

Southwest Regional Office CLEAN WATER PROGRAM

Application Type	Renewal
Facility Type	Industrial
Major / Minor	Minor

NPDES PERMIT FACT SHEET INDIVIDUAL INDUSTRIAL WASTE (IW) AND IW STORMWATER

Application No.	PA0097110
APS ID	1088390
Authorization ID	1439531

Applicant and Facility Information					
Applicant Name	Shad	e Landfill Inc.	Facility Name	Shade Landfill	
Applicant Address	1176	No 1 Road	Facility Address	1176 No 1 Road	
	Cairn	brook, PA 15924-8406		Cairnbrook, PA 15924-8406	
Applicant Contact	Ryan	Czarnota	Facility Contact	Same as applicant	
Applicant Phone	716.2	62.6970	Facility Phone	Same as applicant	
Applicant Email	rczarı	not@wm.com	Facility Email	Same as applicant	
Client ID	11179	92	Site ID	240842	
SIC Code	4953		Municipality	Shade Township	
SIC Description	Trans	. & Utilities - Refuse Systems	County	Somerset	
Date Application Rec	eived	May 4, 2023	EPA Waived?	Yes	
Date Application Acce	epted	May 10, 2023	If No, Reason		
1					
Purpose of Applicatio	n	Renewal NPDES permit Coverage	je		

Summary of Review

The Department received an NPDES permit renewal application from Civil & Environmental Consultants, Inc. on behalf of Shade Landfill, Inc. for continued coverage of the Shade Landfill located in Shade Township, Somerset County. Shade Landfill is an existing municipal solid waste landfill, with a SIC code of 4953, Refuse Systems. There are no modifications being proposed to the site as part of this renewal permit.

The site has six outfalls, Outfall 001 through 006. The discharge from Outfalls 001 and 002 are treated wastewater from the on-site leachate treatment facility and underdrain treatment system, respectively. Outfalls 003 through 006 are stormwater only outfalls. Outfall 001 discharges to Dark Shade Creek, designated in 25 PA Code Chapter 93 as a Cold-Water Fishery (CWF). Outfall 002 through 003 discharge to Laurel Run, designated in 25 PA Code Chapter 93 as a Cold-Water Fishery (CWF).

As mentioned above, Outfall 001 is the discharge from the leachate treatment facility. The landfill leachate collection system is gravity fed into Impoundment 1, which is equipped with aerators. Aerated leachate is then pumped into an outdoor holding tank and temporarily stored until the treatment plant calls for more water. Leachate is then pumped into the plant and passes through heat exchangers to increase temperature and stored in a pH holding tank. Depending on the cycle of the plant, leachate is then pumped into Sequence Batch Reactor 1 or 2. When pH reaches a set level, it is decanted into Sequence Batch Reactor 3, mixed with a polymer, and aerated to allow solids to settle out prior to decant through the weir (sampling point for Outfall 001) and then ultimately discharged into Dark Shade Creek. Solids from Sequence Batch Reactor 3 are pumped to Sequence Batch Reactor 4, mixed with lime, and passed through a plate frame press creating filter cake. The filter cake is disposed of off-site.

Approve	Deny	Signatures	Date
Х		ah Or	
		Adam Olesnanik, P.E. / Environmental Engineer	March 6, 2024
Х		Michael E. Fifth, P.E. / Environmental Engineer Manager	March 15, 2024

Summary of Review

As mention above, Outfall 002 is the discharge from the underdrain treatment system. AMD-impacted groundwater is gravity fed into the underdrain holding pond (Pond 1) where it is then pumped to a silo for treatment with lime and aeration. From there it flows into treatment Pond 2 and then to Pond 3 for settling. Overflow piping with Pond 3 gravity feeds the treated groundwater to holding Pond 4, which is ultimately gravity fed and discharged via Outfall 002 to Laurel Run.

Outfall 003 discharges stormwater from Sedimentation Basin 3.

Outfall 004 discharges stormwater from Sedimentation Basin A.

Outfall 005 discharges stormwater from Sedimentation Basin D.

Outfall 006 discharges stormwater from Sedimentation Basin LPT-2.

The site was last inspected on August 21, 2023, no violations were noted. The site has no open violations.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

scharge, Receiv	ving Wate	rs and Water Supply Info	rmation	
Outfall No. 00	01		Design Flow (MGD)	0.04
Latitude 40	0° 07' 12"		Longitude	-78° 48' 37"
Quad Name	Central Ci	ty	Quad Code	1815
Wastewater Des	scription:	Landfill Leachate		
Receiving Wate	rs <u>Dark</u>	Shade Creek	Stream Code	45330
NHD Com ID	1237	16596	RMI	2.1
Drainage Area	28.5		Yield (cfs/mi²)	0.0747
Q ₇₋₁₀ Flow (cfs)	2.13		Q ₇₋₁₀ Basis	USGS StreamStats
Elevation (ft)	2145		Slope (ft/ft)	0.003
Watershed No.	18-E		Chapter 93 Class.	CWF
Existing Use			Existing Use Qualifier	
Exceptions to U	se		Exceptions to Criteria	
Assessment Sta	itus	Impaired		
Cause(s) of Imp	airment	Metals, pH		
Source(s) of Imp	pairment	Abandoned Mine Draina	age, Abandoned Mine Drainage	
TMDL Status		Final	Kiskiminetas Name Watersheds	s-Conemaugh River TMDL
Nearest Downst	ream Publ	ic Water Supply Intake	Saltsburg Municipal Waterwor	ks
PWS Waters	Conema	augh River	Flow at Intake (cfs)	124
PWS RMI	0.66		Distance from Outfall (mi)	77.6

Discharge, Receiving Waters and Water Supply Information				
Outfall No. 002			Design Flow (MGD)	0.034
Latitude 40° (07' 25"		Longitude	-78° 47' 39"
Quad Name Co	entral Cit	у	Quad Code	1815
Wastewater Descr	iption:	Landfill Underdrain Syste	em Water	
Receiving Waters	Laure	l Run	Stream Code	45335
NHD Com ID	12371	6595	RMI	1.30
Drainage Area	2.05 r	ni ²	Yield (cfs/mi²)	0.0653
Q ₇₋₁₀ Flow (cfs)	0.134		Q ₇₋₁₀ Basis	USGS StreamStats
Elevation (ft)	2210		Slope (ft/ft)	0.018
Watershed No.	18-E		Chapter 93 Class.	CWF
Existing Use			Existing Use Qualifier	
Exceptions to Use			Exceptions to Criteria	
Assessment Status	S	Attaining Use(s)		
Cause(s) of Impair	ment			
Source(s) of Impai	rment			
TMDL Status		Final	Kiskiminetas Name Watersheds	s-Conemaugh River TMDL
Nearest Downstrea	am Publi	c Water Supply Intake	Saltsburg Municipal Waterwor	rks
PWS Waters	Conema	ugh River	Flow at Intake (cfs)	124
PWS RMI	0.66		Distance from Outfall (mi)	79.0

Discharge, Receiving Waters and Water Supply Information					
Outfall No. 00)3		Design Flow (MGD)	0.0	
Latitude 40	0 07' 24"		Longitude	-78° 47' 40"	
Quad Name	Central Ci	ty	Quad Code	1815	
Wastewater Des	cription:	Stormwater	_		
Receiving Wate	s <u>Laure</u>	l Run	Stream Code	45335	
NHD Com ID	1237	16595	RMI	1.94	
Watershed No.	18-E		Chapter 93 Class.	CWF	
Existing Use			Existing Use Qualifier		
Exceptions to U	se		Exceptions to Criteria		
Assessment Sta	tus	Attaining Use(s)			
Cause(s) of Imp	airment			_	
Source(s) of Imp	airment				
				s-Conemaugh River	
TMDL Status		Final	Name Watersheds	TMDL	
Nearest Downst	ream Publ	c Water Supply Intake	Saltsburg Municipal Waterwor	·ks	
PWS Waters	Conema	augh River	Flow at Intake (cfs)	124	
PWS RMI	0.66		Distance from Outfall (mi)	79.64	

Discharge, Receiving Waters and Water Supply Information					
Outfall No. 00)4		Design Flow (MGD)	0.0	
Latitude 40	0 07' 27"		- Longitude	-78° 47' 36"	
Quad Name	Central City		Quad Code	1815	
Wastewater Des	cription: S	tormwater	_		
Receiving Water	s Laurel R	un	Stream Code	45335	
NHD Com ID	1237165	95	RMI	1.33	
Watershed No.	18-E		Chapter 93 Class.	CWF	
Existing Use			Existing Use Qualifier		
Exceptions to Us	se		Exceptions to Criteria		
Assessment Sta	tus A	ttaining Use(s)	<u> </u>		
Cause(s) of Imp	airment	•			
Source(s) of Imp					
TMDL Status		inal	Kiskiminetas Name Watersheds	s-Conemaugh River TMDL	
Nearest Downst	ream Public V	Vater Supply Intake	Saltsburg Municipal Waterwor	ks	
PWS Waters	Conemaug	h River	Flow at Intake (cfs)	124	
PWS RMI	0.66		Distance from Outfall (mi)	79.03	

scharge, Receiv	ing Wate	s and Water Supply Info	rmation	
Outfall No. 00	5		Design Flow (MGD)	0.0
Latitude 40	0 07' 28"		Longitude	-78° 46' 58"
Quad Name	Central Ci	ty	Quad Code	1815
Wastewater Des	cription:	Stormwater	-	
Receiving Water	s <u>Laure</u>	l Run	Stream Code	45335
NHD Com ID	1237	16593	RMI	1.94
Watershed No.	18-E		Chapter 93 Class.	CWF
Existing Use			Existing Use Qualifier	
Exceptions to Us	e		Exceptions to Criteria	
Assessment Sta	us	Attaining Use(s)		
Cause(s) of Impa	airment			
Source(s) of Imp	airment			
TMDL Status		Final	Kiskiminetas Name Watersheds	s-Conemaugh River TMDL
Nearest Downstr	eam Publi	c Water Supply Intake	Saltsburg Municipal Waterwo	rks
PWS Waters	Conema	augh River	Flow at Intake (cfs)	124
PWS RMI	0.66		Distance from Outfall (mi)	79.64

Outfall No. 00)6		Design Flow (MGD)	0.0
Latitude 40	0° 07' 40"		_ Longitude	-78° 47' 31"
Quad Name	Windber		Quad Code	1715
Wastewater Des	scription:	Stormwater	-	
Described Make		I.D.	0	45005
Receiving Wate		el Run	Stream Code	45335
NHD Com ID	-	16595	RMI	1.43
Watershed No.	_18-E		Chapter 93 Class.	CWF
Existing Use			Existing Use Qualifier	
Exceptions to U	se		Exceptions to Criteria	
Assessment Sta	tus	Attaining Use(s)		
Cause(s) of Imp	airment			
Source(s) of Imp	airment			
TMDL Status		Final	Kiskiminetas Name Watersheds	s-Conemaugh River TMDL
Nearest Downst	ream Publ	ic Water Supply Intake	Saltsburg Municipal Waterwor	rks
PWS Waters		augh River	Flow at Intake (cfs)	124
PWS RMI	0.66		Distance from Outfall (mi)	79.13

Development of Effluent Limitations							
Outfall No.	001		Design Flow (MGD)	0.04			
Latitude	40° 07' 12"		Longitude	-78° 48' 37"			
Wastewater D	Nastewater Description: IW Process Effluent with ELG						

Technology-Based Limitations

Regulatory Effluent Standards and Monitoring Requirements

Flow monitoring is required pursuant to 25 Pa. Code § 92a.61(d)(1).

Oil and grease limitations from 25 Pa. Code § 95.2(2) are required.

Waste may not contain more than 7 milligrams per liter of dissolved iron per 25 Pa. Code § 95.2(4).

Effluent standards for pH are also imposed on industrial wastes per 25 Pa. Code § 95.2(1).

Pennsylvania regulations at 25 Pa. Code § 92a.48(b) require the imposition of technology-based TRC limits for facilities that use chlorination and that are not already subject to TRC limits based on applicable federal ELGs or a facility-specific BPJ evaluation

Table 1: Regulatory Effluent Standards and Monitoring Requirements for Outfall 001

Parameter	Monthly Average	Daily Maximum	Units
Flow	Monitor	and Report	MGD
Iron, Dissolved	-	7.0	mg/L
Total Residual Chlorine (TRC)	0.5	1.6	mg/L
Oil & Grease	15	30	mg/L
pН	Not less than 6.0	nor greater than 9.0	S.U.

Federal Effluent Limitation Guidelines

The site is subject to Federal Effluent Limitation Guidelines (ELGs) pursuant to 40 CFR 445.21 (Landfills Point Source Category – Non-Hazardous Landfills) and must achieve the limits in Table 2 below.

Table 2. Federal ELGs

Regulated Parameter	Monthly Avg. (mg/L)	Maximum Daily (mg/L)			
BOD	37	140			
TSS	27	88			
Ammonia (as N)	4.9	10			
α-Terpineol	0.016	0.033			
Benzoic acid	0.071	0.12			
<i>p</i> -Cresol	0.014	0.025			
Phenol	0.015	0.026			
Zinc	0.11	0.20			
рН	Between 6 – 9 S.U.				

Per- and Polyfluoroalkyl Substances (PFAS)

In February 2024, DEP implemented a new monitoring initiative for PFAS consistent with an EPA memorandum that provides guidance to states for addressing PFAS discharges. PFAS are a family of thousands of synthetic organic chemicals

that contain a chain of strong carbon-fluorine bonds. Many PFAS are highly stable, water- and oil-resistant, and exhibit other properties that make them useful in a variety of consumer products and industrial processes. PFAS are resistant to biodegradation, photooxidation, direct photolysis, and hydrolysis and do not readily degrade naturally; thus, many PFAS accumulate over time. According to the United States Department of Health and Human Services, Agency for Toxic Substances and Disease Registry (ATSDR), the environmental persistence and mobility of some PFAS, combined with decades of widespread use, have resulted in their presence in surface water, groundwater, drinking water, rainwater, soil, sediment, ice caps, outdoor and indoor air, plants, animal tissue, and human blood serum across the globe. ATSDR also reported that exposure to certain PFAS can lead to adverse human health impacts Due to their durability, toxicity, persistence, and pervasiveness, PFAS have emerged as potentially significant pollutants of concern.

In accordance with Section II.I of DEP's "Standard Operating Procedure (SOP) for Clean Water Program – Establishing Effluent Limitations for Individual Industrial Permits" [SOP No. BCW-PMT-032] and under the authority of 25 Pa. Code § 92a.61(b), DEP has determined that monitoring for a subset of common/well-studied PFAS including Perfluorooctanoic acid (PFOA), Perfluorooctanesulfonic acid (PFOS), Perfluorobutanesulfonic acid (PFBS), and Hexafluoropropylene oxide dimer acid (HFPO-DA) is necessary to help understand the extent of environmental contamination by PFAS in the Commonwealth and the extent to which point source dischargers are contributors. SOP BCW-PMT-032 directs permit writers to consider special monitoring requirements for PFOA, PFOS, PFBS, and HFPO-DA in the following instances:

- a. If sampling that is completed as part of the permit renewal application reveals a detection of PFOA, PFOS, HFPO-DA or PFBS (any of these compounds), the application manager will establish a quarterly monitoring requirement for PFOA, PFOS, HFPO-DA and PFBS (all of these compounds) in the permit.
- b. If sampling that is completed as part of the permit renewal application demonstrates non-detect values at or below the Target QLs for PFOA, PFOS, HFPO-DA and PFBS (all of these compounds in a minimum of 3 samples), the application manager will establish an annual monitoring requirement for PFOA, PFOS, HFPO-DA and PFBS in the permit.
- c. In all cases the application manager will include a condition in the permit that the permittee may cease monitoring for PFOA, PFOS, HFPO-DA and PFBS when the permittee reports non-detect values at or below the Target QL for four consecutive monitoring periods for each PFAS parameter that is analyzed. Use the following language: The permittee may discontinue monitoring for PFOA, PFOS, HFPO-DA, and PFBS if the results in 4 consecutive monitoring periods indicate non-detects at or below Quantitation Limits of 4.0 ng/L for PFOA, 3.7 ng/L for PFOS, 3.5 ng/L for PFBS and 6.4 ng/L for HFPO-DA. When monitoring is discontinued, permittees should enter a No Discharge Indicator (NODI) Code of "GG" on DMRs.

Shade's application was submitted before the NPDES permit application forms were updated to require sampling for PFOA, PFOS, PFBS, and HFPO-DA. Also, according to EPA's guidance, Shade operates in one of the industries EPA expects to be a source for PFAS. Therefore, quarterly reporting of PFOA, PFOS, PFBS, and HFPO-DA will be required consistent with Section II.I.b of SOP BCW-PMT-032.

As stated in Section II.I.c of the SOP, if non-detect values at or below DEP's Target QLs are reported for four consecutive monitoring periods then the monitoring may be discontinued.

Water Quality-Based Limitations

Toxics Management Spread Sheet

The Department of Environmental Protection (DEP) has developed the DEP Toxics Management Spreadsheet ("TMS") to facilitate calculations necessary for completing a reasonable potential (RP) analysis and determining water quality-based effluent limitations for discharges of toxic pollutants. The Toxics Management Spreadsheet is a macro-enabled Excel binary file that combines the functions of the PENTOXSD model and the Toxics Screening Analysis spreadsheet to evaluate the reasonable potential for discharges to cause excursions above water quality standards and to determine WQBELs. The Toxics Management Spread Sheet is a single discharge, mass-balance water quality calculation spread sheet that includes consideration for mixing, first-order decay and other factors to determine recommended WQBELs for toxic substances and several non-toxic substances. Required input data including stream code, river mile index, elevation, drainage area, discharge name, NPDES permit number, discharge flow rate and the discharge concentrations for parameters in the permit application or in DMRs, which are entered into the spread sheet to establish site-specific discharge conditions. Other data such as low flow yield, reach dimensions and partial mix factors may also be entered to further characterize the conditions of the discharge and receiving water. Discharge concentrations for the parameters are

chosen to represent the "worst case" quality of the discharge (i.e., maximum reported discharge concentrations). The spread sheet then evaluates each parameter by computing a Waste Load Allocation for each applicable criterion, determining a recommended maximum WQBEL and comparing that recommended WQBEL with the input discharge concentration to determine which is more stringent. Based on this evaluation, the Toxics Management Spread sheet recommends average monthly and maximum daily WQBELs.

Reasonable Potential Analysis and WQBEL Development for Outfall 001

Discharges from Outfall 001 are evaluated based on concentrations reported on the application and on DMRs; data from those sources are entered into the Toxics Management Spread Sheet. The maximum reported value of the parameters from the application form or from previous DMRs is used as the input concentration in the Toxics Management Spread Sheet. All toxic pollutants whose maximum concentrations, as reported in the permit application or on DMRs, are greater than the most stringent applicable water quality criterion is considered to be pollutants of concern. [This includes pollutants reported as "Not Detectable" or as "<MDL" where the method detection limit for the analytical method used by the applicant is greater than the most stringent water quality criterion]. The Toxics Management Spread Sheet is run with the discharge and receiving stream characteristics shown in Table 3. For IW discharges, the design flow used in modeling is the average flow during production or operation taken from the permit application. Pollutants for which water quality standards have not been promulgated (e.g., TSS, oil and grease) are excluded from the analysis. All the parameters are evaluated using the model to determine the water quality-based effluent limits applicable to the discharge and the receiving stream. The spreadsheet then compares the reported discharge concentrations to the calculated water qualitybased effluent limitations to determine if a reasonable potential exists to exceed the calculated WQBELs. Effluent limitations are established in the draft permit where a pollutant's maximum reported discharge concentration equals or exceeds 50% of the WQBEL. For non-conservative pollutants, monitoring requirements are established where the maximum reported concentration is between 25% - 50% of the WQBEL. For conservative pollutants, monitoring requirements are established where the maximum reported concentration is between 10% - 50% of the WQBEL. The information described above including the maximum reported discharge concentrations, the most stringent water quality criteria, the pollutant-of-concern (reasonable potential) determinations, the calculated WQBELs, and the WQBEL/monitoring recommendations are displayed in the Toxics Management Spread Sheet in Attachment B of this Fact Sheet. The water quality-based effluent limitations and monitoring requirements that are recommended by the Toxics Management Spread Sheet are displayed below in Table 4. Note that the TMS recommended limits for Acrylamide even though it was reported as non-detect. Using the Department's guidance on non-detect results for Acrylamide and based on how Shade believes that Acrylamide is not present in the discharge, the limitations or monitoring will not be imposed for Acrylamide.

Table 3: TMS Inputs for Outfall 001

Parameter	Value				
River Mile Index	2.1				
Discharge Flow (MGD)	0.031				
Basin/Stream Characteristics					
Parameter	Value				
Area in Square Miles	28.5				
Q ₇₋₁₀ (cfs)	2.13				
Low-flow yield (cfs/mi²)	0.0747				
Elevation (ft)	2145				
Slope	0.003				

Table 4: Water Quality Based Effluent Limitations at Outfall 001

Parameters	Average Monthly	Daily Maximum	Discharge Concentration	Department's QLs
Total Boron (µg/L)	Report	Report	13300	200
n-Nitrosodimethylamine (µg/L)	0.21	0.33	1.9	5.0
4,4-DDD (µg/L)	Report	Report	0.0114	0.05

Total Residual Chlorine

To determine if WQBELs are required for discharges containing total residual chlorine (TRC), a discharge evaluation is performed using a DEP program called TRC_CALC created with Microsoft Excel for Windows. TRC_CALC calculates TRC Waste Load Allocations (WLAs) through the application of a mass balance model which considers TRC losses due to stream and discharge chlorine demands and first-order chlorine decay. Input values for the program include flow rates and chlorine demands for the receiving stream and the discharge, the number of samples taken per month, coefficients of TRC variability, partial mix factors, and an optional factor of safety. The mass balance model calculates WLAs for acute and chronic criteria that are then converted to long term averages using calculated multipliers. The multipliers are functions of the number of samples taken per month and the TRC variability coefficients (normally kept at default values unless site specific information is available). The most stringent limitation between the acute and chronic long-term averages is converted to an average monthly limit for comparison to the BAT average monthly limit of 0.5 mg/l from 25 Pa. Code § 92a.48(b)(2). The more stringent of these average monthly TRC limitations is imposed in the permit. The results of the modeling, included in Attachment C, indicate that no WQBELs limits are required for TRC.

Total Maximum Daily Loads

Wastewater discharges from Shade Landfill are located within the Kiskiminetas-Conemaugh Watershed for which the Department has developed a TMDL. The TMDL was finalized on January 29, 2010 and establishes waste load allocations for the discharge of aluminum, iron and manganese within the Kiskiminetas-Conemaugh Watershed. The site's NPDES permit (PA0097110) is listed in the Appendix G of the Kiskiminetas-Conemaugh Watershed TMDL, requiring load allocations and is displayed below in Table 5. Section 303(d) of the Clean Water Act and the U.S. Environmental Protection Agency's Water Quality Planning and Management Regulations (codified at Title 40 of the Code of Federal Regulations Part 130) require states to develop a TMDL for impaired water bodies. A TMDL establishes the amount of a pollutant that a water body can assimilate without exceeding the water quality criteria for that pollutant. TMDLs provide the scientific basis for a state to establish water quality-based controls to reduce pollution from both point and non-point sources in order to restore and maintain the quality of the state's water resources (USEPA 1991a). Stream reaches within the Kiskiminetas-Conemaugh Watershed are included in the state's 2008 Section 303(d) list because of various impairments, including metals, pH and sediment. The TMDL includes consideration for each river and tributary within the target watershed and its impairment sources. Stream data is then used to calculate minimum pollutant reductions that are necessary to attain water quality criteria levels. Target concentrations published in the TMDL were based on established water quality criteria of 0.750 mg/L total recoverable aluminum, 1.5 mg/L total recoverable iron based on a 30-day average and 1.0 mg/L total recoverable manganese. The reduction needed to meet the minimum water quality standards is then divided between each known point and non-point pollutant source in the form of a watershed allocation. TMDLs prescribe allocations that minimally achieve water quality criteria (i.e., 100 percent use of a stream's assimilative capacity).

Table 5 Kiskiminetas-Conemaugh Watershed Wasteload Allocations for PA0097110

	Kiskiminetas River Watershed Major Non-Mining Wasteload Allocations									
Region	sws	PERMIT	PIPE	Metal	Baseline Load (lbs/yr)	Baseline Concentration (mg/L)	Allocated Load (lbs/yr)	Allocated Concentration (mg/L)	% Reduction	Comments
6	4165	PA0097110	1	Aluminum	183	0.75	183	0.75	0	
6	4165	PA0097110	1	Iron	634	2.60	634	2.60	0	
6	4165	PA0097110	1	Manganese	1,289	5.29	244	1.00	81	
6	4165	PA0097110	2	Aluminum	228	0.75	228	0.75	0	
6	4165	PA0097110	2	Iron	914	3.00	914	3.00	0	
6	4165	PA0097110	2	Manganese	314	1.03	305	1.00	3	
6	4165	PA0097110	3	Aluminum	57	0.75	57	0.75	0	
6	4165	PA0097110	3	Iron	114	1.50	114	1.50	0	
6	4165	PA0097110	3	Manganese	76	1.00	76	1.00	0	
6	4165	PA0097110	4	Aluminum	3	0.75	3	0.75	0	
6	4165	PA0097110	4	Iron	6	1.50	6	1.50	0	
6	4165	PA0097110	4	Manganese	4	1.00	4	1.00	0	
6	4165	PA0097110	5	Aluminum	3	0.75	3	0.75	0	
6	4165	PA0097110	5	Iron	6	1.50	6	1.50	0	
6	4165	PA0097110	5	Manganese	4	1.00	4	1.00	0	
6	4165	PA0097110	6	Aluminum	3	0.75	3	0.75	0	
6	4165	PA0097110	6	Iron	6	1.50	6	1.50	0	
6	4165	PA0097110	6	Manganese	4	1.00	4	1.00	0	
6	4165	PA0097110	7	Aluminum	3	0.75	3	0.75	0	
6	4165	PA0097110	7	Iron	6	1.50	6	1.50	0	
6	4165	PA0097110	7	Manganese	4	1.00	4	1.00	0	

The specific water quality criterion for aluminum is expressed as an acute or maximum daily in 25 Pa. Code Chapter 93. Discharges of aluminum may only be authorized to the extent that they will not cause or contribute to any violation of the water quality standards. Therefore, the water quality criterion for aluminum (0.75 mg/L) is imposed as a maximum daily effluent limit (MDL). Whenever the most stringent criterion is selected for the MDL, the Department should also impose an average monthly limit (AML) and instantaneous maximum limit (IMAX) if applicable. The imposition of an AML that is more stringent than the MDL is typically not appropriate because the water quality concerns have already been fully addressed by setting the MDL equal to the most stringent applicable criterion. Therefore, where the MDL is set at the value of the most stringent applicable criterion, the AML should be set equal to the MDL. Accordingly, TMDL aluminum limits are proposed for Outfall 001. The proposed aluminum limits are shown in Table 6.

The specific water quality criterion for iron is expressed as a 30-day average of 1.5 mg/L in 25 Pa. Code § 93.7(a). The criterion is based on the protection of aquatic life and is associated with chronic exposure. There are no other criteria for total iron. Since the duration of the total iron criterion coincides with the 30-day duration of the AML, the 30-day average criterion for total iron is set equal to the AML. In addition, because the total iron criterion is associated with chronic exposure, the MDL (representing acute exposure) and the IMAX may be made less stringent according to established procedures described in Section III.C.3.h on Page 13 of the Water Quality Toxics Management Strategy (Doc. # 361-0100-003). These procedures state that a MDL and IMAX may be set at 2 times and 2.5 times the AML, respectively, or there is the option to use multipliers from EPA's Technical Support Document for Water Quality-based Toxics Control, if data are available to support the use of alternative multipliers. Accordingly, TMDL iron limits are proposed for Outfall 001 based on the allocations provided in the TMDL. The proposed iron limits are shown in Table 6.

The specific water quality criterion for manganese is expressed as an acute or maximum daily of 1.0 mg/L in 25 Pa. Code § 93.7(a). The criterion is based on the protection of human health and is associated with chronic exposure associated with a potable water supply (PWS). Since no duration is given in Chapter 93 for the manganese criterion, a duration of 30 days is used based on the water quality criteria duration for Threshold Human Health (THH) criteria given in Section III.C.3.a., Table 1 on Page 10 of DEP's Water Quality Toxics Management Strategy. The 30-day duration for THH criteria coincides with the 30-day duration of an AML, which is why the manganese criterion is set equal to the AML for a "permitting at criteria" scenario. Because the manganese criterion is interpreted as having chronic exposure, the manganese MDL and IMAX may be made less stringent according to procedures established in Section III.C.2.h. of the Water Quality Toxics Management Strategy (AML multipliers of 2.0 and 2.5 for the MDL and IMAX respectively). Accordingly, TMDL manganese limits are proposed for Outfall 001. The proposed manganese limits are shown in Table 6.

Table 6 - TMDL Limits for Outfall 001

	TMDL			
Parameter	Average Monthly	Maximum Daily	Units	
Aluminum, total	0.75	0.75	mg/L	
Iron, total	2.60	5.2	mg/L	
Manganese, total	1.00	2.00	mg/L	

In this case, aluminum, iron and manganese limits were imposed in order to ensure compliance with the TMDL.

Anti-Backsliding

Previous limits for Outfall 001 can be used pursuant to EPA's anti-backsliding regulation, 40 CFR 122.44(I). The limits from the current permit are displayed below in Table 7 below.

Table 7. Current Effluent limitations at Outfall 001

Parameter	Average Monthly (mg/L)	Maximum Daily (mg/L)	Instant. Maximum (mg/L)	Sample Type	Monitor Frequency
Flow	0.04	Monitor		Continuous	Daily
BOD	37.0	140		Grab	1/ Week
Suspended Solids	23.0	46.0		24-Hour Composite	1/ Week
Oil & Grease	15.0		30.0	Grab	1/ Week
Ammonia-nitrogen	4.9	10		24-Hour Composite	1/ Week
Total Residual Chlorine	0.5		1.0	Grab	1/ Week
Fecal Coliforms: May 1- Sept 30 Oct 1 – Apr 30	200/100 ml 2000/100 ml		1000/100 ml	Grab	1/ Week
Antimony	0.018	0.036		24-Hour Composite	1/ Week
Boron	13.7	27.4		24-Hour Composite	1/ Week
Iron	2.6	5.2		24-Hour Composite	1/ Week
Iron, dissolved	0.53	1.06		24-Hour Composite	1/ Week
Zinc	0.11	0.20		24-Hour Composite	1/ Week
Nickel	0.45	0.90		24-Hour Composite	1/ Week
a-Terpineol	0.016	0.033		24-Hour Composite	1/ Week
Benzioc acid	0.071	0.12		24-Hour Composite	1/ Week
p-Cresol	0.014	0.025		24-Hour Composite	1/ Week
Phenol	0.015	0.026		24-Hour Composite	1/ Week

Table 7. Current Effluent limitations at Outfall 001

Parameter	Average Monthly (mg/L)	Maximum Daily (mg/L)	Instant. Maximum (mg/L)	Sample Type	Monitor Frequency
Aluminum	0.75	0.75	1	24-Hour Composite	1/ Week
Manganese	1.00	2.00	-	24-Hour Composite	1/ Week
Total Dissolved Solids	Monitor	Monitor		24-Hour Composite	1/ Week
Chloride	Monitor	Monitor	1	24-Hour Composite	1/ Week
Bromide	Monitor	Monitor		24-Hour Composite	1/ Week
Sulfate	Monitor	Monitor		24-Hour Composite	1/ Week
рН	Not less that	an 6.0 nor grea	ater than 9.0	Grab	1/ Week

Proposed Effluent Limits

The proposed effluent limitations for Outfall 001 are displayed in Table 8 below, they are the most stringent values from the above effluent limitation development. Based on the limitation development above, Outfall 001 will receive new WQBELs for n-Nitrosodimethylamine. Shade completed a pre-draft survey indicating that Shade was unaware of the pollutant and are not sure of the source of the pollutant. At this time Shade may not be able to achieve these new WQBELs upon permit issuance; therefore, in accordance with 25 Pa. Code § 92a.51(a) of DEP's regulations, the Department is granting a three-year compliance schedule for Shade to come into compliance with the new limits. Monitor and report requirements will be imposed for n-Nitrosodimethylamine during the interim period, and the final WQBELs will be imposed three years after the permit effective date. Please note that n-Nitrosodimethylamine is subject to water quality-based effluent limits (WQBELs) that are necessary to comply with state water quality standards, but may be less than quantitation limits (QLs), as defined in 25 Pa. Code § 252.1, that are generally achievable by conventional analytical technology. The permittee shall analyze the parameter(s) using methods that will achieve the Department Target QL(s). For the purpose of compliance, a statistical value reported on the DMR that is less than the QL(s) (i.e., "non-detect") will be considered to be in compliance.

Table 8. Proposed Effluent limitations at Outfall 001

Parameter	Average Monthly (mg/L)	Maximum Daily (mg/L)	Instant. Maximum (mg/L)	Sample Type	Monitor Frequency
Flow	0.04	Monitor	1	Continuous	Daily
BOD	37.0	140		Grab	1/ Week
Suspended Solids	23.0	46.0		24-Hour Composite	1/ Week
Oil & Grease	15.0		30.0	Grab	1/ Week
Ammonia-nitrogen	4.9	10		24-Hour Composite	1/ Week
Total Residual Chlorine	0.5		1.0	Grab	1/ Week
Fecal Coliforms: May 1- Sept 30 Oct 1 – Apr 30	200/100 ml 2000/100 ml		1000/100 ml	Grab	1/ Week
Antimony	0.018	0.036		24-Hour Composite	1/ Week

Table 8. Proposed Effluent limitations at Outfall 001

Parameter	Average Monthly (mg/L)	Maximum Daily (mg/L)	Instant. Maximum (mg/L)	Sample Type	Monitor Frequency
Boron	13.7	27.4		24-Hour Composite	1/ Week
Iron	2.6	5.2		24-Hour Composite	1/ Week
Iron, dissolved	0.53	1.06		24-Hour Composite	1/ Week
Zinc	0.11	0.20		24-Hour Composite	1/ Week
Nickel	0.45	0.90		24-Hour Composite	1/ Week
a-Terpineol	0.016	0.033		24-Hour Composite	1/ Week
Benzioc acid	0.071	0.12		24-Hour Composite	1/ Week
p-Cresol	0.014	0.025		24-Hour Composite	1/ Week
Phenol	0.015	0.026		24-Hour Composite	1/ Week
Aluminum	0.75	0.75		24-Hour Composite	1/ Week
Manganese	1.00	2.00		24-Hour Composite	1/ Week
Total Dissolved Solids	Monitor	Monitor		24-Hour Composite	1/ Week
Chloride	Monitor	Monitor		24-Hour Composite	1/ Week
Bromide	Monitor	Monitor		24-Hour Composite	1/ Week
Sulfate	Monitor	Monitor		24-Hour Composite	1/ Week
n-Nitrosodimethylamine (μg/L)	0.21	0.33		24-Hour Composite	1/ Week
4,4-DDD (µg/L)	Report	Report		24-Hour Composite	1/ Week
PFOA (ng/L)		Report		Grab	1/ Quarter
PFOS (ng/L)		Report		Grab	1/ Quarter
PFBS (ng/L)		Report		Grab	1/ Quarter
HFPO-DA (ng/L)		Report		Grab	1/ Quarter
pН	Not less the	an 6.0 nor grea	ater than 9.0	Grab	1/ Week

Development of Effluent Limitations				
Outfall No.	002		Design Flow (MGD)	0.034
Latitude	40° 07' 25"		Longitude	-78° 47' 39"
Wastewater D	escription:	IW Process Effluent without ELG		_

Technology-Based Limitations

Regulatory Effluent Standards and Monitoring Requirements

Flow monitoring is required pursuant to 25 Pa. Code § 92a.61(d)(1).

Effluent standards for pH are also imposed on industrial wastes by 25 Pa. Code § 95.2(1) as indicated in Table 9.

Table 9: Regulatory Effluent Standards and Monitoring Requirements for Outfall 002

Parameter	Monthly Average	Daily Maximum	Units
Flow	Monitor	MGD	
pH	Not less than 6.0	S.U.	

Federal Effluent Limitation Guidelines

Outfall 002 is not subject to the Federal Effluent Limitation Guidelines (ELGs) under 40CFR445.21 (Landfills Point Source Category – Non-Hazardous Landfills) because the ELG does not address underdrains at municipal waste landfills.

Per- and Polyfluoroalkyl Substances (PFAS)

In February 2024, DEP implemented a new monitoring initiative for PFAS consistent with an EPA memorandum that provides guidance to states for addressing PFAS discharges. PFAS are a family of thousands of synthetic organic chemicals that contain a chain of strong carbon-fluorine bonds. Many PFAS are highly stable, water- and oil-resistant, and exhibit other properties that make them useful in a variety of consumer products and industrial processes. PFAS are resistant to biodegradation, photooxidation, direct photolysis, and hydrolysis and do not readily degrade naturally; thus, many PFAS accumulate over time. According to the United States Department of Health and Human Services, Agency for Toxic Substances and Disease Registry (ATSDR), the environmental persistence and mobility of some PFAS, combined with decades of widespread use, have resulted in their presence in surface water, groundwater, drinking water, rainwater, soil, sediment, ice caps, outdoor and indoor air, plants, animal tissue, and human blood serum across the globe. ATSDR also reported that exposure to certain PFAS can lead to adverse human health impacts Due to their durability, toxicity, persistence, and pervasiveness, PFAS have emerged as potentially significant pollutants of concern.

In accordance with Section II.I of DEP's "Standard Operating Procedure (SOP) for Clean Water Program – Establishing Effluent Limitations for Individual Industrial Permits" [SOP No. BCW-PMT-032] and under the authority of 25 Pa. Code § 92a.61(b), DEP has determined that monitoring for a subset of common/well-studied PFAS including Perfluorooctanoic acid (PFOA), Perfluorooctanesulfonic acid (PFOS), Perfluorobutanesulfonic acid (PFBS), and Hexafluoropropylene oxide dimer acid (HFPO-DA) is necessary to help understand the extent of environmental contamination by PFAS in the Commonwealth and the extent to which point source dischargers are contributors. SOP BCW-PMT-032 directs permit writers to consider special monitoring requirements for PFOA, PFOS, PFBS, and HFPO-DA in the following instances:

- a. If sampling that is completed as part of the permit renewal application reveals a detection of PFOA, PFOS, HFPO-DA or PFBS (any of these compounds), the application manager will establish a quarterly monitoring requirement for PFOA, PFOS, HFPO-DA and PFBS (all of these compounds) in the permit.
- b. If sampling that is completed as part of the permit renewal application demonstrates non-detect values at or below the Target QLs for PFOA, PFOS, HFPO-DA and PFBS (all of these compounds in a minimum of 3 samples), the application manager will establish an annual monitoring requirement for PFOA, PFOS, HFPO-DA and PFBS in the permit.
- c. In all cases the application manager will include a condition in the permit that the permittee may cease monitoring for PFOA, PFOS, HFPO-DA and PFBS when the permittee reports non-detect values at or below the Target QL for four consecutive monitoring periods for each PFAS parameter that is analyzed. Use the

following language: The permittee may discontinue monitoring for PFOA, PFOS, HFPO-DA, and PFBS if the results in 4 consecutive monitoring periods indicate non-detects at or below Quantitation Limits of 4.0 ng/L for PFOA, 3.7 ng/L for PFOS, 3.5 ng/L for PFBS and 6.4 ng/L for HFPO-DA. When monitoring is discontinued, permittees should enter a No Discharge Indicator (NODI) Code of "GG" on DMRs.

Shade's application was submitted before the NPDES permit application forms were updated to require sampling for PFOA, PFOS, PFBS, and HFPO-DA. Also, according to EPA's guidance, Shade operates in one of the industries EPA expects to be a source for PFAS. Therefore, quarterly reporting of PFOA, PFOS, PFBS, and HFPO-DA will be required consistent with Section II.I.b of SOP BCW-PMT-032.

As stated in Section II.I.c of the SOP, if non-detect values at or below DEP's Target QLs are reported for four consecutive monitoring periods then the monitoring may be discontinued.

Water Quality-Based Limitations

Toxics Management Spread Sheet

The Department of Environmental Protection (DEP) has developed the DEP Toxics Management Spreadsheet ("TMS") to facilitate calculations necessary for completing a reasonable potential (RP) analysis and determining water quality-based effluent limitations for discharges of toxic pollutants. The Toxics Management Spreadsheet is a macro-enabled Excel binary file that combines the functions of the PENTOXSD model and the Toxics Screening Analysis spreadsheet to evaluate the reasonable potential for discharges to cause excursions above water quality standards and to determine WQBELs. The Toxics Management Spread Sheet is a single discharge, mass-balance water quality calculation spread sheet that includes consideration for mixing, first-order decay and other factors to determine recommended WQBELs for toxic substances and several non-toxic substances. Required input data including stream code, river mile index, elevation, drainage area, discharge name, NPDES permit number, discharge flow rate and the discharge concentrations for parameters in the permit application or in DMRs, which are entered into the spread sheet to establish site-specific discharge conditions. Other data such as low flow yield, reach dimensions and partial mix factors may also be entered to further characterize the conditions of the discharge and receiving water. Discharge concentrations for the parameters are chosen to represent the "worst case" quality of the discharge (i.e., maximum reported discharge concentrations). The spread sheet then evaluates each parameter by computing a Waste Load Allocation for each applicable criterion, determining a recommended maximum WQBEL and comparing that recommended WQBEL with the input discharge concentration to determine which is more stringent. Based on this evaluation, the Toxics Management Spread sheet recommends average monthly and maximum daily WQBELs.

Reasonable Potential Analysis and WQBEL Development for Outfall 002

Discharges from Outfall 002 are evaluated based on concentrations reported on the application and on DMRs; data from those sources are entered into the Toxics Management Spread Sheet. The maximum reported value of the parameters from the application form or from previous DMRs is used as the input concentration in the Toxics Management Spread Sheet. All toxic pollutants whose maximum concentrations, as reported in the permit application or on DMRs, are greater than the most stringent applicable water quality criterion is considered to be pollutants of concern. [This includes pollutants reported as "Not Detectable" or as "<MDL" where the method detection limit for the analytical method used by the applicant is greater than the most stringent water quality criterion]. The Toxics Management Spread Sheet is run with the discharge and receiving stream characteristics shown in Table 10. For IW discharges, the design flow used in modeling is the average flow during production or operation taken from the permit application. Pollutants for which water quality standards have not been promulgated (e.g., TSS, oil and grease) are excluded from the analysis. All the parameters are evaluated using the model to determine the water quality-based effluent limits applicable to the discharge and the receiving stream. The spreadsheet then compares the reported discharge concentrations to the calculated water quality-based effluent limitations to determine if a reasonable potential exists to exceed the calculated WQBELs. Effluent limitations are established in the draft permit where a pollutant's maximum reported discharge concentration equals or exceeds 50% of the WQBEL. For non-conservative pollutants, monitoring requirements are established where the maximum reported concentration is between 25% - 50% of the WQBEL. For conservative pollutants, monitoring requirements are established where the maximum reported concentration is between 10% - 50% of the WQBEL. The information described above including the maximum reported discharge concentrations, the most stringent water quality criteria, the pollutant-of-concern (reasonable potential) determinations, the calculated WQBELs, and the WQBEL/monitoring recommendations are displayed in the Toxics Management Spread Sheet in Attachment E of this Fact Sheet. The water quality-based effluent limitations and monitoring requirements that are recommended by the Toxics Management Spread Sheet are displayed below in Table 11. Note that the TMS recommended limits for Acrylamide even

though it was reported as non-detect. Using the Department's guidance on non-detect results for Acrylamide and based on how Shade believes that Acrylamide is not present in the discharge, the limitations or monitoring will not be imposed for Acrylamide

Table 10: TMS Inputs for Outfall 002

Parameter	Value				
River Mile Index	1.3				
Discharge Flow (MGD)	0.034				
Basin/Stream Characteristics					
Parameter	Value				
Area in Square Miles	2.05				
Q ₇₋₁₀ (cfs)	0.134				
Low-flow yield (cfs/mi ²)	0.0653				
Elevation (ft)	2210				
Slope	0.001				

Table 11: Water Quality Based Effluent Limitations at Outfall 002

Parameters			Discharge Concentration	Department's QLs
Total Aluminum (µg/L)	Report	Report	500	10
Total Cobalt (µg/L)	Report	Report	15.8	1.0
Total Copper (µg/L)	Report	Report	5.0	4.0
Total Iron (µg/L)	Report	Report	716	20.0
Total Lead (µg/L)	Report	Report	1.7	1.0
Total Manganese (µg/L)	Report	Report	920	2.0
Total Nickel (µg/L)	Report	Report	57.6	4.0
Total Thallium (µg/L)	Report	Report	0.3	2.0
4,4-DDD (μg/L)	0.003	0.004	0.002	0.05
Dieldrin (µg/L)	0.00003	0.00004	0.003	0.05
Heptachlor Epoxide (µg/L)	0.0008	0.001	0.003	0.05

Total Maximum Daily Loads

As described above in the Development of Effluent Limitations for Outfall 001, Shade Landfill is within the watershed area covered by the Kiskiminetas-Conemaugh Watershed TMDL, approved as final by EPA in 2010. This TMDL addresses certain impairments of water quality standards associated with elevated instream concentrations of iron, aluminum, and manganese. A pH impairment is addressed through a surrogate relationship with these metals. This TMDL establishes wasteload allocations for these metals for point sources, and load allocations for these metals for nonpoint sources in the watershed. DEP must assure that any effluent limitations assigned to point sources are consistent with the assumptions and requirements of any available wasteload allocation for the discharge pursuant to 40 CFR 130.7 (i.e., a final TMDL). Shade Landfill was designated a wasteload allocation in the TMDL and the effluent limits from the TMDL are displayed below in Table 12.

Table 12 - TMDL Limits for Outfall 002

	TMDL		
Parameter	Average Monthly	Maximum Daily	Units
Aluminum, total	0.75	0.75	mg/L
Iron, total	3.0	6.0	mg/L
Manganese, total	1.0	2.0	mg/L

Anti-Backsliding

Previous limits at Outfall 002 can be used pursuant to EPA's anti-backsliding regulation, 40 CFR 122.44(I). The limits from the current permit are displayed below in Table 13 below.

Table 13: Existing Effluent Limitations at Outfall 002

Parameter	Average Monthly (mg/L)	Maximum Daily (mg/L)	Sample Type	Monitor Frequency
Flow	Monitor and Report	Monitor and Report	Continuous	Daily
Total Suspended Solids	35.0	70.0	24-hour composite	2/ Month
Aluminum	0.75	0.75	24-hour composite	2/ Month
Iron	3.0	6.0	24-hour composite	2/ Month
Manganese	1.03	2.06	24-hour composite	2/ Month
рН	Between 6	6.0 and 9.0	Grab	2/ Month

Proposed Effluent Limits

The proposed effluent limitations for Outfall 002 are displayed in Table 14 below, they are the most stringent values from the above effluent limitation development. Based on the limitation development above, Outfall 002 will receive new WQBELs for 4,4-DDD, Dieldrin, and Heptachlor Epoxide. Shade completed a pre-draft survey indicating that Shade was unaware of the pollutants and are not sure of the source of the pollutants. At this time Shade may not be able to achieve these new WQBELs upon permit issuance; therefore, in accordance with 25 Pa. Code § 92a.51(a) of DEP's regulations, the Department is granting a three-year compliance schedule for Shade to come into compliance with the new limits. Monitor and report requirements will be imposed for the new parameters during the interim period, and the final WQBELs will be imposed three years after the permit effective date. Please note that 4,4-DDD, Dieldrin, and Heptachlor Epoxide are subject to water quality-based effluent limits (WQBELs) that are necessary to comply with state water quality standards, but may be less than quantitation limits (QLs), as defined in 25 Pa. Code § 252.1, that are generally achievable by conventional analytical technology. The permittee shall analyze the parameter(s) using methods that will achieve the Department Target QL(s). For the purpose of compliance, a statistical value reported on the DMR that is less than the QL(s) (i.e., "non-detect") will be considered to be in compliance.

Table 14: Proposed Effluent Limitations at Outfall 002

Parameter	Average Monthly (mg/L)	Maximum Daily (mg/L)	Sample Type	Monitor Frequency
Flow	Monitor and Report	Monitor and Report	Continuous	Daily
Total Suspended Solids	35.0	70.0	24-hour composite	2/ Month
Aluminum	0.75	0.75	24-hour composite	2/ Month
Iron	3.0	6.0	24-hour composite	2/ Month
Manganese	1.0	2.0	24-hour composite	2/ Month
Total Cobalt	Report	Report	24-hour composite	2/ Month
Total Copper	Report	Report	24-hour composite	2/ Month
Total Lead	Report	Report	24-hour composite	2/ Month
Total Nickel	Report	Report	24-hour composite	2/ Month
Total Thallium	Report	Report	24-hour composite	2/ Month
4,4-DDD (µg/L)	0.003	0.004	24-hour composite	2/ Month
Dieldrin (µg/L)	0.00003	0.00004	24-hour composite	2/ Month
Heptachlor Epoxide (µg/L)	0.0008	0.001	24-hour composite	2/ Month

Table 14: Proposed Effluent Limitations at Outfall 002

Parameter	Average Monthly (mg/L)	Maximum Daily (mg/L)	Sample Type	Monitor Frequency
PFOA (ng/L)		Report	Grab	1/ Quarter
PFOS (ng/L)		Report	Grab	1/ Quarter
PFBS (ng/L)		Report	Grab	1/ Quarter
HFPO-DA (ng/L)		Report	Grab	1/ Quarter
pН	Between	n 6.0 and 9.0	Grab	2/ Month

	Development of Effluent Limitations					
Outfall No.	003	Design Flow (MGD) Longitude	0			
Latitude	40° 07' 24.00"		-78° 47' 40.00"			
Outfall No.	004	Design Flow (MGD) Longitude	0			
Latitude	40° 07' 27.00"		-78° 47' 36.00"			
Outfall No.	005	Design Flow (MGD) Longitude	0			
Latitude	40° 07' 28.00"		-78° 46' 58.00"			
Outfall No.	006	Design Flow (MGD) Longitude	0			
Latitude	40° 07' 40.00"		-78° 47' 31.00"			

Technology-Based Limitations

Wastewater Description: Stormwater

The stormwater outfalls will be subject to the monitoring requirements from the PAG-03 General Stormwater Permit as a minimum requirement because the outfalls receive stormwater. The SIC code for the site is 4953 (Landfills and Land Application Sites) and the corresponding appendix of the PAG-03 that would apply to the facility is Appendix C. The reporting requirements are in Table 15 below. The Draft Permit requires a Corrective Action Plan when there are two consecutive exceedances of the benchmark values at each outfall, which are also included in the Part C condition. The benchmark values are displayed below in Table 15. These values are not effluent limitations, an exceedance of the benchmark value is not a violation. As described above, if there are two consecutive exceedances of the benchmark value, a Corrective Action Plan must be developed and submitted to the Department to evaluate site stormwater controls and BMPs. Benchmark monitoring is a feedback tool, along with routine inspections and visual assessments, for assessing the effectiveness of stormwater controls and BMPs. An exceedance of the benchmark provides permittees with an indication that the facility's controls may not be sufficiently controlling pollutants in stormwater. Benchmark values for pH, TSS and COD are included in Part C of the draft permit.

Table 15: Stormwater Monitoring Requirements

Parameter	Monitor Requirement	Benchmark Values (mg/L)	Frequency
Total Nitrogen*	Monitor	XXX	1/6 Months
Total Phosphorus	Monitor	XXX	1/6 Months
pH	Monitor	9.0	1/6 Months
Total Suspended Solids	Monitor	100	1/6 Months
Chemical Oxygen Demand	Monitor	120	1/6 Months
Ammonia-Nitrogen	Monitor	XXX	1/6 Months
Total Iron	Monitor	XXX	1/6 Months

^{*}Total Nitrogen is the sum of Total Kjeldahl-N (TKN) plus Nitrite-Nitrate as N (NO₂+NO₃-N), where TKN and NO₂+NO₃-N are measured in the same sample.

Water Quality-Based Limitations

Water quality analysis

Water quality analyses are typically performed under low-flow (Q&-10) conditions. Stormwater discharges occur at variable rates and frequencies but not however during Q7-10 conditions. Since the discharges from these outfalls are composed entirely of stormwater, a formal water quality analysis cannot be accurately conducted. Accordingly, water quality-based effluent limitations based on water quality analyses are not proposed.

Total Maximum Daily Loads

As described above in the Development of Effluent Limitations for Outfall 001, Shade Landfill is within the watershed area covered by the Kiskiminetas-Conemaugh Watershed TMDL, approved as final by EPA in 2010. This TMDL addresses certain impairments of water quality standards associated with elevated instream concentrations of iron, aluminum, and manganese. A pH impairment is addressed through a surrogate relationship with these metals. This TMDL establishes wasteload allocations for these metals for point sources, and load allocations for these metals for nonpoint sources in the watershed. DEP must assure that any effluent limitations assigned to point sources are consistent with the assumptions and requirements of any available wasteload allocation for the discharge pursuant to 40 CFR 130.7 (i.e., a final TMDL). Shade Landfill was designated a wasteload allocation in the TMDL and the effluent limits from the TMDL are displayed below in Table 16.

Table 16: TMDL Limits for Outfalls 003, 004, 005 and 006

	TMDL		
Parameter	Average Monthly	Maximum Daily	Units
Aluminum, total	0.75	0.75	mg/L
Iron, total	1.5	3.0	mg/L
Manganese, total	1.0	2.0	mg/L

Anti-Backsliding

Previous limits can be used pursuant to EPA's anti-backsliding regulation, 40 CFR 122.44(I). The limits from the current permit are displayed below in Table 17 below.

Table 17: Current Effluent Limitations for Outfalls 003, 004, 005, and 006

Parameter	Maximum Daily	Sample Type	Monitor Frequency
Total Iron	3.0	Grab	1/6 Months
Aluminum	0.75	Grab	1/6 Months
Manganese	2.0	Grab	1/6 Months
CBOD5	Monitor and Report	Grab	1/6 Months
COD	Monitor and Report	Grab	1/6 Months
Total Suspended Solids	Monitor and Report	Grab	1/6 Months
Oil & Grease	Monitor and Report	Grab	1/6 Months
Ammonia-nitrogen	Monitor and Report	Grab	1/6 Months
Total Dissolved Solids	Monitor and Report	Grab	1/6 Months
Iron, dissolved	Monitor and Report	Grab	1/6 Months
Zinc	Monitor and Report	Grab	1/6 Months
pH	Monitor and Report	Grab	1/6 Months

Final Effluent Limitation for Outfalls 003-006

The final effluent limitations for Outfalls 003, 004, 005, and 006 are displayed in Table 18 below, they are the most stringent values from the above effluent limitation development.

Table 18: Proposed Effluent Limitations for Outfalls 003, 004, 005, and 006

Parameter	Maximum Daily	Sample Type	Monitor Frequency
Total Iron	3.0	Grab	1/6 Months
Aluminum	0.75	Grab	1/6 Months
Manganese	2.0	Grab	1/6 Months
CBOD5	Monitor and Report	Grab	1/6 Months
COD	Monitor and Report	Grab	1/6 Months
Total Suspended Solids	Monitor and Report	Grab	1/6 Months
Oil & Grease	Monitor and Report	Grab	1/6 Months
Ammonia-nitrogen	Monitor and Report	Grab	1/6 Months
Total Dissolved Solids	Monitor and Report	Grab	1/6 Months
Iron, dissolved	Monitor and Report	Grab	1/6 Months
Zinc	Monitor and Report	Grab	1/6 Months
Total Nitrogen	Monitor and Report	Grab	1/6 Months
Total Phosphorus	Monitor and Report	Grab	1/6 Months
pН	Monitor and Report	Grab	1/6 Months

Tools and References Used to Develop Permit
 WQM for Windows Model (see Attachment)
Toxics Management Spreadsheet (see Attachment)
TRC Model Spreadsheet (see Attachment)
Temperature Model Spreadsheet (see Attachment)
Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
Technical Guidance for the Development and Specification of Effluent Limitations, 386-0400-001, 10/97.
Policy for Permitting Surface Water Diversions, 386-2000-019, 3/98.
Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 386-2000-018, 11/96.
Technology-Based Control Requirements for Water Treatment Plant Wastes, 386-2183-001, 10/97.
Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 386-2183-002, 12/97.
Pennsylvania CSO Policy, 386-2000-002, 9/08.
Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 386-2000-008, 4/97.
Determining Water Quality-Based Effluent Limits, 386-2000-004, 12/97.
Implementation Guidance Design Conditions, 386-2000-007, 9/97.
Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 386-2000-016, 6/2004.
Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 386-2000-012, 10/1997.
Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 386-2000-009, 3/99.
Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 386-2000-015, 5/2004.
Implementation Guidance for Section 93.7 Ammonia Criteria, 386-2000-022, 11/97.
Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 386-2000-013, 4/2008.
Implementation Guidance Total Residual Chlorine (TRC) Regulation, 386-2000-011, 11/1994.
Implementation Guidance for Temperature Criteria, 386-2000-001, 4/09.
Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 386-2000-021, 10/97.
Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 386-2000-020, 10/97.
Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 386-2000-005, 3/99.
Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 386-2000-010, 3/1999.
Design Stream Flows, 386-2000-003, 9/98.
Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 386-2000-006, 10/98.
Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 386-3200-001, 6/97.
Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
SOP:
Other

Attachments

Attachment A: USGS Stream Stats Data at Outfall 001

Attachment B Toxics Management Spreadsheet for Outfall 001

Attachment C: TRC Model Spreadsheet for Outfall 001

Attachment D: USGS Stream Stats Data at Outfall 002

Attachment E: Toxics Management Spreadsheet for Outfall 002

Attachment F: Outfall 001 Flow Diagram

Attachment G: Outfall 002 Flow Diagram

Attachment H: Site Plan

Attachment A:

USGS Stream Stats Data at Outfall 001

001 StreamStats Report

Region ID: PA

PRECIP

Workspace | D: PA20231005143121300000

Clicked Point (Latitude, Longitude): 40.12001, -78.81030

Time: 2023-10-05 10:31:53 -0400

Collapse All

43

inches

Parameter Code Parameter Description Value Unit DRNAREA Area that drains to a point on a stream 28.5 square miles ELEV Mean Basin Elevation 2528 feet

Mean Annual Precipitation

Low-Flow Statistics

Low-Flow Statistics Parameters [100.0 Percent (28.5 square miles) Low Flow Region 3]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	28.5	square miles	2.33	1720
ELEV	Mean Basin Elevation	2528	feet	898	2700
PRECIP	Mean Annual Precipitation	43	inches	38.7	47.9

Low-Flow Statistics Flow Report [100.0 Percent (28.5 square miles) Low Flow Region 3]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	ASEp	
7 Day 2 Year Low Flow	4.44	ft^3/s	43	43	
30 Day 2 Year Low Flow	5.98	ft^3/s	38	38	
7 Day 10 Year Low Flow	2.13	ft^3/s	54	54	
30 Day 10 Year Low Flow	2.68	ft^3/s	49	49	
90 Day 10 Year Low Flow	3.87	ft^3/s	41	41	

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006–5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

Attachment B

Toxics Management Spreadsheet for Outfall 001

Toxics Management Spreadsheet Version 1.4, May 2023

Discharge Information

Instructions	Disch	arge Stream			
Facility:	Shade	andfill	NPDES Permit No.:	PA0097440	Outfall No.: 001
					Outlan No
Evaluation T	ype:	Major Sewage / Industrial Waste	Wastewater Descrip	tion: Landfill Leachate	

	Discharge Characteristics											
Design Flow	Design Flow			artial Mix Fa	Complete Mix Times (min)							
(MGD)*	Hardness (mg/l)*	pH (SU)*	AFC	CFC	THH	CRL	Q ₇₋₁₀	Qh				
0.031	217	7										

					0 If lef	t blank	0.5 If le	eft blank	0	if left blan	k	1 If lef	t blank
	Discharge Pollutant	Units	Max Discharge Conc		Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	LEOS		Chem Transl
	Total Dissolved Solids (PWS)	mg/L		6500	$\rightarrow \rightarrow \rightarrow$								
7	Chloride (PWS)	mg/L		1600									
Group	Bromide	mg/L		16									
ច	Sulfate (PWS)	mg/L		276									
	Fluoride (PWS)	mg/L		0.5									
	Total Aluminum	μg/L		600									
	Total Antimony	μg/L		17									
	Total Arsenic	μg/L		10.4									
	Total Barium	μg/L		76.1									
	Total Beryllium	μg/L	<	0.5									
	Total Boron	μg/L		13300									
	Total Cadmium	μg/L	<	0.1									
	Total Chromium (III)	μg/L		40.7									
	Hexavalent Chromium	μg/L		0.5									
	Total Cobalt	μg/L		26.9									
	Total Copper	μg/L		10.1									
2	Free Cyanide	μg/L											
l E	Total Cyanide	μg/L		47									
Group	Dissolved Iron	μg/L		360									
	Total Iron	µg/L		450									
	Total Lead	μg/L		0.2									
	Total Manganese	μg/L		220									
	Total Mercury	μg/L	<	0.1									
	Total Nickel	μg/L		200									
	Total Phenols (Phenolics) (PWS)	μg/L		59									
	Total Selenium	μg/L		0.7									
	Total Silver	μg/L		0.2									
	Total Thallium	µg/L		0.2									
	Total Zinc	μg/L		30									
	Total Molybdenum	μg/L		5.2									
	Acrolein	μg/L	<	2									
	Acrylamide	μg/L	<	11									
	Acrylonitrile	µg/L	<	0.5									
	Benzene	µg/L	<	0.2									
	Bromoform	μg/L	٧	0.5									

	0-1		-	0.0								
	Carbon Tetrachloride	μg/L	<	0.2	П	4	4					
	Chlorobenzene	μg/L	<	0.2	Н	4	4					
	Chlorodibromomethane	μg/L	<	0.4		4	\pm					
	Chloroethane	μg/L	<	0.2		Ì	立					
	2-Chloroethyl Vinyl Ether	μg/L	<	0.5								
	Chloroform	μg/L	<	0.2	Ц	Į	Ţ					
	Dichlorobromomethane	μg/L	<	0.2	H	7	7					
	1,1-Dichloroethane	µg/L	<	0.2	Ħ	7	7					
60	1,2-Dichloroethane	μg/L	<	0.2	П	T	\rightarrow					
	1,1-Dichloroethylene	μg/L	<	0.2		#	#					
Group	1,2-Dichloropropane	µg/L	<	0.2	Ħ	#	+					
ြုံ	1,3-Dichloropropylene		<	0.2	H	+	+					
	1.4-Dioxane	μg/L	_	15.6	H	+	+					
	-,	μg/L	_		Ħ	Ť	+					
1	Ethylbenzene	μg/L	<	0.2		4	#					
1	Methyl Bromide	μg/L	<	0.5	П	4	\perp					
1	Methyl Chloride	μg/L	<	0.2	Н	4	\perp					
1	Methylene Chloride	μg/L	<	0.4	\vdash	\pm	\pm					
1	1,1,2,2-Tetrachloroethane	μg/L	<	0.2	Ħ	Ì	士					
	Tetrachloroethylene	μg/L	<	0.4								
	Toluene	μg/L	<	0.2	Ц	Ţ	Ţ					
	1,2-trans-Dichloroethylene	μg/L	<	0.5	H	1	+					
	1,1,1-Trichloroethane	μg/L	<	0.2		+	+					
	1,1,2-Trichloroethane	µg/L	<	0.5	П	Ì						
	Trichloroethylene	µg/L	<	0.3			Ţ					
	Vinyl Chloride	μg/L	<	0.2		1	+					
\vdash	•		<	1	H	+	+				 _	
1	2-Chlorophenol	μg/L	_		H	+	+	_			 	
1	2,4-Dichlorophenol	μg/L	<	1	Ħ	7	$\dot{+}$					
1	2,4-Dimethylphenol	μg/L	<	1								
l_	4,6-Dinitro-o-Cresol	μg/L	<	5.1	Ц	4	4					
4	2,4-Dinitrophenol	µg/L		8.1	H	4	+					
Group	2-Nitrophenol	μg/L	<	2.5		\Rightarrow	\pm					
ō	4-Nitrophenol	μg/L		3		Ì						
1	p-Chloro-m-Cresol	μg/L	<	1	Ц	4	4					
1	Pentachlorophenol	μg/L	٧	2.5	\dashv	7	7					
1	Phenol	μg/L	٧	12	H	7	Ŧ					
1	2,4,6-Trichlorophenol	μg/L	<	1								
	Acenaphthene	μg/L	<	0.5	П	Ţ	Ţ					
1	Acenaphthylene	μg/L	<	0.5	Н	7	7					
1	Anthracene	µg/L	<	0.5	Ħ	Ť	†					
1	Benzidine	μg/L	<	2.5		\top	\top					
1	Benzo(a)Anthracene	μg/L	<	0.5		#	#					
1	Benzo(a)Pyrene	μg/L	<	0.5	Ħ	7	+					
1	3.4-Benzofluoranthene	µg/L	<	0.5	Н	+	+				-	
1	Benzo(ghi)Perylene	µg/L	<	0.5	Ħ	Ť	÷					
	Benzo(k)Fluoranthene		<									
	Bis(2-Chloroethoxy)Methane	μg/L μg/L	<	0.5								
1	ibisiz-UnioroetnoxViMethane											
			_	0.5	H	4	+					
	Bis(2-Chloroethyl)Ether	μg/L	<	0.5								
	Bis(2-Chloroethyl)Ether Bis(2-Chloroisopropyl)Ether	μg/L μg/L	<	0.5 0.5								
	Bis(2-Chloroethyl)Ether Bis(2-Chloroisopropyl)Ether Bis(2-Ethylhexyl)Phthalate	µg/L µg/L µg/L	< <	0.5 0.5 5.1								
	Bis(2-Chloroethyl)Ether Bis(2-Chloroisopropyl)Ether Bis(2-Ethylhexyl)Phthalate 4-Bromophenyl Phenyl Ether	µg/L µg/L µg/L µg/L	< < <	0.5 0.5 5.1 0.5								
	Bis(2-Chloroethyl)Ether Bis(2-Chloroisopropyl)Ether Bis(2-Ethylhexyl)Phthalate 4-Bromophenyl Phenyl Ether Butyl Benzyl Phthalate	µg/L µg/L µg/L	< < < <	0.5 0.5 5.1 0.5 5								
	Bis(2-Chloroethyl)Ether Bis(2-Chloroisopropyl)Ether Bis(2-Ethylhexyl)Phthalate 4-Bromophenyl Phenyl Ether Butyl Benzyl Phthalate 2-Chloronaphthalene	µg/L µg/L µg/L µg/L	< < <	0.5 0.5 5.1 0.5								
	Bis(2-Chloroethyl)Ether Bis(2-Chloroisopropyl)Ether Bis(2-Ethylhexyl)Phthalate 4-Bromophenyl Phenyl Ether Butyl Benzyl Phthalate	µg/L µg/L µg/L µg/L	< < < <	0.5 0.5 5.1 0.5 5								
	Bis(2-Chloroethyl)Ether Bis(2-Chloroisopropyl)Ether Bis(2-Ethylhexyl)Phthalate 4-Bromophenyl Phenyl Ether Butyl Benzyl Phthalate 2-Chloronaphthalene	µg/L µg/L µg/L µg/L µg/L µg/L	< < < < < < < < < < < < < < < < < < <	0.5 0.5 5.1 0.5 5 0.5								
	Bis(2-Chloroethyl)Ether Bis(2-Chloroisopropyl)Ether Bis(2-Ethylhexyl)Phthalate 4-Bromophenyl Phenyl Ether Butyl Benzyl Phthalate 2-Chloronaphthalene 4-Chlorophenyl Phenyl Ether	µg/L µg/L µg/L µg/L µg/L µg/L µg/L	< < < < < < < < < < < < < < < < < < <	0.5 0.5 5.1 0.5 5 0.5 0.5								
	Bis(2-Chloroethyl)Ether Bis(2-Chloroisopropyl)Ether Bis(2-Ethylhexyl)Phthalate 4-Bromophenyl Phenyl Ether Butyl Benzyl Phthalate 2-Chloronaphthalene 4-Chlorophenyl Phenyl Ether Chrysene Dibenzo(a,h)Anthrancene	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	< < < < < < < < < < < < < < < < < < <	0.5 0.5 5.1 0.5 5 0.5 0.5 0.5 0.5								
	Bis(2-Chloroethyl)Ether Bis(2-Chloroisopropyl)Ether Bis(2-Ethylhexyl)Phthalate 4-Bromophenyl Phenyl Ether Butyl Benzyl Phthalate 2-Chloronaphthalene 4-Chlorophenyl Phenyl Ether Chrysene Dibenzo(a,h)Anthrancene 1,2-Dichlorobenzene	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	<td>0.5 0.5 5.1 0.5 5 0.5 0.5 0.5 0.5 0.5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	0.5 0.5 5.1 0.5 5 0.5 0.5 0.5 0.5 0.5								
	Bis(2-Chloroethyl)Ether Bis(2-Chloroisopropyl)Ether Bis(2-Ethylhexyl)Phthalate 4-Bromophenyl Phenyl Ether Butyl Benzyl Phthalate 2-Chloronaphthalene 4-Chlorophenyl Phenyl Ether Chrysene Dibenzo(a,h)Anthrancene 1,2-Dichlorobenzene 1,3-Dichlorobenzene	µ9/L µ9/L µ9/L µ9/L µ9/L µ9/L µ9/L µ9/L µ9/L µ9/L	<td>0.5 0.5 5.1 0.5 5 0.5 0.5 0.5 0.5 0.5 0.5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	0.5 0.5 5.1 0.5 5 0.5 0.5 0.5 0.5 0.5 0.5								
p 5	Bis(2-Chloroethyl)Ether Bis(2-Chloroisopropyl)Ether Bis(2-Ethylhexyl)Phthalate 4-Bromophenyl Phenyl Ether Butyl Benzyl Phthalate 2-Chloronaphthalene 4-Chlorophenyl Phenyl Ether Chrysene Dibenzo(a,h)Anthrancene 1,2-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene	H9/L H	<td>0.5 0.5 5.1 0.5 5 0.5 0.5 0.5 0.5 0.5 0.5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	0.5 0.5 5.1 0.5 5 0.5 0.5 0.5 0.5 0.5 0.5								
g dno	Bis(2-Chloroethyl)Ether Bis(2-Chloroisopropyl)Ether Bis(2-Ethylhexyl)Phthalate 4-Bromophenyl Phenyl Ether Butyl Benzyl Phthalate 2-Chloronaphthalene 4-Chlorophenyl Phenyl Ether Chrysene Dibenzo(a,h)Anthrancene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3-Dichlorobenzidine	h9/r h9/r h2/r h2/r h2/r h3/r	<td>0.5 0.5 5.1 0.5 5 0.5 0.5 0.5 0.5 0.5 0.5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	0.5 0.5 5.1 0.5 5 0.5 0.5 0.5 0.5 0.5 0.5								
Group 5	Bis(2-Chloroethyl)Ether Bis(2-Chloroisopropyl)Ether Bis(2-Ethylhexyl)Phthalate 4-Bromophenyl Phenyl Ether Butyl Benzyl Phthalate 2-Chloronaphthalene 4-Chlorophenyl Phenyl Ether Chrysene Dibenzo(a,h)Anthrancene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3-Dichlorobenzidine Diethyl Phthalate	h9/r h9/r	<td>0.5 0.5 5.1 0.5 5 0.5 0.5 0.5 0.5 0.5 0.5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	0.5 0.5 5.1 0.5 5 0.5 0.5 0.5 0.5 0.5 0.5								
습	Bis(2-Chloroethyl)Ether Bis(2-Chloroisopropyl)Ether Bis(2-Ethylhexyl)Phthalate 4-Bromophenyl Phenyl Ether Butyl Benzyl Phthalate 2-Chloronaphthalene 4-Chlorophenyl Phenyl Ether Chrysene Dibenzo(a,h)Anthrancene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3-Dichlorobenzidine Diethyl Phthalate Dimethyl Phthalate	19/L 19/L	<td>0.5 0.5 5.1 0.5 5 0.5 0.5 0.5 0.5 0.5 0.5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	0.5 0.5 5.1 0.5 5 0.5 0.5 0.5 0.5 0.5 0.5								
Group 5	Bis(2-Chloroethyl)Ether Bis(2-Chloroisopropyl)Ether Bis(2-Ethylhexyl)Phthalate 4-Bromophenyl Phenyl Ether Butyl Benzyl Phthalate 2-Chloronaphthalene 4-Chlorophenyl Phenyl Ether Chrysene Dibenzo(a,h)Anthrancene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3-Dichlorobenzidine Diethyl Phthalate	h9/r h9/r	<td>0.5 0.5 5.1 0.5 5 0.5 0.5 0.5 0.5 0.5 0.5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	0.5 0.5 5.1 0.5 5 0.5 0.5 0.5 0.5 0.5 0.5								

	2,6-Dinitrotoluene	μg/L	<	1	H	7	7					-	
	Di-n-Octyl Phthalate	µg/L	· ·	5.1	H	+	+					₩	╫
	1,2-Diphenylhydrazine		<	0.5	H	÷	+				 	H	-
		μg/L	~	0.5		-	-				 		
	Fluoranthene	μg/L	-	0.5	H	4	+				 	₩	-
	Fluorene	μg/L	<		H	4	+				 	₩	
	Hexachlorobenzene	μg/L	<	0.5	H	+	\pm				 	H	+
	Hexachlorobutadiene	μg/L	<	0.5	Ħ	7	\Rightarrow						\Rightarrow
	Hexachlorocyclopentadiene	μg/L	<	2.5		Ц							
	Hexachloroethane	μg/L	<	0.5	Ц	4	4					Щ	_
	Indeno(1,2,3-cd)Pyrene	μg/L	٧	0.5	\vdash	7	7					\vdash	
	Isophorone	μg/L	<	1	\vdash	7	7						
	Naphthalene	μg/L	<	0.5	Ħ	T	T					П	$\neg \neg$
	Nitrobenzene	µg/L	<	0.5		I							
	n-Nitrosodimethylamine	μg/L		1.9	H	7	7						-
	n-Nitrosodi-n-Propylamine	μg/L	<	0.5	Ħ	⇉	7					#	+
	n-Nitrosodiphenylamine	μg/L	<	0.5	H	+	+					₩	+
	Phenanthrene		<	0.5	Ħ	Ť	Ť				 _		$\overline{}$
		μg/L	-			7	7				 		-
	Pyrene	μg/L	<	0.5	H	4	+				 	₩	-
	1,2,4-Trichlorobenzene	μg/L	<	0.5	H	1	+						+
	Aldrin	μg/L	<	0.00202		+	+						
	alpha-BHC	μg/L	<	0.00202									
	beta-BHC	μg/L	٧	0.00202									
	gamma-BHC	μg/L	<	0.00202	Д	Į	Ţ					Щ	
	delta BHC	μg/L	<	0.00202	H	7	7					H	
	Chlordane	μg/L	<	0.101	H	7	+					H	
	4.4-DDT	μg/L	<	0.00202	H	╗	\forall						$\dashv \dashv$
	4,4-DDE	μg/L	<	0.00202	Ħ	Ť	Ť						7
	4.4-DDD	μg/L	_	0.0114		7	#						#
	Dieldrin		<	0.00202	H	+	+					₩	-
		μg/L	-		Н	+	+				 	₩	
	alpha-Endosulfan	μg/L	<	0.00202	H	7	\Rightarrow						#
9	beta-Endosulfan	μg/L	<	0.00202	Ħ	#	\Rightarrow						_
٥	Endosulfan Sulfate	μg/L	<	0.00202	П	7	7					П	
Group	Endrin	μg/L	<	0.00202	Ц	4	4					Ш	
5	Endrin Aldehyde	μg/L	<	0.00202	\dashv	7	+					\vdash	\dashv
	Heptachlor	μg/L	<	0.00202	H	7	7					\mathbb{H}	77
	Heptachlor Epoxide	µg/L	<	0.00202		T							
	PCB-1016	µg/L	<	0.02		Į							
	PCB-1221	μg/L	<	0.02	Ħ	7	7						#
	PCB-1232	μg/L	<	0.04	Ħ	⇉	+					H	-
	PCB-1242	µg/L	<	0.02	Н	+	+					Н	+
	PCB-1248		<	0.02	Ħ	Ť	7				 		-
		μg/L	-			7	#				 		
	PCB-1254	μg/L	<	0.02	Н	4	\perp				 	Ш	\perp
	PCB-1260	μg/L	<	0.02	H	4	4					H	-
	PCBs, Total	μg/L	<		H	4	\Rightarrow					\vdash	
	Toxaphene	μg/L	<	0.101		Ì							
	2,3,7,8-TCDD	ng/L	٧										
	Gross Alpha	pCi/L			Ц	Į	Į.					Щ	
	Total Beta	pCi/L	<		H	7	7						
<u>a</u>	Radium 226/228	pCi/L	<		Ħ	7	┿					H	77
Ž.	Total Strontium	μg/L	<		H	✝	\rightarrow					\Box	
9			<			3	#						
Group	Total Uranium	HO/I										\vdash	-
5	Total Uranium	μg/L mΩs/kg			Ħ	4	#	1	1			PO	\neg
25	Total Uranium Osmotic Pressure	μg/L mOs/kg			Ħ	-	-						
25							-						
015													
25													
25													
25													
25													
25													
25													
25													
0.5													
25													

Toxics Management Spreadsheet Version 1.4, May 2023

Stream / Surface Water Information

Shade Landfill, NPDES Permit No. PA0097110, Outfall 001

arge Str	eam													
ater Name:	Dark Shade	Creek				No. Rea	iches to l	Model:	1	_				
Stream Co	de* RMI	Elevati	ion DA (mi	²)* Slo	Slope (ft/ft) PWS Withdrawal Apply Fish (MGD) Criteria*					ish ORSANCO Criteria				
045330	2.1	2145	5 28.5		0.003			Ye	5					
045330	1.1	2121	1 29					Ye	5					
RMI	LFY			W/D	Width	Depth	Velocit	rraver Time					Analys	
			Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pH			Hardness	pН
		2.13									100	7		
1.1	0.1													
RMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit		Tribut	ary	Strea	m	Analys	is
TXIVII	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness	pН	Hardness	pН
2.1														
1.1											-			
	ater Name: Stream Coo 045330 045330 RMI 2.1 1.1	ater Name: Dark Shade Stream Code* RMI' 045330 2.1 045330 1.1 RMI LFY (cfs/mi²)* 2.1 0.1 1.1 0.1 RMI LFY (cfs/mi²) 2.1 0.1	Ater Name: Dark Shade Creek Stream Code* RMI* Elevati (ft)* 045330 2.1 2145 045330 1.1 2125 RMI LFY Flow (cfs/mi²)* Stream 2.1 0.1 2.13 1.1 0.1 RMI LFY Flow (cfs/mi²)* Stream 2.1 0.1 5.13	Stream Code* RMI* Elevation (ft)* DA (mi*)	Stream Code* RMI* Elevation (ft)* DA (mi²)* Stream Code* RMI* Elevation (ft)* DA (mi²)* Stream Code* RMI* Elevation (ft)* DA (mi²)* Stream Code* Stream Code*	Stream Code* RMI* Elevation (ft)* DA (mi²)* Slope (ft/ft)	Stream Code* RMI* Elevation DA (mi²)* Slope (ft/ft) PWS (ft)* DA (mi²)* Stream Tributary Tributary Tributary DA (mi²)* Da (ft)* Da (ft)*	Stream Code* RMI* Elevation (ft)* DA (mi²)* Slope (ft/ft) PWS Withdraw (MGD)	Stream Code* RMI* Elevation (ft)* DA (mi²)* Slope (ft/ft) PWS Withdrawal (MGD) Criter (MGD) Cri	Stream Code* RMI* Elevation (ft)* DA (mi²)* Slope (ft/ft) PWS Withdrawal (MGD) Apply Fish Criteria*	State Name: Dark Shade Creek	Statewide Criterion Great Lakes Criterion Great	Atter Name: Dark Shade Creek No. Reaches to Model: 1 Stream Code* RMI* Elevation (ft)* DA (mi²)* Slope (ft/ft) PWS Withdrawal (MGD) Criteria* 045330 2.1 2145 28.5 0.003 Yes 045330 1.1 2121 29 Yes RMI LFY Flow (cfs) W/D Width Depth Velocit (cfs/mi²)* Stream Tributary Ratio (ft) (ft) (ft) y (fps) (dave) Hardness* pH Hardness* pH 1.1 0.1 2.13 W/D Width Depth Velocit (ft) (ft) y (fps) (ft) (ft) (ft) (ft) (ft) y (fps) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft	Atter Name: Dark Shade Creek No. Reaches to Model: 1 Stream Code* RMI* Elevation (ft)* DA (mi²)* Slope (ft/ft) PWS Withdrawal (MGD) Criteria* 045330 2.1 2145 28.5 0.003 Yes 045330 1.1 2121 29 Yes RMI LFY Flow (cfs) W/D Width (ft) (ft) y (fps) (ft) y (fps) 2.1 0.1 2.13 Tributary Ratio (ft) (ft) y (fps) RMI LFY Flow (cfs) W/D Width Depth Velocit Time (days) Tributary Tributary Ratio (ft) (ft) y (fps) (ft) Time (days) Tributary Tributary Stream Analyst (ft) (ft) y (fps) (ft) Time (ft) Tributary Tributary Tributary Ratio (ft) (ft) y (fps) (ft) Time (ft) Tributary Tributary Stream Analyst (ft) (ft) y (fps) (ft) Time (ft) Tributary Ratio (ft) (ft) y (fps) (ft) Time (ft) Tributary Stream Analyst (ft) (ft) y (fps) (ft) Hardness pH Hardness p

Toxics Management Spreadsheet Version 1.4, May 2023

Model Results

Shade Landfill, NPDES Permit No. PA0097110, Outfall 001

Instructions Results	RETURN	TO INPU	тѕ	SAVE AS	PDF	PRINT	r) 🔘 🗛	II Inputs	Results Limits
☐ Hydrodynamics ☑ Wasteload Allocations									
☑ AFC CC	T (min): 1	5	PMF:	0.705	Ana	lysis Hardne	ss (mg/l):	103.62	Analysis pH: 7.00
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)		Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A		
Chloride (PWS)	0	0		0	N/A	N/A	N/A		
Sulfate (PWS)	0	0		0	N/A	N/A	N/A		
Fluoride (PWS)	0	0		0	N/A	N/A	N/A		
Total Aluminum	0	0		0	750	750	24,235		
Total Antimony	0	0		0	1,100	1,100	35,545		
Total Arsenic	0	0		0	340	340	10,987		Chem Translator of 1 applied
Total Barium	0	0		0	21,000	21,000	678,587		
Total Boron	0	0		0	8,100	8,100	261,741		
Total Cadmium	0	0		0	2.085	2.21	71.5		Chem Translator of 0.943 applied
Total Chromium (III)	0	0		0	586.605	1,856	59,985	(Chem Translator of 0.316 applied
Hexavalent Chromium	0	0		0	16	16.3	526	C	Chem Translator of 0.982 applied
Total Cobalt	0	0		0	95	95.0	3,070		
Total Copper	0	0		0	13.897	14.5	468		Chem Translator of 0.96 applied
Dissolved Iron	0	0		0	N/A	N/A	N/A		
Total Iron	0	0		0	N/A	N/A	N/A		
Total Lead	0	0		0	67.130	85.4	2,760	(Chem Translator of 0.786 applied
Total Manganese	0	0		0	N/A	N/A	N/A		
Total Mercury	0	0		0	1.400	1.65	53.2	(Chem Translator of 0.85 applied
Total Nickel	0	0		0	482.539	484	15,624	0	Chem Translator of 0.998 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A		
Total Selenium	0	0		0	N/A	N/A	N/A	(Chem Translator of 0.922 applied
Total Silver	0	0		0	3.420	4.02	130	(Chem Translator of 0.85 applied
Total Thallium	0	0		0	65	65.0	2,100		••
Total Zinc	0	0		0	120.766	123	3,990	(Chem Translator of 0.978 applied
Acrolein	0	0		0	3	3.0	96.9		•

Acrylamide	0	0		0	N/A	N/A	N/A	
Acrylonitrile	0	0	 	0	650	650	21.004	
Benzene	0	0	 	0	640	640	20.681	
Bromoform	0	0		0	1.800	1.800	58,165	
Carbon Tetrachloride	0	0		0	2.800	2.800	90,478	
Chlorobenzene	0	0		0	1,200	1,200	38,776	
	0	0		0	1,200 N/A	1,200 N/A	36,776 N/A	
Chlorodibromomethane	_	_						
2-Chloroethyl Vinyl Ether	0	0		0	18,000	18,000	581,646	
Chloroform	0	0		0	1,900	1,900	61,396	
Dichlorobromomethane	0	0		0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0		0	15,000	15,000	484,705	
1,1-Dichloroethylene	0	0		0	7,500	7,500	242,353	
1,2-Dichloropropane	0	0		0	11,000	11,000	355,450	
1,3-Dichloropropylene	0	0		0	310	310	10,017	
Ethylbenzene	0	0		0	2,900	2,900	93,710	
Methyl Bromide	0	0		0	550	550	17,773	
Methyl Chloride	0	0		0	28,000	28,000	904,783	
Methylene Chloride	0	0		0	12,000	12,000	387,764	
1,1,2,2-Tetrachloroethane	0	0		0	1,000	1,000	32,314	
Tetrachloroethylene	0	0		0	700	700	22,620	
Toluene	0	0		0	1,700	1,700	54,933	
1,2-trans-Dichloroethylene	0	0		0	6,800	6,800	219,733	
1,1,1-Trichloroethane	0	0		0	3,000	3,000	96,941	
1,1,2-Trichloroethane	0	0		0	3,400	3,400	109,866	
Trichloroethylene	0	0		0	2,300	2,300	74,321	
Vinyl Chloride	0	0		0	N/A	N/A	N/A	
2-Chlorophenol	0	0		0	560	560	18,096	
2,4-Dichlorophenol	0	0		0	1,700	1,700	54,933	
2,4-Dimethylphenol	0	0		0	660	660	21,327	
4,6-Dinitro-o-Cresol	0	0		0	80	80.0	2,585	
2,4-Dinitrophenol	0	0		0	660	660	21,327	
2-Nitrophenol	0	0		0	8,000	8.000	258,509	
4-Nitrophenol	0	0		0	2,300	2,300	74,321	
p-Chloro-m-Cresol	0	0		0	160	160	5,170	
Pentachlorophenol	0	0		0	8.723	8.72	282	
Phenol	0	0		0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0		0	460	460	14,864	
Acenaphthene	0	0		0	83	83.0	2,682	
Anthracene	0	0		0	N/A	N/A	N/A	
Benzidine	0	0		0	300	300	9.694	
Benzo(a)Anthracene	0	0		0	0.5	0.5	16.2	
Benzo(a)Pyrene	0	0		0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0		0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0		0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0		0	30.000	30,000	969.410	
	0	0		0	30,000 N/A	30,000 N/A	909,410 N/A	
Bis(2-Chloroisopropyl)Ether	0	0		0	4,500	4,500	N/A 145,412	
Bis(2-Ethylhexyl)Phthalate	0	0		0	4,500 270	4,500 270	145,412 8.725	
4-Bromophenyl Phenyl Ether	U	U		U	2/0	2/0	8,725	

		_					
Butyl Benzyl Phthalate	0	0	0	140	140	4,524	
2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	
Chrysene	0	0	0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0	0	820	820	26,497	
1,3-Dichlorobenzene	0	0	0	350	350	11,310	
1,4-Dichlorobenzene	0	0	0	730	730	23,589	
3,3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A	
Diethyl Phthalate	0	0	0	4,000	4,000	129,255	
Dimethyl Phthalate	0	0	0	2,500	2,500	80,784	
Di-n-Butyl Phthalate	0	0	0	110	110	3,555	
2,4-Dinitrotoluene	0	0	0	1,600	1,600	51,702	
2,6-Dinitrotoluene	0	0	0	990	990	31,991	
1,2-Diphenylhydrazine	0	0	0	15	15.0	485	
Fluoranthene	0	0	0	200	200	6,463	
Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene Hexachlorobutadiene	0	0	0	10	10.0	323	
		0					
Hexachlorocyclopentadiene	0		0	5	5.0	162	
Hexachloroethane	0	0	0	60	60.0	1,939	
Indeno(1,2,3-cd)Pyrene	0	0	0	N/A	N/A	N/A	
Isophorone	0	0	0	10,000	10,000	323,137	
Naphthalene	0	0	0	140	140	4,524	
Nitrobenzene	0	0	0	4,000	4,000	129,255	
n-Nitrosodimethylamine	0	0	0	17,000	17,000	549,332	
n-Nitrosodi-n-Propylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0	0	300	300	9,694	
Phenanthrene	0	0	0	5	5.0	162	
Pyrene	0	0	0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0	0	130	130	4,201	
Aldrin	0	0	0	3	3.0	96.9	
alpha-BHC	0	0	0	N/A	N/A	N/A	
beta-BHC	0	0	0	N/A	N/A	N/A	
gamma-BHC	0	0	0	0.95	0.95	30.7	
Chlordane	0	0	0	2.4	2.4	77.6	
4.4-DDT	0	0	0	1.1	1.1	35.5	
4.4-DDE	0	0	0	1.1	1.1	35.5	
4,4-DDD	0	0	0	1.1	1.1	35.5	
Dieldrin	0	0	0	0.24	0.24	7.76	
	0	0		0.24			
alpha-Endosulfan			0		0.22	7.11	
beta-Endosulfan	0	0	0	0.22	0.22	7.11	
Endosulfan Sulfate	0	0	0	N/A	N/A	N/A	
Endrin	0	0	0	0.086	0.086	2.78	
Endrin Aldehyde	0	0	0	N/A	N/A	N/A	
Heptachlor	0	0	0	0.52	0.52	16.8	
Heptachlor Epoxide	0	0	0	0.5	0.5	16.2	
Toxaphene	0	0	0	0.73	0.73	23.6	

✓ CFC CCT (min): 30.177 PMF: 1 Analysis Hardness (mg/l): 102.58 Analysis pH: 7.00

	Stream	0.1	T 11 0		1800	1410 011		
Pollutants	Conc	Stream	Trib Conc	Fate Coef	WQC	WQ Obj	WLA (µg/L)	Comments
Total Dissalued Calida (DMC)	(ug/L)	0	(µg/L)	O	(µg/L) N/A	(µg/L) N/A	N/A	
Total Dissolved Solids (PWS)	0	0			N/A N/A	N/A N/A	N/A N/A	
Chloride (PWS)		0		0	N/A N/A	N/A N/A	N/A N/A	
Sulfate (PWS)	0	_		0				
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	220	220	9,991	S. 7 (4
Total Arsenic	0	0		0	150	150	6,812	Chem Translator of 1 applied
Total Barium	0	0		0	4,100	4,100	186,201	
Total Boron	0	0		0	1,600	1,600	72,664	
Total Cadmium	0	0		0	0.250	0.28	12.5	Chem Translator of 0.908 applied
Total Chromium (III)	0	0		0	75.675	88.0	3,996	Chem Translator of 0.86 applied
Hexavalent Chromium	0	0		0	10	10.4	472	Chem Translator of 0.982 applied
Total Cobalt	0	0		0	19	19.0	863	
Total Copper	0	0		0	9.153	9.53	433	Chem Translator of 0.96 applied
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	1,500	1,500	68,122	WQC = 30 day average; PMF = 1
Total Lead	0	0		0	2.587	3.29	149	Chem Translator of 0.787 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	0.770	0.91	41.1	Chem Translator of 0.85 applied
Total Nickel	0	0		0	53.138	53.3	2,421	Chem Translator of 0.997 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	4.600	4.99	227	Chem Translator of 0.922 applied
Total Silver	0	0		0	N/A	N/A	N/A	Chem Translator of 1 applied
Total Thallium	0	0		0	13	13.0	590	
Total Zinc	0	0		0	120.713	122	5,560	Chem Translator of 0.986 applied
Acrolein	0	0		0	3	3.0	136	
Acrylamide	0	0		0	N/A	N/A	N/A	
Acrylonitrile	0	0		0	130	130	5,904	
Benzene	0	0		0	130	130	5,904	
Bromoform	0	0		0	370	370	16,803	
Carbon Tetrachloride	0	0		0	560	560	25,432	
Chlorobenzene	0	0		0	240	240	10,900	
Chlorodibromomethane	0	0		0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0		0	3,500	3,500	158,952	
Chloroform	0	0		0	390	390	17,712	
Dichlorobromomethane	0	0		0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0		0	3,100	3,100	140,786	
1,1-Dichloroethylene	0	0		0	1,500	1,500	68,122	
1,2-Dichloropropane	0	0		0	2,200	2,200	99,913	
1,3-Dichloropropylene	0	0		0	61	61.0	2,770	
Ethylbenzene	0	0		0	580	580	26,341	

Methyl Bromide	0	0		0	110	110	4,996	
Methyl Chloride	0	0		0	5.500	5,500	249.781	
Methylene Chloride	0	0		0	2,400	2,400	108.995	
1,1,2,2-Tetrachloroethane	0	0		0	210	210	9,537	
Tetrachloroethylene	0	0		0	140	140	6,358	
Toluene	0	0		0	330	330	14.987	
1,2-trans-Dichloroethylene	0	0		0	1.400	1,400	63.581	
1,1,1-Trichloroethane	0	0	 	0	610	610	27,703	
1,1,2-Trichloroethane	0	0		0	680	680	30,882	
Trichloroethylene	0	0		0	450	450	20.437	
	0	0		0	N/A	N/A	N/A	
Vinyl Chloride								
2-Chlorophenol	0	0		0	110	110	4,996	
2,4-Dichlorophenol	0	0		0	340	340	15,441	
2,4-Dimethylphenol	0	0		0	130	130	5,904	
4,6-Dinitro-o-Cresol	0	0		0	16	16.0	727	
2,4-Dinitrophenol	0	0		0	130	130	5,904	
2-Nitrophenol	0	0		0	1,600	1,600	72,664	
4-Nitrophenol	0	0		0	470	470	21,345	
p-Chloro-m-Cresol	0	0		0	500	500	22,707	
Pentachlorophenol	0	0		0	6.693	6.69	304	
Phenol	0	0		0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0		0	91	91.0	4,133	
Acenaphthene	0	0		0	17	17.0	772	
Anthracene	0	0		0	N/A	N/A	N/A	
Benzidine	0	0		0	59	59.0	2,679	
Benzo(a)Anthracene	0	0		0	0.1	0.1	4.54	
Benzo(a)Pyrene	0	0		0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0		0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0		0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0		0	6,000	6,000	272,489	
Bis(2-Chloroisopropyl)Ether	0	0		0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0		0	910	910	41,327	
4-Bromophenyl Phenyl Ether	0	0		0	54	54.0	2,452	
Butyl Benzyl Phthalate	0	0		0	35	35.0	1,590	
2-Chloronaphthalene	0	0		0	N/A	N/A	N/A	
Chrysene	0	0		0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0		0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0		0	160	160	7,266	
1,3-Dichlorobenzene	0	0		0	69	69.0	3,134	
1,4-Dichlorobenzene	0	0		0	150	150	6,812	
3,3-Dichlorobenzidine	0	0		0	N/A	N/A	N/A	
Diethyl Phthalate	0	0		0	800	800	36,332	
Dimethyl Phthalate	0	0		0	500	500	22,707	
Di-n-Butyl Phthalate	0	0		0	21	21.0	954	
2.4-Dinitrotoluene	0	0		0	320	320	14,533	
							,	l .

2,6-Dinitrotoluene	0	0	0	200	200	9,083	
1,2-Diphenylhydrazine	0	0	0	3	3.0	136	
Fluoranthene	0	0	0	40	40.0	1,817	
Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0	0	2	2.0	90.8	
Hexachlorocyclopentadiene	0	0	0	1	1.0	45.4	
Hexachloroethane	0	0	0	12	12.0	545	
Indeno(1,2,3-cd)Pyrene	0	0	0	N/A	N/A	N/A	
Isophorone	0	0	0	2,100	2,100	95,371	
Naphthalene	0	0	0	43	43.0	1,953	
Nitrobenzene	0	0	0	810	810	36,786	
n-Nitrosodimethylamine	0	0	0	3,400	3,400	154,410	
n-Nitrosodi-n-Propylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0	0	59	59.0	2,679	
Phenanthrene	0	0	0	1	1.0	45.4	
Pyrene	0	0	0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0	0	26	26.0	1,181	
Aldrin	0	0	0	0.1	0.1	4.54	
alpha-BHC	0	0	0	N/A	N/A	N/A	
beta-BHC	0	0	0	N/A	N/A	N/A	
gamma-BHC	0	0	0	N/A	N/A	N/A	
Chlordane	0	0	0	0.0043	0.004	0.2	
4,4-DDT	0	0	0	0.001	0.001	0.045	
4,4-DDE	0	0	0	0.001	0.001	0.045	
4,4-DDD	0	0	0	0.001	0.001	0.045	
Dieldrin	0	0	0	0.056	0.056	2.54	
alpha-Endosulfan	0	0	0	0.056	0.056	2.54	
beta-Endosulfan	0	0	0	0.056	0.056	2.54	
Endosulfan Sulfate	0	0	0	N/A	N/A	N/A	
Endrin	0	0	0	0.036	0.036	1.63	
Endrin Aldehyde	0	0	0	N/A	N/A	N/A	
Heptachlor	0	0	0	0.0038	0.004	0.17	
Heptachlor Epoxide	0	0	0	0.0038	0.004	0.17	
Toxaphene	0	0	0	0.0002	0.0002	0.009	

☑ THH CO	T (min): 30.	PMF:	1	Ana	alysis Hardne	ess (mg/l):	N/A Analysis pH: N/A	
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A	
Chloride (PWS)	0	0		0	250,000	250,000	N/A	
Sulfate (PWS)	0	0		0	250,000	250,000	N/A	
Fluoride (PWS)	0	0		0	2,000	2,000	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	

Total Antimony	0	0	0	5.6	5.6	254	
Total Arsenic	0	0	0	10	10.0	454	
Total Barium	0	0	0	2,400	2,400	108,995	
Total Boron	0	0	0	3,100	3,100	140,786	
Total Cadmium	0	0	0	N/A	N/A	N/A	
Total Chromium (III)	0	0	0	N/A	N/A	N/A	
Hexavalent Chromium	0	0	0	N/A	N/A	N/A	
Total Cobalt	0	0	0	N/A	N/A	N/A	
Total Copper	0	0	0	N/A	N/A	N/A	
Dissolved Iron	0	0	0	300	300	13.624	
Total Iron	0	0	0	N/A	N/A	N/A	
Total Lead	0	0	0	N/A	N/A	N/A	
Total Manganese	0	0	0	1,000	1,000	45,415	
Total Mercury	0	0	0	0.050	0.05	2.27	
Total Nickel	0	0	0	610	610	27,703	
Total Phenols (Phenolics) (PWS)	0	0	0	5	5.0	N/A	
Total Selenium	0	0	0	N/A	N/A	N/A	
Total Silver	0	0	0	N/A	N/A	N/A	
Total Thallium	0	0	0	0.24	0.24	10.9	
Total Zinc	0	0	0	N/A	N/A	N/A	
Acrolein	0	0	0	3	3.0	136	
Acrylamide	0	0	0	N/A	N/A	N/A	
Acrylonitrile	0	0	0	N/A	N/A	N/A	
Benzene	0	0	0	N/A	N/A	N/A	
Bromoform	0	0	0	N/A	N/A	N/A	
Carbon Tetrachloride	0	0	0	N/A	N/A	N/A	
Chlorobenzene	0	0	0	100	100.0	4,541	
Chlorodibromomethane	0	0	0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0	0	N/A	N/A	N/A	
Chloroform	0	0	0	5.7	5.7	259	
Dichlorobromomethane	0	0	0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0	0	N/A	N/A	N/A	
1,1-Dichloroethylene	0	0	0	33	33.0	1,499	
1,2-Dichloropropane	0	0	0	N/A	N/A	N/A	
1,3-Dichloropropylene	0	0	0	N/A	N/A	N/A	
Ethylbenzene	0	0	0	68	68.0	3,088	
Methyl Bromide	0	0	0	100	100.0	4,541	
Methyl Chloride	0	0	0	N/A	N/A	N/A	
Methylene Chloride	0	0	0	N/A	N/A	N/A	
1,1,2,2-Tetrachloroethane	0	0	0	N/A	N/A	N/A	
Tetrachloroethylene	0	0	0	N/A	N/A	N/A	
Toluene	0	0	0	57	57.0	2,589	
1,2-trans-Dichloroethylene	0	0	0	100	100.0	4,541	
1,1,1-Trichloroethane	0	0	0	10,000	10,000	454,148	
1,1,2-Trichloroethane	0	0	0	N/A	N/A	N/A	

Trichloroethylene Vinyl Chloride 2-Chlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 4,8-Dinitro-o-Cresol 2,4-Dinitrophenol 2-Nitrophenol 4-Nitrophenol p-Chloro-m-Cresol	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0		0	N/A N/A 30 10	N/A N/A 30.0	N/A N/A 1,362	
2-Chlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 4,8-Dinitro-o-Cresol 2,4-Dinitrophenol 2-Nitrophenol 4-Nitrophenol	0 0 0 0 0 0 0	0 0 0		0	30			
2,4-Dichlorophenol 2,4-Dimethylphenol 4,8-Dinitro-o-Cresol 2,4-Dinitrophenol 2-Nitrophenol 4-Nitrophenol	0 0 0 0 0	0		0		30.0	1.362	
2,4-Dimethylphenol 4,6-Dinitro-o-Cresol 2,4-Dinitrophenol 2-Nitrophenol 4-Nitrophenol	0 0 0	0			10		.,	
4,6-Dinitro-o-Cresol 2,4-Dinitrophenol 2-Nitrophenol 4-Nitrophenol	0 0 0	0			10	10.0	454	
2,4-Dinitrophenol 2-Nitrophenol 4-Nitrophenol	0			0	100	100.0	4,541	
2-Nitrophenol 4-Nitrophenol	0	0		0	2	2.0	90.8	
4-Nitrophenol				0	10	10.0	454	
_	0	0		0	N/A	N/A	N/A	
p-Chloro-m-Cresol	0	0		0	N/A	N/A	N/A	
	0	0		0	N/A	N/A	N/A	
Pentachlorophenol	0	0		0	N/A	N/A	N/A	
Phenol	0	0		0	4,000	4,000	181,659	
2,4,6-Trichlorophenol	0	0		0	N/A	N/A	N/A	
Acenaphthene	0	0		0	70	70.0	3,179	
Anthracene	0	0		0	300	300	13,624	
Benzidine	0	0		0	N/A	N/A	N/A	
Benzo(a)Anthracene	0	0		0	N/A	N/A	N/A	
Benzo(a)Pyrene	0	0		0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0		0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0		0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0		0	N/A	N/A	N/A	
Bis(2-Chloroisopropyl)Ether	0	0		0	200	200	9,083	
Bis(2-Ethylhexyl)Phthalate	0	0		0	N/A	N/A	N/A	
4-Bromophenyl Phenyl Ether	0	0		0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0		0	0.1	0.1	4.54	
2-Chloronaphthalene	0	0		0	800	800	36,332	
Chrysene	0	0		0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0		0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0		0	1,000	1,000	45,415	
1,3-Dichlorobenzene	0	0		0	7	7.0	318	
1,4-Dichlorobenzene	0	0		0	300	300	13,624	
3,3-Dichlorobenzidine	0	0		0	N/A	N/A	N/A	
Diethyl Phthalate	0	0		0	600	600	27,249	
Dimethyl Phthalate	0	0		0	2,000	2,000	90,830	
Di-n-Butyl Phthalate	0	0		0	20	20.0	908	
2,4-Dinitrotoluene	0	0		0	N/A	N/A	N/A	
2,6-Dinitrotoluene	0	0		0	N/A	N/A	N/A	
1,2-Diphenylhydrazine	0	0		0	N/A	N/A	N/A	
Fluoranthene	0	0		0	20	20.0	908	
Fluorene	0	0		0	50	50.0	2,271	
Hexachlorobenzene	0	0		0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0		0	N/A	N/A	N/A	
Hexachlorocyclopentadiene	0	0		0	4	4.0	182	
Hexachloroethane	0	0		0	N/A	N/A	N/A	
Indeno(1,2,3-cd)Pyrene	0	0		0	N/A	N/A	N/A	

Isophorone	0	0	H	0	34	34.0	1.544	
Naphthalene	0	0		0	N/A	N/A	N/A	
Nitrobenzene	0	0		0	10	10.0	454	
n-Nitrosodimethylamine	0	0		0	N/A	N/A	N/A	
n-Nitrosodi-n-Propylamine	0	0	+++++	0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0		0	N/A	N/A	N/A	
Phenanthrene	0	0		0	N/A	N/A	N/A	
Pyrene	0	0		0	20	20.0	908	
1,2,4-Trichlorobenzene	0	0		0	0.07	0.07	3.18	
Aldrin	0	0		0	N/A	N/A	N/A	
alpha-BHC	0	0		0	N/A	N/A	N/A	
beta-BHC	0	0		0	N/A	N/A	N/A	
gamma-BHC	0	0		0	4.2	4.2	191	
Chlordane	0	0		0	N/A	N/A	N/A	
4,4-DDT	0	0		0	N/A	N/A	N/A	
4,4-DDE	0	0		0	N/A	N/A	N/A	
4,4-DDD	0	0		0	N/A	N/A	N/A	
Dieldrin	0	0		0	N/A	N/A	N/A	
alpha-Endosulfan	0	0		0	20	20.0	908	
beta-Endosulfan	0	0		0	20	20.0	908	
Endosulfan Sulfate	0	0		0	20	20.0	908	
Endrin	0	0		0	0.03	0.03	1.36	
Endrin Aldehyde	0	0		0	1	1.0	45.4	
Heptachlor	0	0		0	N/A	N/A	N/A	
Heptachlor Epoxide	0	0		0	N/A	N/A	N/A	
Toxaphene	0	0		0	N/A	N/A	N/A	

√	CRL	CCT (min):	8.995	PMF:	1	Analysis Hardness (mg/l):	N/A	Analysis pH:	N/A	Ĺ

Pollutants	Conc (ug/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (μg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	N/A	N/A	N/A	
Total Arsenic	0	0		0	N/A	N/A	N/A	
Total Barium	0	0		0	N/A	N/A	N/A	
Total Boron	0	0		0	N/A	N/A	N/A	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	

Dissolved Iron	0	0	0	N/A	N/A	N/A	
Total Iron	0	0	0	N/A	N/A	N/A	
Total Lead	0	0	0	N/A	N/A	N/A	
Total Manganese	0	0	0	N/A	N/A	N/A	
Total Mercury	0	0	0	N/A	N/A	N/A	
Total Nickel	0	0	0	N/A	N/A	N/A	
Total Phenols (Phenolics) (PWS)	0	0	0	N/A	N/A	N/A	
Total Selenium	0	0	0	N/A	N/A	N/A	
Total Silver	0	0	0	N/A	N/A	N/A	
Total Thallium	0	0	0	N/A	N/A	N/A	
Total Zinc	0	0	0	N/A	N/A	N/A	
Acrolein	0	0	0	N/A	N/A	N/A	
Acrylamide	0	0	0	0.07	0.07	21.1	
Acrylonitrile	0	0	0	0.06	0.06	18.1	
Benzene	0	0	0	0.58	0.58	175	
Bromoform	0	0	0	7	7.0	2,107	
Carbon Tetrachloride	0	0	0	0.4	0.4	120	
Chlorobenzene	0	0	0	N/A	N/A	N/A	
Chlorodibromomethane	0	0	0	0.8	0.8	241	
2-Chloroethyl Vinyl Ether	0	0	0	N/A	N/A	N/A	
Chloroform	0	0	0	N/A	N/A	N/A	
Dichlorobromomethane	0	0	0	0.95	0.95	286	
1,2-Dichloroethane	0	0	0	9.9	9.9	2,980	
1,1-Dichloroethylene	0	0	0	N/A	N/A	N/A	
1,2-Dichloropropane	0	0	0	0.9	0.9	271	
1,3-Dichloropropylene	0	0	0	0.27	0.27	81.3	
Ethylbenzene	0	0	0	N/A	N/A	N/A	
Methyl Bromide	0	0	0	N/A	N/A	N/A	
Methyl Chloride	0	0	0	N/A	N/A	N/A	
Methylene Chloride	0	0	0	20	20.0	6,020	
1,1,2,2-Tetrachloroethane	0	0	0	0.2	0.2	60.2	
Tetrachloroethylene	0	0	0	10	10.0	3,010	
Toluene	0	0	0	N/A	N/A	N/A	
1,2-trans-Dichloroethylene	0	0	0	N/A	N/A	N/A	
1,1,1-Trichloroethane	0	0	0	N/A	N/A	N/A	
1,1,2-Trichloroethane	0	0	0	0.55	0.55	166	
Trichloroethylene	0	0	0	0.6	0.6	181	
Vinyl Chloride	0	0	0	0.02	0.02	6.02	
2-Chlorophenol	0	0	0	N/A	N/A	N/A	
2,4-Dichlorophenol	0	0	0	N/A	N/A	N/A	
2,4-Dimethylphenol	0	0	0	N/A	N/A	N/A	
4,6-Dinitro-o-Cresol	0	0	0	N/A	N/A	N/A	
2,4-Dinitrophenol	0	0	0	N/A	N/A	N/A	
2-Nitrophenol	0	0	0	N/A	N/A	N/A	
4-Nitrophenol	0	0	0	N/A	N/A	N/A	

p-Chloro-m-Cresol 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								
Phenol	p-Chloro-m-Cresol	0	_		N/A	N/A	N/A	
2.48-Trichlorophenol	Pentachlorophenol	0	0	0	0.030	0.03	9.03	
Anthracene 0 0 0 NA NA NA NA NA NA Anthracene 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Phenol	0	0	0	N/A	N/A	N/A	
Anthracene	2,4,6-Trichlorophenol	0	0	0	1.5	1.5	452	
Benzidine	Acenaphthene	0	0	0	N/A	N/A	N/A	
Benzo(a)Anthracene	Anthracene	0	0	0	N/A	N/A	N/A	
Benzo(a)Pyrene	Benzidine	0	0	0	0.0001	0.0001	0.03	
3.4-Benzofluoranthene	Benzo(a)Anthracene	0	0	0	0.001	0.001	0.3	
Benzo(k)Fluoranthene	Benzo(a)Pyrene	0	0	0	0.0001	0.0001	0.03	
Bis(2-Chloroethyl)Ether	3,4-Benzofluoranthene	0	0	0	0.001	0.001	0.3	
Bis(2-Chloroispropyl)Ether 0	Benzo(k)Fluoranthene	0	0	0	0.01	0.01	3.01	
Bis(2-Ethylhexyl)Phthalate	Bis(2-Chloroethyl)Ether	0	0	0	0.03	0.03	9.03	
4-Bromophenyl Phenyl Ether	Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	
4-Bromophenyl Phenyl Ether	Bis(2-Ethylhexyl)Phthalate	0	0	0	0.32	0.32	96.3	
2-Chloronaphthalene 0 0 N/A N/A N/A Chrysene 0 0 0 0.12 36.1 Dibenzo(a,h)Anthrancene 0 0 0.0001 0.0001 1,2-Dichlorobenzene 0 0 0 N/A N/A 1,3-Dichlorobenzene 0 0 0 N/A N/A N/A 1,4-Dichlorobenzene 0 0 0 N/A N/A N/A 3,3-Dichlorobenzidine 0 0 0 0,05 0.05 15.1 Diethyl Phthalate 0 0 0 N/A N/A N/A Din-Butyl Phthalate 0 0 0 N/A N/A N/A 2,4-Dinitrotoluene 0 0 0 0.05 0.05 15.1 1,2-Diphenylhydrazine 0 0 0 0.05 0.05 15.1 1,2-Diphenylhydrazine 0 0 0 0.05 0.05 15.1	4-Bromophenyl Phenyl Ether	0	0	0	N/A	N/A	N/A	
Chrysene	Butyl Benzyl Phthalate	0	0	0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	
1,2-Dichlorobenzene	Chrysene	0	0	0	0.12	0.12	36.1	
1,3-Dichlorobenzene 0 0 N/A N/A N/A 1,4-Dichlorobenzene 0 0 0 N/A N/A N/A 3,3-Dichlorobenzidine 0 0 0 0.05 0.05 15.1 Dientyl Phthalate 0 0 0 N/A N/A N/A Dimettyl Phthalate 0 0 0 N/A N/A N/A Di-n-Butyl Phthalate 0 0 0 N/A N/A N/A 2,4-Dinitrotoluene 0 0 0 0.05 0.05 15.1 2,6-Dinitrotoluene 0 0 0 0.05 0.05 15.1 1,2-Diphenylhydrazine 0 0 0 0.05 0.05 15.1 1,2-Diphenylhydrazine 0 0 0 0.03 0.03 9.03 Fluoranthene 0 0 0 N/A N/A N/A Hexachlorobenzene 0 0 0 N/A<	Dibenzo(a,h)Anthrancene	0	0	0	0.0001	0.0001	0.03	
1,4-Dichlorobenzene 0 0 N/A N/A N/A 3,3-Dichlorobenzidine 0 0 0.05 0.05 15.1 Diethyl Phthalate 0 0 N/A N/A N/A Dimethyl Phthalate 0 0 N/A N/A N/A Di-n-Butyl Phthalate 0 0 N/A N/A N/A 2,4-Dinitrotoluene 0 0 0.05 0.05 15.1 2,6-Dinitrotoluene 0 0 0.05 0.05 15.1 1,2-Diphenylhydrazine 0 0 0.03 0.03 9.03 Fluoranthene 0 0 0 N/A N/A N/A Hexachlorobenzene 0 0 0 0.00008 0.00008 0.024 Hexachlorobutadiene 0 0 0 0.01 3.01 N/A N/A Hexachlorobethane 0 0 0 0.1 3.01 0.1 3.01 Indeno	1,2-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
3,3-Dichlorobenzidine	1,3-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
Diethyl Phthalate	1,4-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
Dimethyl Phthalate	3,3-Dichlorobenzidine	0	0	0	0.05	0.05	15.1	
Di-n-Butyl Phthalate 0 0 N/A N/A N/A 2,4-Dinitrotoluene 0 0 0 0.05 0.05 15.1 2,6-Dinitrotoluene 0 0 0.05 0.05 15.1 1,2-Diphenylhydrazine 0 0 0.03 0.03 9.03 Fluoranthene 0 0 0 N/A N/A N/A Fluorene 0 0 0 N/A N/A N/A Hexachlorobenzene 0 0 0 0.00008 0.0008 0.024 Hexachlorobutadiene 0 0 0 0.01 0.01 3.01 Hexachlorocyclopentadiene 0 0 0 N/A N/A N/A Hexachlorocyclopentadiene 0 0 0 0.1 0.1 30.1 Hexachlorocyclopentadiene 0 0 0 0.1 0.1 30.1 Indeno(1,2,3-od)Pyrene 0 0 0 0.01 0.0	Diethyl Phthalate	0	0	0	N/A	N/A	N/A	
2,4-Dinitrotoluene 0 0 0.05 0.05 15.1 2,8-Dinitrotoluene 0 0 0.05 0.05 15.1 1,2-Diphenylhydrazine 0 0 0.03 0.03 9.03 Fluoranthene 0 0 0 N/A N/A N/A Fluorene 0 0 0 N/A N/A N/A Hexachlorobenzene 0 0 0 0.0008 0.0008 0.024 Hexachlorobutadiene 0 0 0 0.01 0.01 3.01 Hexachlorocyclopentadiene 0 0 0 N/A N/A N/A Hexachlorocyclopentadiene 0 0 0 1.01 30.1 Indeno(1,2,3-od)Pyrene 0 0 0 0.01 0.01 0.3 Isophorone 0 0 N/A N/A N/A N/A Naphthalene 0 0 0 N/A N/A N/A <t< td=""><td>Dimethyl Phthalate</td><td>0</td><td>0</td><td>0</td><td>N/A</td><td>N/A</td><td>N/A</td><td></td></t<>	Dimethyl Phthalate	0	0	0	N/A	N/A	N/A	
2,6-Dinitrotoluene 0 0 0.05 0.05 15.1 1,2-Diphenylhydrazine 0 0 0.03 0.03 9.03 Fluoranthene 0 0 0 N/A N/A N/A Fluorene 0 0 0 N/A N/A N/A Hexachlorobenzene 0 0 0.00008 0.00008 0.024 Hexachlorobutadiene 0 0 0 0.01 3.01 Hexachlorocyclopentadiene 0 0 0 N/A N/A N/A Hexachlorocyclopentadiene 0 0 0 0.1 0.1 3.01 Indeno(1,2,3-cd)Pyrene 0 0 0 0.1 0.1 30.1 Indeno(1,2,3-cd)Pyrene 0 0 0 0.001 0.3 Isophorone 0 0 0 0.001 0.3 Isophorone 0 0 0 N/A N/A N/A Nitrobenzene	Di-n-Butyl Phthalate	0	0	0	N/A	N/A	N/A	
1,2-Diphenylhydrazine 0 0 0.03 0.03 9.03 Fluoranthene 0 0 0 N/A N/A N/A Fluorene 0 0 0 N/A N/A N/A Hexachlorobenzene 0 0 0 0.00008 0.0004 Hexachlorobutadiene 0 0 0 0.01 3.01 Hexachlorocyclopentadiene 0 0 0 N/A N/A Hexachlorotethane 0 0 0 1.01 30.1 Indeno(1,2,3-od)Pyrene 0 0 0 0.001 0.01 0.3 Isophorone 0 0 0 N/A N/A N/A N/A Naphthalene 0 0 0 N/A N/A N/A N/A Nitrosodimethylamine 0 0 0 0 0.0007 0.201 n-Nitrosodipenylamine 0 0 0 0 0.005 1.51 <td>2,4-Dinitrotoluene</td> <td>0</td> <td>0</td> <td>0</td> <td>0.05</td> <td>0.05</td> <td>15.1</td> <td></td>	2,4-Dinitrotoluene	0	0	0	0.05	0.05	15.1	
Fluoranthene 0 0 N/A N/A N/A Fluorene 0 0 0 N/A N/A N/A Hexachlorobenzene 0 0 0 0.00008 0.0008 0.024 Hexachlorobutadiene 0 0 0 0.01 0.01 3.01 Hexachlorocyclopentadiene 0 0 0 N/A N/A N/A Hexachloroethane 0 0 0 0.1 0.1 30.1 Indeno(1,2,3-cd)Pyrene 0 0 0 0.001 0.001 0.3 Isophorone 0 0 0 N/A N/A N/A Naphthalene 0 0 0 N/A N/A N/A Nitrobenzene 0 0 0 N/A N/A N/A n-Nitrosodi-n-Propylamine 0 0 0 0.005 0.005 1.51 n-Nitrosodiphenylamine 0 0 0 N/A <t< td=""><td>2,6-Dinitrotoluene</td><td>0</td><td>0</td><td>0</td><td>0.05</td><td>0.05</td><td>15.1</td><td></td></t<>	2,6-Dinitrotoluene	0	0	0	0.05	0.05	15.1	
Fluorene 0 0 N/A N/A N/A Hexachlorobenzene 0 0 0.00008 0.00008 0.024 Hexachlorobutadiene 0 0 0.01 0.01 3.01 Hexachlorocyclopentadiene 0 0 0 N/A N/A N/A Hexachlorocethane 0 0 0 0.1 0.1 30.1 Indeno(1,2,3-ed)Pyrene 0 0 0 0.001 0.03 Isophorone 0 0 0 N/A N/A N/A Naphthalene 0 0 0 N/A N/A N/A Nitrobenzene 0 0 0 N/A N/A N/A n-Nitrosodimethylamine 0 0 0 0.005 0.005 1.51 n-Nitrosodiphenylamine 0 0 0 0 N/A N/A N/A Pyrene 0 0 0 N/A N/A N/A N/A<	1,2-Diphenylhydrazine	0	0	0	0.03	0.03	9.03	
Hexachlorobenzene 0 0 0.00008 0.00008 0.024 Hexachlorobutadiene 0 0 0.01 0.01 3.01 Hexachlorocyclopentadiene 0 0 0 N/A N/A N/A Hexachlorocyclopentadiene 0 0 0 0.1 0.1 30.1 Indeno(1,2,3-cd)Pyrene 0 0 0 0.001 0.3 Isophorone 0 0 0 N/A N/A N/A Naphthalene 0 0 0 N/A N/A N/A N/A Nitrobenzene 0 0 0 N/A N/A N/A N/A n-Nitrosodimethylamine 0 0 0 0.005 0.005 1.51 n-Nitrosodiphenylamine 0 0 0 N/A N/A N/A Phenanthrene 0 0 0 N/A N/A N/A	Fluoranthene	0	0	0	N/A	N/A	N/A	
Hexachlorobutadiene 0 0 0.01 0.01 3.01 Hexachlorocyclopentadiene 0 0 N/A N/A N/A Hexachlorochtane 0 0 0.1 0.1 30.1 Indeno(1,2,3-od)Pyrene 0 0 0.001 0.001 0.3 Isophorone 0 0 0 N/A N/A N/A Naphthalene 0 0 0 N/A N/A N/A Nitrobenzene 0 0 0 N/A N/A N/A n-Nitrosodimethylamine 0 0 0 0.0007 0.0007 0.21 n-Nitrosodiphenylamine 0 0 0 0.005 0.005 1.51 n-Nitrosodiphenylamine 0 0 0 N/A N/A N/A Phenanthrene 0 0 0 N/A N/A N/A Pyrene 0 0 N/A N/A N/A	Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorocyclopentadiene 0 0 N/A N/A N/A Hexachloroethane 0 0 0.1 0.1 30.1 Indeno(1,2,3-cd)Pyrene 0 0 0.001 0.001 0.3 Isophorone 0 0 0 N/A N/A N/A Naphthalene 0 0 0 N/A N/A N/A Nitrobenzene 0 0 0 N/A N/A N/A n-Nitrosodimethylamine 0 0 0.0007 0.0007 0.21 n-Nitrosodiphenylamine 0 0 0 0.005 1.51 n-Nitrosodiphenylamine 0 0 0 N/A N/A N/A Phenanthrene 0 0 0 N/A N/A N/A N/A	Hexachlorobenzene	_		0	0.00008			
Hexachloroethane	Hexachlorobutadiene	0	0	0	0.01	0.01	3.01	
Indeno(1,2,3-cd)Pyrene	Hexachlorocyclopentadiene		0	0	N/A	N/A		
Isophorone		0	0	0	0.1	0.1	30.1	
Naphthalene 0 0 N/A N/A N/A Nitrobenzene 0 0 0 N/A N/A N/A n-Nitrosodimethylamine 0 0 0.0007 0.0007 0.21 n-Nitrosodi-n-Propylamine 0 0 0 0.005 0.005 1.51 n-Nitrosodiphenylamine 0 0 0 3.3 3.3 993 Phenanthrene 0 0 N/A N/A N/A N/A Pyrene 0 0 N/A N/A N/A N/A	Indeno(1,2,3-cd)Pyrene	0	0	0	0.001	0.001	0.3	
Nitrobenzene 0 0 N/A N/A N/A n-Nitrosodimethylamine 0 0 0.0007 0.0007 0.21 n-Nitrosodi-n-Propylamine 0 0 0.005 0.005 1.51 n-Nitrosodiphenylamine 0 0 3.3 3.3 993 Phenanthrene 0 0 N/A N/A N/A Pyrene 0 0 N/A N/A N/A	Isophorone	0	0	0	N/A	N/A	N/A	
n-Nitrosodimethylamine 0 0 0 0.0007 0.0007 0.21 n-Nitrosodi-n-Propylamine 0 0 0 0.005 0.005 1.51 n-Nitrosodiphenylamine 0 0 0 3.3 3.3 993 Phenanthrene 0 0 N/A N/A N/A Pyrene 0 0 N/A N/A N/A	Naphthalene	0	0	0	N/A	N/A	N/A	
n-Nitrosodi-n-Propylamine 0 0 0.005 0.005 1.51 n-Nitrosodiphenylamine 0 0 0 3.3 3.3 993 Phenanthrene 0 0 N/A N/A N/A Pyrene 0 0 N/A N/A N/A	Nitrobenzene			0				
n-Nitrosodiphenylamine 0 0 0 3.3 3.3 993 Phenanthrene 0 0 0 N/A N/A N/A Pyrene 0 0 N/A N/A N/A			0	0	0.0007	0.0007	0.21	
Phenanthrene 0 0 N/A N/A N/A Pyrene 0 0 N/A N/A N/A				0	0.005	0.005		
Pyrene 0 0 N/A N/A N/A	n-Nitrosodiphenylamine			0				
	Phenanthrene		0	0	N/A	N/A		
1,2,4-Trichlorobenzene 0 0 0 N/A N/A N/A N/A	Pyrene	0	0	0	N/A	N/A	N/A	
	1,2,4-Trichlorobenzene	0	0	0	N/A	N/A	N/A	

Aldrin	0	0			0	0.0000008	8.00E-07	0.0002	
alpha-BHC	0	0		\Box	0	0.0004	0.0004	0.12	
beta-BHC	0	0	$H \rightarrow H$	+	0	0.008	0.008	2.41	
gamma-BHC	0	0			0	N/A	N/A	N/A	
Chlordane	0	0			0	0.0003	0.0003	0.09	
4,4-DDT	0	0			0	0.00003	0.00003	0.009	
4,4-DDE	0	0			0	0.00002	0.00002	0.008	
4,4-DDD	0	0			0	0.0001	0.0001	0.03	
Dieldrin	0	0			0	0.000001	0.000001	0.0003	
alpha-Endosulfan	0	0			0	N/A	N/A	N/A	
beta-Endosulfan	0	0			0	N/A	N/A	N/A	
Endosulfan Sulfate	0	0			0	N/A	N/A	N/A	
Endrin	0	0			0	N/A	N/A	N/A	
Endrin Aldehyde	0	0			0	N/A	N/A	N/A	
Heptachlor	0	0		+	0	0.000006	0.000006	0.002	
Heptachlor Epoxide	0	0			0	0.00003	0.00003	0.009	
Toxaphene	0	0			0	0.0007	0.0007	0.21	

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month:

4

	Mass	Limits	Concentration Limits			Ī			
Pollutants	AML	AML MDL AML		MDI	MDL IMAX		Governing	WQBEL	6
Pollutants	(lbs/day)	(lbs/day)	AML MDL	MDL	IMAX	Units	WQBEL	Basis	Comments
Total Boron	Report	Report	Report	Report	Report	μg/L	72,664	CFC	Discharge Conc > 10% WQBEL (no RP)
Acrylamide	0.005	0.008	21.1	32.9	52.7	μg/L	21.1	CRL	Discharge Conc ≥ 50% WQBEL (RP)
n-Nitrosodimethylamine	0.00005	0.00008	0.21	0.33	0.53	μg/L	0.21	CRL	Discharge Conc ≥ 50% WQBEL (RP)
4,4-DDD	Report	Report	Report	Report	Report	μg/L	0.03	CRL	Discharge Conc > 25% WQBEL (no RP)

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Fluoride (PWS)	N/A	N/A	PWS Not Applicable
Total Aluminum	15,534	μg/L	Discharge Conc ≤ 10% WQBEL
Total Antimony	254	μg/L	Discharge Conc ≤ 10% WQBEL
Total Arsenic	454	μg/L	Discharge Conc ≤ 10% WQBEL
Total/Tiscillo		Pare	Districting Country To 10 10 11 QDEE

Total Barium	108,995	μg/L	Discharge Conc ≤ 10% WQBEL
Total Beryllium	N/A	N/A	No WQS
Total Cadmium	12.5	μg/L	Discharge Conc < TQL
Total Chromium (III)	3.996	μg/L	Discharge Conc ≤ 10% WQBEL
Hexavalent Chromium	337	μg/L	Discharge Conc ≤ 10% WQBEL
Total Cobalt	863	μg/L	Discharge Conc ≤ 10% WQBEL
Total Copper	300	μg/L	Discharge Conc ≤ 10% WQBEL
Total Cyanide	N/A	N/A	No WQS
Dissolved Iron	13.624	μg/L	Discharge Conc ≤ 10% WQBEL
Total Iron	68,122	μg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	149	μg/L	Discharge Conc ≤ 10% WQBEL
Total Manganese	45,415	µg/L	Discharge Conc ≤ 10% WQBEL
Total Mercury	2.27	µg/L	Discharge Conc < TQL
Total Nickel	2,421	μg/L	Discharge Conc ≤ 10% WQBEL
Total Phenols (Phenolics) (PWS)		µg/L	PWS Not Applicable
Total Selenium	227	μg/L	Discharge Conc ≤ 10% WQBEL
Total Silver	83.3	µg/L	Discharge Conc ≤ 10% WQBEL
Total Thallium	10.9	µg/L	Discharge Conc ≤ 10% WQBEL
Total Zinc	2.558	µg/L	Discharge Conc ≤ 10% WQBEL
Total Molybdenum	N/A	N/A	No WQS
Acrolein	62.1	μg/L	Discharge Conc < TQL
Acrylonitrile	18.1	μg/L	Discharge Conc < TQL
Benzene	175	μg/L	Discharge Conc < TQL
Bromoform	2,107	μg/L	Discharge Conc < TQL
Carbon Tetrachloride	120	μg/L	Discharge Conc < TQL
Chlorobenzene	4.541	μg/L	Discharge Conc < TQL
Chlorodibromomethane	241	μg/L	Discharge Conc < TQL
Chloroethane	N/A	N/A	No WQS
2-Chloroethyl Vinyl Ether	158,952	μg/L	Discharge Conc < TQL
Chloroform	259	μg/L	Discharge Conc < TQL
Dichlorobromomethane	286	μg/L	Discharge Conc < TQL
1,1-Dichloroethane	N/A	N/A	No WQS
1,2-Dichloroethane	2,980	μg/L	Discharge Conc < TQL
1,1-Dichloroethylene	1,499	μg/L	Discharge Conc < TQL
1,2-Dichloropropane	271	μg/L	Discharge Conc < TQL
1,3-Dichloropropylene	81.3	μg/L	Discharge Conc < TQL
1,4-Dioxane	N/A	N/A	No WQS
Ethylbenzene	3,088	μg/L	Discharge Conc < TQL
Methyl Bromide	4,541	μg/L	Discharge Conc < TQL
Methyl Chloride	249,781	μg/L	Discharge Conc < TQL
Methylene Chloride	6,020	μg/L	Discharge Conc < TQL
1,1,2,2-Tetrachloroethane	60.2	μg/L	Discharge Conc < TQL
Tetrachloroethylene	3,010	μg/L	Discharge Conc < TQL
Toluene	2,589	μg/L	Discharge Conc < TQL
1,2-trans-Dichloroethylene	4,541	μg/L	Discharge Conc < TQL

4 4 4 7 - 1 1	07.700		Di-at 0 4 TO
1,1,1-Trichloroethane	27,703	μg/L	Discharge Conc < TQL
1,1,2-Trichloroethane	166	μg/L	Discharge Conc < TQL
Trichloroethylene	181	μg/L	Discharge Conc < TQL
Vinyl Chloride	6.02	μg/L	Discharge Conc < TQL
2-Chlorophenol	1,362	μg/L	Discharge Conc < TQL
2,4-Dichlorophenol	454	μg/L	Discharge Conc < TQL
2,4-Dimethylphenol	4,541	μg/L	Discharge Conc < TQL
4,6-Dinitro-o-Cresol	90.8	μg/L	Discharge Conc < TQL
2,4-Dinitrophenol	454	μg/L	Discharge Conc ≤ 25% WQBEL
2-Nitrophenol	72,664	μg/L	Discharge Conc < TQL
4-Nitrophenol	21,345	μg/L	Discharge Conc ≤ 25% WQBEL
p-Chloro-m-Cresol	3,314	μg/L	Discharge Conc < TQL
Pentachlorophenol	9.03	μg/L	Discharge Conc < TQL
Phenol	181,659	μg/L	Discharge Conc ≤ 25% WQBEL
2,4,6-Trichlorophenol	452	μg/L	Discharge Conc < TQL
Acenaphthene	772	μg/L	Discharge Conc < TQL
Acenaphthylene	N/A	N/A	No WQS
Anthracene	13,624	μg/L	Discharge Conc < TQL
Benzidine	0.03	μg/L	Discharge Conc < TQL
Benzo(a)Anthracene	0.3	μg/L	Discharge Conc < TQL
Benzo(a)Pyrene	0.03	μg/L	Discharge Conc < TQL
3.4-Benzofluoranthene	0.3	μg/L	Discharge Conc < TQL
Benzo(ghi)Perylene	N/A	N/A	No WQS
Benzo(k)Fluoranthene	3.01	μg/L	Discharge Conc < TQL
Bis(2-Chloroethoxy)Methane	N/A	N/A	No WQS
Bis(2-Chloroethyl)Ether	9.03	μg/L	Discharge Conc < TQL
Bis(2-Chloroisopropyl)Ether	9,083	μg/L	Discharge Conc < TQL
Bis(2-Ethylhexyl)Phthalate	96.3	μg/L	Discharge Conc ≤ 25% WQBEL
4-Bromophenyl Phenyl Ether	2,452	μg/L	Discharge Conc < TQL
Butyl Benzyl Phthalate	4.54	μg/L	Discharge Conc < TQL
2-Chloronaphthalene	36,332	µg/L	Discharge Conc < TQL
4-Chlorophenyl Phenyl Ether	N/A	N/A	No WQS
Chrysene	36.1	μg/L	Discharge Conc < TQL
Dibenzo(a,h)Anthrancene	0.03	μg/L	Discharge Conc < TQL
1,2-Dichlorobenzene	7,266	μg/L	Discharge Conc < TQL
1.3-Dichlorobenzene	318	μg/L	Discharge Conc < TQL
1,4-Dichlorobenzene	6,812	μg/L	Discharge Conc < TQL
3,3-Dichlorobenzidine	15.1	μg/L	Discharge Conc < TQL
Diethyl Phthalate	27,249	µg/L	Discharge Conc ≤ 25% WQBEL
Dimethyl Phthalate	22,707	μg/L	Discharge Conc ≤ 25% WQBEL
Di-n-Butyl Phthalate	908	μg/L	Discharge Conc ≤ 25% WQBEL
2.4-Dinitrotoluene	15.1	μg/L	Discharge Conc < TQL
2.6-Dinitrotoluene	15.1	μg/L	Discharge Conc < TQL
Di-n-Octyl Phthalate	N/A	N/A	No WQS
1,2-Diphenylhydrazine	9.03	µg/L	Discharge Conc < TQL
1,2-Dipiterlyinyulaziile	6.00	P8/C	Distriarge Conc < TQL

Fluoranthene	908	μg/L	Discharge Conc < TQL
Fluorene	2,271	μg/L	Discharge Conc < TQL
Hexachlorobenzene	0.024	μg/L	Discharge Conc < TQL
Hexachlorobutadiene	3.01	μg/L	Discharge Conc < TQL
Hexachlorocyclopentadiene	45.4	μg/L	Discharge Conc < TQL
Hexachloroethane	30.1	μg/L	Discharge Conc < TQL
Indeno(1,2,3-cd)Pyrene	0.3	μg/L	Discharge Conc < TQL
Isophorone	1,544	μg/L	Discharge Conc < TQL
Naphthalene	1,953	μg/L	Discharge Conc < TQL
Nitrobenzene	454	μg/L	Discharge Conc < TQL
n-Nitrosodi-n-Propylamine	1.51	μg/L	Discharge Conc < TQL
n-Nitrosodiphenylamine	993	μg/L	Discharge Conc < TQL
Phenanthrene	45.4	μg/L	Discharge Conc < TQL
Pyrene	908	μg/L	Discharge Conc < TQL
1,2,4-Trichlorobenzene	3.18	μg/L	Discharge Conc < TQL
Aldrin	0.0002	μg/L	Discharge Conc < TQL
alpha-BHC	0.12	μg/L	Discharge Conc < TQL
beta-BHC	2.41	μg/L	Discharge Conc < TQL
gamma-BHC	19.7	μg/L	Discharge Conc < TQL
delta BHC	N/A	N/A	No WQS
Chlordane	0.09	μg/L	Discharge Conc < TQL
4,4-DDT	0.009	μg/L	Discharge Conc < TQL
4,4-DDE	0.006	μg/L	Discharge Conc < TQL
Dieldrin	0.0003	μg/L	Discharge Conc < TQL
alpha-Endosulfan	2.54	μg/L	Discharge Conc < TQL
beta-Endosulfan	2.54	μg/L	Discharge Conc < TQL
Endosulfan Sulfate	908	μg/L	Discharge Conc < TQL
Endrin	1.36	μg/L	Discharge Conc < TQL
Endrin Aldehyde	45.4	μg/L	Discharge Conc < TQL
Heptachlor	0.002	μg/L	Discharge Conc < TQL
Heptachlor Epoxide	0.009	μg/L	Discharge Conc < TQL
PCB-1016	N/A	N/A	No WQS
PCB-1221	N/A	N/A	No WQS
PCB-1232	N/A	N/A	No WQS
PCB-1242	N/A	N/A	No WQS
PCB-1248	N/A	N/A	No WQS
PCB-1254	N/A	N/A	No WQS
PCB-1260	N/A	N/A	No WQS
			Discharge Conc < TQL

Attachment C:

TRC Model Spreadsheet for Outfall 001

TRC EVALUATION

0.031 4 0.3	= Chlorine D = BAT/BPJ V	ge (MGD) es emand of Stream emand of Discharge	0.5 0.705 1 15		Mix Factor Compliance Time (min) Compliance Time (min)		
Source TRC	Reference 1.3.2.iii	AFC Calculations WLA afc =	10.008	Reference 1.3.2.iii	CFC Calculations WLA cfc = 13.824		
PENTOXSD TRO	5.1a	LTAMULT afc = LTA_afc=	0.373	5.1c 5.1d	LTAMULT cfc = 0.581 LTA_cfc = 8.037		
Source			nt Limit Calcu				
PENTOXSD TRG 5.1f AML MULT = 1.720 PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.500 BAT/BPJ INST MAX LIMIT (mg/l) = 1.170							
WLA afc LTAMULT afc LTA_afc	+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT afc EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5)						
WLA_cfc							
AML MULT AVG MON LIMIT INST MAX LIMIT	MIN(BAT_BP	N((cvd^2/no_samples J,MIN(LTA_afc,LTA_cf n_limit/AML_MULT)/L	c)*AML_MUL	T)	ampies+1))		

Attachment D:

USGS Stream Stats Data at Outfall 002

002 StreamStats Report

Region ID: PA

Workspace ID: PA20231005143453963000

Clicked Point (Latitude, Longitude): 40.12344, -78.79362

Time: 2023-10-05 10:35:19 -0400

Collapse All

		_	
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	2.05	square miles
ELEV	Mean Basin Elevation	2465	feet
PRECIP	Mean Annual Precipitation	44	inches

Low-Flow Sta Parameter	itistics Parameters [Low F	low Regi	on 3]	Min	Max
Gode Parameter	Parameter Name	Value	Units	Mimit	Max*
€6 q ¢	Recommender/Nation	Yabse	Units	bingit	Pinit
DREGREA	DreanagenAraja	2405	adhate	283	4720
	Precipitation		miles		

Parameter	Min	Max		
Code Parameter	Parameter Name	Value Units	Minit	Limit Max
දිවල්අ	Recommunity in Nation	⊻ար ան իննինա	bingit	tiovid
PREMIERA	DreamagenArd a Precipitation	2405 Bapchere miles	283	4720

Low-Flow Statistics Disclaimers [Low Flow Region 3]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Low-Flow Statistics Flow Report [Low Flow Region 3]

Statistic	Value	Unit
7 Day 2 Year Low Flow	0.313	ft^3/s
30 Day 2 Year Low Flow	0.445	ft^3/s
7 Day 10 Year Low Flow	0.134	ft^3/s
30 Day 10 Year Low Flow	0.178	ft^3/s
90 Day 10 Year Low Flow	0.264	ft^3/s

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

Attachment E:

Toxics Management Spreadsheet for Outfall 002

Toxics Management Spreadsheet Version 1.4, May 2023

Discharge Information

Instruction	Disch	arge Stream		
Facility:	Shade	Landfill	NPDES Permit No.: PA0097110	Outfall No.: 002
Evaluation 1	Гуре:	Major Sewage / Industrial Waste	Wastewater Description: Landfill Leachate	

Discharge Characteristics														
Design Flow Hardness (mg/l)* pH (SII)* Partial Mix Factors (PMFs) Complete Mix Times (min)														
(MGD)*	Hardness (mg/l)* pH (SU)* AFC CFC THH CRL Q ₇₋₁₀ Q _h													
0.034	210	7												

						O If Is	eft blank		0.5 If le	eft blank	0) if left blan	k	1 If let	t blank
	Discharge Pollutant	Units	Ma	x Discharge Conc		rib onc	Strea Con	- 1	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS		Chem Transl
	Total Dissolved Solids (PWS)	mg/L		353	+	\vdash									
1	Chloride (PWS)	mg/L		13		П									
Group	Bromide	mg/L	٧	0.1		П									
ច	Sulfate (PWS)	mg/L		206	\vdash	\square									
	Fluoride (PWS)	mg/L		0.1	H	\Box									
	Total Aluminum	μg/L		500											
	Total Antimony	μg/L		0.7	П	П									
	Total Arsenic	μg/L		1.1	\vdash	\Box									
	Total Barium	μg/L		19.3	Ħ	Ħ									
	Total Beryllium	μg/L	<	0.5		П									
	Total Boron	μg/L		99	\vdash	\square									
	Total Cadmium	μg/L	<	0.1	\vdash	\Box									
	Total Chromium (III)	μg/L		1		\sqcap									
	Hexavalent Chromium	μg/L		1.4	\Box	П									
	Total Cobalt	μg/L		15.8	H	Ħ		\neg							
	Total Copper	μg/L		5	Ħ	Ħ									
2	Free Cyanide	μg/L				П		\neg							
Ιğ	Total Cyanide	μg/L	<	10	H	\Box		\neg							
Group	Dissolved Iron	μg/L	٧	20	H	Ħ									
	Total Iron	μg/L		716		ш		\neg							
	Total Lead	μg/L		1.7		\square									
	Total Manganese	μg/L		920	H	\Box		\neg							
	Total Mercury	µg/L	<	0.1	\forall	\forall		\neg							
	Total Nickel	μg/L		57.6		П									
	Total Phenols (Phenolics) (PWS)	μg/L		5	H	Ħ		\neg							
	Total Selenium	μg/L		1.1	H	Ħ									
	Total Silver	µg/L		0.3		ш		\neg							
	Total Thallium	μg/L		0.3	ļ.	\Box		\neg							
	Total Zinc	µg/L		21.8	Ħ	Ħ									
	Total Molybdenum	μg/L	٧	0.5	\vdash	\forall		\neg							
	Acrolein	µg/L	<	2											
	Acrylamide	µg/L	<	11											
	Acrylonitrile	μg/L	<	0.5	H	Ħ									
1	Benzene	µg/L	<	0.2											
1	Bromoform	μg/L	٧	0.5		Ħ									

Chlorocheromene	1	Code on Total obligate		_	0.0								
Chlorochtynomorehane	1	Carbon Tetrachloride	μg/L	<	0.2	Ц	4	Ļ				Ļ	_
Chlororethy Viryl Ether Spt.	1			<		Ц	4	Ļ				Ш	_
2-Chloroethy Viny Ether	1	Chlorodibromomethane	μg/L	<	0.4	Н	\pm	+				Н	
Chloroformomethane	1		μg/L	<	0.2	H	$^{+}$	†				Н	
Chloroformomethane	1	2-Chloroethyl Vinyl Ether	μg/L	<	0.5	Ħ	T					П	
Dicklorebromomethane	1	Chloroform	ua/L	<	0.2								
1.1-Dehloroethane				<			#	+				\Box	
1.1-Dichloroethylene µgL						H	+	+				H	+
1.1		-		_		H	+	+				Н	-
Solichioropropane		•		_		H	+	+				H	#
1,4-Dioxane	ΙĦ	•		_		Ħ	\mp	$\dot{+}$				\Box	
1,4-Dioxane	18						4	\Box					
Bettyleansene	1			<		Ц	4	Щ				Ш	
Methyl Chloride µg/L < 0.5 Methylene Chloride µg/L 0.2 Methylene Chloride µg/L 0.4 1,1,2,2-Tetrachicroethane µg/L 0.2 Tetrachicroethylene µg/L 0.2 1,1,1-Trichicroethane µg/L 0.2 1,1,1-Trichicroethane µg/L 0.5 1,1,1-Trichicroethane µg/L 0.2 1,1,1-Trichicroethane µg/L 0.2 1,1,1-Trichicroethylene µg/L 0.2 Vryl Chloride µg/L 0.2 2-Chlorophenol µg/L 0.2 2-Chlorophenol µg/L 0.2 2-Unitrophenol µg/L 0.2 2-Unitrophenol µg/L 0.5 2-Villorophenol µg/L 0.5 2-Villorophenol µg/L 0.5 2-Villorophenol µg/L <th< td=""><td>1</td><td>1,4-Dioxane</td><td>μg/L</td><td></td><td>0.9</td><td>Н</td><td>\perp</td><td>+</td><td></td><td></td><td></td><td>\vdash</td><td></td></th<>	1	1,4-Dioxane	μg/L		0.9	Н	\perp	+				\vdash	
Methyl Chloride	1	Ethylbenzene	μg/L	<	0.2	H	+	╁				Н	
Methylochloride ug/L 0.2 Methylochlor		Methyl Bromide		<	0.5	Ħ		Ŧ				Ħ	
Methylene Chloride		Methyl Chloride		<	0.2								
Tetrachloroethylene	1			<									
Totachioroethylene	1	•		_		H	+	\pm				H	
Toluene μg/L 0.2	1			_		H	+	+				H	+
1.2-trans-Dichloroethylene							+	H				H	+
1.1.7-Trichloroethane				_									
1,1,2-Trichloroethane				_									
Trichloroethylene		• •	μg/L	<									
Vinyl Chloride		1,1,2-Trichloroethane	µg/L	<	0.5	Ц							
2-Chlorophenol μg/L		Trichloroethylene	μg/L	<	0.2	H	7	\perp				Н	
2-Chlorophenol μg/L	1	Vinyl Chloride	µg/L	<	0.2	Ħ		+				Н	
2.4-Dichlorophenol μg/L < 0.2	\vdash			<	0.2	H						П	
2.4-Dimethylphenol μg/L				_		Ħ	Ť	Ť					
4,8-Dinitro-o-Cresol µg/L 1	1			_			#	+					
2,4-Dinitrophenol ug/L	1			_		H	+	+				Н	+
2-Nitrophenol		•		_		Н	+	+				Н	_
P-Chloro-m-Cresol	_			_		H	+	+				H	
P-Chloro-M-Cresol μg/L	₹			_		Ħ	\Rightarrow						
Pentachlorophenol	ō	4-Nitrophenol		<	0.5								
Pentachlorophenol		p-Chloro-m-Cresol	μg/L	<	0.2	Ц	4	Ш				Ш	_
2,4,6-Trichlorophenol μg/L < 0.2	1	Pentachlorophenol		<	0.5	H	7	\perp				Н	\mp
2.4,6-Trichlorophenol		Phenol	µg/L	<	0.2	H	7	+				\vdash	=
Acenaphthene μg/L 0.1 Acenaphthylene μg/L 0.1 Anthracene μg/L 0.1 Benzo(a)Anthracene μg/L 0.1 Benzo(a)Pyrene μg/L 0.1 3.4-Benzofluoranthene μg/L 0.1 Benzo(k)Pluoranthene μg/L 0.1 Benzo(k)Fluoranthene μg/L 0.1 Bis(2-Chloroethyl)Ether μg/L 0.1 Bis(2-Chlorosethyl)Ether μg/L 0.1 Bis(2-Chlorosethyl)Ether μg/L 0.1 Bis(2-Chlorosethyl)Ether μg/L 0.1 Bis(2-Chlorosethyl)Ether μg/L 0.1 Bis(2-Chlorosephyl)Ether μg/L 0.1 Bis(2-Chlorosephryl)Phthalate μg/L 0.1 4-Bromophenyl Phenyl Ether μg/L 0.1 Butyl Benzyl Phthalate μg/L 0.1 2-Chlor	1	2.4.6-Trichlorophenol		<	0.2	H	+					т	
Acenaphthylene	\vdash			-		Ħ	Ť					Ħ	
Anthracene							#	\mp					
Benzidine	1					H	+	+				H	+
Benzo(a)Anthracene						Н	+	+				Н	+
Benzo(a)Pyrene	1					H	+	+				Н	#
3,4-Benzofluoranthene μg/L < 0.1						H	\Rightarrow						
Benzo(ghi)Perylene		Benzo(a)Pyrene	μg/L	<				Ť					
Benzo(k)Fluoranthene	1		μg/L	<	0.1	Ц	4	Т				Щ	
Bis(2-Chloroethoxy)Methane		Benzo(ghi)Perylene	µg/L	<	0.1	H		F					
Bis(2-Chloroethoxy)Methane		Benzo(k)Fluoranthene	µg/L	<	0.1	H						Н	
Bis(2-Chloroethyl)Ether				<									
Bis(2-Chloroisopropyl)Ether				<	0.1	П	\neg					П	
Bis(2-Ethylhexyl)Phthalate	1			-			-						
4-Bromophenyl Phenyl Ether Butyl Benzyl Phthalate μg/L < 0.1 2-Chloronaphthalene μg/L < 0.1 4-Chlorophenyl Phenyl Ether μg/L < 0.1 Chrysene μg/L < 0.1 Dibenzo(a,h)Anthrancene μg/L < 0.1 1,2-Dichlorobenzene μg/L < 0.1 1,3-Dichlorobenzene μg/L < 0.1 1,4-Dichlorobenzene μg/L < 0.1 1,4-Dichlorobenzene μg/L < 0.1 1,4-Dichlorobenzene μg/L < 0.1 Diethyl Phthalate μg/L < 0.5 Diethyl Phthalate μg/L < 1 Dimethyl Phthalate μg/L < 1				_		H	+	+				H	+
Butyl Benzyl Phthalate	1					Н	+	+				Н	+
2-Chloronaphthalene μg/L < 0.1						H	+	+				\vdash	+
4-Chlorophenyl Phenyl Ether μg/L < 0.1 Chrysene μg/L < 0.1 Dibenzo(a,h)Anthrancene μg/L < 0.1 1,2-Dichlorobenzene μg/L < 0.1 1,3-Dichlorobenzene μg/L < 0.1 1,4-Dichlorobenzene μg/L < 0.1 3,3-Dichlorobenzene μg/L < 0.1 Diethyl Phthalate μg/L < 0.5 Diethyl Phthalate μg/L < 1 Dimethyl Phthalate μg/L < 1				_		H		Ť					
Chrysene μg/L 0.1 Dibenzo(a,h)Anthrancene μg/L 0.1 1,2-Dichlorobenzene μg/L 0.1 1,3-Dichlorobenzene μg/L 0.1 1,4-Dichlorobenzene μg/L 0.1 3,3-Dichlorobenzidine μg/L 0.5 Diethyl Phthalate μg/L 1 Dimethyl Phthalate μg/L 1	1			_									
Dibenzo(a,h)Anthrancene μg/L		4-Chlorophenyl Phenyl Ether	μg/L	<	0.1	Ц	4	\perp				Ш	
Dibenzo(a,h)Anthrancene μg/L < 0.1	1	Chrysene	μg/L	<	0.1	Н	4	+				Н	
1,2-Dichlorobenzene 1,3-Dichlorobenzene μg/L < 0.1 1,4-Dichlorobenzene μg/L < 0.1 3,3-Dichlorobenzene μg/L < 0.1 Diethyl Phthalate μg/L < 0.5 Diethyl Phthalate μg/L < 1 Dimethyl Phthalate μg/L < 1		Dibenzo(a,h)Anthrancene		<	0.1	H						Н	
1,3-Dichlorobenzene μg/L < 0.1				<	0.1	H							
1,4-Dichlorobenzene μg/L < 0.1 3,3-Dichlorobenzidine μg/L < 0.5 Diethyl Phthalate μg/L < 1 Dimethyl Phthalate μg/L < 1				<									
3,3-Dichlorobenzidine μg/L < 0.5 Diethyl Phthalate μg/L < 1 Dimethyl Phthalate μg/L < 1		•		_			T	T					
Differing Printage pgc 1	5			_				H					
Differing Printage pgc 1	l inc			_			-	+				Н	+
Differing Printage pgc 1	5			_			+	H				H	+
				_		H							
			µg/L	_									
2,4-Dinitrotoluene µg/L < 0.2		2,4-Dinitrotoluene	μg/L	<	0.2								

	2,6-Dinitrotoluene	μg/L	<	0.2	\vdash	-	-					K-		
	Di-n-Octyl Phthalate	µg/L	<	1	Н	+	+					╟	┝	H
	1,2-Diphenylhydrazine	µg/L	<	0.1	H	H	\pm	_				H	H	H
	Fluoranthene		<	0.1			#	 					Ε	
		μg/L	_	0.1	H	4	+					⊬	H	H
	Fluorene	μg/L	<		Н	4	+					⊬	⊬	Н
	Hexachlorobenzene	μg/L	<	0.1	H	4	\pm					⊭	H	H
	Hexachlorobutadiene	μg/L	<	0.1			#						Ξ	
	Hexachlorocyclopentadiene	μg/L	<	0.1	Ц	Ц	4						Ļ	Щ
	Hexachloroethane	μg/L	<	0.5	Ц	4	4					L	L	Ш
	Indeno(1,2,3-cd)Pyrene	μg/L	<	0.1	Н	4	\pm						L	Н
	Isophorone	μg/L	<	0.2	H									
	Naphthalene	μg/L	<	0.1				1						
	Nitrobenzene	μg/L	<	0.1	П	ļ	7						F	
	n-Nitrosodimethylamine	μg/L	<	0.1	Н	7	\mp					H	F	Н
	n-Nitrosodi-n-Propylamine	µg/L	<	0.1	Ħ	Ħ	7					r	Ħ	Ħ
	n-Nitrosodiphenylamine	μg/L	<	0.1										
	Phenanthrene	μg/L	<	0.1		#	#						Ħ	
	Pyrene	μg/L	<	0.1	H	7	+					⊭	H	Ħ
	1,2,4-Trichlorobenzene	µg/L	<	0.1	Ħ	+	+					₩	H	H
	Aldrin	μg/L	<	0.002	H		+							F
	alpha-BHC		~	0.002									E	ø
		µg/L	<				-							
	beta-BHC	μg/L	<	0.002	H	-	+					-	-	H
	gamma-BHC	μg/L		0.002	H	4	\pm					⊬	H	H
	delta BHC	μg/L		0.003										
	Chlordane	μg/L	<	0.1		Ц	Ţ						Е	Д
	4,4-DDT	μg/L	<	0.002	Ц	4	4					L	L	Ш
	4,4-DDE	μg/L	<	0.002	Н	4	4					Ł	L	Н
	4,4-DDD	μg/L		0.002	H	7	7					╟	Н	H
	Dieldrin	μg/L		0.003		T	T						Т	\Box
	alpha-Endosulfan	μg/L		0.003	П	\Box	Ţ					E	F	
	beta-Endosulfan	μg/L		0.003	H	4	7					H	F	\Box
9	Endosulfan Sulfate	µg/L		0.004	Ħ	Ħ	7					⊭	H	Ħ
Group	Endrin	μg/L		0.004	Н	T	+						Н	Н
ĕ	Endrin Aldehyde	μg/L		0.002		3	#	 					E	
٥	Heptachlor	µg/L	<	0.002	H	#	#					H	H	Ħ
	Heptachlor Epoxide	µg/L	_	0.002	Н	+	+					╟	┝	H
	PCB-1016		<	0.003	H	H	\pm	_			_	⊬	H	H
	PCB-1010	µg/L	<	0.1			#	 			_	E	Ε	
		μg/L		0.1		4	+	-					H	\blacksquare
	PCB-1232	μg/L	<		Н	+	+					╙	H	Н
	PCB-1242	μg/L	<	0.1	H	4	\pm					⊬	H	H
	PCB-1248	μg/L	<	0.1	H	4	#						Ė	
	PCB-1254	μg/L	<	0.1										
	PCB-1260	μg/L	<	0.1	Ц									Ш
	PCBs, Total	μg/L	<		Н		-					-		Н
	Toxaphene	μg/L	<	0.101	Ы									
	2,3,7,8-TCDD	ng/L	٧											
	Gross Alpha	pCi/L			П	J	Ţ						Γ	
7	Total Beta	pCi/L	<		H	7	7					H	F	Ħ
	Radium 226/228	pCi/L	<		H									Ħ
	Total Strontium	μg/L	<											
Ø	Total Uranium	μg/L	<			⇉	#						E	
	Osmotic Pressure	mOs/kg			Ħ	7	#					H	H	Ħ
	OSHIOLO I TESSAIC	moskg	\vdash		Н	+	+					Н		_
			\vdash		Н	+	+	_				⊢		_
			\vdash				#					⊢	_	_
							Ţ							
					Н		+							
							+							
							1							
						-	+							
												1		

Toxics Management Spreadsheet Version 1.4, May 2023

Stream / Surface Water Information

Shade Landfill, NPDES Permit No. PA0097110, Outfall 002

Instructions Disch		ream					No Pos	iches to	Madel	4	@ Stor	tewide Criteri			
Receiving Surface W	rater Name.	Laurer Kun					No. Rea	iches to	wodel.	1	~	at Lakes Crit			
Location	Stream Co	de* RMI	Elevat	DA (mai	²)* Sk	ope (ft/ft)		Withdraw MGD)	val Apply F Criteri		OR	SANCO Crite	eria		
Point of Discharge	045335	1.3	221	0 2.05		0.018			Yes						
End of Reach 1	045335	0.93	3 217	6 2.52					Yes	;					
Q ₇₋₁₀		LFY	Flov	v (cfs)	W/D	Width	Depth	Velocit	Havei	Tributa	arv	Strea	m	Analys	sis
Location	RMI	(cfs/mi ²)*	Stream	Tributary	Ratio		(ft)	y (fps)	Time (days)	Hardness	pH	Hardness*	pH*	Hardness	pН
Point of Discharge	1.3	0.0653	0.134						(Maye)			100	7		
End of Reach 1	0.93	0.0653	0.166												
Qh															
Location	RMI	LFY	Flov	v (cfs)	W/D	Width	Depth	Velocit	Time	Tributa	ary	Strea	m	Analys	is
Location	TXIVII	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness	pН	Hardness	pН
Point of Discharge	1.3														
End of Reach 1	0.93														

Toxics Management Spreadsheet Version 1.4, May 2023

Model Results

Shade Landfill, NPDES Permit No. PA0097110, Outfall 002

Instructions Results	RETURN	TO INPU	тѕ	SAVE AS	PDF)	PRINT	г) 💿 А	ll () Inputs () Results () Limits							
Hydrodynamics															
✓ Wasteload Allocations															
☑ AFC con	Γ (min): 0.8	828	PMF:	1	Ana	lysis Hardne	ss (mg/l):	131.01 Analysis pH: 7.00							
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments							
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A								
Chloride (PWS)	0	0		0	N/A	N/A	N/A								
Sulfate (PWS)	0	0		0	N/A	N/A	N/A								
Fluoride (PWS)	0	0		0	N/A	N/A	N/A								
Total Aluminum	0	0		0	750	750	2,661								
Total Antimony	0	0		0	1,100	1,100	3,902								
Total Arsenic	0	0		0	340	340	1,206	Chem Translator of 1 applied							
Total Barium	0	0		0	21,000	21,000	74,500								
Total Boron	0	0		0	8,100	8,100	28,736								
Total Cadmium	0	0		0	2.618	2.81	9.96	Chem Translator of 0.933 applied							
Total Chromium (III)	0	0		0	710.817	2,249	7,980	Chem Translator of 0.316 applied							
Hexavalent Chromium	0	0		0	16	16.3	57.8	Chem Translator of 0.982 applied							
Total Cobalt	0	0		0	95	95.0	337								
Total Copper	0	0		0	17.333	18.1	64.1	Chem Translator of 0.96 applied							
Dissolved Iron	0	0		0	N/A	N/A	N/A								
Total Iron	0	0		0	N/A	N/A	N/A								
Total Lead	0	0		0	86.548	115	408	Chem Translator of 0.752 applied							
Total Manganese	0	0		0	N/A	N/A	N/A								
Total Mercury	0	0		0	1.400	1.65	5.84	Chem Translator of 0.85 applied							
Total Nickel	0	0		0	588.430	590	2,092	Chem Translator of 0.998 applied							
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A								
Total Selenium	0	0		0	N/A	N/A	N/A	Chem Translator of 0.922 applied							
Total Silver	0	0		0	5.119	6.02	21.4	Chem Translator of 0.85 applied							
Total Thallium	0	0		0	65	65.0	231								
Total Zinc	0	0		0	147.312	151	534	Chem Translator of 0.978 applied							
Acrolein	n	n		n	3	3.0	10.6								

Anadamida	0	0	0	N/A	N/A	N/A	
Acrylamide	0	0	0	650	650	2,306	
Acrylonitrile		_					
Benzene	0	0	0	640	640	2,270	
Bromoform	0	0	0	1,800	1,800	6,386	
Carbon Tetrachloride	0	0	0	2,800	2,800	9,933	
Chlorobenzene	0	0	0	1,200	1,200	4,257	
Chlorodibromomethane	0	0	0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0	0	18,000	18,000	63,857	
Chloroform	0	0	0	1,900	1,900	6,740	
Dichlorobromomethane	0	0	0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0	0	15,000	15,000	53,214	
1,1-Dichloroethylene	0	0	0	7,500	7,500	26,607	
1,2-Dichloropropane	0	0	0	11,000	11,000	39,024	
1,3-Dichloropropylene	0	0	0	310	310	1,100	
Ethylbenzene	0	0	0	2,900	2,900	10,288	
Methyl Bromide	0	0	0	550	550	1,951	
Methyl Chloride	0	0	0	28,000	28,000	99,334	
Methylene Chloride	0	0	0	12,000	12,000	42,572	
1,1,2,2-Tetrachloroethane	0	0	0	1,000	1,000	3,548	
Tetrachloroethylene	0	0	0	700	700	2,483	
Toluene	0	0	0	1,700	1,700	6,031	
1,2-trans-Dichloroethylene	0	0	0	6,800	6,800	24,124	
1,1,1-Trichloroethane	0	0	0	3,000	3,000	10,643	
1,1,2-Trichloroethane	0	0	0	3,400	3,400	12,062	
Trichloroethylene	0	0	0	2,300	2,300	8,160	
Vinyl Chloride	0	0	0	N/A	N/A	N/A	
2-Chlorophenol	0	0	0	560	560	1,987	
2,4-Dichlorophenol	0	0	0	1,700	1,700	6,031	
2,4-Dimethylphenol	0	0	0	660	660	2,341	
4.6-Dinitro-o-Cresol	0	0	0	80	80.0	284	
2,4-Dinitrophenol	0	0	0	660	660	2,341	
2-Nitrophenol	0	0	0	8,000	8.000	28,381	
4-Nitrophenol	0	0	0	2,300	2,300	8,160	
p-Chloro-m-Cresol	0	0	0	160	160	568	
Pentachlorophenol	0	0	0	8.723	8.72	30.9	
Phenol	0	0	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	460	460	1,632	
Acenaphthene	0	0	0	83	83.0	294	
Anthracene	0	0	0	N/A	N/A	N/A	
Benzidine	0	0	0	300	300	1,064	
Benzo(a)Anthracene	0	0	0	0.5	0.5	1,77	
Benzo(a)Pyrene	0	0	0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0	0	30.000	30.000	106.429	
Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroisopropyi)Ether Bis(2-Ethylhexyl)Phthalate	0	0	0	4,500	4.500	15.964	
4-Bromophenyl Phenyl Ether	0	0	0	270	270	958	
4-bromophenyi Phenyi Ether	U	U	U	2/0	2/0	808	

Butyl Benzyl Phthalate	0	0		0	140	140	497	
	0	0	 	0	N/A	N/A	N/A	
2-Chloronaphthalene	_	_		_				
Chrysene	0	0		0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0		0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0		0	820	820	2,909	
1,3-Dichlorobenzene	0	0		0	350	350	1,242	
1,4-Dichlorobenzene	0	0		0	730	730	2,590	
3,3-Dichlorobenzidine	0	0		0	N/A	N/A	N/A	
Diethyl Phthalate	0	0		0	4,000	4,000	14,191	
Dimethyl Phthalate	0	0		0	2,500	2,500	8,869	
Di-n-Butyl Phthalate	0	0		0	110	110	390	
2,4-Dinitrotoluene	0	0		0	1,600	1,600	5,676	
2,6-Dinitrotoluene	0	0		0	990	990	3,512	
1,2-Diphenylhydrazine	0	0		0	15	15.0	53.2	
Fluoranthene	0	0		0	200	200	710	
Fluorene	0	0		0	N/A	N/A	N/A	
Hexachlorobenzene	0	0		0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0		0	10	10.0	35.5	
Hexachlorocyclopentadiene	0	0		0	5	5.0	17.7	
Hexachloroethane	0	0	 	6	60	60.0	213	
Indeno(1,2,3-cd)Pyrene	0	0		0	N/A	N/A	N/A	
Isophorone	0	0		0	10,000	10,000	35,476	
Naphthalene	0	0		0	140	140	497	
Nitrobenzene	0	0		0	4,000	4,000	14,191	
n-Nitrosodimethylamine	0	0		0	17,000	17,000	60,310	
n-Nitrosodi-n-Propylamine	0	0		0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0		0	300	300	1,064	
Phenanthrene	0	0		0	5	5.0	17.7	
Pyrene	0	0		0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0		0	130	130	461	
Aldrin	0	0		0	3	3.0	10.6	
alpha-BHC	0	0		0	N/A	N/A	N/A	
beta-BHC	0	0		0	N/A	N/A	N/A	
gamma-BHC	0	0		0	0.95	0.95	3.37	
Chlordane	0	0		0	2.4	2.4	8.51	
4,4-DDT	0	0		0	1.1	1.1	3.9	
4.4-DDE	0	0		0	1.1	1.1	3.9	
4,4-DDD	0	0		0	1.1	1.1	3.9	
Dieldrin	0	0		0	0.24	0.24	0.85	
alpha-Endosulfan	0	0		0	0.24	0.24	0.83	
beta-Endosulfan	0	0		0	0.22	0.22	0.78	
				_				
Endosulfan Sulfate	0	0		0	N/A	N/A	N/A	
Endrin	0	0		0	0.086	0.086	0.31	
Endrin Aldehyde	0	0		0	N/A	N/A	N/A	
Heptachlor	0	0		0	0.52	0.52	1.84	
Heptachlor Epoxide	0	0		0	0.5	0.5	1.77	
Toxaphene	0	0		0	0.73	0.73	2.59	

NPDES Permit No. PA0097110

✓ CFC CCT (min): 0.828 PMF: 1 Analysis Hardness (mg/l): 131.01 Analysis pH: 7.00

Pollutants		Stream							
Total Dissolved Solitis (PWS) 0 0 0 N/A N/A N/A N/A N/A Chorde (PWS) 0 0 0 N/A N/A N/A N/A N/A N/A N/A Suffate (PWS) 0 0 0 N/A	Pollutants		Stream	Trib Conc	Fate	WQC	WQ Obj	WLA (µg/L)	Comments
Chloride (PWS)	Table Disease and Oakida (Disto)			(µg/L)				21/4	
Sulfate (PWS)	, ,	_	_		_				
Fluoride (PWS)	, ,	_							
Total Aluminum	١ ،	_	_						
Total Antimony	` '								
Total Arsenic 0									
Total Barium	•	_	_		_				Observation of the state of the
Total Codmium		_	_						Chem Translator of 1 applied
Total Cadmium			_						
Total Chromium (III)						,		-	C) T 11 (2000 F)
Hexavalent Chromium		_	_						
Total Cobalt	· /	_	_		_				
Total Copper			_						Chem Translator of 0.962 applied
Dissolved fron 0 0 0 0 N/A N/A N/A N/A N/A			_						
Total Iron									Chem Translator of 0.96 applied
Total Lead	Dissolved Iron		_			N/A	N/A		
Total Manganese	Total Iron	0	0		0	1,500	1,500	5,321	
Total Mercury	Total Lead	0	0		0	3.373	4.49	15.9	Chem Translator of 0.752 applied
Total Nickel	Total Manganese	0	0		0	N/A	N/A	N/A	
Total Phenolics (Phenolics) (PWS) 0 0 NIA N/A NIA Total Selenium 0 0 4.800 4.99 17.7 Chem Translator of 0.922 applied Total Silver 0 0 0 N/A N/A N/A Chem Translator of 1 applied Total Thallium 0 0 0 13 13.0 46.1 Chem Translator of 0.986 applied Acrolein 0 0 0 148.517 151 534 Chem Translator of 0.986 applied Acrylamide 0 0 0 3 3.0 10.6 Acrylamide 0 0 0 130 130 461 Benzene 0 0 0 130 130 461 Benzene 0 0 0 370 370 1,313 Carbon Tetrachloride 0 0 0 560 1,987 Chlorodibromomethane 0 0 0 3,500 3,500 1,2417 <t< td=""><td>Total Mercury</td><td>0</td><td>0</td><td></td><td>0</td><td>0.770</td><td>0.91</td><td>3.21</td><td>Chem Translator of 0.85 applied</td></t<>	Total Mercury	0	0		0	0.770	0.91	3.21	Chem Translator of 0.85 applied
Total Selenium 0 0 4.600 4.99 17.7 Chem Translator of 0.922 applied Total Silver 0 0 0 N/A N/A N/A Chem Translator of 1 applied Total Thallium 0 0 0 13 13.0 48.1 Chem Translator of 0.986 applied Acrolein 0 0 0 148.517 151 534 Chem Translator of 0.986 applied Acrylamide 0 0 0 N/A N/A N/A Acrylamide 0 0 0 130 130 461 Benzene 0 0 0 130 130 461 Benzene 0 0 0 370 370 1,313 Carbon Tetrachloride 0 0 0 560 560 1,987 Chlorobenzene 0 0 0 0 3,500 3,500 12,417 Chloroform 0 0 0 0 3,500	Total Nickel	0	0		0	65.356	65.6	233	Chem Translator of 0.997 applied
Total Silver 0 0 N/A N/A N/A Chem Translator of 1 applied Total Thallium 0 0 0 13 13.0 46.1 Total Zinc 0 0 0 148.517 151 534 Chem Translator of 0.986 applied Acrolein 0 0 0 3 3.0 10.6 Acrylamide 0 0 0 N/A N/A N/A Acrylamide 0 0 0 130 130 481 Benzene 0 0 130 130 481 Benzene 0 0 130 130 481 Bromoform 0 0 370 370 1,313 Carbon Tetrachloride 0 0 560 560 1,987 Chlorobenzene 0 0 0 240 240 851 Chlorocethyl Vinyl Ether 0 0 3,500 3,500 12,417 <t< td=""><td>Total Phenols (Phenolics) (PWS)</td><td>0</td><td>0</td><td></td><td>0</td><td>N/A</td><td>N/A</td><td>N/A</td><td></td></t<>	Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Thallium 0 0 13 13.0 46.1 Total Zinc 0 0 0 148.517 151 534 Chem Translator of 0.986 applied Acrolein 0 0 0 3 3.0 10.6 Acrylamide 0 0 0 N/A N/A N/A Acrylonitrile 0 0 0 130 130 461 Benzene 0 0 0 130 130 461 Bromoform 0 0 0 370 370 1,313 Carbon Tetrachloride 0 0 0 560 560 1,987 Chlorobenzene 0 0 0 240 240 851 Chlorodibromomethane 0 0 0 3,500 3,500 12,417 Chloroform 0 0 0 0 3,90 390 1,384 Dichloroethylene 0 0 0 1,5	Total Selenium	0	0		0	4.600	4.99	17.7	Chem Translator of 0.922 applied
Total Zinc	Total Silver	0	0		0	N/A	N/A	N/A	Chem Translator of 1 applied
Acrolein 0 0 0 3 3.0 10.6 Acrylamide 0 0 0 N/A N/A N/A Acrylonitrile 0 0 0 130 130 461 Benzene 0 0 0 130 130 461 Bromoform 0 0 0 370 370 1,313 Carbon Tetrachloride 0 0 0 560 560 1,987 Chlorobenzene 0 0 0 240 240 851 Chlorodibromomethane 0 0 0 3,500 3,500 12,417 Chloroform 0 0 0 390 390 1,384 Dichlorobromomethane 0 0 0 N/A N/A N/A 1,2-Dichloroethane 0 0 3,100 3,100 1,500 5,321	Total Thallium	0	0		0	13	13.0	46.1	
Acrylamide 0 0 N/A N/A N/A Acrylonitrile 0 0 130 130 461 Benzene 0 0 0 130 130 461 Bromoform 0 0 0 370 370 1,313 Carbon Tetrachloride 0 0 0 560 560 1,987 Chlorobenzene 0 0 0 240 240 851 Chlorodibromomethane 0 0 0 N/A N/A N/A 2-Chloroethyl Vinyl Ether 0 0 0 3,500 3,500 12,417 Chloroform 0 0 0 390 390 1,384 Dichlorobromomethane 0 0 N/A N/A N/A 1,2-Dichloroethylene 0 0 1,500 1,500 5,321	Total Zinc	0	0		0	148.517	151	534	Chem Translator of 0.986 applied
Acrylonitrile	Acrolein	0	0		0	3	3.0	10.6	
Benzene	Acrylamide	0	0		0	N/A	N/A	N/A	
Bromoform 0 0 370 370 1,313 Carbon Tetrachloride 0 0 560 560 1,987 Chlorobenzene 0 0 240 240 851 Chlorodibromomethane 0 0 N/A N/A N/A 2-Chloroethyl Vinyl Ether 0 0 3,500 3,500 12,417 Chloroform 0 0 390 390 1,384 Dichlorobromomethane 0 0 N/A N/A N/A 1,2-Dichloroethane 0 0 3,100 3,100 10,998 1,1-Dichloroethylene 0 0 1,500 5,321	Acrylonitrile	0	0		0	130	130	461	
Carbon Tetrachloride 0 0 560 560 1,987 Chlorobenzene 0 0 0 240 240 851 Chlorodibromomethane 0 0 N/A N/A N/A 2-Chloroethyl Vinyl Ether 0 0 3,500 3,500 12,417 Chloroform 0 0 390 390 1,384 Dichlorobromomethane 0 0 N/A N/A N/A 1,2-Dichloroethane 0 0 3,100 3,100 10,998 1,1-Dichloroethylene 0 0 1,500 5,321	Benzene	0	0		0	130	130	461	
Chlorobenzene 0 0 240 240 851 Chlorodibromomethane 0 0 N/A N/A N/A 2-Chloroethyl Vinyl Ether 0 0 3,500 3,500 12,417 Chloroform 0 0 390 390 1,384 Dichlorobromomethane 0 0 N/A N/A N/A 1,2-Dichloroethane 0 0 3,100 3,100 10,998 1,1-Dichloroethylene 0 0 1,500 5,321	Bromoform	0	0		0	370	370	1,313	
Chlorodibromomethane 0 0 N/A N/A N/A 2-Chloroethyl Vinyl Ether 0 0 3,500 3,500 12,417 Chloroform 0 0 390 390 1,384 Dichlorobromomethane 0 0 N/A N/A N/A 1,2-Dichloroethane 0 0 3,100 3,100 10,998 1,1-Dichloroethylene 0 0 1,500 5,321	Carbon Tetrachloride	0	0		0	560	560	1,987	
2-Chloroethyl Vinyl Ether 0 0 3,500 3,500 12,417 Chloroform 0 0 390 390 1,384 Dichlorobromomethane 0 0 N/A N/A N/A 1,2-Dichloroethane 0 0 3,100 3,100 10,998 1,1-Dichloroethylene 0 0 1,500 5,321	Chlorobenzene	0	0		0	240	240	851	
Chloroform 0 0 0 390 390 1,384 Dichlorobromomethane 0 0 0 N/A N/A N/A 1,2-Dichloroethane 0 0 0 3,100 3,100 10,998 1,1-Dichloroethylene 0 0 1,500 1,500 5,321	Chlorodibromomethane	0	0		0	N/A	N/A	N/A	
Chloroform 0 0 0 390 390 1,384 Dichlorobromomethane 0 0 0 N/A N/A N/A 1,2-Dichloroethane 0 0 0 3,100 3,100 10,998 1,1-Dichloroethylene 0 0 1,500 1,500 5,321	2-Chloroethyl Vinyl Ether	0	0		0	3,500	3,500	12,417	
1,2-Dichloroethane 0 0 0 3,100 3,100 10,998 1,1-Dichloroethylene 0 0 1,500 1,500 5,321		0	0		0	390	390	1,384	
1,1-Dichloroethylene 0 0 1 0 1,500 1,500 5,321	Dichlorobromomethane	0	0		0	N/A	N/A	N/A	
	1,2-Dichloroethane	0	0		0	3,100	3,100	10,998	
	1,1-Dichloroethylene	0	0		0	1,500	1,500	5,321	
		0	0		0	2,200	2,200	7,805	
1,3-Dichloropropylene 0 0 0 61 61.0 216		0	0		0	61	61.0	216	
Ethylbenzene 0 0 0 0 580 580 2,058		0	0		0	580	580	2,058	

		_	 				T
Methyl Bromide	0	0	0	110	110	390	
Methyl Chloride	0	0	0	5,500	5,500	19,512	
Methylene Chloride	0	0	0	2,400	2,400	8,514	
1,1,2,2-Tetrachloroethane	0	0	0	210	210	745	
Tetrachloroethylene	0	0	0	140	140	497	
Toluene	0	0	0	330	330	1,171	
1,2-trans-Dichloroethylene	0	0	0	1,400	1,400	4,967	
1,1,1-Trichloroethane	0	0	0	610	610	2,164	
1,1,2-Trichloroethane	0	0	0	680	680	2,412	
Trichloroethylene	0	0	0	450	450	1,596	
Vinyl Chloride	0	0	0	N/A	N/A	N/A	
2-Chlorophenol	0	0	0	110	110	390	
2,4-Dichlorophenol	0	0	0	340	340	1,206	
2,4-Dimethylphenol	0	0	0	130	130	461	
4,6-Dinitro-o-Cresol	0	0	0	16	16.0	56.8	
2,4-Dinitrophenol	0	0	0	130	130	461	
2-Nitrophenol	0	0	0	1,600	1,600	5,676	
4-Nitrophenol	0	0	0	470	470	1,667	
p-Chloro-m-Cresol	0	0	0	500	500	1,774	
Pentachlorophenol	0	0	0	6.693	6.69	23.7	
Phenol	0	0	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	91	91.0	323	
Acenaphthene	0	0	0	17	17.0	60.3	
Anthracene	0	0	0	N/A	N/A	N/A	
Benzidine	0	0	0	59	59.0	209	
Benzo(a)Anthracene	0	0	0	0.1	0.1	0.35	
Benzo(a)Pyrene	0	0	0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0	0	6,000	6,000	21,286	
Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	0	910	910	3,228	
4-Bromophenyl Phenyl Ether	0	0	0	54	54.0	192	
Butyl Benzyl Phthalate	0	0	0	35	35.0	124	
2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	
Chrysene	0	0	0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0	0	160	160	568	
1,3-Dichlorobenzene	0	0	0	69	69.0	245	
1,4-Dichlorobenzene	0	0	0	150	150	532	
3,3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A	
Diethyl Phthalate	0	0	0	800	800	2,838	
Dimethyl Phthalate	0	0	0	500	500	1,774	
Di-n-Butyl Phthalate	0	0	0	21	21.0	74.5	
2,4-Dinitrotoluene	0	0	0	320	320	1,135	
		•					

Fluoride (PWS)

Total Aluminum

0

2,6-Dinitrotoluene	0	0		0	200	200	710	
1,2-Diphenylhydrazine	0	0		0	3	3.0	10.6	
Fluoranthene	0	0		0	40	40.0	142	
Fluorene	0	0		0	N/A	N/A	N/A	
Hexachlorobenzene	0	0		0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0		0	2	2.0	7.1	
Hexachlorocyclopentadiene	0	0		0	1	1.0	3.55	
Hexachloroethane	0	0		0	12	12.0	42.6	
Indeno(1,2,3-cd)Pyrene	0	0		0	N/A	N/A	N/A	
Isophorone	0	0		0	2,100	2,100	7,450	
Naphthalene	0	0		0	43	43.0	153	
Nitrobenzene	0	0		0	810	810	2,874	
n-Nitrosodimethylamine	0	0		0	3,400	3,400	12,062	
n-Nitrosodi-n-Propylamine	0	0		0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0		0	59	59.0	209	
Phenanthrene	0	0		0	1	1.0	3.55	
Pyrene	0	0		0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0		0	26	26.0	92.2	
Aldrin	0	0		0	0.1	0.1	0.35	
alpha-BHC	0	0		0	N/A	N/A	N/A	
beta-BHC	0	0		0	N/A	N/A	N/A	
gamma-BHC	0	0		0	N/A	N/A	N/A	
Chlordane	0	0		0	0.0043	0.004	0.015	
4,4-DDT	0	0		0	0.001	0.001	0.004	
4,4-DDE	0	0		0	0.001	0.001	0.004	
4,4-DDD	0	0		0	0.001	0.001	0.004	
Dieldrin	0	0		0	0.056	0.056	0.2	
alpha-Endosulfan	0	0		0	0.056	0.056	0.2	
beta-Endosulfan	0	0	-	0	0.056	0.056	0.2	
Endosulfan Sulfate	0	0	\mathbb{H}	0	N/A	N/A	N/A	
Endrin	0	0		0	0.036	0.036	0.13	
Endrin Aldehyde	0	0		0	N/A	N/A	N/A	
Heptachlor	0	0		0	0.0038	0.004	0.013	
Heptachlor Epoxide	0	0		0	0.0038	0.004	0.013	
Toxaphene	0	0		0	0.0002	0.0002	0.0007	

☑ THH C	CT (min): 0.	828	PMF:	1	Ana	alysis Hardne	ess (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A	
Chloride (PWS)	0	0		0	250,000	250,000	N/A	
Sulfate (PWS)	0	0		0	250,000	250,000	N/A	

2,000

N/A

0

2,000

N/A

N/A

N/A

Total Antimony	0	0	0	5.6	5.6	19.9	
Total Arsenic	0	0	0	10	10.0	35.5	
Total Barium	0	0	0	2,400	2,400	8,514	
Total Boron	0	0	0	3,100	3,100	10,998	
Total Cadmium	0	0	0	N/A	N/A	N/A	
Total Chromium (III)	0	0	0	N/A	N/A	N/A	
Hexavalent Chromium	0	0	0	N/A	N/A	N/A	
Total Cobalt	0	0	0	N/A	N/A	N/A	
Total Copper	0	0	0	N/A	N/A	N/A	
Dissolved Iron	0	0	0	300	300	1.064	
Total Iron	0	0	0	N/A	N/A	N/A	
Total Lead	0	0	0	N/A	N/A	N/A	
Total Manganese	0	0	0	1,000	1,000	3,548	
Total Mercury	0	0	0	0.050	0.05	0.18	
Total Nickel	0	0	0	610	610	2,164	
Total Phenols (Phenolics) (PWS)	0	0	0	5	5.0	N/A	
Total Selenium	0	0	0	N/A	N/A	N/A	
Total Silver	0	0	0	N/A	N/A	N/A	
Total Thallium	0	0	0	0.24	0.24	0.85	
Total Zinc	0	0	0	N/A	N/A	N/A	
Acrolein	0	0	0	3	3.0	10.6	
Acrylamide	0	0	0	N/A	N/A	N/A	
Acrylonitrile	0	0	0	N/A	N/A	N/A	
Benzene	0	0	0	N/A	N/A	N/A	
Bromoform	0	0	0	N/A	N/A	N/A	
Carbon Tetrachloride	0	0	0	N/A	N/A	N/A	
Chlorobenzene	0	0	0	100	100.0	355	
Chlorodibromomethane	0	0	0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0	0	N/A	N/A	N/A	
Chloroform	0	0	0	5.7	5.7	20.2	
Dichlorobromomethane	0	0	0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0	0	N/A	N/A	N/A	
1,1-Dichloroethylene	0	0	0	33	33.0	117	
1,2-Dichloropropane	0	0	0	N/A	N/A	N/A	
1,3-Dichloropropylene	0	0	0	N/A	N/A	N/A	
Ethylbenzene	0	0	0	68	68.0	241	
Methyl Bromide	0	0	0	100	100.0	355	
Methyl Chloride	0	0	0	N/A	N/A	N/A	
Methylene Chloride	0	0	0	N/A	N/A	N/A	
1,1,2,2-Tetrachloroethane	0	0	0	N/A	N/A	N/A	
Tetrachloroethylene	0	0	0	N/A	N/A	N/A	
Toluene	0	0	0	57	57.0	202	
1,2-trans-Dichloroethylene	0	0	0	100	100.0	355	
1,1,1-Trichloroethane	0	0	0	10,000	10,000	35,476	
1.1.2-Trichloroethane	0	0	0	N/A	N/A	N/A	

Trichloroethylene	0	0	0	N/A	N/A	N/A	
Vinyl Chloride	0	0	0	N/A	N/A	N/A	
2-Chlorophenol	0	0	0	30	30.0	106	
2,4-Dichlorophenol	0	0	0	10	10.0	35.5	
2,4-Dimethylphenol	0	0	0	100	100.0	355	
4,6-Dinitro-o-Cresol	0	0	0	2	2.0	7.1	
2,4-Dinitrophenol	0	0	0	10	10.0	35.5	
2-Nitrophenol	0	0	0	N/A	N/A	N/A	
4-Nitrophenol	0	0	0	N/A	N/A	N/A	
p-Chloro-m-Cresol	0	0	0	N/A	N/A	N/A	
Pentachlorophenol	0	0	0	N/A	N/A	N/A	
Phenol	0	0	0	4,000	4,000	14,191	
2,4,6-Trichlorophenol	0	0	0	N/A	N/A	N/A	
Acenaphthene	0	0	0	70	70.0	248	
Anthracene	0	0	0	300	300	1,064	
Benzidine	0	0	0	N/A	N/A	N/A	
Benzo(a)Anthracene	0	0	0	N/A	N/A	N/A	
Benzo(a)Pyrene	0	0	0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroisopropyl)Ether	0	0	0	200	200	710	
Bis(2-Ethylhexyl)Phthalate	0	0	0	N/A	N/A	N/A	
4-Bromophenyl Phenyl Ether	0	0	0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0	0	0.1	0.1	0.35	
2-Chloronaphthalene	0	0	0	800	800	2,838	
Chrysene	0	0	0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0	0	1,000	1,000	3,548	
1,3-Dichlorobenzene	0	0	0	7	7.0	24.8	
1,4-Dichlorobenzene	0	0	0	300	300	1,064	
3,3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A	
Diethyl Phthalate	0	0	0	600	600	2,129	
Dimethyl Phthalate	0	0	0	2,000	2,000	7,095	
Di-n-Butyl Phthalate	0	0	0	20	20.0	71.0	
2,4-Dinitrotoluene	0	0	0	N/A	N/A	N/A	
2,6-Dinitrotoluene	0	0	0	N/A	N/A	N/A	
1,2-Diphenylhydrazine	0	0	0	N/A	N/A	N/A	
Fluoranthene	0	0	0	20	20.0	71.0	
Fluorene	0	0	0	50	50.0	177	
Hexachlorobenzene	0	0	0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0	0	N/A	N/A	N/A	
Hexachlorocyclopentadiene	0	0	0	4	4.0	14.2	
Hexachloroethane	0	0	0	N/A	N/A	N/A	
Indeno(1,2,3-cd)Pyrene	0	0	0	N/A	N/A	N/A	

0	0		0	34	34.0	121	
0	0		0	N/A	N/A	N/A	
0	0		0	10	10.0	35.5	
0	0		0	N/A	N/A	N/A	
0	0		0	N/A	N/A	N/A	
0	0		0	N/A	N/A	N/A	
0	0		0	N/A	N/A	N/A	
0	0		0	20	20.0	71.0	
0	0		0	0.07	0.07	0.25	
0	0		0	N/A	N/A	N/A	
0	0		0	N/A	N/A	N/A	
0	0		0	N/A	N/A	N/A	
0	0		0	4.2	4.2	14.9	
0	0		0	N/A	N/A	N/A	
0	0		0	N/A	N/A	N/A	
0	0		0	N/A	N/A	N/A	
0	0		0	N/A	N/A	N/A	
0	0		0	N/A	N/A	N/A	
0	0		0	20	20.0	71.0	
0	0		0	20	20.0	71.0	
0	0		0	20	20.0	71.0	
0	0		0	0.03	0.03	0.11	
0	0		0	1	1.0	3.55	
0	0		0	N/A	N/A	N/A	
0	0		0	N/A	N/A	N/A	
0	0		0	N/A	N/A	N/A	
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 10 0 N/A 0 0 0 N/A 0 0 0 0 0 0 0 0 N/A 0 0 0 0 N/A 0 0 0 N/A 0 0 0 0 N/A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 10 10.0 0 0 10 10.0 0 0 0 0 0 10 10.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 N/A N/A N/A 0 0 10 10.0 35.5 0 0 N/A N/A N/A N/A 0 0 N/A N/A N/A N/A N/A 0 0 N/A N/A N/A N/A N/A N/A 0 0 0 N/A N/A

CCT (min): 0.404	PMF: 1	Analysis Hardness (mg/l):	N/A	Analysis pH:	N/A	

Pollutants	Conc (ug/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (μg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	N/A	N/A	N/A	
Total Arsenic	0	0		0	N/A	N/A	N/A	
Total Barium	0	0		0	N/A	N/A	N/A	
Total Boron	0	0		0	N/A	N/A	N/A	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	

Dissolved Iron	0	0	0	N/A	N/A	N/A	
Total Iron	0	0	0	N/A	N/A	N/A	
Total Lead	0	0	0	N/A	N/A	N/A	
Total Manganese	0	0	0	N/A	N/A	N/A	
Total Mercury	0	0	0	N/A	N/A	N/A	
Total Nickel	0	0	0	N/A	N/A	N/A	
Total Phenols (Phenolics) (PWS)	0	0	0	N/A	N/A	N/A	
Total Selenium	0	0	0	N/A	N/A	N/A	
Total Silver	0	0	0	N/A	N/A	N/A	
Total Thallium	0	0	0	N/A	N/A	N/A	
Total Zinc	0	0	0	N/A	N/A	N/A	
Acrolein	0	0	0	N/A	N/A	N/A	
Acrylamide	0	0	0	0.07	0.07	1.78	
Acrylonitrile	0	0	0	0.06	0.06	1.52	
Benzene	0	0	0	0.58	0.58	14.7	
Bromoform	0	0	0	7	7.0	178	
Carbon Tetrachloride	0	0	0	0.4	0.4	10.2	
Chlorobenzene	0	0	0	N/A	N/A	N/A	
Chlorodibromomethane	0	0	0	0.8	0.8	20.3	
2-Chloroethyl Vinyl Ether	0	0	0	N/A	N/A	N/A	
Chloroform	0	0	0	N/A	N/A	N/A	
Dichlorobromomethane	0	0	0	0.95	0.95	24.1	
1,2-Dichloroethane	0	0	0	9.9	9.9	251	
1,1-Dichloroethylene	0	0	0	N/A	N/A	N/A	
1,2-Dichloropropane	0	0	0	0.9	0.9	22.8	
1,3-Dichloropropylene	0	0	0	0.27	0.27	6.85	
Ethylbenzene	0	0	0	N/A	N/A	N/A	
Methyl Bromide	0	0	0	N/A	N/A	N/A	
Methyl Chloride	0	0	0	N/A	N/A	N/A	
Methylene Chloride	0	0	0	20	20.0	508	
1,1,2,2-Tetrachloroethane	0	0	0	0.2	0.2	5.08	
Tetrachloroethylene	0	0	0	10	10.0	254	
Toluene	0	0	0	N/A	N/A	N/A	
1,2-trans-Dichloroethylene	0	0	0	N/A	N/A	N/A	
1,1,1-Trichloroethane	0	0	0	N/A	N/A	N/A	
1,1,2-Trichloroethane	0	0	0	0.55	0.55	14.0	
Trichloroethylene	0	0	0	0.6	0.6	15.2	
Vinyl Chloride	0	0	0	0.02	0.02	0.51	
2-Chlorophenol	0	0	0	N/A	N/A	N/A	
2,4-Dichlorophenol	0	0	0	N/A	N/A	N/A	
2,4-Dimethylphenol	0	0	0	N/A	N/A	N/A	
4,6-Dinitro-o-Cresol	0	0	0	N/A	N/A	N/A	
2,4-Dinitrophenol	0	0	0	N/A	N/A	N/A	
2-Nitrophenol	0	0	0	N/A	N/A	N/A	
spirensi			_				

p-Chloro-m-Cresol	0	0	0	N/A	N/A	N/A	
Pentachlorophenol	0	0	0	0.030	0.03	0.76	
Phenol	0	0	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	1.5	1.5	38.1	
Acenaphthene	0	0	0	N/A	N/A	N/A	
Anthracene	0	0	0	N/A	N/A	N/A	
Benzidine	0	0	0	0.0001	0.0001	0.003	
Benzo(a)Anthracene	0	0	0	0.001	0.001	0.025	
Benzo(a)Pyrene	0	0	0	0.0001	0.0001	0.003	
3,4-Benzofluoranthene	0	0	0	0.001	0.001	0.025	
Benzo(k)Fluoranthene	0	0	0	0.01	0.01	0.25	
Bis(2-Chloroethyl)Ether	0	0	0	0.03	0.03	0.76	
Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	0	0.32	0.32	8.12	
4-Bromophenyl Phenyl Ether	0	0	0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0	0	N/A	N/A	N/A	
2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	
Chrysene	0	0	0	0.12	0.12	3.05	
Dibenzo(a,h)Anthrancene	0	0	0	0.0001	0.0001	0.003	
1,2-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
1,3-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
1,4-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
3,3-Dichlorobenzidine	0	0	0	0.05	0.05	1.27	
Diethyl Phthalate	0	0	0	N/A	N/A	N/A	
Dimethyl Phthalate	0	0	0	N/A	N/A	N/A	
Di-n-Butyl Phthalate	0	0	0	N/A	N/A	N/A	
2,4-Dinitrotoluene	0	0	0	0.05	0.05	1.27	
2,6-Dinitrotoluene	0	0	0	0.05	0.05	1.27	
1,2-Diphenylhydrazine	0	0	0	0.03	0.03	0.76	
Fluoranthene	0	0	0	N/A	N/A	N/A	
Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	0	0.00008	0.00008	0.002	
Hexachlorobutadiene	0	0	0	0.01	0.01	0.25	
Hexachlorocyclopentadiene	0	0	0	N/A	N/A	N/A	
Hexachloroethane	0	0	0	0.1	0.1	2.54	
Indeno(1,2,3-cd)Pyrene	0	0	0	0.001	0.001	0.025	
Isophorone	0	0	0	N/A	N/A	N/A	
Naphthalene	0	0	0	N/A	N/A	N/A	
Nitrobenzene	0	0	0	N/A	N/A	N/A	
n-Nitrosodimethylamine	0	0	0	0.0007	0.0007	0.018	
n-Nitrosodi-n-Propylamine	0	0	0	0.005	0.005	0.13	
n-Nitrosodiphenylamine	0	0	0	3.3	3.3	83.8	
Phenanthrene	0	0	0	N/A	N/A	N/A	
Pyrene	0	0	0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0	0	N/A	N/A	N/A	

Aldrin	0	0	0	0.0000008	8.00E-07	0.00002	
alpha-BHC	0	0	0	0.0004	0.0004	0.01	
beta-BHC	0	0	0	0.008	0.008	0.2	
gamma-BHC	0	0	0	N/A	N/A	N/A	
Chlordane	0	0	0	0.0003	0.0003	0.008	
4,4-DDT	0	0	0	0.00003	0.00003	0.0008	
4,4-DDE	0	0	0	0.00002	0.00002	0.0005	
4,4-DDD	0	0	0	0.0001	0.0001	0.003	
Dieldrin	0	0	0	0.000001	0.000001	0.00003	
alpha-Endosulfan	0	0	0	N/A	N/A	N/A	
beta-Endosulfan	0	0	0	N/A	N/A	N/A	
Endosulfan Sulfate	0	0	0	N/A	N/A	N/A	
Endrin	0	0	0	N/A	N/A	N/A	
Endrin Aldehyde	0	0	0	N/A	N/A	N/A	
Heptachlor	0	0	0	0.000006	0.000006	0.0002	
Heptachlor Epoxide	0	0	0	0.00003	0.00003	0.0008	
Toxaphene	0	0	0	0.0007	0.0007	0.018	

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month:

4

	Mass	Limits		Concentra	tion Limits		Ī		
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Aluminum	Report	Report	Report	Report	Report	μg/L	1,705	AFC	Discharge Conc > 10% WQBEL (no RP)
Total Cobalt	Report	Report	Report	Report	Report	μg/L	67.4	CFC	Discharge Conc > 10% WQBEL (no RP)
Total Copper	Report	Report	Report	Report	Report	μg/L	41.1	AFC	Discharge Conc > 10% WQBEL (no RP)
Total Iron	Report	Report	Report	Report	Report	μg/L	5,321	CFC	Discharge Conc > 10% WQBEL (no RP)
Total Lead	Report	Report	Report	Report	Report	μg/L	15.9	CFC	Discharge Conc > 10% WQBEL (no RP)
Total Manganese	Report	Report	Report	Report	Report	μg/L	3,548	THH	Discharge Conc > 10% WQBEL (no RP)
Total Nickel	Report	Report	Report	Report	Report	μg/L	233	CFC	Discharge Conc > 10% WQBEL (no RP)
Total Thallium	Report	Report	Report	Report	Report	μg/L	0.85	THH	Discharge Conc > 10% WQBEL (no RP)
Acrylamide	0.0005	0.0008	1.78	2.77	4.44	μg/L	1.78	CRL	Discharge Conc ≥ 50% WQBEL (RP)
4,4-DDD	7.20E-07	0.000001	0.003	0.004	0.006	μg/L	0.003	CRL	Discharge Conc ≥ 50% WQBEL (RP)
Dieldrin	7.20E-09	1.12E-08	0.00003	0.00004	0.00006	μg/L	0.00003	CRL	Discharge Conc ≥ 50% WQBEL (RP)
Heptachlor Epoxide	2.16E-07	3.37E-07	0.0008	0.001	0.002	μg/L	0.0008	CRL	Discharge Conc ≥ 50% WQBEL (RP)

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments	
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable	

Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Fluoride (PWS)	N/A	N/A	PWS Not Applicable
Total Antimony	19.9	μg/L	Discharge Conc ≤ 10% WQBEL
Total Arsenic	35.5	μg/L	Discharge Conc ≤ 10% WQBEL
Total Barium	8,514	μg/L	Discharge Conc ≤ 10% WQBEL
Total Beryllium	N/A	N/A	No WQS
Total Boron	5,676	μg/L	Discharge Conc ≤ 10% WQBEL
Total Cadmium	1.17	μg/L	Discharge Conc < TQL
Total Chromium (III)	381	μg/L	Discharge Conc ≤ 10% WQBEL
Hexavalent Chromium	36.9	μg/L	Discharge Conc ≤ 10% WQBEL
Total Cyanide	N/A	N/A	No WQS
Dissolved Iron	1,064	μg/L	Discharge Conc < TQL
Total Mercury	0.18	μg/L	Discharge Conc < TQL
Total Phenols (Phenolics) (PWS)		μg/L	PWS Not Applicable
Total Selenium	17.7	μg/L	Discharge Conc ≤ 10% WQBEL
Total Silver	13.7	μg/L	Discharge Conc ≤ 10% WQBEL
Total Zinc	343	μg/L	Discharge Conc ≤ 10% WQBEL
Total Molybdenum	N/A	N/A	No WQS
Acrolein	6.82	μg/L	Discharge Conc < TQL
Acrylonitrile	1.52	μg/L	Discharge Conc < TQL
Benzene	14.7	μg/L	Discharge Conc < TQL
Bromoform	178	μg/L	Discharge Conc < TQL
Carbon Tetrachloride	10.2	μg/L	Discharge Conc < TQL
Chlorobenzene	355	μg/L	Discharge Conc < TQL
Chlorodibromomethane	20.3	μg/L	Discharge Conc < TQL
Chloroethane	N/A	N/A	No WQS
2-Chloroethyl Vinyl Ether	12,417	μg/L	Discharge Conc < TQL
Chloroform	20.2	μg/L	Discharge Conc < TQL
Dichlorobromomethane	24.1	μg/L	Discharge Conc < TQL
1,1-Dichloroethane	N/A	N/A	No WQS
1,2-Dichloroethane	251	μg/L	Discharge Conc < TQL
1,1-Dichloroethylene	117	μg/L	Discharge Conc < TQL
1,2-Dichloropropane	22.8	μg/L	Discharge Conc < TQL
1,3-Dichloropropylene	6.85	μg/L	Discharge Conc < TQL
1,4-Dioxane	N/A	N/A	No WQS
Ethylbenzene	241	μg/L	Discharge Conc < TQL
Methyl Bromide	355	μg/L	Discharge Conc < TQL
Methyl Chloride	19,512	μg/L	Discharge Conc < TQL
Methylene Chloride	508	μg/L	Discharge Conc < TQL
1,1,2,2-Tetrachloroethane	5.08	μg/L	Discharge Conc < TQL
Tetrachloroethylene	254	μg/L	Discharge Conc < TQL
Toluene	202	µg/L	Discharge Conc < TQL
1,2-trans-Dichloroethylene	355	μg/L	Discharge Conc < TQL

1,1,1-Trichloroethane	2,164	μg/L	Discharge Conc < TQL
1,1,2-Trichloroethane	14.0	μg/L	Discharge Conc < TQL
Trichloroethylene	15.2	μg/L	Discharge Conc < TQL
Vinyl Chloride	0.51	μg/L	Discharge Conc < TQL
2-Chlorophenol	106	μg/L	Discharge Conc < TQL
2,4-Dichlorophenol	35.5	μg/L	Discharge Conc < TQL
2,4-Dimethylphenol	355	μg/L	Discharge Conc < TQL
4,6-Dinitro-o-Cresol	7.1	μg/L	Discharge Conc < TQL
2,4-Dinitrophenol	35.5	μg/L	Discharge Conc < TQL
2-Nitrophenol	5,676	μg/L	Discharge Conc < TQL
4-Nitrophenol	1,667	μg/L	Discharge Conc < TQL
p-Chloro-m-Cresol	364	μg/L	Discharge Conc < TQL
Pentachlorophenol	0.76	μg/L	Discharge Conc < TQL
Phenol	14,191	μg/L	Discharge Conc < TQL
2,4,6-Trichlorophenol	38.1	μg/L	Discharge Conc < TQL
Acenaphthene	60.3	μg/L	Discharge Conc < TQL
Acenaphthylene	N/A	N/A	No WQS
Anthracene	1,064	μg/L	Discharge Conc < TQL
Benzidine	0.003	μg/L	Discharge Conc < TQL
Benzo(a)Anthracene	0.025	μg/L	Discharge Conc < TQL
Benzo(a)Pyrene	0.003	μg/L	Discharge Conc < TQL
3,4-Benzofluoranthene	0.025	μg/L	Discharge Conc < TQL
Benzo(ghi)Perylene	N/A	N/A	No WQS
Benzo(k)Fluoranthene	0.25	μg/L	Discharge Conc < TQL
Bis(2-Chloroethoxy)Methane	N/A	N/A	No WQS
Bis(2-Chloroethyl)Ether	0.76	μg/L	Discharge Conc < TQL
Bis(2-Chloroisopropyl)Ether	710	μg/L	Discharge Conc < TQL
Bis(2-Ethylhexyl)Phthalate	8.12	μg/L	Discharge Conc < TQL
4-Bromophenyl Phenyl Ether	192	μg/L	Discharge Conc < TQL
Butyl Benzyl Phthalate	0.35	μg/L	Discharge Conc < TQL
2-Chloronaphthalene	2,838	μg/L	Discharge Conc < TQL
4-Chlorophenyl Phenyl Ether	N/A	N/A	No WQS
Chrysene	3.05	μg/L	Discharge Conc < TQL
Dibenzo(a,h)Anthrancene	0.003	μg/L	Discharge Conc < TQL
1,2-Dichlorobenzene	568	μg/L	Discharge Conc < TQL
1,3-Dichlorobenzene	24.8	μg/L	Discharge Conc < TQL
1,4-Dichlorobenzene	532	μg/L	Discharge Conc < TQL
3,3-Dichlorobenzidine	1.27	μg/L	Discharge Conc < TQL
Diethyl Phthalate	2,129	μg/L	Discharge Conc < TQL
Dimethyl Phthalate	1,774	μg/L	Discharge Conc < TQL
Di-n-Butyl Phthalate	71.0	μg/L	Discharge Conc < TQL
2,4-Dinitrotoluene	1.27	μg/L	Discharge Conc < TQL
2,6-Dinitrotoluene	1.27	μg/L	Discharge Conc < TQL
Di-n-Octyl Phthalate	N/A	N/A	No WQS
1,2-Diphenylhydrazine	0.76	μg/L	Discharge Conc < TQL

Fluoranthene	71.0	μg/L	Discharge Conc < TQL
Fluorene	177	μg/L	Discharge Conc < TQL
Hexachlorobenzene	0.002	μg/L	Discharge Conc < TQL
Hexachlorobutadiene	0.25	μg/L	Discharge Conc < TQL
Hexachlorocyclopentadiene	3.55	μg/L	Discharge Conc < TQL
Hexachloroethane	2.54	μg/L	Discharge Conc < TQL
Indeno(1,2,3-cd)Pyrene	0.025	μg/L	Discharge Conc < TQL
Isophorone	121	µg/L	Discharge Conc < TQL
Naphthalene	153	µg/L	Discharge Conc < TQL
Nitrobenzene	35.5	µg/L	Discharge Conc < TQL
n-Nitrosodimethylamine	0.018	μg/L	Discharge Conc < TQL
n-Nitrosodi-n-Propylamine	0.13	μg/L	Discharge Conc < TQL
n-Nitrosodiphenylamine	83.8	μg/L	Discharge Conc < TQL
Phenanthrene	3.55	μg/L	Discharge Conc < TQL
Pyrene	71.0	μg/L	Discharge Conc < TQL
1,2,4-Trichlorobenzene	0.25	μg/L	Discharge Conc < TQL
Aldrin	0.00002	μg/L	Discharge Conc < TQL
alpha-BHC	0.01	μg/L	Discharge Conc < TQL
beta-BHC	0.2	μg/L	Discharge Conc < TQL
gamma-BHC	2.16	μg/L	Discharge Conc ≤ 25% WQBEL
delta BHC	N/A	N/A	No WQS
Chlordane	0.008	μg/L	Discharge Conc < TQL
4,4-DDT	0.0008	μg/L	Discharge Conc < TQL
4,4-DDE	0.0005	μg/L	Discharge Conc < TQL
alpha-Endosulfan	0.2	μg/L	Discharge Conc ≤ 25% WQBEL
beta-Endosulfan	0.2	μg/L	Discharge Conc ≤ 25% WQBEL
Endosulfan Sulfate	71.0	μg/L	Discharge Conc ≤ 25% WQBEL
Endrin	0.11	μg/L	Discharge Conc ≤ 25% WQBEL
Endrin Aldehyde	3.55	μg/L	Discharge Conc ≤ 25% WQBEL
Heptachlor	0.0002	μg/L	Discharge Conc < TQL
PCB-1016	N/A	N/A	No WQS
PCB-1221	N/A	N/A	No WQS
PCB-1232	N/A	N/A	No WQS
PCB-1242	N/A	N/A	No WQS
PCB-1248	N/A	N/A	No WQS
PCB-1254	N/A	N/A	No WQS
PCB-1260	N/A	N/A	No WQS
Toxaphene	0.0007	μg/L	Discharge Conc < TQL

Attachment F:

Outfall 001 Flow Diagram

OUTFALL 001 LINE DRAWING

Attachment G:

Outfall 002 Flow Diagram

OUTFALL 002 LINE DRAWING

Attachment H:

Site Plan

