

Southwest Regional Office CLEAN WATER PROGRAM

Application Type	Renewal
Facility Type	Municipal
Major / Minor	Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No.	PA0097390
APS ID	1058979
Authorization ID	1388737

pplicant Name	Mario	on Township	Facility Name	Vekaplast Plant
pplicant Address	485 H	lartzell School Road	Facility Address	100 Veka Drive
	Fomb	ell, PA 16123-1303		Fombell, PA 16123-1424
pplicant Contact	Marily	n Zona	Facility Contact	Same as Applicant
pplicant Phone	(724)	452-1986	Facility Phone	Same as Applicant
lient ID	3933	7	Site ID	465218
n 94 Load Status	Not C	verloaded	Municipality	Marion Township
onnection Status	No Li	mitations	County	Beaver
ate Application Rece	eived	February 28, 2022	EPA Waived?	Yes
ate Application Acce	epted	March 21, 2022	If No, Reason	

Summary of Review

The permittee has applied for a renewal of NPDES Permit No. PA0097390. PA0097390 was previously issued by the Pennsylvania Department of Environmental Protection (DEP) on August 7, 2017 and expired August 31, 2022. The permit application was received in a timely manner and the permit has been administratively extended.

Sewage at this facility is treated with flow equalization, extended aeration, phosphorus treatment, and final clarification, sand filtration, and chlorination prior to being discharged through Outfall 001 to Connoquenessing Creek which is classified as a Warm Water Fishery (WWF) per Chapter 93 Designated Use.

The permittee is currently enrolled in and will continue to use eDMR.

The applicant complied with Act 14 Notification with letters dated February 22, 2022 from Thomas Thompson.

Sludge produced at this facility is treated and pumped by Dalton Services Company, LLC and hauled to City of Beaver Falls STP (NPDES Permit No. PA0026883).

Vekaplast Plant STP has one industrial user, Veka Inc, which is a plastics molding and forming company. Plastic molding and forming company point sources are privy to 40 CFR 463, which sets technology based effluent limit guidelines for point sources. Because Vekaplast Plant STP receives the industrial wastewater and because it is a municipal wastewater treatment plant, it is not bound by 40 CFR 463. Veka Inc, however, is bound by the reporting requirements for POTW's and Industrial users in 40 CFR 403.12. The industrial user must contact the EPA in order to begin the Industrial User reporting process.

Changes since the last permit include:

Approve	Deny	Signatures	Date
Х		It al	
		Stephanie Conrad / Environmental Engineering Specialist	May 18, 2023
х		MAHBUBA IASMIN	
		Mahbuba lasmin, Ph.D., P.E. / Environmental Engineering Manager	May 26, 2023

Summary of Review

- Addition of annual E. coli monitoring
- Addition of twice monthly influent BOD₅ and TSS monitoring
- Addition of CBOD₅ and TSS load limits
- Addition of ammonia-nitrogen load monitoring
- Increase of monitoring frequency for total nitrogen monitoring from annual to twice monthly

2022 Consent Assessment of Civil Penalty

Marion Township failed to comply with effluent limits on 13 occasions between January 2018 and February 2022. Primarily, these exceedances were for total phosphorus, but there were also violations for total residual chlorine (TRC), dissolved oxygen (DO), pH, and fecal coliform as well. The township consented to pay a civil penalty of \$2,500 and a Consent Assessment of Civil Penalty (CACP) was executed on September 27, 2022.

Anti-Backsliding

Section 402(o) of the Clean Water Act (CWA), enacted in the Water Quality Act of 1987, establishes anti-backsliding rules governing two situations. The first situation occurs when a permittee seeks to revise a Technology-Based effluent limitation based on BPJ to reflect a subsequently promulgated effluent guideline which is less stringent. The second situation addressed by Section 402(o) arises when a permittee seeks relaxation of an effluent limitation which is based upon a State treatment standard of water quality standard.

Previous limits can be used pursuant to EPA's anti-backsliding regulation 40 CFR 122.44 (I) Reissued permits. (1) Except as provided in paragraph (I)(2) of this section when a permit is renewed or reissued. Interim effluent limitations, standards or conditions must be at least as stringent as the final effluent limitations, standards, or conditions in the previous permit (unless the circumstances on which the previous permit was based have materially and substantially changed since the time the permit was issued and would constitute cause for permit modification or revocation and reissuance under §122.62). (2) In the case of effluent limitations established on the basis of Section 402(a)(1)(B) of the CWA, a permit may not be renewed, reissued, or modified on the basis of effluent guidelines promulgated under section 304(b) subsequent to the original issuance of such permit, to contain effluent limitations which are less stringent than the comparable effluent limitations in the previous permit.

The facility is not seeking to revise the previously permitted effluent limits.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

scharge, Receivin	g Wate	rs and Water Supply Inform	ation	
Outfall No. 001			Design Flow (MGD)	0.028
Latitude 40° 4	47' 55"		Longitude	-80° 10' 22"
Quad Name Ze	elienople	<u> </u>	Quad Code	1204
Wastewater Descri	iption:	Sewage Effluent		
Receiving Waters	Conn	oquenessing Creek (WWF)	Stream Code	34025
NHD Com ID	12622	23578	 RMI	17.05
Drainage Area	324		Yield (cfs/mi²)	0.0315
Q ₇₋₁₀ Flow (cfs)	10.2		Q ₇₋₁₀ Basis	USGS Stream Stats
Elevation (ft)	895		Slope (ft/ft)	
Watershed No.	20-C		Chapter 93 Class.	WWF
Existing Use	Aqua	tic Life	Existing Use Qualifier	
Exceptions to Use			Exceptions to Criteria	
Assessment Status	S	Impaired		
Cause(s) of Impair	ment	Organic Enrichment, Low D	0	
Source(s) of Impair	rment	Agriculture		
TMDL Status			Name	
Background/Ambie	ent Data		Data Source	
Temperature (°F) Hardness (mg/L) Other:				
		ic Water Supply Intake	Beaver Falls Municipal Author	••
-	Beaver	River	Flow at Intake (MGD)	16.8
PWS RMI	5.42		Distance from Outfall (mi)	23.89

Changes Since Last Permit Issuance: Q_{7-10} basis has changed since last permit issuance to reflect department policy changing from referencing Bulletin 12 to USGS Stream Stats. Receiving stream flow has changes as a result.

Other Comments:

	Tr	eatment Facility Summar	у					
Treatment Facility Na	me: Vekaplast STP							
WQM Permit No.	Issuance Date		Purpose					
0488402	May 6, 1988	Permit issued by the PA DEP to Marion Township approving the construction of a 0.028 MGD sewage treatment facility consisting of: • 75' of 8" PVC gravity sewer • One (1) 5' diameter precast concrete pump station with two 130 gpm pumps and 4" force main • One (1) 0.252 MGD comminutor and 1.5 inch back up manually cleaned bar screen • One (1) 6,200-gallon equalization tank • Two (2) 16 gpm pumps • One (1) 8,476-gallon extended aeration treatment tank • One (1) 5,682-gallon extended aeration treatment tank • One (1) 2507-gallon final settling tank • Tablet chlorination and a 345-gallon chlorine contact tank • One 7,000-gallon aerobic biosolids digestion tank						
0488402-A1	June 19, 2000	Permit issued by PA DEP to Marion Township approving a sewage plant expansion by installing: One (1) 6,200-gallon aerated flow equalization tank Two (2) extended aeration tanks with a combined capacity of 14,158 gallons One (1) dual hopper final clarifier One (1) 7,000-gallon aerobic sludge holding tank One (1) 580-gallon chlorine contact tank.						
	Degree of			Avg Annual				
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)				
Sewage	Secondary	Extended Aeration	No Disinfection	0.028				
Hydraulic Capacity (MGD)	Organic Capacity (Ibs/day)	Load Status	Biosolids Treatment	Biosolids Use/Disposal				
0.028	47	Not Overloaded	Hauled Offsite	Other WWTP				

Changes Since Last Permit Issuance:

Other Comments:

Compliance History

Operations Compliance Check Summary Report

Facility: Vekaplast STP

NPDES Permit No.: PA0097390

Compliance Review Period: 3/1/2018-3/28/2023

Inspection Summary:

INSPECTED DATE	INSP TYPE	AGENCY	INSPECTION RESULT DESC	INSPECTION COMMENT
07/22/2021	Compliance Evaluation	PA Dept of Environmental Protection	Violation(s) Noted	
06/22/2021	Administrative/File Review	PA Dept of Environmental Protection	Administratively Closed	Review of eDMR Non- Compliance data for routine monitoring

Violation Summary:

VIOLATION	VIOLATION		RESOLVED
DATE	TYPE	VIOLATION TYPE DESC	DATE
07/22/2021	92A.44	NPDES - Violation of effluent limits in Part A of permit	07/27/2021

Open Violations by Client ID: No open violations for Client ID 39337

Enforcement Summary:

ENF TYPE	ENF TYPE DESC	EXECUTED DATE	VIOLATIONS	AMOUNT RECEIVED	ENF FINAL STATUS	ENF COMMENT
CACP	Consent Assessment of Civil Penalty	09/27/2022	92A.44	\$2,500.00	Comply/Closed	CACP for effluent exceedances from January 2018 through February 2022.
NOV	Notice of Violation	07/27/2021	92A.44		Administrative Close Out	

Effluent Violation Summary:

MON_PD_BEGIN	MON_PD_END	OUTFALL	PARAMETER	SAMPLE	PERMIT	UNIT	STAT_BASE_CODE
11/1/2022	11/30/2022	1	рН	5	6	S.U.	Minimum
			Total				
2/1/2022	2/28/2022	1	Phosphorus	3.2	2	mg/L	Average Monthly
			Total				
11/1/2020	11/30/2020	1	Phosphorus	2.64	2	mg/L	Average Monthly
			Total				Instantaneous
11/1/2020	11/30/2020	1	Phosphorus	4.31	4	mg/L	Maximum
						No./100	Instantaneous
8/1/2020	8/31/2020	1	Fecal Coliform	2420	1000	ml	Maximum
						No./100	
8/1/2020	8/31/2020	1	Fecal Coliform	339	200	ml	Geometric Mean
			Dissolved				
6/1/2020	6/30/2020	1	Oxygen	3	4	mg/L	Minimum
			Total				
6/1/2019	6/30/2019	1	Phosphorus	2.94	2	mg/L	Average Monthly
			Total				Instantaneous
6/1/2019	6/30/2019	1	Phosphorus	4.66	4	mg/L	Maximum
2/1/2019	2/28/2019	1	рН	5.5	6	S.U.	Minimum
			Total				
1/1/2019	1/31/2019	1	Phosphorus	2.08	2	mg/L	Average Monthly
			Total				Instantaneous
1/1/2019	1/31/2019	1	Phosphorus	4.01	4	mg/L	Maximum
			Total Residual				Instantaneous
6/1/2018	6/30/2018	1	Chlorine (TRC)	1.71	1.6	mg/L	Maximum
			-				

Compliance Status: Facility currently has no open violations or pending enforcements.

Completed by: Amanda Schmidt

Completed date: 4/4/23

Compliance History

DMR Data for Outfall 001 (from February 1, 2022 to January 31, 2023)

Parameter	JAN-23	DEC-22	NOV-22	OCT-22	SEP-22	AUG-22	JUL-22	JUN-22	MAY-22	APR-22	MAR-22	FEB-22
Flow (MGD)												
Average Monthly	0.0122	0.0101	0.0112	0.0132	0.0144	0.0147	0.0112	0.0135	0.0126	0.0111	0.0114	0.0124
pH (S.U.)												
Minimum	6.8	6.2	5.0	6.5	6.0	6.0	6.2	6.6	6.5	6.7	6.0	6.5
pH (S.U.)												
Maximum	7.7	7.6	7.5	7.7	7.5	7.4	7.5	7.6	7.6	7.8	7.5	7.3
DO (mg/L)												
Minimum	4.0	4.0	4.0	4.0	4.0	4.0	5.0	4.0	4.0	4.0	4.0	4.0
TRC (mg/L)												
Average Monthly	0.21	0.20	0.30	0.21	0.23	0.26	0.17	0.14	0.17	0.16	0.32	0.18
TRC (mg/L)												
Instantaneous												
Maximum	0.75	0.74	1.47	0.56	0.70	0.91	1.54	0.61	0.94	0.61	0.70	0.51
CBOD5 (mg/L)												
Average Monthly	6.25	3.5	3.0	3.0	3.25	3.0	5.8	3.0	4.15	7.4	5.1	3.0
CBOD5 (mg/L)												
Instantaneous	- .	4.0		0.0	0.5	0.0	0.0	0.0		0.0	- 4	0.0
Maximum	7.4	4.0	3.0	3.0	3.5	3.0	8.6	3.0	5.3	8.0	7.1	3.0
TSS (mg/L)	2.5	5.0	7.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	5.0
Average Monthly	3.5	5.0	7.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	5.0
TSS (mg/L) Instantaneous												
Maximum	4.0	7.0	11.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	7.0
Fecal Coliform	4.0	7.0	11.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	7.0
(No./100 ml)												
Geometric Mean	4.0	1	1	1	3	1	1	20	1	7	6.5	2
Fecal Coliform	4.0	I	<u> </u>	<u> </u>	3	ı		20		,	0.5	
(No./100 ml)												
Instantaneous												
Maximum	15	1	1	1	8	1	1	68	1	43	42	5
Total Nitrogen (mg/L)		-							-			
Daily Maximum		25.9										
Ammonia (mg/L)												
Average Monthly	11.55	17.4	5.0	3.73	3.38	3.53	8.39	15.85	8.22	11.5	6.14	1.0
Ammonia (mg/L)												
Instantaneous												
Maximum	21.2	23.6	8.33	5.26	3.44	6.88	12.4	21.0	8.93	15.3	6.48	1.71

NPDES Permit Fact Sheet Vekaplast Plant

NPDES Permit No. PA0097390

Total Phosphorus (lbs/day) Average Monthly	0.195	0.032	0.050	0.031	0.086	0.120	0.086	0.101	0.0129	0.15	0.12	0.33
Total Phosphorus (mg/L) Average Monthly	1.92	0.38	0.54	0.285	0.715	0.975	0.92	0.895	1.23	1.57	1.26	3.2
Total Phosphorus (mg/L) Instantaneous Maximum	2.12	0.40	0.71	0.29	0.87	1.11	1.07	1.23	1.78	1.92	1.90	4.0

Compliance History

Effluent Violations for Outfall 001, from: March 1, 2022 To: January 31, 2023

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units	
Hq	11/30/22	Min	5.0	S.U.	6.0	S.U.	

Summary of Inspections:

Other Comments:

Development of Effluent Limitations										
Outfall No. Latitude Wastewater D	001 40° 47' 55.00" escription: Sewage Effluent	Design Flow (MGD) Longitude	0.028 -80° 10' 22.00"	<u> </u>						

Technology-Based Limitations (TBELs)

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform (5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform (5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform (10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform (10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Industrial Users

Vekaplast Plant STP has one industrial user, Veka Inc, which is a plastics molding and forming company that discharges storm water, non-contact cooling water, and contact cooling water.

Plastic molding and forming company point sources are privy to 40 CFR 463, which sets technology based effluent limit guidelines for point sources. Because Vekaplast Plant STP receives the industrial wastewater and because it is a municipal wastewater treatment plant, it is not bound by 40 CFR 463. Veka Inc, however, is bound by the reporting requirements for publicly owned treatment works and Industrial users in 40 CFR 403.12. The industrial user must contact the EPA in order to begin the Industrial User reporting process.

Because the Vekaplast Plant STP is less than 5 MGD and the volume and/or the nature of the industrial influent does not upset the STP process, contaminate the sludge, or cause effluent violations, Marion Township is not required to create and maintain a pre-treatment program. No effluent limits are being imposed as a result of the industrial user.

Water Quality-Based Limitations (WQBELs)

Pursuant to EPA's approval of Pennsylvania's 2017 Triennial Review of Water Quality Standards and corresponding regulatory change published in the *Pennsylvania Bulletin* on July 11, 2020, new water quality criteria for ammonia-nitrogen apply to waters of the commonwealth. Therefore, WQBELs for Outfall 001 are being re-evaluated even though there have been no changes to the STP.

WQM 7.0 Water Quality Modeling

DEP's WQM 7.0 version 1.1 model is a Microsoft Access Program used for sewage discharges to determine whether TBELs are sufficient to meet in-stream water quality criteria for ammonia-nitrogen, carbonaceous biochemical oxygen demand (CBOD₅), and dissolve oxygen (DO). To accomplish this, the model simultaneously simulates mixing and degradation of ammonia-nitrogen and mixing and consumption of DO through CBOD₅ and ammonia-nitrogen degradation. WQM 7.0

NPDES Permit Fact Sheet Vekaplast Plant

determines the highest pollutant loadings that the stream can assimilate while still meeting water quality criteria under design conditions.

The model is a two-step process. The discharge is first modeled for the summer period (May through October) because warm temperatures are more likely to result in critical loading conditions. Reduced DO levels likely also play a role in ammonia toxicity and solubility of DO decreases at increased water temperature. If summer modeling determines that WQBELs are appropriate for the summer period, then modeling is completed for the winter period (November through April). This is in accordance with DEP's "Implementation Guidance of Section 93.7 Ammonia Criteria" [Doc. No. 391-2000-013] (Ammonia Guidance).

River Mile Index (RMI) was measured in eMAP PA as the distance from the facility's outfall to the mouth of Connoquenessing Creek. Elevation was read by applying a topomap in eMAP PA. Discharge point and downstream drainage areas were generated by USGS Stream Stats. Q₇₋₁₀ flow data was also generated in USGS Stream Stats. USGS Stream Stats output files are included in Attachment A. In the absence of site-specific data, discharge temperature, stream temperature, and stream pH were assumed to be 20, 25, and 7 in accordance with the Ammonia Guidance. Stream width to depth ratio was assumed to be 10 in accordance with the Department's *Technical Reference Guide (TRG) WQM 7.0 for Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen Version 1.0* [Doc. No. 391-2000-007]. Discharge concentrations for ammonia-nitrogen, CBOD₅, and DO are set as the effluent limits from the 2017 permit.

Discharge Characterist	ics	Basin/Stream Characteristic	cs
Parameter	Value	Parameter	Value
River Mile Index (RMI)	17.05	Drainage Area	324
Discharge Flow (MGD)	0.028	Q ₇₋₁₀ (cfs)	10.37
Discharge Temp (°C)	20	Low-flow yield (cfs/mi ²)	0.032
Ammonia-Nitrogen (mg/L)	25	Elevation (ft)	895
CBOD₅ (mg/L)	25	Stream Width/Depth	10
Dissolved Oxygen (mg/L)	4.0	Stream Temp (°C)	25
		Stream pH (s.u.)	7

The discharge was evaluated using WQM 7.0 to evaluate CBOD₅, ammonia-nitrogen, and Dissolved Oxygen (DO) parameters. Modeling results confirmed that technology based effluent limits are adequate to meet in-stream water quality criteria for CBOD₅, ammonia-nitrogen, and Dissolved Oxygen. WQBELs for these parameters will not be imposed during this permit cycle. WQM 7.0 modeling output files are included in Attachment B.

In accordance with Section 1.A Note 4. of the Department's SOP for Establishing Effluent Limitations for Individual Sewage Permits [SOP No. BCW-PMT-033 Version 1.9] for existing permits where WQM modeling results for summer indicate that an average monthly limit of 25 mg/L is acceptable, a year-round monitoring requirement will be imposed for ammonianitrogen as a minimum. Year-round monitoring is being re-imposed at a sampling frequency of 2/month in accordance with Table 6.3, Self-Monitoring Requirements for Sewage Discharges, from the Department's Technical Guidance for the Development and Specification of Effluent Limitations [Doc. No. 362-0400-001]. This requirement is not changing from the previous permit.

Total Residual Chlorine Modeling

The Department's Total Residual Chlorine (TRC) Spreadsheet is a Microsoft Excel @ Program to evaluate WQBELs for TRC using mass balance. In accordance with the Department's SOP for *Establishing Effluent Limitations for Individual Sewage Permits* [SOP No. BCW-PMT-033 Version 1.9], default values of 0.3 mg/L and 0 mg/L for in-stream and discharge chlorine demand were used as model inputs. A discharge of 0.028 and a Q_{7-10} of 10.37 were also used as model inputs.

TRC was modeled with the TRC Spreadsheet, which confirmed that a TBEL limit was adequate to meet in-stream water quality standards. The TRC Spreadsheet output file is provided in Attachment C.

Toxics Management Spreadsheet Water Quality Modeling Program and Procedure for Evaluating Reasonable Potential

The Department's Toxic Management Spreadsheet Version 1.3 (TMS) is a Microsoft Excel ® spreadsheet that facilitates the evaluation of a single discharger by performing the calculations necessary to complete a Reasonable Potential Analysis and determine WQBELs for discharges of toxic and nonconventional pollutants.

The TMS evaluates each pollutant by computing a Wasteload Allocation for each applicable criterion, determining the most stringent governing WQBEL, and comparing that governing WQBEL to the input discharge concentration to determine whether permit requirements apply in accordance with the following reasonable potential thresholds as documented in the Department's SOP for Establishing Water Quality-Based Effluent Limitations (WQBELs) and Permit Conditions for Toxic Pollutants in NPDES Permits for Existing Dischargers [SOP No. BCW-PMT-037]:

- Establish limits in the permit where the maximum reported effluent concentration or calculated average monthly effluent concentration equals or exceeds 50% of the WQBEL. Use the average monthly, maximum daily, and instantaneous maximum (IMAX) limits for the permit as recommended by the TMS.
- For non-conservative pollutants, establish monitoring requirements where the maximum reported effluent concentration or calculated average monthly effluent concentration is between 25% 50% of the WQBEL.
- For conservative pollutants, establish monitoring requirements where the maximum reported effluent concentration or calculated average monthly concentration is between 10% 50% of the WQBEL.

TMS requires input data including stream code, RMI, elevation, drainage area, low flow yield, discharge hardness and pH, and stream hardness and pH. The same discharge and basin characteristic values are used as for WQM 7.0. Discharge pH and hardness are taken from the effluent sample results reported in the application. In the absence of site-specific data, stream pH and hardness defaults to 7.0 s.u. and 100 mg/L in accordance with the Department's *DEP Toxics Management Spreadsheet (TMS) Instructions*. When known, individual information may be filled in to further define the model. In this case, a velocity rate of 0.18 fps was taken from the WQM 7.0 model output.

The facility receives industrial wastewater contributions, which necessitates sampling for total copper, total lead, and total zinc as part of the permit renewal process.

A Reasonable Potential Analysis was conducted using TMS. The model confirmed that there is not a reasonable potential for the toxic parameters measured and no WQBELs for toxics will therefore be imposed during this permit cycle. TMS Spreadsheet output files are provided in Attachment D.

Mass Loading Limitations

Section 1.A of the Department's SOP for *Establishing Effluent Limitations for Individual Sewage Permits* [SOP No. BCW-PMT-033 Version 1.9] and Table 5.3 of the Department's *Technical Guidance for the Development and Specification of Effluent Limitations* [Doc No. 362-0400-001] establish mass loading for Publicly Owned Treatment Works (POTWs) for CBOD5, TSS, and ammonia-nitrogen. Average monthly load limits will be imposed for CBOD5 and TSS. Only a monitor and report average monthly requirement will be imposed for ammonia-nitrogen. Mass loading limits are calculated according to the following equation:

$$mass\ loading\ limit\ \left(\frac{lbs}{day}\right) = average\ annual\ flow\ (MGD)*concentration\ limit\ \left(\frac{mg}{L}\right)*8.34\ (conversion\ factor)$$

Parameter	Average Monthly (lbs/day)
TSS (mg/L)	5.5
CBOD₅ (mg/L)	7.0
Ammonia-Nitrogen	Report

Best Professional Judgment (BPJ) Limitations

NPDES Permit Fact Sheet Vekaplast Plant

In accordance with Section 1.A. Note 6 of the Department's SOP for *Establishing Effluent Limitations for Individual Sewage Permits* [SOP No. BCW-PMT-033 Version 1.9] and 25 Pa. Code §93, a dissolved oxygen minimum of 4.0 mg/L will be imposed based on BPJ to ensure adequate operation and maintenance.

Additional Considerations

In accordance with Section 1.A. of the Department's SOP for *Establishing Effluent Limitations for Individual Sewage Permits* [SOP No. BCW-PMT-033 Version 1.9], pursuant to EPA's approval of Pennsylvania's 2017 Triennial Review of Water Quality Standards and corresponding regulatory changes published in the *Pennsylvania Bulletin* July 11, 2020 and under the authority of 25 Pa. Code § 93.7(a) and § 92.a.61, sewage discharges will include monitoring, at a minimum for *E. coli* for new and reissued permits, a monitoring frequency of 1/year will be imposed for facilities with a design flow between 0.002 and 0.05 MGD.

In accordance with Section 1.A of the Department's SOP for *Establishing Effluent Limits for Individual Sewage Permits* [SOP No BCW-PMT-033 Version 1.9] and under the authority of 25 Pa. Code §92a.61(b), nutrient monitoring for total nitrogen will be imposed. The intent of this monitoring is to establish the nutrient load of the wastewater and evaluate the impact that load may have on the quality of the receiving stream. During the last permit cycle, total nitrogen monitoring resulted in 6 samples ranging from 12.6 to 37.8. The SOP states that a monitoring frequency shall be imposed equivalent to that imposed for conventional pollutants if the facility discharges to a nutrient impaired stream or a lesser frequency if the receiving water is not impaired. The receiving stream, Connoquenessing Creek is impaired for nutrients, therefore, the monitoring frequency for total nitrogen is being changed from annual to twice monthly.

Monitoring frequency for the proposed effluent limits are based upon Table 6-3, Self-Monitoring Requirements for Sewage Dischargers, from PADEP's *Technical Guidance for the Development and Specification of Effluent Limitations*. Please note that the only monitoring frequency that changed was for total nitrogen.

In accordance with Section IV.F.2 of the Department's SOP for *New and Reissuance Sewage Individual NPDES Permit Applications* [SOP No. BCW-PMT-002 Version 2.0]. For POTWs with design flows greater than 2,000 GPD, influent BOD₅ and TSS monitoring must be established in the permit at a frequency and sample type equivalent to that imposed for the effluent parameters. Twice monthly influent BOD₅ and TSS monitoring has been added to this permit.

The receiving stream, Connoquenessing Creek, is impaired for organic enrichment. In accordance with 25 PA Code §96.5c, a total phosphorus limit of 2 mg/L will be reimposed.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

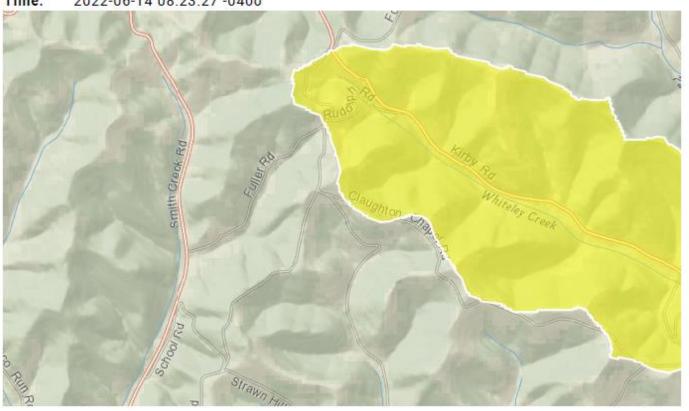
			Effluent L	imitations			Monitoring Requiremen	
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
r ai ainetei	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	0.028	XXX	XXX	XXX	XXX	XXX	1/week	Measured
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	4.0 Inst Min	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
CBOD₅	5.5	XXX	XXX	25.0	XXX	50.0	2/month	Grab
BOD₅ Raw Sewage Influent	XXX	XXX	XXX	Report	XXX	XXX	2/month	Grab
TSS Raw Sewage Influent	XXX	XXX	XXX	Report	XXX	XXX	2/month	Grab
TSS	7.0	XXX	XXX	30.0	XXX	60.0	2/month	Grab
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/year	Grab
Total Nitrogen	Report	XXX	XXX	Report	XXX	Report	2/month	Grab
Ammonia-Nitrogen	XXX	XXX	XXX	Report	XXX	Report	2/month	Grab
Total Phosphorus	0.5	XXX	XXX	2.0	XXX	4.0	2/month	Grab

Compliance Sampling Location: Outfall 001.

Other Comments:

ATTACHMENT A USGS Stream Stats Output

Discharge Point


StreamStats Report

Region ID: PA

Workspace ID: PA20220614122307588000

Clicked Point (Latitude, Longitude): 39.79521, -80.16049

Time: 2022-06-14 08:23:27 -0400

Collapse All

> Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	1.77	square miles
ELEV	Mean Basin Elevation	1291	feet

Low-Flow Statistics Disclaimers [Low Flow Region 4]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

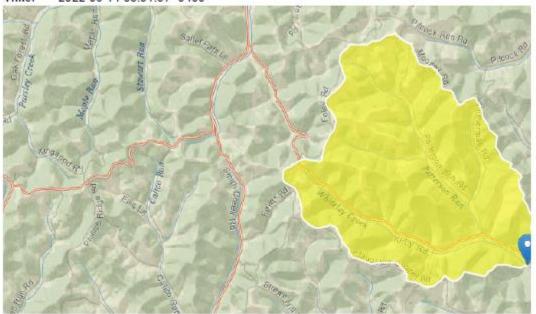
Low-Flow Statistics Flow Report [Low Flow Region 4]

Statistic	Value	Unit
7 Day 2 Year Low Flow	0.0572	ft^3/s
30 Day 2 Year Low Flow	0.108	ft^3/s
7 Day 10 Year Low Flow	0.0173	ft^3/s
30 Day 10 Year Low Flow	0.0358	ft^3/s
90 Day 10 Year Low Flow	0.0723	ft^3/s

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

Downstream of Discharge


StreamStats Report

Region ID: PA

Workspace ID: PA20220614123117103000

Clicked Point (Latitude, Longitude): 39.79241, -80.14363

Time: 2022-06-14 08:31:37 -0400

Collapse All

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	5.45	square miles
ELEV	Mean Basin Elevation	1273	feet

ATTACHMENT B

WQM 7.0 Modeling Results

Summer

Input Data WQM 7.0

	SWP Basir			Str	eam Name		RMI		(ft)	Drainage Area (sq mi)	Slope (ft/ft)	Witho	VS drawal gd)	Apply FC
	20C	34	25 CONN	OQUENE	ESSING CR	EEK	17.0	50	895.00	324.00	0.0000	0	0.00	✓
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth		<u>Tributary</u> np pH	Te	Strear emp	m pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°	C)		
Q7-10 Q1-10 Q30-10	0.032	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000	10.0	0.00	0.0	00 2	5.00 7.	00	0.00	0.00	ı
					Di	ischarge l							1	
			Name	Pe	rmit Number	Disc	Permitt Disc Flow (mgd)	Dis Flo	ic Res	Dis erve Ter ctor (°(mp	Disc pH		
		Veka	plast	PA	0097390	0.000	0.028	30 0.0	0000	0.000	20.00	7.00		
					Pa	arameter	Data							
				Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
				- Caronicite		(m	ng/L) (r	ng/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			4.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

Friday, April 29, 2022 Version 1.1 Page 1 of 2

Input Data WQM 7.0

	SWP Basin			Stre	eam Name		RMI		wation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PW Withda (mg	rawal	Apply FC
	20C	340	25 CONN	OQUENE	SSING CR	EEK	16.78	80	894.00	324.10	0.00000)	0.00	✓
					St	ream Dat	ta							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth		<u>Tributary</u> np pH	Ter	Stream mp	pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°(C)		
Q7-10 Q1-10 Q30-10	0.032	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000	10.0	0.00	0.0	00 2	5.00 7.	00	0.00	0.00	
			Name	Per	rmit Numbe	Disc	Permitte Disc Flow	Dis Flo	ic Res w Fa	Dis erve Ten ctor (°C	np)isc pH		
					P	0.000 arameter		0.0	0000	0.000 2	25.00	7.00		
				Paramete		D	isc Tonc C	Trib Conc ng/L)	Stream Conc (mg/L)	Fate Coef (1/days)				
			CBOD5				25.00	2.00	0.00					
			Dissolved NH3-N	Oxygen			3.00 25.00	0.00	0.00					

Friday, April 29, 2022 Version 1.1 Page 2 of 2

WQM 7.0 Hydrodynamic Outputs

	SWP Basin 20C			m Code 4025		Stream Name CONNOQUENESSING CREEK							
RMI	Stream Flow (cfs)	PWS With (cfs)	Net Stream Flow (cfs)	Disc Analysis Flow (cfs)	Reach Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Reach Trav Time (days)	Analysis Temp (°C)	Analysis pH	
	(013)	(013)	(03)	(03)	(ioit)	(14)	(11)		(ips)	(uays)	(0)		
Q7-1	0 Flow												
17.050	10.21	0.00	10.21	.0433	0.00070	.875	63.56	72.6	0.18	0.090	24.98	7.00	
Q1-1	0 Flow												
17.050	6.53	0.00	6.53	.0433	0.00070	NA	NA	NA	0.14	0.115	24.97	7.00	
Q30-	10 Flow	,											
17.050	13.88	0.00	13.88	.0433	0.00070	NA	NA	NA	0.22	0.075	24.98	7.00	

Friday, April 29, 2022 Version 1.1 Page 1 of 1

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	~
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	~
D.O. Saturation	90.00%	Use Balanced Technology	v
D.O. Goal	5		

Friday, April 29, 2022 Version 1.1 Page 1 of 1

WQM 7.0 Wasteload Allocations

	SWP Basin 20C	Stream C 34025			CONNO	Stream QUENES	<u>Name</u> SSING CF	REEK		
NH3-N	Acute Alloc	ations								
RMI	Discharge	Name Cr	seline riterion mg/L)	Baseline WLA (mg/L)	Multiple Criterio (mg/L)	n V	ltiple VLA ng/L)	Critical Reach	Percent Reductio	
17.05	0 Vekaplast		11.1	50	11	1.1	50	0	0	_
NH3-N	Chronic All	ocations								_
RMI	Discharge N	ame Crite	erion	aseline WLA (mg/L)	Multiple Criterion (mg/L)	Multi WL (mg	A	Critical Reach	Percent Reduction	
17.05	0 Vekaplast		1.37	25	1.	37	25	0	0	-
Dissolve	ed Oxygen	Allocatio	ns							_
RMI	Discharg	ge Name		OD5 Multiple (mg/L)	<u>NH3</u> Baseline (mg/L)			Multiple (mg/L)	Critical	Percent Reduction
17.0)5 Vekaplast		25	25	25	25	4	4	0	0

WQM 7.0 D.O.Simulation

SWP Basin St 20C	34025		CONNO	REEK	
RMI 17.050 Reach Width (ft) 63.559 Reach CBOD5 (mg/L)	Total Discharge 0.02 Reach De 0.87 Reach Kc (8 pth (ft) 5 1/days)		ysis Temperature 24.979 Reach WDRatio 72.601 each NH3-N (mg/	7.000 Reach Velocity (fps) 0.184 L) Reach Kn (1/days)
2.10 Reach DO (mg/L) 8.225 Reach Travel Time (days) 0.090	0.07/ <u>Reach Kr (</u> 0.99/ TrayTime	1/days) 2 Subreach	n Results NH3-N	0.11 Kr Equation Tsivoglou	1.027 Reach DO Goal (mg/L) 5
0.000	0.009 0.018	(mg/L) 2.10 2.09	(mg/L) 0.10 0.10	7.54 7.54	
	0.027 0.036 0.045 0.054	2.09 2.09 2.09 2.09	0.10 0.10 0.10 0.10	7.54 7.54 7.54 7.54	
	0.063 0.072 0.081 0.090	2.09 2.08 2.08 2.08	0.10 0.10 0.10 0.10	7.54 7.54 7.54 7.54	

Friday, April 29, 2022 Version 1.1 Page 1 of 1

WQM 7.0 Effluent Limits

	SWP Basin 20C	Stream Code 34025	Stream Name CONNOQUENESSING CREEK									
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)		Effl. Limit Minimum (mg/L)					
17.050	Vekaplast	PA0097390	0.000	CBOD5	25							
				NH3-N	25	50						
				Dissolved Oxygen			4					

ATTACHMENT C

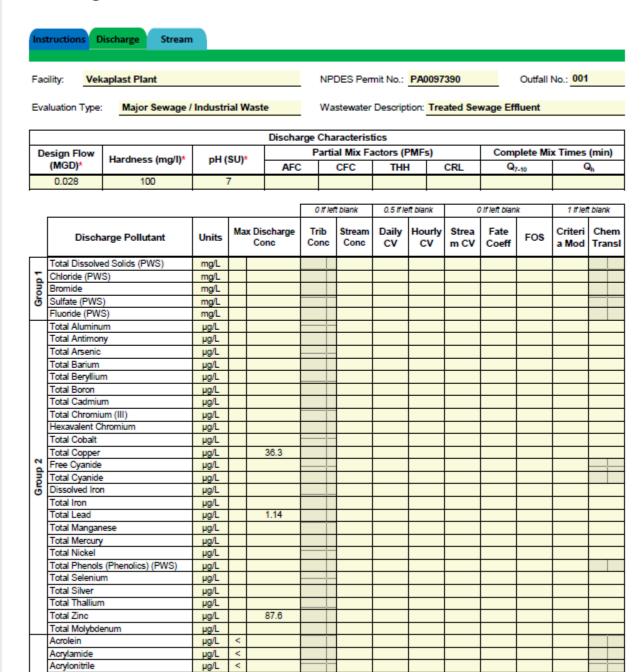
TRC Modeling Results

TRC_CALC_PA0097390

TRC EVALUATION												
Input appropria	te values in /	A3:A9 and D3:D9										
10.2	= Q stream (d	cfs)	0.5	= CV Daily								
0.028	= Q discharg	e (MGD)	0.5	= CV Hourly								
30	= no. sample	s	1	= AFC_Partial N	lix Factor							
0.3	0.3 = Chlorine Demand of Stream 1 = CFC_Partial Mix Fac											
0	0 = Chlorine Demand of Discharge 15 = AFC_Criteria Compliance Time (min											
0.5	= BAT/BPJ V	alue	720	= CFC_Criteria	Compliance Time (min)							
0	= % Factor o	of Safety (FOS)		=Decay Coeffic	ient (K)							
Source	Reference	AFC Calculations		Reference	CFC Calculations							
TRC	1.3.2.iii	WLA afc =		1.3.2.iii	WLA cfc = 73.245							
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581							
PENTOXSD TRG	5.1b	LTA_afc=	27.998	5.1d	LTA_cfc = 42.581							
Source		Effluer	nt Limit Calcul	ations								
PENTOXSD TRG	5.1f	Linde	AML MULT =									
PENTOXSD TRG	5.1a	AVG MON	LIMIT (mg/l) =		BAT/BPJ							
			LIMIT (mg/l) =									
WLA afc	(.019/e(-k*Af	FC_tc)) + [(AFC_Yc*Qs*.019/	Qd*e(-k*AFC	te))								
		Yc*Qs*Xs/Qd)]*(1-FOS/100										
LTAMULT afc	EXP((0.5*LN)	cvh^2+1))-2.326*LN(cvh^2+	1)^0.5)									
LTA_afc	wla_afc*LTA	MULT_afc										
l												
WLA_cfc		FC_tc) + [(CFC_Yc*Qs*.011/0	_	tc))								
l		C_Yc*Qs*Xs/Qd)]*(1-FOS/10	•		_							
LTAMULT_cfc	EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5)											
LTA_cfc	wla_cfc*LTA	MULT_cfc										
AML MULT	EXP(2.326*LI	N((cvd^2/no_samples+1)^0.5	5)-0.5*LN(cvd	^2/no_samples+	1))							
AVG MON LIMIT	MIN(BAT_BP	J,MIN(LTA_afc,LTA_cfc)*AN	IL_MULT)									
INST MAX LIMIT	1.5*((av_mor	_limit/AML_MULT)/LTAMUL	T_afc)									

ATTACHMENT D

TMS Spreadsheet Output


Benzene

Bromoform

Toxics Management Spreadsheet Version 1.3, March 2021

Discharge Information

Discharge Information 4/29/2022 Page 1

µg/L <

µg/L

I	Carbon Tetrachloride	µg/L	<		\neg					
1	Chlorobenzene	µg/L	_		\dashv					\vdash
1			<		=					
1	Chlorodibromomethane	µg/L	-		\dashv					\vdash
1	Chloroethane	µg/L	<	-	4					_
1	2-Chloroethyl Vinyl Ether	µg/L	<		4					
1	Chloroform	μg/L	<		_					
1	Dichlorobromomethane	µg/L	<		_					
1	1,1-Dichloroethane	µg/L	<		_					
62	1,2-Dichloroethane	µg/L	<		\dashv					
Group	1,1-Dichloroethylene	µg/L	<		П					
ē	1,2-Dichloropropane	µg/L	<		\Box					
ဇာ	1,3-Dichloropropylene	µg/L	<		┪					
1	1,4-Dioxane	µg/L	<		┪					
1	Ethylbenzene	µg/L	<		┪					
1	Methyl Bromide	µg/L	<		\dashv					
1	Methyl Chloride	µg/L	<		\dashv					
1			-		\dashv					
1	Methylene Chloride	µg/L	<		\dashv					
1	1,1,2,2-Tetrachloroethane	µg/L	<		\neg					
1	Tetrachloroethylene	µg/L	<							
	Toluene	µg/L	<							
	1,2-trans-Dichloroethylene	µg/L	<							
	1,1,1-Trichloroethane	µg/L	<							
	1,1,2-Trichloroethane	µg/L	<							
1	Trichloroethylene	µg/L	<							
	Vinyl Chloride	µg/L	<							
\vdash	2-Chlorophenol	µg/L	<		┪					
1	2,4-Dichlorophenol	µg/L	<	\vdash	\exists					
1	2,4-Dimethylphenol	µg/L	<		┪					\vdash
1	4,6-Dinitro-o-Cresol	µg/L	<		\dashv					
4	2,4-Dinitrophenol	µg/L	<		\exists					
1 ≘			<		\dashv					\vdash
Group	2-Nitrophenol	µg/L	<		\dashv					
ဖ	4-Nitrophenol	µg/L	_		4					
1	p-Chloro-m-Cresol	µg/L	<	-	4					-
1	Pentachlorophenol	µg/L	<		4					
1	Phenol	μg/L	<		4					
\vdash	2,4,6-Trichlorophenol	µg/L	<		\Box					
1	Acenaphthene	µg/L	<		_					
1	Acenaphthylene	µg/L	<		\exists					
1	Anthracene	µg/L	<							
1	Benzidine	µg/L	<							
1	Benzo(a)Anthracene	µg/L	<		П					
1	Benzo(a)Pyrene	µg/L	<		┪					
	3,4-Benzofluoranthene	µg/L	<							
	Benzo(ghi)Perylene	µg/L	<							
	Benzo(k)Fluoranthene	µg/L	<							
1	Bis(2-Chloroethoxy)Methane	µg/L	<							
1	Bis(2-Chloroethyl)Ether		<							
		µg/L	<							
	Bis(2-Chloroisopropyl)Ether	µg/L	-		-					
	Bis(2-Ethylhexyl)Phthalate	µg/L	<							
	4-Bromophenyl Phenyl Ether	µg/L	<							
1	Butyl Benzyl Phthalate	µg/L	<							
	2-Chloronaphthalene	µg/L	<							
	4-Chlorophenyl Phenyl Ether	µg/L	<							
	Chrysene	µg/L	<							
	Dibenzo(a,h)Anthrancene	µg/L	<							
	1,2-Dichlorobenzene	µg/L	<							
1	1,3-Dichlorobenzene	µg/L	<							
LG.	1,4-Dichlorobenzene	µg/L	<							
ď		µg/L	<							
5	3,3-Dichlorobenzidine Diethyl Phthalate Directlyd Phthalate	µg/L	<							
ত	Dimethyl Phthalate	µg/L	<							
1	Di-n-Butyl Phthalate	µg/L	<		-					
1	2,4-Dinitrotoluene		<							
1	z, r ominotoliche	µg/L								

1	0.5 Distinctshape	num II						
	2,6-Dinitrotoluene	µg/L	<					
	Di-n-Octyl Phthalate	μg/L	•					
	1,2-Diphenyihydrazine	μg/L	<					
	Fluoranthene	µg/L	<					
	Fluorene	µg/L	<					
			-					
1	Hexachiorobenzene	µg/L	•					
1	Hexachiorobutadiene	μg/L	~					
1	Hexachlorocyclopentadlene	µg/L	~					
1	Hexachioroethane	µg/L	<					
1			<					
	Indeno(1,2,3-cd)Pyrene	µg/L	-					
1	Isophorone	μg/L	*					
1	Naphthalene	μg/L	~					
1	Nitrobenzene	µg/L	<					
1	n-Nitrosodimethylamine	µg/L	<					
1			-					
1	n-Nitrosodi-n-Propylamine	µg/L	<					
1	n-Nitrosodiphenylamine	μg/L	~					
1	Phenanthrene	µg/L	•					
1	Pyrene	µg/L	<					
1	1,2,4-Trichiorobenzene		<					
\vdash		µg/L	-					
	Aldrin	µg/L	•					
	alpha-BHC	μg/L	•					
1	beta-BHC	µg/L	<					
	gamma-BHC		<					
		µg/L	-					
	delta BHC	µg/L	<					
	Chlordane	µg/L	<					
1	4,4-DDT	μg/L	~					
1	4,4-DDE	µg/L	<					
	4.4-DDD		-					-
1	4	µg/L	<					
	Dieldrin	µg/L	<					
1	alpha-Endosulfan	µg/L	~					
	beta-Endosulfan	µg/L	<					
40	Endosulfan Sulfate	µg/L	<					
Group			-					
Ιĕ	Endrin	µg/L	<					
ō	Endrin Aldehyde	µg/L	<					
	Heptachlor	µg/L	<					
1	Heptachior Epoxide	µg/L	<					
			-					
	PCB-1016	µg/L	•					
1	PCB-1221	µg/L	<					
	PCB-1232	µg/L	*					
	PCB-1242	µg/L	<					
1	PCB-1248		<					=
		µg/L	-					
	PCB-1254	µg/L	<					
	PCB-1260	μg/L	~					
1	PCBs, Total	µg/L	<					
1	Toxaphene	µg/L	<					
			-					
\vdash	2,3,7,8-TCDD	ng/L	<					
	Gross Alpha	pCl/L						
~	Total Beta	pCl/L	<					
0	Radium 226/228	pCl/L	<					
_	Total Strontium		٧.					
Ö		µg/L						
1	Total Uranium	µg/L	<					
L	Osmotic Pressure	mOs/kg						

Discharge Information 4/29/2022 Page 3

Toxics Management Spreadsheet Version 1.3, March 2021

Stream / Surface Water Information

Vekaplast Plant, NPDES Permit No. PA0097390, Outfall 001

Instructions Disch	sarge Str	eam																
Receiving Surface W	Vater Name:	Connoque	enessing Cre	ek				No. Rea	aches to I	Model:	1	<u> </u>		_	tewide Criteri at Lakes Crit			
Location	Stream Co	de* RN	Elevat		DA (mi²)	Slo	pe (ft/ft)		Withdraw MGD)		pply F Criteria			OR	SANCO Crite	eria		
Point of Discharge	034025	17.	05 895	5	324						Yes							
End of Reach 1	034025	16.	78 894	1	324.1						Yes							
Q ₇₋₁₀		LEV.					145.00	- "		ITA	ver				-			
Location	RMI	LFY		v (cfs)		W/D	Width	Depth	Velocit	Tin			uta	•	Strea		Analys	
		(cfs/mi ²)*	Stream	Inbu	utary	Ratio	(ft)	(ft)	y (fps)	(da	vs)	Hardnes	55	pН	Hardness*	pH*	Hardness	pН
Point of Discharge	17.05	0.0315					63.57	0.875	0.18				_		100	7		
End of Reach 1	16.78	0.0315					63.57	0.875	0.18									
Qh																		
Location	RMI	LFY	Flow	v (cfs)		W/D	Width	Depth	Velocit	Tin		Trib	outa	ry	Strea	m	Analys	is .
Location	1 dvii	(cfs/mi ²)	Stream	Tribu	utary F	Ratio	(ft)	(ft)	y (fps)	(da		Hardnes	55	pН	Hardness	pН	Hardness	pН
Point of Discharge	17.05												T					
End of Reach 1	16.78												\neg					

Toxics Management Spreadsheet Version 1.3, March 2021

Model Results

Vekaplast Plant, NPDES Permit No. PA0097390, Outfall 001

Instructions Results	RETURN	TO INPU	тѕ)	SAVE AS	PDF)	PRINT	r) O A	All Onputs OResults OLimits
☐ Hydrodynamics								
✓ Wasteload Allocations								
☑ AFC C	CCT (min):	15	PMF:	0.243	Ana	lysis Hardne	ss (mg/l):	100 Analysis pH: 7.00
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	
Total Copper	0	0		0	13.439	14.0	817	Chem Translator of 0.98 applied
Total Lead	0	0		0	64.581	81.6	4,762	Chem Translator of 0.791 applied
Total Zinc	0	0		. 0	117.180	120	6,989	Chem Translator of 0.978 applied
☑ CFC (CCT (min): ###		PMF:	1		alysis Hardne	ess (mg/l):	100 Analysis pH: 7.00
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	
Total Copper	0	0		0	8.956	9.33	2,207	Chem Translator of 0.98 applied
Total Lead	0	0		0	2.517	3.18	753	Chem Translator of 0.791 applied
Total Zinc	0	0		0	118.139	120	28,351	Chem Translator of 0.986 applied
☑ тнн (CCT (min): ###	###	PMF:	1	Ana	lysis Hardne	ss (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Copper	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	
☑ CRL (CCT (min): 82.		PMF:	1	l	lysis Hardne	ss (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc (ug/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Copper	0	0		0	N/A	N/A	N/A	

Total Lead	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits		Concentra	tion Limits				
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Copper	523	μg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	753	μg/L	Discharge Conc ≤ 10% WQBEL
Total Zinc	4,480	μg/L	Discharge Conc ≤ 10% WQBEL