

Northwest Regional Office CLEAN WATER PROGRAM

Application Type Renewal
Facility Type Non-Municipal
Major / Minor
Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No.

APS ID

PA0097535

Authorization ID

1056140 1384063

Applicant Name	Norma	a Pennsylvania Inc.	Facility Name	Breeze Ind Clamp Division
	DBA E	Breeze Ind Products Corp		
Applicant Address	3582 T	unnelton Road	Facility Address	3582 Tunnelton Road
	Saltsb	urg, PA 15681-3305		Saltsburg, PA 15681-3305
Applicant Contact	Sean (Gillespie	Facility Contact	
Applicant Phone	(724) 6	639-1018	Facility Phone	
Applicant E Mail	Sean.g	gillespie@normagroup.com	Facility E Mail	
Client ID	27210		Site ID	237060
Municipality	Conen	naugh Township	County	Indiana
Ch 94 Load Status	Not Ov	verloaded	Connection Status	No requirements
Date Application Rece	eived	February 1, 2022	EPA Waived?	Yes
Date Application Acce	epted	February 23, 2022	If No, Reason	

Summary of Review

A NOV was issued on February 8, 2022 for effluent violations by Susan Black and remains pending in WMS. *In reviewing this with operations, it appears that the facility has been in compliance, and it is anticipated that this violation will be closed.*

Previously storm water discharges were reported.

Sludge use and disposal description and location(s): 1.021 tons dry sludge was sent to AVISA at Cheswick for disposal.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
V		William H. Mentzer	
		William H. Mentzer, P.E.	
		Environmental Engineering Specialist	October 12, 2022
X		vacant	Okay to Draft
		Environmental Engineer Manager	JCD 12/7/2022

	ion	
Outfall No. 001	Design Flow (MGD)	0.002
Latitude DP 40° 28′ 52.00″	Longitude DP	-79° 23' 5.00"
Latitude NHD 40° 28′ 50.52″	Longitude NHD	-79º 23' 4.83"
Quad Name Saltsburg	Quad Code	1510
Wastewater Description: Treated Sewage Effluent		
Receiving Waters	Stream Code	43845
NHD Com ID 123722098	RMI	1.20
Drainage Area 0.55	Yield (cfs/mi ²)	0.0157
Q ₇₋₁₀ Flow (cfs) <u>0.0086</u>	Q ₇₋₁₀ Basis	Beaver Run
Elevation (ft) 1155.00	Slope (ft/ft)	0.0548
Watershed No. 18-C	Chapter 93 Class.	CWF
Existing Use statewide	Existing Use Qualifier	none
Exceptions to Usenone	Exceptions to Criteria	none
Comments End of Reach RMI 0,4 Elevati	on 900 feet Drainage 1.0 sc	quare mile
Assessment Status Attaining Use(s)		
Cause(s) of Impairment		
Source(s) of Impairment	<u> </u>	
TMDL Status Final	Name Kiskimineta	s-Conemaugh River TMDL
Background/Ambient Data D	ata Source	
pH (SU) <u>7.0</u> <u>de</u>	efault	
Temperature (°C) <u>20</u> <u>C</u>	WF default	
Hardness (mg/L)		
Other:		
Nearest Downstream Public Water Supply Intake M	unicipal Authority of Westm	oreland County
PWS Waters Conemaugh River	Flow at Intake (cfs)	NA
	Distance from Outfall (mi)	4.852218

Changes Since Last Permit Issuance: none

Other Comments: Alternate name for Municipal Authority of Westmoreland County is Saltsburg Boro Muni Waterworks.

Treatment Facility Summary

Treatment Facility Name: Norma PA Inc. Dba Breeze Ind Products Corp

WQM Permit No.	Issuance Date
3287402	12/30/1987
3287402-A1	1999

Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
	Tertiary with NH3-N	Septic tank/sand filter/		
Sewage	removal	biotower	tablet	0.002

Hydraulic Capacity (MGD)	Organic Capacity (lbs/day)	Load Status	Biosolids Treatment	Biosolids Use/Disposal
0.002	29.75	Not Overloaded	Septic tank	

Changes Since Last Permit Issuance: None

Other Comments: Organic capacity calculated by multiplying 0.17 lbs/capita x 175 workers.

The existing STP has 3 septic tanks, 1 dosing tank, 1 bio-tower, 2 above ground sand filters, 1 recirculation tank, 1 chlorine contact tank, and 1 de-chlorination tank. The facility was initially constructed to treat a design flow of 5600 gpd. It obviously was not designed in accordance with Small Flow Treatment Facilities Manual (32-0300-002) due to the design flow volume. In addition, the facility was constructed prior to publication of that design manual.

Flow measurement is taken by using a bucket and stopwatch.

Compliance History

DMR Data for Outfall 001 (from January 1, 2021 to December 31, 2021)

Parameter	DEC-21	NOV-21	OCT-21	SEP-21	AUG-21	JUL-21	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21
Flow (MGD)												
Average Monthly	0.0020	0.0047	0.0047	0.0069	0.0020	0.0020	0.0020	0.0013	0.0013	0.0014	0.0016	0.0013
pH (S.U.)												
Minimum	6.54	6.15	6.09	6.0	6.16	6.20	6.0	6.10	6.10	6.1	6.64	6.90
pH (S.U.)												
Maximum	7.01	7.07	6.92	6.79	6.76	7.03	6.69	6.64	7.12	7.12	7.3	7.33
DO (mg/L)												
Minimum	7.04	8.32	6.10	5.97	7.38	4.15	4.15	4.09	6.20	6.2	6.63	8.82
TRC (mg/L)												
Average Monthly	0.24	0.30	0.41	0.15	0.44	0.53	0.21	0.54	0.34	0.2	0.05	0.17
TRC (mg/L)												
Instantaneous Max	0.62	0.65	1.35	0.33	1.40	1.50	1.30	1.44	0.85	0.5	0.12	0.27
CBOD5 (mg/L)												
Average Monthly	3.0	3.0	3.0	3.0	3.4	3.0	3.0	3.0	3.0	3.7	3.0	7.7
CBOD5 (mg/L)												
Instantaneous Max	3.0	3.0	3.0	3.0	3.8	3.0	3.0	3.0	3.0	4.4	3.0	12.3
TSS (mg/L)												
Average Monthly	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	4.5	6.5	3.5	8.5
TSS (mg/L)												
Instantaneous Max	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	6.0	10.0	4.0	14.0
Fecal Coliform (#100												
ml) Geometric Mean	1	1.0	6.0	13.0	50	1.0	50	2420	1.0	14	38	1
Fcal Coliform (#/100												
ml) Instant Max	1	1.0	32	153.0	2420	1.0	2420	2420	1.0	194	1414	1
Ammonia (mg/L)												
Average Monthly	12.80	2.31	3.39	2.23	2.20	1.05	11.31	15.10	8.34	7.35	16.84	26.43
Ammonia (mg/L)												
Instantaneous Max	14.10	4.46	4.44	4.09	2.68	1.80	15.30	24.30	8.77	8.18	24.60	37.90

Summer pH median 6.480 SU Annual median 6.665 SU

Ammonia high average in May and June, High Maximum in May.

Fecal coliforms high average in May and high maximums in May, June and August

De-chlorination permitted. High average in May and high maximums in May, June, July, August, and October

Design hydraulic capacity 0.0056-MGD The facility has been down rated to 0.002-MGD. The high September through November flows should not cause any operation failures.

Minimum 4.0-mg/l DO should be acceptable

DMR Data for Outfall 001 (from September 1, 2021 to August 31, 2022)

NPDES Permit Fact Sheet Breeze Ind Clamp Division

Parameter	AUG-22	JUL-22	JUN-22	MAY-22	APR-22	MAR-22	FEB-22	JAN-22		
Flow (MGD)										
Average Monthly	0.0020	0.0020	0.0020	0.0020	0.0020	0.0020	0.0020	0.0020		
pH (S.U.)										
Minimum	6.20	6.2	6.24	6.49	6.45	6.78	7.05	7.04		
pH (S.U.)										
Maximum	7.21	6.87	7.23	8.50	6.89	7.50	7.80	7.60		
DO (mg/L)										
Minimum	8.54	9.50	7.19	6.50	8.30	7.20	8.70	9.72		
TRC (mg/L)										
Average Monthly	0.23	0.19	0.21	0.07	0.14	0.07	0.22	0.31		
TRC (mg/L)										
Instantaneous										
Maximum	0.62	0.52	0.41	0.21	0.62	0.27	0.68	0.71		
CBOD5 (mg/L)										
Average Monthly	3.0	3.0	3.0	3.0	3.0	3.0	3.8	3.0		
CBOD5 (mg/L)										
Instantaneous Max	3.0	3.0	3.0	3.0	3.0	3.0	4.0	3.0		
TSS (mg/L)										
Average Monthly	3.0	3.0	4.5	4.0	 3.0	3.0	3.0	3.0		
TSS (mg/L)										
Instantaneous Max	3.0	3.0	6.0	5.0	3.0	3.0	3.0	3.0		
Fecal Coliform										
(#./100 ml)		0.0	4.0	40.00	4.0	4.0	4.0			
Geometric Mean	1	8.0	1.0	42.00	1.0	1.0	1.0	1		
Fecal Coliform										
(#./100 ml)										
Instantaneous	1.0	E0 0	1.0	1722	1.0	1.0	1.0	1		
Maximum	1.0	58.0	1.0	1733	1.0	1.0	1.0	1		
Ammonia (mg/L)	0.21	1.31	0.214	7.14	5.65	16.30	38.95	23.35		
Average Monthly	U.∠ I	1.31	0.214	7.14	5.05	10.30	30.93	23.33		
Ammonia (mg/L) Instantaneous Maxi	0.27	1.46	4.08	9.48	6.17	18.60	49.60	32.50		
mstantaneous Maxi	0.27	1.40	4.00	9.40	0.17	10.00	49.00	32.50		

Summer pH median 6,535 SU Annual median 6.965 SU Long term Summer pH median 6,480 SU Annual median 6.830 SU No problems reported after May 2022 Minimum 4.0-mg/I DO should be acceptable High ammonia average and maximum in February

			Compliance History			
Effluent Violations for Outfall (T T		
Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
Flow	09/30/21	Avg Mo	0.0069	MGD	.002	MGD
Flow	10/31/21	Avg Mo	0.0047	MGD	.002	MGD
Flow	11/30/21	Avg Mo	0.0047	MGD	.002	MGD
рН	04/30/21	Min	3.0	S.U.	6.0	S.U.
TRC	05/31/21	Avg Mo	0.54	mg/L	.5	mg/L
TRC	07/31/21	Avg Mo	0.53	mg/L	.5	mg/L
Fecal Coliform	05/31/21	Geo Mean	2420	No./100 ml	200	No./100 ml
Fecal Coliform	06/30/21	IMAX	2420	No./100 ml	1000	No./100 ml
Fecal Coliform	05/31/21	IMAX	2420	No./100 ml	1000	No./100 ml
Fecal Coliform	08/31/21	IMAX	2420	No./100 ml	1000	No./100 ml
Ammonia	06/30/21	Avg Mo	11.31	mg/L	9.2	mg/L
Ammonia	05/31/21	Avg Mo	15.10	mg/L	9.2	mg/L
Ammonia	05/31/21	IMAX	24.30	mg/L	18.4	mg/L
Flow	11/30/21	Avg Mo	0.0047	MGD	.002	MGD
Flow	10/31/21	Avg Mo	0.0047	MGD	.002	MGD
Fecal Coliform	05/31/22	IMAX	1733	No./100 ml	1000	No./100 ml
Ammonia	02/28/22	Avg Mo	38.95	mg/L	27.6	mg/L

Other Comments: Flows are well within the original design basis. The TRC violations are not significant. No current violations reported

	Development of Effluent Limitations									
Outfall No.	001	Design Flow (MGD)	.002							
Latitude	40° 28' 51.00"	Longitude	-79° 23' 5.00"							
Wastewater D	Pescription: Sewage Effluent									

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)
E.Coli	monitoring			
DO	4.0	Daily Minimum		BPJ

Comments: Self-monitoring reports the 4.0-mg/L daily minimum DO is achievable. Because of the small flow classification E.Coli monitoring is not proposed.

Water Quality-Based Limitations

A Sewerage Program "Reasonable Potential Analysis" determined the following parameters were candidates for limitations: CBOD5, TSS, ammonia, TGRC and pH.

The following limitations were determined through water quality modeling (output files attached):

Parameter			Limit (mg/l)	SBC	SBC Model		
Name	Period	Minimum	Average	Maximum		Minimum	Average	Maximum
Ammonia	Summer		8.5	17.0	NA		8.54	17.08
	Winter		25.5	51.0			25.5	51.0

Comments: The previous NH3-N limitations were 9.2 mg/l AML summertime and 27.6 mg/l AML wintertime. The facility should be able to meet the slightly more stringent limitations. Therefore, no compliance schedule is being proposed as part of the draft permit.

Best Professional Judgment (BPJ) Limitations

Comments: Applicable to the proposed achievable 4.0-mg/L minimum daily DO limitation.

Anti-Backsliding

Applied to CBOD5 and TSS.

Input Data WQM 7.0

	SWP Basin	Strea Cod		Stre	eam Nam	е	RMI		ation ft)	Drainage Area (sq mi)		ope V:/ft)	PWS Vithdrawal (mgd)	Apply FC
	18C	43	845 Trib 43	3845 to El	ders Run		0.00	00	900.00	1.	0.0	00000	0.00	✓
ā						Stream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p p	Н	<u>St</u> Temp	tream pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C))		(°C)		
Q7-10 Q1-10 Q30-10	0.016	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000)	0.00	0.00) 20	0.00	7.00	0.0	0.00	1000
						Discharge I	Data							
			Name	Per	mit Numl	Disc	Permitte Disc Flow (mgd)	Disc Flow	Res	erve T ctor	Disc Temp (°C)	Disc pH		
		100				0.000	0.000	0.00	000 (0.000	25.00	7.	00	
						Parameter I								
			į	Paramete	r Name	С	onc C	Conc	Stream Conc	Fate Coef				
	_					(m	g/L) (n	ng/L) ((mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50)			
			Dissolved	Oxygen			3.00	8.24	0.00	0.00)			
			NH3-N				25.00	0.00	0.00	0.70)			

Input Data WQM 7.0

	SWP Basin	Strea Coo		Stre	eam Nam	e	RMI	Ele	evation (ft)	Drainag Area (sq m		Slope (ft/ft)	PW Withd (mg	rawal	Apply FC
	18C	438	345 Trib 43	8845 to El	ders Run		1.2	12	1155.00	(0.55 0	.00000		0.00	~
S.						Stream Da	ta								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	n Tem	<u>Tributar</u> np	ŊΗ PH	Tem	<u>Strean</u> np	<u>n</u> pH	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	;)		(°C	:)		
Q7-10 Q1-10 Q30-10	0.016	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000)	0.00	0.0	00 2	0.00	7.00	8	0.00	0.00	
						Discharge	Data]	
			Name	Per	mit Numb	Disc	Permitt Disc Flow (mgd	Dis Flo	sc Res	erve ctor	Disc Temp (°C)		sc H		
		Breez	e Ind	PA	0097535A	0.002	0 0.00	20 0.	0020	0.000	25.0	00	6.50		
						Parameter	Data								
			1	Paramete	r Name			Trib Conc	Stream Conc	Fate Coef					
			81	100-500100000-5000	5 - GREEKONNERSKENSKY	(m	ng/L) (i	mg/L)	(mg/L)	(1/days	s)				
			CBOD5				25.00	2.00	0.00	1.5	50				
			Dissolved	Oxygen			4.00	8.24	0.00	0.0	00				
			NH3-N				25.00	0.10	0.00	0.7	70				

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	Uniform Treatme	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	95.00%	Use Balanced Technology	✓
D.O. Goal	5		

WQM 7.0 Hydrodynamic Outputs

	SW	P Basin	Strea	m Code				Stream	<u>Name</u>			
		18C	4	3845			Trib 4	3845 to	Elders Ri	un		
RMI	Stream Flow	PWS With	Net Stream Flow	Flow	100	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
1.212	0.01	0.00	0.01	.0031	0.03985	.251	1.98	7.91	0.02	3.137	21.32	6.80
Q1-1	0 Flow											
1.212	0.01	0.00	0.01	.0031	0.03985	NA	NA	NA	0.02	3.727	21.79	6.75
Q30-	10 Flow	,										
1.212	0.01	0.00	0.01	.0031	0.03985	NA	NA	NA	0.03	2.750	21.04	6.84

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name
18C	43845	Trib 43845 to Elders Run

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
1.21	2 Breeze Ind	NA	50	17.33	48.1	1	4
H3-N (Chronic Allocati	ons					
H3-N (Chronic Allocati Discharge Name	ons Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction

Dissolved Oxygen Allocations

		CBC	DD5	NH:	<u>3-N</u>	Dissolved	d Oxygen	Critical	Percent
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction
1 21	Breeze Ind	25	25	8 54	8 54	4	4	0	0

WQM 7.0 D.O.Simulation

SWP Basin St	ream Code			Stream Name	
18C	43845		Trib	43845 to Elders Rur	1
<u>RMI</u>	Total Discharge	Flow (mgd) <u>Ana</u>	lysis Temperature (°C	<u>Analysis pH</u>
1.212	0.002	2		21.319	6.804
Reach Width (ft)	Reach De	oth (ft)		Reach WDRatio	Reach Velocity (fps)
1.982	0.25	1		7.907	0.024
Reach CBOD5 (mg/L)	Reach Kc (<u>1/days)</u>	<u>R</u>	each NH3-N (mg/L)	Reach Kn (1/days)
8.07	0.418			2.33	0.775
Reach DO (mg/L)	Reach Kr (- 20		Kr Equation	Reach DO Goal (mg/L)
7.124	23.54	1		Owens	5
Reach Travel Time (days)		Subreach Results			
3.137	TravTime	CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.314	7.02	1.82	8.24	
	0.627	6.10	1.43	8.24	
	0.941	5.31	1.12	8.24	
	1.255	4.62	0.88	8.24	
	1.568	4.02	0.69	8.24	
	1.882	3.49	0.54	8.24	
	2.196	3.04	0.42	8.24	
	2.509	2.64	0.33	8.24	
	2.823	2.30	0.26	8.24	
	3.137	2.00	0.20	8.24	

WQM 7.0 Hydrodynamic Outputs

	SW	/P Basin	Strea	m Code				Stream	<u>Name</u>			
		18C	4	3845			Trib 4	3845 to	Elders Ru	un		
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
1.212	0.01	0.00	0.01	.0031	0.03985	.251	1.98	7.91	0.02	3.137	21.32	6.80
Q1-1	0 Flow											
1.212	0.01	0.00	0.01	.0031	0.03985	NA	NA	NA	0.02	3.727	21.79	6.75
Q30-	10 Flow	V										
1.212	0.01	0.00	0.01	.0031	0.03985	NA	NA	NA	0.03	2.750	21.04	6.84

WQM 7.0 Effluent Limits

	SWP Basin 18C	Stream Code 43845		Stream Name	200		
	180	43845		111D 43845 to Elde	rs kun		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
1.212	Breeze Ind	PA0097535A	0.002	CBOD5	25		
				NH3-N	8.54	17.08	
				Dissolved Oxygen			4

TRC EVALUATION	С	charger Site nicipality County ES Permit 0.5	Breeze Indus Breeze Indus Conemaugh Indiana PA0097535	trial STP Township	·	G	Н	Revised	Wednesday, October Wednesday, October		
0.088						TRC EVALU	JATION				
PRITTORS DTRO 6.1a		0.0086 0.0020 4 0.3 0 0 Source	= Q stream (c = Q discharg: = no. sample: = Chlorine De = Chlorine De = BAT/BPJ V: = % Factor o	fs) e (MGD) s mand of Strea mand of Disch alue f Safety (FOS)	arge	0.5 = 0 1 = 7 1 = 0 15 = 7 720 = 0	CV Hourly AFC_Partial Mix CFC_Partial Mix AFC_Criteria Co CFC_Criteria Co Decay Coefficier Referen	Factor impliance i impliance i it (K)	CFC Ca		
Saurce											
PRITORS TRS 5.11	FENTOXOD	TRO	5. ID		LIA_ait= 0.	339	5.14		LIA_CIC-	0.511	
ALIMIT (mg/s) = 0.508		TDG	5.1f			AMI MIIIT - 1		Limit Calcu	ılations		
*** ** *** *** *** *** *** *** *** **					1 F	_IMIT (mg/l) = 0.5	500		BAT/BPJ		
LTAMULT_ctc	LTAMULT afc		+ Xd + (AFC EXP((0.5*LN(wla_afc*LTAM	:_Yc*Qs*Xs/Qd cvh^2+1))-2.326 IULT_afc)]*(1-FOS/100) *LN(cyh*2+1)*0.5)						
MM MULT	LTAMULT_cfc		+ Xd + (CFC EXP((0.5*LN(_Yc*Qs*Xs/Qd cvd^2/no_samp)]*(1-FOS/100)	100 17100 20100	+1)^0.5)				
MINIBAT_BBP_JMINICTA_riect_Nate MINIBAT_BBP_JMINISTA_RIECT_NATE MINI	LTA_cfc		wla_cfc*LTAM	IULT_cfc							
1.5*(av_mon_limit/AML_MULT_sir_c av_mon_limit/AML_multiple_sir_c av_mon_limit/AML_multiple_sir_c av_mon_limit/AML_multiple_sir_c av_mon_limit/AML_multiple_sir_c av_mon_limit/AML_multiple_sir_c av							oles+1))				
(0.011/EXP(K*CFC_tof1440))+(((CFC_Yc*Q**0*0*1)/(1.547*Qd))*EXP(K*CFC_tof1440))+X4+(CFC_Yc*Q**2*4*1.547*Qd))*(1-FOS/100) Chiome Required = perennial Stream ReachNode 1 1 Stream ReachNode 1 1 Stream Code 43:845 Function Samples Function											
stream flow cfs 0.00864 stream flow MGD 0.005581 stream flow total MGD 0.007581 stream chlorine demand mg/L 0.3 discharge discharge demand mg/L stream Total Stream/Waste ratio 3.8 BAT TRC mean BAT 0.5 BAT TRC maximum BAT 1.6											
BAT TRC maximum BAT 1.6	Stream Stream Stream Stream Samples reach drainage TRC elevation elevation slope low flow discharge Runoff	FC_tc/1440))+X Chlorine Requir Reach/Node Flow Code Function outfall Reach End limitation	cd+(CFC_Yc*Qs red Conditions average maximum modelled modelled	RMI RMI RMI feet sq miles mg/L feet feet footfoot cfs/sq mi mgd	r(1-FOS/100) perennial 1 intermittent 43845 4 1.20 0 6336 0.55 0.148 0.484 1155 900 0.040 0.016 0.0020	Chlorine De	emand	±°	Chlorine Residual		
	Stream Stream Stream Stream Stream Streach freach f	FC_tc/1440)]+x Chlorine (Reach/Node Flow Code Flow Code Function outfall Reach End limitation Period suffice flow flow flow chlorine discharge	de+(CFC_Ye*Qs red Conditions average maximum modelled modelled modelled demand demand demand	RMI RMI RMI feet sq miles mg/L feet feet foot/foot cfs/sq mi mgd hours cfs MGD MGD mg/L mg/L	F(1-FOS/100) perennial 1 intermittent 43845 4 1.20 0 6336 0.955 0.148 0.484 1155 900 0.040 0.016 0.0020 24.000 0.00864 0.005581 0.007581 0.3	Chlorine De	emand	¥0	Chlorine Residual		
	Stream Stream Stream Stream Stream Samples reach drainage TRC elevation elevation slope low flow discharge Runoff BAT should stream stream stream stream stream	FC_tc/1440))+X Chlorine Requir Reach/Node Flow Code Function outfall Reach End limitation Period suffice flow flow flow flow flow flow flow flo	total demand demand Waste	RMI RMI RMI feet sq miles mg/L feet footfoot cfs/sq mi mg/d hours cfs MGD MGD mg/L mg/L ratio BAT	C1-FOS/100) perannial perannial intermittent 43845 4 1.20 0 6336 0.55 0.148 0.484 1155 900 0.040 0.016 0.0020 24.000 0.00864 0.005581 0.3 3.8	Chlorine De	em and	p0	Chlorine Residual		

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Red	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Falametei	Average Monthly	Average Weekly	Average Monthly	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	0.002	XXX	XXX	XXX	XXX	XXX	2/month	Measured
pH (S.U.)	XXX	XXX	6.0 Min	XXX	9.0	XXX	2/month	Grab
Dissolved Oxygen	XXX	XXX	4.0 Min	XXX	XXX	XXX	2/month	Grab
Total Residual Chlorine (TRC)	XXX	XXX	0.5	XXX	XXX	1.2	4/month	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5)	XXX	XXX	20.0	XXX	XXX	40.0	2/month	Grab
Total Suspended Solids	XXX	XXX	20.0	XXX	XXX	40.0	2/month	Grab
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab
Ammonia-Nitrogen Nov 1 - Apr 30	XXX	XXX	25.5	XXX	XXX	51.0	2/month	Grab
Ammonia-Nitrogen May 1 - Oct 31	XXX	XXX	8.5	XXX	XXX	17.0	2/month	Grab

Compliance Sampling Location: Outfall 00 after disinfection

NPDES Permit No. PA0097535

NPDES Permit Fact Sheet Breeze Ind Clamp Division