREA               | Area that drains to a point on a stream | 7370  | square miles |
| ELEV                  | Mean Basin Elevation                    | 1837  | feet         |

Attachment B:

IMP 101 Temperature Model Spreadsheet Evaluation

| Facility:           | MetalTech     |            |             |           |             |              |             |
|---------------------|---------------|------------|-------------|-----------|-------------|--------------|-------------|
| Permit Number:      | PA0096792     |            |             |           |             |              | PMF         |
| Stream Name:        | Monagehela    |            |             |           |             |              | 0.25        |
| Analyst/Engineer:   | Adam Olesnani | k          |             |           |             |              |             |
| Stream Q7-10 (cfs): | 1230          |            |             |           |             |              |             |
|                     |               | Facilit    | y Flows     |           |             | Stream Flows |             |
|                     | Intake        | Intake     | Consumptive | Discharge | Upstream    | Adjusted     | Downstream  |
|                     | (Stream)      | (External) | Loss        | Flow      | Stream Flow | Stream Flow  | Stream Flow |
|                     | (MGD)         | (MGD)      | (MGD)       | (MGD)     | (cfs)       | (cfs)        | (cfs)       |
| Jan 1-31            | 0             | 0.93       | 0           | 0.93      | 3936.00     | 984.00       | 985.44      |
| Feb 1-29            | 0             | 0.93       | 0           | 0.93      | 4305.00     | 1076.25      | 1077.69     |
| Mar 1-31            | 0             | 0.93       | 0           | 0.93      | 8610.00     | 2152.50      | 2153.94     |
| Apr 1-15            | 0             | 0.93       | 0           | 0.93      | 11439.00    | 2859.75      | 2861.19     |
| Apr 16-30           | 0             | 0.93       | 0           | 0.93      | 11439.00    | 2859.75      | 2861.19     |
| May 1-15            | 0             | 0.93       | 0           | 0.93      | 6273.00     | 1568.25      | 1569.69     |
| May 16-30           | 0             | 0.93       | 0           | 0.93      | 6273.00     | 1568.25      | 1569.69     |
| Jun 1-15            | 0             | 0.93       | 0           | 0.93      | 3690.00     | 922.50       | 923.94      |
| Jun 16-30           | 0             | 0.93       | 0           | 0.93      | 3690.00     | 922.50       | 923.94      |
| Jul 1-31            | 0             | 0.93       | 0           | 0.93      | 2091.00     | 522.75       | 524.19      |
| Aug 1-15            | 0             | 0.93       | 0           | 0.93      | 1722.00     | 430.50       | 431.94      |
| Aug 16-31           | 0             | 0.93       | 0           | 0.93      | 1722.00     | 430.50       | 431.94      |
| Sep 1-15            | 0             | 0.93       | 0           | 0.93      | 1353.00     | 338.25       | 339.69      |
| Sep 16-30           | 0             | 0.93       | 0           | 0.93      | 1353.00     | 338.25       | 339.69      |
| Oct 1-15            | 0             | 0.93       | 0           | 0.93      | 1476.00     | 369.00       | 370.44      |
| Oct 16-31           | 0             | 0.93       | 0           | 0.93      | 1476.00     | 369.00       | 370.44      |
| Nov 1-15            | 0             | 0.93       | 0           | 0.93      | 1968.00     | 492.00       | 493.44      |
| Nov 16-30           | 0             | 0.93       | 0           | 0.93      | 1968.00     | 492.00       | 493.44      |
| Dec 1-31            | 0             | 0.93       | 0           | 0.93      | 2952.00     | 738.00       | 739.44      |

Please forward all comments to Tom Starosta at 717-787-4317, tstarosta@state.pa.us.

Version 2.0 -- 07/01/2005 Reference: Implementation Guidance for Temperature Criteria, DEP-ID: 391-2000-017

NOTE: The user can only edit fields that are blue.

NOTE: MGD x 1.547 = cfs.

| Facility:          | MetalTech    |              |              |              |                   |                       |
|--------------------|--------------|--------------|--------------|--------------|-------------------|-----------------------|
| Permit Number:     | PA0096792    |              |              |              |                   |                       |
| Stream:            | Monagehela   |              |              |              |                   |                       |
|                    |              |              |              |              |                   |                       |
|                    |              |              |              |              |                   |                       |
|                    |              |              |              |              |                   |                       |
|                    |              |              |              |              |                   |                       |
|                    |              |              |              |              | 07.40 Maddindiana | 07 40 Maddin li ana   |
|                    | WWF Criteria | CWF Criteria | TSF Criteria | 316 Criteria |                   | Q7-10 Multipliers     |
|                    | (°F)         | (°F)         | (°F)         | (°F)         |                   | (Default - Info Only) |
| Jan 1-31           | 40           | 38           | 40           | 0            | 3.2               | 3.2                   |
| Feb 1-29           | 40           | 38           | 40           | 0            | 3.5               | 3.5                   |
| Mar 1-31           | 46           | 42           | 46           | 0            | 7                 | 7                     |
| Apr 1-15           | 52           | 48           | 52           | 0            | 9.3               | 9.3                   |
| Apr 16-30          | 58           | 52           | 58           | 0            | 9.3               | 9.3                   |
| May 1-15           | 64           | 54           | 64           | 0            | 5.1               | 5.1                   |
| May 16-30          | 72           | 58           | 68           | 0            | 5.1               | 5.1                   |
| Jun 1-15           | 80           | 60           | 70           | 0            | 3                 | 3                     |
| Jun 16-30          | 84           | 64           | 72           | 0            | 3                 | 3                     |
| Jul 1-31           | 87           | 66           | 74           | 0            | 1.7               | 1.7                   |
| Aug 1-15           | 87           | 66           | 80           | 0            | 1.4               | 1.4                   |
| Aug 16-31          | 87           | 66           | 87           | 0            | 1.4               | 1.4                   |
| Sep 1-15           | 84           | 64           | 84           | 0            | 1.1               | 1.1                   |
| Sep 16-30          | 78           | 60           | 78           | 0            | 1.1               | 1.1                   |
| Oct 1-15           | 72           | 54           | 72           | 0            | 1.2               | 1.2                   |
| Oct 16-31          | 66           | 50           | 66           | 0            | 1.2               | 1.2                   |
| Nov 1-15           | 58           | 46           | 58           | 0            | 1.6               | 1.6                   |
| Nov 16-30          | 50           | 42           | 50           | 0            | 1.6               | 1.6                   |
| Dec 1-31           | 42           | 40           | 42           | 0            | 2.4               | 2.4                   |
| NOTES:             |              |              |              |              |                   |                       |
| WWF= Warm wate     | er fishes    |              |              |              |                   |                       |
| CWF= Cold water f  |              |              |              |              |                   |                       |
| TSF= Trout stockin |              |              |              |              |                   |                       |

| Facility:      | MetalTech              |                          |                              |                                                      |                  |              |
|----------------|------------------------|--------------------------|------------------------------|------------------------------------------------------|------------------|--------------|
| Permit Number: | PA0096792              |                          | PMF                          |                                                      |                  |              |
| Stream:        | Monagehela             |                          | 0.2                          |                                                      |                  |              |
|                |                        |                          |                              |                                                      |                  |              |
|                |                        |                          |                              |                                                      |                  |              |
|                |                        |                          |                              |                                                      |                  |              |
|                | WWF                    |                          |                              | WWF                                                  | WWF              |              |
|                | Ambient Stream         | Ambient Stream           | Target Maximum               | Daily                                                | Daily            |              |
|                | Temperature (°F)       | Temperature (°F)         | Stream Temp. <sup>1</sup>    | WLA <sup>2</sup>                                     | WLA <sup>3</sup> | at Discharge |
|                | (Default)              | (Site-specific data)     | •                            | (Million BTUs/day)                                   | (°F)             | Flow (MGD)   |
| Jan 1-31       | 35                     | 0                        | 40                           | N/A Case 2                                           | 110.0            | 0.93         |
| Feb 1-29       | 35                     | 0                        | 40                           | N/A Case 2                                           | 110.0            | 0.93         |
| Mar 1-31       | 40                     | 0                        | 46                           | N/A Case 2                                           | 110.0            | 0.93         |
| Apr 1-15       | 47                     | 0                        | 52                           | N/A Case 2                                           | 110.0            | 0.93         |
| Apr 16-30      | 53                     | 0                        | 58                           | N/A Case 2                                           | 110.0            | 0.93         |
| May 1-15       | 58                     | 0                        | 64                           | N/A Case 2                                           | 110.0            | 0.93         |
| May 16-30      | 62                     | 0                        | 72                           | N/A Case 2                                           | 110.0            | 0.93         |
| Jun 1-15       | 67                     | 0                        | 80                           | N/A Case 2                                           | 110.0            | 0.93         |
| Jun 16-30      | 71                     | 0                        | 84                           | N/A Case 2                                           | 110.0            | 0.93         |
| Jul 1-31       | 75                     | 0                        | 87                           | N/A Case 2                                           | 110.0            | 0.93         |
| Aug 1-15       | 74                     | 0                        | 87                           | N/A Case 2                                           | 110.0            | 0.93         |
| Aug 16-31      | 74                     | 0                        | 87                           | N/A Case 2                                           | 110.0            | 0.93         |
| Sep 1-15       | 71                     | 0                        | 84                           | N/A Case 2                                           | 110.0            | 0.93         |
| Sep 16-30      | 65                     | 0                        | 78                           | N/A Case 2                                           | 110.0            | 0.93         |
| Oct 1-15       | 60                     | 0                        | 72                           | N/A Case 2                                           | 110.0            | 0.93         |
| Oct 16-31      | 54                     | 0                        | 66                           | N/A Case 2                                           | 110.0            | 0.93         |
| Nov 1-15       | 48                     | 0                        | 58                           | N/A Case 2                                           | 110.0            | 0.93         |
| Nov 16-30      | 42                     | 0                        | 50                           | N/A Case 2                                           | 110.0            | 0.93         |
| Dec 1-31       | 37                     | 0                        | 42                           | N/A Case 2                                           | 110.0            | 0.93         |
|                |                        |                          |                              |                                                      |                  |              |
|                |                        |                          | national Theorem this wetter |                                                      |                  |              |
|                |                        | on or the ambient tempe  |                              | mperature may be<br>ed on site-specific data entered | by the user      |              |
|                | oove ambient stream te |                          | reamiemperature base         | on sile-specific data entered                        | by the user.     |              |
|                |                        | alid for Case 1 scenario | os, and disabled for Ca      | ase 2 scenarios.                                     |                  |              |
|                |                        |                          |                              | be used for Case 1 or Case 2)                        | •                |              |
|                | 110ºF are displayed a  |                          |                              |                                                      |                  |              |

Attachment C:

IMP 101 TRC Spreadsheet Evaluation

# **TRC EVALUATION**

| 0.93<br>4<br>0.3<br>0                                                                                                                                                                                                                     | = Chlorine D<br>= BAT/BPJ V                                             | ge (MGD)<br>es<br>emand of Stream<br>emand of Discharge                                                                                               | 0.5<br>0.25<br>0.25<br>15                                     |                                       | <i>l</i> ix Factor<br>Compliance Time (min)<br>Compliance Time (min) |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|
| Source                                                                                                                                                                                                                                    | Reference                                                               | AFC Calculations                                                                                                                                      | <u></u>                                                       | Reference                             | CFC Calculations                                                     |
| TRC<br>PENTOXSD TRG<br>PENTOXSD TRG                                                                                                                                                                                                       |                                                                         | WLA afc =<br>LTAMULT afc =<br>LTA_afc=                                                                                                                | 0.373                                                         | 1.3.2.iii<br>5.1c<br>5.1d             | WLA cfc = 66.482<br>LTAMULT cfc = 0.581<br>LTA_cfc = 38.650          |
| Source Effluent Limit Calculations                                                                                                                                                                                                        |                                                                         |                                                                                                                                                       |                                                               |                                       |                                                                      |
| PENTOXSD TRG         5.1f         AML MULT = 1.720           PENTOXSD TRG         5.1g         AVG MON LIMIT (mg/l) = 0.500         BAT/BPJ           INST MAX LIMIT (mg/l) = 1.170         INST MAX LIMIT (mg/l) = 1.170         BAT/BPJ |                                                                         |                                                                                                                                                       |                                                               |                                       |                                                                      |
| WLA afc<br>LTAMULT afc<br>LTA_afc                                                                                                                                                                                                         | + Xd + (AFC                                                             | <b>FC_tc)) + [(AFC_Yc*Qs</b><br>C_ <b>Yc*Qs*Xs/Qd)]*(1-F</b><br>(cvh^2+1))-2.326*LN(c<br>MULT_afc                                                     | OS/100)                                                       |                                       |                                                                      |
| WLA_CfC<br>LTAMULT_cfc<br>LTA_CfC<br>AML MULT<br>AVG MON LIMIT<br>INST MAX LIMIT                                                                                                                                                          | + Xd + (CFC<br>EXP((0.5*LN<br>wla_cfc*LTAI<br>EXP(2.326*L<br>MIN(BAT_BP | FC_tc) + [(CFC_Yc*Qs<br>C_Yc*Qs*Xs/Qd)]*(1-F<br>(cvd^2/no_samples+1<br>MULT_cfc<br>N((cvd^2/no_samples<br>J,MIN(LTA_afc,LTA_cf<br>n_limit/AML_MULT)/L | <b>OS/100)</b><br>))-2.326*LN(<br>+1)^0.5)-0.5*<br>c)*AML_MUL | cvd^2/no_samp<br>LN(cvd^2/no_sa<br>T) |                                                                      |