

Northwest Regional Office CLEAN WATER PROGRAM

Application Type

Renewal

Non
Facility Type

Major / Minor

Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. PA0096903

APS ID 703875

Authorization ID 1318009

Applicant Name	pplicant Name G & G Mobile Home Sales		Facility Name	Hidden Valley Estates		
Applicant Address	23 Oa	akridge Heights Drive	Facility Address	1212 Sunset Drive		
	Oakda	ale, PA 15071-3914		Bulger, PA 15019		
Applicant Contact	ontact Paul Galbraith		Facility Contact			
Applicant Phone	(724) 695-7910		Facility Phone			
Client ID	43711	1	Site ID	256209		
Ch 94 Load Status	Not O	verloaded	Municipality	Robinson Township		
Connection Status			County	Washington		
Date Application Rece	ived	June 17, 2020	EPA Waived?	Yes		
Date Application Acce	pted	July 1, 2020	If No, Reason			

Summary of Review

The facility discharges treated domestic sewage from 75 homes in a mobile home park located in Robinson Township, Washington County.

No changes to discharge quantity or quality were proposed as part of this permit renewal.

The facility started using eDMR for reporting in February 2018.

There are currently no open violations listed in EFACTS for this permittee (3/16/2021)

Sludge use and disposal description and location(s): Sludge is hauled offsite by RMC Sanitation for further treatment prior to disposal.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
Х		Adam Pesek Adam J. Pesek, E.I.T. / Environmental Engineering Specialist	March 17, 2021
Х		Justin C. Dickey Justin C. Dickey, P.E. / Environmental Engineer Manager	March 25, 2021

Discharge, Receiving Water	ers and Water Supply Info	rmation	
Outfall No. 001		Design Flow (MGD)	0.009
Latitude 40° 24' 13"		Longitude	-80° 18' 12"
Quad Name Clinton		Quad Code	01503
Wastewater Description:	Treated domestic sewag	e	
	amed Tributary to Little coon Run	Stream Code	33824
	88920	Stream Code RMI	1.31
Drainage Area 3.6	00920	Yield (cfs/mi²)	0.04646
Dialilage Area 3.0		field (CIS/IIII-)	Racoon Crk @Moffatts Mill
Q ₇₋₁₀ Flow (cfs) 0.16	72	Q ₇₋₁₀ Basis	USGS #03108000
Elevation (ft)		Slope (ft/ft)	
Watershed No. 20-D		Chapter 93 Class.	WWF
Existing Use		Existing Use Qualifier	
Exceptions to Use		Exceptions to Criteria	
Assessment Status	Attaining Use(s)		
Cause(s) of Impairment			
Source(s) of Impairment			
TMDL Status	Final (2/03/2005)	Name Raccoon Cr	eek Watershed
Background/Ambient Data	ì	Data Source	
~LL (CLI)	7.0		Point #55810 on the receiving
pH (SU)	7.8 25	stream	
Temperature (°C)		Default (WWF)	
Hardness (mg/L) Other: NH₃-N	0.1	Default	
Other. INF13-IN	0.1	Default	
Nearest Downstream Pub	lia Water Supply Intaka	Midland Borough Municipal A	uthority
PWS Waters Ohio R		Flow at Intake (cfs)	4730
PWS RMI 36.2		Distance from Outfall (mi)	7100
1 VVO 1(1VII		Distance nom Outian (IIII)	

Changes Since Last Permit Issuance: Stream yield was refined based on updated gage station data. Stream pH input refined based on actual stream sample result.

Other Comments: The Racoon Creek Watershed TMDL is for Acid Mine Drainage (AMD) impairments in the watershed. Waste load allocations were assigned to past, present, and future mining operations.

	Tr	eatment Facility Summary	y	
Treatment Facility Na	me: Hidden Valley Estates	s MHP		
WQM Permit No.	Issuance Date			
6371418	Unknown			
	T			
	Degree of			Avg Annual
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)
		Extended Aeration with		
Sewage	Tertiary	sand filtration	Tablet chlorination	0.009
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal
0.009	Unknown	Not Overloaded	Aerated Holding Tank	Other WWTP

Changes Since Last Permit Issuance: Treatment consists of a comminutor, an equalization tank, one aeration tank, one clarifier, a dosing tank, two sand filters, and tablet chlorination with a chlorine contact tank.

Other Comments:

	Compliance History
Summary of DMRs:	No reported effluent violations in the past permit term according to WMS.
_	
Summary of Inspections:	Last facility inspection was conducted on 4/11/2019. The inspection report indicated that
	the plant was running well with maintenance being done well. Minor issues noted included keeping calibration records of the field-testing equipment, need to submit the
	Influent and Process Control supplemental report, and the need to eliminate a sink
	discharge to the ground outside the blower building.

Other Comments:

Compliance History

DMR Data for Outfall 001 (from February 1, 2020 to January 31, 2021)

Parameter	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20	AUG-20	JUL-20	JUN-20	MAY-20	APR-20	MAR-20	FEB-20
Flow (MGD)												
Average Monthly	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075	0.0075
pH (S.U.)												
Minimum	6.7	6.7	6.5	6.5	6.5	6.7	6.7	6.8	6.7	6.7	6.7	6.7
pH (S.U.)												
Maximum	6.8	6.9	6.8	6.8	6.9	6.8	6.9	6.9	7.0	7.1	7.0	6.9
DO (mg/L)									_			
Minimum	7.1	7.1	6.2	7.4	6.5	6.1	5.9	6.3	5.9	7.0	7.1	6.8
TRC (mg/L)												
Average Monthly	0.19	0.19	0.19	0.129	0.16	0.196	0.235	0.17	0.177	0.2	0.255	0.248
TRC (mg/L)					0110							0.11.0
Instantaneous												
Maximum	0.4	0.4	0.5	0.3	0.5	0.6	1.2	0.8	0.5	0.8	0.8	0.6
CBOD5 (mg/L)	0	0.1	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0
Average Monthly	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4
CBOD5 (mg/L)	1			` .			` .					
Instantaneous												
Maximum	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4
TSS (mg/L)	1	` '	_ ` '	` '		` '	` '			_ ` '	` '	` '
Average Monthly	< 5	6.25	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
TSS (mg/L)	1	0.20	10		10	10		10	10	10	10	10
Instantaneous												
Maximum	< 5	7.5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Fecal Coliform	10	7.0			\ \ \			_ ` ` `	\ \ \			
(CFU/100 ml)												
Geometric Mean	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	1	1.41	< 1	< 1
Fecal Coliform	` '	_ ` '	_ ` '		` '	_ ` '		_ ` '		1.71	_ ` '	
(CFU/100 ml)												
Instantaneous												
Maximum	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	2	< 1	< 1
Total Nitrogen (mg/L)	` '	` '	` '	` '	` '	` '	` '	` '	` '		` '	` '
Daily Maximum		< 1.25										
Ammonia (mg/L)		V 1.20										
Average Monthly	0.385	0.615	0.31	0.375	0.335	< 5	0.555	0.415	0.345	0.61	0.36	0.67
Ammonia (mg/L)	0.505	0.010	0.51	0.575	0.000	_ ` ` _	0.000	0.410	0.040	0.01	0.50	0.07
Instantaneous												
Maximum	0.47	0.91	0.32	0.45	0.37	< 5	0.81	0.45	0.36	0.86	0.42	1.04
Total Phosphorus	0.47	0.81	0.32	0.40	0.31	_ ` ` _	0.01	0.43	0.30	0.00	0.42	1.04
(mg/L)												
Daily Maximum		0.502										
Daily Maximum		0.502			1	l		ĺ	1		ĺ	

	Develop	oment of Effluent Limitations	
Outfall No.	001	Design Flow (MGD)	0.009
Latitude	40° 24' 13.00"	Longitude	-80° 18' 12.00"
Wastewater D	Description: Sewage Effluent	-	

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids 45 A H 6.0 – 9.0 S.U.		Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 - 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 - 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 - 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform	· · · · · · · · · · · · · · · · · · ·			
(10/1 - 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations

The following limitations were determined through water quality modeling (output files attached):

Parameter	Limit (mg/l)	SBC	Model
Ammonia Nitrogen			
May 1 - Oct 31	15	Average Monthly	WQM 7.0 Ver 1.0b
Total Residual Chlorine	1.6	IMAX	TRC Calc Spreadsheet

Comments: A seasonal multiplier of "3" is typically applied to ammonia nitrogen for the winter period. However, since that number exceeds 25 mg/l, a winter-time ammonia nitrogen limit of 25 mg/l will be placed in the permit in accordance with the Department's SOP entitled "Establishing Effluent Limitations for Individual Sewage Permits."

Best Professional Judgment (BPJ) Limitations

Comments: A dissolved oxygen limit of a minimum of 4.0 mg /l was placed in the permit in accordance with the Department's SOP entitled "Establishing Effluent Limitations for Individual Sewage Permits."

Other Considerations

Comments: Monitoring for total nitrogen and total phosphorus was placed in the permit in accordance with the Department's SOP entitled "Establishing Effluent Limitations for Individual Sewage Permits."

Monitoring for total aluminum, total iron and total manganese will be placed in the renewed permit. This is due to the discharge not having any waste load allocations assigned to it in the finalized TMDL in accordance with the Department's SOP entitled "Establishing Effluent Limitations for Individual Sewage Permits" in order to provide data for possible future refinement of the TMDL

Anti-Backsliding

Comments: N/A

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Phase 1 through Permit Expiration Date.

			Effluent L	imitations			Monitoring Red	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
	_	Report					Measurement Frequency 1/week 1/weekday G 1/weekday G 1/weekday G 2/month G 2/month G 2/month G 2/month G 1/year G 1/year G 1/year G	
Flow (MGD)	Report	Daily Max	XXX	XXX	XXX	XXX	1/week	Measured
pH (S.U.)	XXX	XXX	6.0 Daily Min	XXX	9.0 Daily Max	XXX	1/weekday	Grab
			4.0				1	
DO	XXX	XXX	Daily Min	XXX	XXX	XXX	1/weekday	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/weekday	Grab
CBOD5	XXX	XXX	XXX	25.0	XXX	50	2/month	Grab
TSS	XXX	XXX	XXX	30.0	XXX	60	2/month	Grab
Fecal Coliform (No./100 ml)				2000				
Oct 1 - Apr 30	XXX	XXX	XXX	Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml)				200			-,	
May 1 - Sep 30	XXX	XXX	XXX	Geo Mean	XXX	1000	2/month	Grab
Ammonia Nov 1 - Apr 30	XXX	XXX	XXX	25.0	XXX	50	2/month	Grab
Ammonia								
May 1 - Oct 31	XXX	XXX	XXX	15.0	XXX	30	2/month	Grab
					Report			
Total Nitrogen	XXX	XXX	XXX	XXX	Daily Max	XXX	1/year	Grab
Total Phosphorus	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/year	Grab
Total Aluminum	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/year	Grab

Outfall 001, Continued (from Phase 1 through Permit Expiration Date)

			Effluent L	imitations			Monitoring Red	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	tions (mg/L)		Minimum (2)	Required
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Total Iron	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/year	Grab
Total Manganese	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/year	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/year	Grab

Compliance Sampling Location: Outfall 001 (after disinfection).

Comments: The permittee requested during the previous permit draft period that monitoring frequency for pH, D.O. and TRC be reduced from 1/day citing financial burden. As a result, the final permit was issued with monitoring frequency for these parameters of 1/weekday. The Department has determined that the existing monitoring frequencies can be retained in the proposed renewed permit as the Permittee has been in compliance with other permits and is achieving the effluent limitations for these parameters consistently since the past permit was issued.

E. Coli monitoring is being added in accordance with the Department's SOP for Establishing Effluent Limitations for Individual Sewage Permits and 92a.61. JCD

Input Data WQM 7.0

	SWP Basin	Strea Coo		Stream Name		RMI		vation (ft)	Drainag Area (sq mi		Slope (ft/ft)	PW Withdr (mg	awal	Apply FC	
	20D	338	324 Trib 33	824 to Li	ttle Racco	on Run	1.3	10	1020.00	3	.60 0	.00000		0.00	~
						Stream Dat	ta								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributar</u> np	¥ pH	Tem	<u>Stream</u> np	<u>1</u> pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C	:)		
Q7-10 Q1-10 Q30-10	0.046	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000)	0.00	0.0	0 2	5.00	7.80	1	0.00	0.00	
		Discharge Data													
			Name	Per	mit Numb	Disc	Permitt Disc Flow (mgd	Dis Flo	c Res w Fa	erve ctor	Disc Temp (°C)		sc H		
		Hidde	enValleyEst	PAC	0096903	0.009	0.000	0.0	000	0.000	20.0	00	6.80		
						Parameter	Data								
			ļ	Paramete	r Name	С	onc (Conc	Stream Conc	Fate Coef					
	_					(m	ng/L) (r	ng/L)	(mg/L)	(1/days)		5		
			CBOD5				25.00	2.00	0.00	1.5	0				
			Dissolved	Oxygen			4.00	7.54	0.00	0.0	0				
			NH3-N				25.00	0.10	0.00	0.7	0				

Input Data WQM 7.0

					5,415	put Date	a vvogi	VI 7.0						
	SWP Basin			Stre	eam Nam	e	RMI		ation	Drainage Area (sq mi)	Slope (ft/ft)	Witho	VS drawal gd)	App FC
	20D	338	324 Trib 3	3824 to Li	ttle Racco	on Run	0.0	01	984.00	4.73	0.0000	0	0.00	V
31					1	Stream Dat	a							
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> np pH	Те	<u>Strear</u> mp	<u>n</u> pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°	C)		
Q7-10 Q1-10 Q30-10	0.046	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000)	0.00	0.0	0 2	5.00 7.	80	0.00	0.00	
						Discharge	Data						1	
			Name	Per	rmit Numb	Disc	Permitt Disc Flow (mgd	/ Flo	Res w Fa	Dis erve Ten ctor (°C	np	Disc pH		
						0.000	0 0.00	0.0 0.0	000	0.000 2	25.00	7.00		
						Parameter	Data							
				Paramete	r Name			Trib : Conc	Stream Conc	Fate Coef				
			ž.	. Si dillotto		(m	ng/L) (mg/L)	(mg/L)	(1/days)		_		
			CBOD5				25.00	2.00	0.00	1.50		_		
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

WQM 7.0 Hydrodynamic Outputs

	SWP Basin Stream Code				<u>Stream Name</u>							
		20D	3	3824		T	rib 3382	4 to Littl	e Raccoo	n Run		
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
1.310	0.17	0.00	0.17	.0139	0.00521	.39	7.6	19.46	0.06	1.309	24.62	7.57
Q1-1	0 Flow											
1.310	0.11	0.00	0.11	.0139	0.00521	NA	NA	NA	0.05	1.642	24.42	7.49
Q30-	10 Flow	,										
1.310	0.23	0.00	0.23	.0139	0.00521	NA	NA	NA	0.07	1.115	24.71	7.62

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	5		

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name
20 D	33824	Trib 33824 to Little Raccoon Run

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
1.31	0 HiddenValleyEst	4.33	36.82	4.33	36.82	0	0
		Baseline	Baseline	Multiple	Multiple	Critical	Percent
RMI	Discharge Name	Criterion (mg/L)	WLA (mg/L)	Criterion (mg/L)	WLA (mg/L)	Reach	Reduction

		CBOD5		<u>NH3-N</u>		<u>Dissolved Oxygen</u>		Critical	Percent	
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction	
1.31	HiddenValleyEst	25	25	15.03	15.03	4	4	0	0	

WQM 7.0 D.O.Simulation

SWP Basin St	ream Code			Stream Name	
20D	33824		Trib 338	24 to Little Racco	oon Run
<u>RMI</u>	Total Discharge	1995 A	<u>) Ana</u>	lysis Temperature	A CONTRACTOR OF THE CONTRACTOR
1.310	0.00			24.616	7.572
Reach Width (ft)	9.0	h Depth (ft)		Reach WDRatio)
7.596	0.39			19.460	0.061
Reach CBOD5 (mg/L)	Reach Kc (<u>R</u>	each NH3-N (mg/	
3.77	0.38			1.25	0.999
Reach DO (mg/L)	Reach Kr (CO. 0000		Kr Equation	Reach DO Goal (mg/L)
7.268	21.20)5		Owens	5
Reach Travel Time (days)		Subreach	Results		
1.309	Tra∨Time	CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.131	3.54	1.09	7.54	
	0.262	3.32	0.96	7.54	
	0.393	3.12	0.84	7.54	
	0.524	2.93	0.74	7.54	
	0.655	2.76	0.65	7.54	
	0.786	2.59	0.57	7.54	
	0.916	2.43	0.50	7.54	
	1.047	2.28	0.44	7.54	
	1.178	2.15	0.38	7.54	
	1.309	2.02	0.34	7.54	

WQM 7.0 Effluent Limits

	SWP Basin Stream 20D 338		Tr	<u>Stream Nam</u> ib 33824 to Little Ra			
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
1.310	HiddenValleyEst	PA0096903	0.009	CBOD5	25		- 8
				NH3-N	15.03	30.06	
				Dissolved Oxygen			4

1A	В	С	D	Е	F	G		
2	TRC EVALU	ATION						
3		ervota docum - Enervo destente distinte - inciden-	B4:B8 and E4:E7					
4		= Q stream (1656		= CV Daily			
5		= Q discharg		OBLIVICEO	= CV Hourly			
6		= no. sample			= AFC_Partial N			
7	(CONTROL OF CONTROL OF				= CFC_Partial N			
8					(a - a)	Compliance Time (min)		
9	\$44-400 (2014) 113 y 5 (10) W (2014) W					Compliance Time (min)		
40			of Safety (FOS)	U	=Decay Coeffic			
10	Source	Reference	AFC Calculations	2.054	Reference	CFC Calculations		
11				4440004000000	1.3.2.iii 5.1c	WLA cfc = 3.747 LTAMULT cfc = 0.581		
	PENTOXSD TRG 5.1a LTAMULT afc = PENTOXSD TRG 5.1b LTA_afc=			VE. 2000/0000	5.1d	LTA cfc = 0.361		
14		0.15	E17_010-	1.400	9.19	ETA_010 - 2.170		
15	Source Effluent Limit Calculations							
16	PENTOXSD TRG 5.1f AML MULT = 1.231							
12523200	PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.500 BAT/BPJ							
18			INST MAX LIMI	T (mg/l) =	1.635			
	WLA afc	/ 040/-/ L*A	FC tc)) + [(AFC Yc*Q	-* 04010				
	WLA aic	683	C_Yc*Qs*Xs/Qd)]*(1-F		u e(-k AFO_IC))	•••		
	LTAMULT afc	9,74	(cvh^2+1))-2.326*LN((5. 0)	^0.5)			
	LTA_afc	wla_afc*LTA			osemuotks. £ 6			
	WLA_cfc	ASSESSED TO THE PARTY OF THE PA	FC_tc) + [(CFC_Yc*Q; C_Yc*Qs*Xs/Qd)]*(1-I		l*e(-k*CFC_tc))			
	LTAMULT_cfc	EXP((0.5*LN	cvd^2/no_samples+1))-2.326*L	_N(cvd^2/no_sai	mples+1)^0.5)		
	LTA_cfc	wla_cfc*LTA	MULT_cfc					
	AML MULT		N((cvd^2/no_samples			o_samples+1))		
	AVG MON LIMIT		'J,MIN(LTA_afc,LTA_c n_limit/AML_MULT)/L`		5 50 100 ESTA			
	INST MAX LIMIT	1.5"((av_mo	II_IIIIIUAML_MOLT)/L	IAMOLI_	aicj			

Hidden Valley Estates Robinson Township, Washington County NPDES# PA0096903

<u>Date</u> pH max <u>pH min</u> Jul-18 6.8 Aug-18 6.7 Sep-18 6.7 Jul-19 6.7 Aug-19 6.7 Sep-19 6.8 Jul-20 6.7

6.7

6.5

Aug-20

Sep-20

	A	ve (10^pH m	in
10^ -pH min	10^ -pH max	& pH max)	-Log (Ave pH)
1.58E-07	1	0.5	0.3
2E-07	1	0.5	0.3
2E-07	1	0.5	0.3
2E-07	1	0.5	0.3
2E-07	1	0.5	0.3
1.58E-07	1	0.5	0.3
2E-07	1	0.5	0.3
2E-07	1	0.5	0.3
3.16E-07	1	0.5	0.3
		Median:	0.3