

| Application Type | Renewal   |
|------------------|-----------|
|                  | Non-      |
| Facility Type    | Municipal |
| Major / Minor    | Minor     |

## NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

| Application No.  | PA0098400 |
|------------------|-----------|
| APS ID           | 839205    |
| Authorization ID | 1390602   |
|                  |           |

Albert Gallatin South Jr. High School

### **Applicant and Facility Information**

| Applicant Name         | Albert Gallatin Area School District | Facility Name    | & Friendship Hill Elementary School<br>STP |
|------------------------|--------------------------------------|------------------|--------------------------------------------|
| Applicant Address      | 2625 Morgantown Road                 | Facility Address | 224 New Geneva Road                        |
|                        | Uniontown, PA 15401-6703             | _                | Point Marion, PA 15474                     |
| Applicant Contact      | Christopher Pegg                     | Facility Contact | Same as applicant                          |
| Applicant Phone        | 724-564-7190                         | Facility Phone   | Same as applicant                          |
| Client ID              | 45088                                | Site ID          | 241946                                     |
| Ch 94 Load Status      | Not Overloaded                       | Municipality     | Springhill Township                        |
| Connection Status      | No Limitations                       | County           | Fayette                                    |
| Date Application Rece  | ived March 1, 2022                   | EPA Waived?      | Yes                                        |
| Date Application Acce  | pted April 1, 2022                   | If No, Reason    |                                            |
| Purpose of Application |                                      | _ ^              | d sewage                                   |

## Summary of Review

The applicant has applied for the renewal of NPDES Permit No. PA0098400. The previous permit was issued on September 17, 2017 and will expire on September 30, 2022.

WQM Permit No. 2688409, issued May 05, 1989, approved the construction of the treatment processes listed below. There are not any more recent WQM permits for this facility.

- Flow equalization tank
- Flow proportioning chamber
- Extended aeration tank
- Final clarifier
- Chlorine contact tank
- Sludge holding tank

The applicant is currently enrolled in and will continue to use eDMR.

The Act 14-PL 834 Municipal Notification was provided by the December 9, 2021 letters and no comments were received.

Below is a summary of changes made to this permit:

- E. Coli monitoring has been imposed
- Technology-based weekly average effluent limitations for CBOD5 and TSS have been imposed

| Approve | Deny | Signatures                                                     | Date           |
|---------|------|----------------------------------------------------------------|----------------|
| x       |      | grace Polabodi                                                 |                |
|         |      | Grace Polakoski, E.I.T. / Environmental Engineering Specialist | April 27, 2022 |
| x       |      | MAHBUGA IASMIN                                                 |                |
|         |      | Mahbuba lasmin, Ph.D., P.E. / Environmental Engineer Manager   | June 28, 2022  |

#### **Summary of Review**

- All "daily while discharging" monitoring frequencies have been changed to "1/day"
- Flow monitoring has been increased to 1/week

Sludge use and disposal description and location(s): Brownsville Sewage Treatment Plant

#### Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

| Discharge, Receiving Waters a            | Discharge, Receiving Waters and Water Supply Information |                              |                  |  |  |  |  |
|------------------------------------------|----------------------------------------------------------|------------------------------|------------------|--|--|--|--|
|                                          |                                                          |                              |                  |  |  |  |  |
| Outfall No. 001                          |                                                          | Design Flow (MGD)            | .0143            |  |  |  |  |
| Latitude <u>39° 47' 9"</u>               |                                                          | Longitude                    | -79º 54' 58"     |  |  |  |  |
| Quad Name Masontown                      |                                                          | Quad Code                    | 39079G8          |  |  |  |  |
| Wastewater Description: Se               | ewage Effluent                                           |                              |                  |  |  |  |  |
|                                          |                                                          |                              |                  |  |  |  |  |
|                                          | Creek (WWF)                                              | Stream Code                  | 41340            |  |  |  |  |
| NHD Com ID99418058                       | 8                                                        | RMI                          | 0.13             |  |  |  |  |
| Drainage Area 64.9 sq. r                 | mi.                                                      | Yield (cfs/mi <sup>2</sup> ) | 0.023            |  |  |  |  |
| Q <sub>7-10</sub> Flow (cfs) <u>1.49</u> |                                                          | Q7-10 Basis                  | USGS StreamStats |  |  |  |  |
| Elevation (ft) 781PA00                   | 980                                                      | Slope (ft/ft)                |                  |  |  |  |  |
| Watershed No. 19-G                       |                                                          | Chapter 93 Class.            | WWF              |  |  |  |  |
| Existing Use                             |                                                          | Existing Use Qualifier       |                  |  |  |  |  |
| Exceptions to Use                        |                                                          | Exceptions to Criteria       |                  |  |  |  |  |
| Assessment Status                        | npaired                                                  |                              |                  |  |  |  |  |
| Cause(s) of Impairment M                 | ETALS, PH                                                |                              |                  |  |  |  |  |
| Source(s) of Impairment A                | CID MINE DRAINAGE, A                                     | CID MINE DRAINAGE            |                  |  |  |  |  |
| TMDL Status                              |                                                          | Name                         |                  |  |  |  |  |
|                                          |                                                          |                              |                  |  |  |  |  |
| Background/Ambient Data                  |                                                          | Data Source                  |                  |  |  |  |  |
| pH (SU)                                  |                                                          |                              |                  |  |  |  |  |
| Temperature (°F)                         |                                                          |                              |                  |  |  |  |  |
| Hardness (mg/L)                          |                                                          |                              |                  |  |  |  |  |
| Other:                                   |                                                          |                              |                  |  |  |  |  |
|                                          |                                                          |                              |                  |  |  |  |  |
| Nearest Downstream Public W              | ater Supply Intake                                       | Dunkard Valley JT Muni Auth  |                  |  |  |  |  |
| PWS Waters Monongahe                     | ela River                                                | Flow at Intake (cfs)         |                  |  |  |  |  |
| PWS RMI                                  |                                                          | Distance from Outfall (mi)   | 1.97             |  |  |  |  |

Changes Since Last Permit Issuance: USGS StreamStats was used to find the Q7-10 flow for Georges Creek.

| Treatment Facility Summary |                          |                            |                            |              |  |  |  |
|----------------------------|--------------------------|----------------------------|----------------------------|--------------|--|--|--|
| Freatment Facility Na      | me: Albert Gallatin Sout | n Junior High/Friendship I | Hill Elementary STP        |              |  |  |  |
| WQM Permit No.             | Issuance Date            | 0 1                        |                            |              |  |  |  |
|                            |                          |                            |                            |              |  |  |  |
| 2688409                    | 05/05/89                 |                            |                            |              |  |  |  |
| 8965-S                     | 12/13/57                 |                            |                            |              |  |  |  |
|                            |                          |                            |                            |              |  |  |  |
|                            | Degree of                |                            |                            | Avg Annual   |  |  |  |
| Waste Type                 | Treatment                | Process Type               | Disinfection               | Flow (MGD)   |  |  |  |
|                            | Secondary With           | 21                         | Chlorine With              |              |  |  |  |
| Sewage                     | Ammonia Reduction        | Extended Aeration          | Dechlorination             | 0.0143       |  |  |  |
|                            | •                        | •                          | · · ·                      |              |  |  |  |
|                            |                          |                            |                            |              |  |  |  |
| Hydraulic Capacity         | Organic Capacity         |                            |                            | Biosolids    |  |  |  |
| (MGD)                      | (lbs/day)                | Load Status                | <b>Biosolids Treatment</b> | Use/Disposal |  |  |  |
| 0.0143                     | · · ·                    | Not Overloaded             | Dewatering                 | Other WWTP   |  |  |  |

Changes Since Last Permit Issuance: N/A

## **Compliance History**

Facility: Al Gallatin HS and Friendship STP

NPDES Permit No.: PA0098400

Compliance Review Period: 4/2017 – 4/2022

#### **Inspection Summary:**

|         | INSPECTED  |                            |                                     |                        |
|---------|------------|----------------------------|-------------------------------------|------------------------|
| INSP ID | DATE       | INSP TYPE                  | AGENCY                              | INSPECTION RESULT DESC |
| 2610677 | 04/11/2017 | Administrative/File Review | PA Dept of Environmental Protection | Violation(s) Noted     |

#### **Violation Summary:**

| VIOL ID | VIOLATION<br>DATE | VIOLATION<br>TYPE | VIOLATION TYPE DESC                                                                        | RESOLVED<br>DATE |
|---------|-------------------|-------------------|--------------------------------------------------------------------------------------------|------------------|
| 789656  | 04/11/2017        | 92A.61(G)         | NPDES - Failure to use a format or process required by DEP for self-<br>monitoring results | 04/20/2017       |

### Open Violations by Client ID: No open violations for client id 45088

#### **Enforcement Summary:**

| ENF ID        | ENF<br>TYPE | ENF TYPE DESC       | ENF FINALSTATUS | ENF CLOSED DATE |
|---------------|-------------|---------------------|-----------------|-----------------|
| <u>354808</u> | NOV         | Notice of Violation | Comply/Closed   | 04/20/2017      |

#### NPDES Permit Fact Sheet Albert Gallatin Jr High School South

### **DMR Violation Summary:**

| MONITORING END<br>DATE | PARAMETER                                               | STATISTICAL<br>BASE CODE | PERMIT<br>VALUE | SAMPLE<br>VALUE | UNIT OF<br>MEASURE |  |
|------------------------|---------------------------------------------------------|--------------------------|-----------------|-----------------|--------------------|--|
| 1/31/2022              | Total Suspended<br>Solids                               |                          |                 | 31.5            | mg/L               |  |
| 11/30/2021             | Total Suspended<br>Solids                               | Average Monthly          | 30              | 44              | mg/L               |  |
| 11/30/2021             | Total Suspended<br>Solids                               | Instantaneous<br>Maximum | 60              | 62              | mg/L               |  |
| 10/31/2021             | Total Suspended<br>Solids                               | Average Monthly          | 30              | 35              | mg/L               |  |
| 9/30/2021              | Total Suspended<br>Solids                               | Average Monthly          | 30              | 39              | mg/L               |  |
| 1/31/2021              | Carbonaceous<br>Biochemical<br>Oxygen Demand<br>(CBOD5) | Average Monthly          | 25              | 27.9            | mg/L               |  |
| 1/31/2021              | Carbonaceous<br>Biochemical Instantaneous               |                          | 50              | 53.1            | mg/L               |  |
| 12/31/2020             | Carbonaceous<br>Biochemical<br>Oxygen Demand<br>(CBOD5) | Average Monthly          | 25              | 27.8            | mg/L               |  |
| 12/31/2020             | Carbonaceous<br>Biochemical<br>Oxygen Demand<br>(CBOD5) | Instantaneous<br>Maximum | 50              | 50.9            | mg/L               |  |
| 12/31/2020             | Fecal Coliform                                          | Geometric Mean           | 2000            | 4048            | No./100 ml         |  |
| 12/31/2020             | Total Suspended<br>Solids                               | Average Monthly          | 30              | 44.5            | mg/L               |  |
| 12/31/2020             | Total Suspended<br>Solids                               | Instantaneous<br>Maximum | 60              | 70              | mg/L               |  |
| 11/30/2020             | Total Suspended<br>Solids                               | Average Monthly          | 30              | 49              | mg/L               |  |
| 10/31/2020             | Total Suspended<br>Solids                               | Average Monthly          | 30              | 120             | mg/L               |  |
| 10/31/2020             | Total Suspended<br>Solids                               | Instantaneous<br>Maximum | 60              | 218             | mg/L               |  |
| 10/31/2019             | Total Suspended<br>Solids                               | Average Monthly          | 30              | 34              | mg/L               |  |
| 4/30/2019              | рН                                                      | Minimum                  | 6               | 4.8             | S.U.               |  |
| 11/30/2018             | Total Suspended<br>Solids                               | Average Monthly          | 30              | 34.5            | mg/L               |  |
| 9/30/2018              | Fecal Coliform                                          | Instantaneous<br>Maximum | 1000            | 1620            | No./100 ml         |  |
|                        |                                                         |                          |                 |                 |                    |  |

**Compliance Status:** Permittee not inspected since 10/21/2014. Permittee has numerous exceedances that ops will look into.

Completed by: John Murphy Completed date: 4/22/2022

|                                                 | Compliance History |        |        |        |        |        |        |        |        |        |        |        |
|-------------------------------------------------|--------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| DMR Data for Outfall 00                         |                    |        |        |        |        |        |        |        |        |        |        |        |
| Parameter                                       | FEB-22             | JAN-22 | DEC-21 | NOV-21 | OCT-21 | SEP-21 | AUG-21 | JUL-21 | JUN-21 | MAY-21 | APR-21 | MAR-21 |
| Flow (MGD)<br>Average Monthly                   | 0.0120             | 0.0090 | 0.0090 | 0.0090 | 0.0090 | 0.0090 |        |        | 0.0040 | 0.0050 | 0.0060 | 0.0070 |
| pH (S.U.)<br>Minimum                            | 6.5                | 7.4    | 6.9    | 7.22   | 6.8    | 7.1    |        |        | 7.33   | 7.23   | 7.24   | 7.4    |
| pH (S.U.)<br>Maximum                            | 8.3                | 8.1    | 8.0    | 7.6    | 7.8    | 7.4    |        |        | 7.9    | 7.8    | 8.2    | 8.1    |
| DO (mg/L)<br>Daily Minimum                      | 5.6                | 5.6    | 4.92   | 5.04   | 5.09   | 5.25   |        |        | 5.3    | 5.05   | 5.79   | 5.70   |
| TRC (mg/L)<br>Average Monthly                   | 0.03               | 0.05   | 0.07   | 0.04   | 0.05   | 0.07   |        |        | 0.07   | 0.08   | 0.058  | 0.022  |
| TRC (mg/L)<br>Instantaneous                     |                    |        |        |        |        | 0.01   |        |        |        |        |        |        |
| Maximum                                         | 0.1                | 0.1    | 0.15   | 0.12   | 0.2    | 0.2    |        |        | 0.15   | 0.15   | 0.15   | 0.15   |
| CBOD5 (mg/L)<br>Average Monthly                 | 7.95               | 18.05  | 10.15  | 9.3    | 21.7   | 2.0    |        |        | 11.2   | 8.0    | 11.5   | 21.35  |
| CBOD5 (mg/L)<br>Instantaneous                   |                    |        |        |        |        |        |        |        |        |        |        |        |
| Maximum<br>TSS (mg/L)                           | 8.8                | 25.9   | 16.4   | 14.8   | 39.0   | 6.6    |        |        | 12.5   | 9.3    | 16.5   | 24.4   |
| Average Monthly                                 | 19.5               | 31.5   | 21.0   | 44.0   | 35.0   | 39.0   |        |        | 6.5    | 9.5    | 15.5   | 26.0   |
| TSS (mg/L)<br>Instantaneous                     | 04.0               | 00.0   | 00.0   | 00.0   | 07.0   | 10.0   |        |        |        | 40.0   | 00.0   | 07.0   |
| Maximum<br>Fecal Coliform                       | 24.0               | 32.0   | 29.0   | 62.0   | 37.0   | 42.0   |        |        | 8.0    | 12.0   | 23.0   | 27.0   |
| (No./100 ml)<br>Geometric Mean                  | 2                  | 38.0   | 13.0   | 525    | 2      | 14.0   |        |        | 31     | 163.5  | 1.5    | 1.5    |
| Fecal Coliform<br>(No./100 ml)<br>Instantaneous |                    |        |        |        |        |        |        |        |        |        |        |        |
| Maximum                                         | 2                  | 72     | 20.0   | 750    | 2      | 27.1   |        |        | 58     | 326    | 2      | 2      |
| Total Nitrogen (mg/L)<br>Daily Maximum          |                    |        | 37.882 |        |        |        |        |        |        |        |        |        |
| Ammonia (mg/L)<br>Average Monthly               | 19.3               | 17.75  | 1.96   | 0.25   | 2.65   | 5.45   |        |        | 0.3    | 1.4    | 11.15  | 2.95   |
| Ammonia (mg/L)<br>Instantaneous                 |                    |        |        |        | 5.4    | 40.0   |        |        | 0.4    |        |        |        |
| Maximum<br>Total Phosphorus                     |                    |        |        |        | 5.1    | 10.8   |        |        | 0.4    | 6.0    |        |        |
| (mg/L)<br>Daily Maximum                         |                    |        | 4.8    |        |        |        |        |        |        |        |        |        |

### **Compliance History**

### Effluent Violations for Outfall 001, from: April 1, 2021 To: February 28, 2022

| Parameter | Date     | SBC    | DMR Value | Units | Limit Value | Units |
|-----------|----------|--------|-----------|-------|-------------|-------|
| TSS       | 01/31/22 | Avg Mo | 31.5      | mg/L  | 30.0        | mg/L  |
| TSS       | 10/31/21 | Avg Mo | 35.0      | mg/L  | 30.0        | mg/L  |
| TSS       | 09/30/21 | Avg Mo | 39.0      | mg/L  | 30.0        | mg/L  |
| TSS       | 11/30/21 | Avg Mo | 44.0      | mg/L  | 30.0        | mg/L  |
| TSS       | 11/30/21 | IMAX   | 62.0      | mg/L  | 60.0        | mg/L  |

#### **Development of Effluent Limitations**

| Outfall No.   | 001           |                 | Design Flow (MGD) | .0143           |
|---------------|---------------|-----------------|-------------------|-----------------|
| Latitude      | 39° 47' 9.00" |                 | Longitude         | -79º 54' 58.00" |
| Wastewater De | escription:   | Sewage Effluent |                   |                 |

#### **Technology-Based Limitations**

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

| Pollutant               | Limit (mg/l)    | SBC             | Federal Regulation | State Regulation |
|-------------------------|-----------------|-----------------|--------------------|------------------|
| CBOD <sub>5</sub>       | 25              | Average Monthly | 133.102(a)(4)(i)   | 92a.47(a)(1)     |
| CBOD5                   | 40              | Average Weekly  | 133.102(a)(4)(ii)  | 92a.47(a)(2)     |
| Total Suspended         | 30              | Average Monthly | 133.102(b)(1)      | 92a.47(a)(1)     |
| Solids                  | 45              | Average Weekly  | 133.102(b)(2)      | 92a.47(a)(2)     |
| рН                      | 6.0 – 9.0 S.U.  | Min – Max       | 133.102(c)         | 95.2(1)          |
| Fecal Coliform          |                 |                 |                    |                  |
| (5/1 – 9/30)            | 200 / 100 ml    | Geo Mean        | -                  | 92a.47(a)(4)     |
| Fecal Coliform          |                 |                 |                    |                  |
| (5/1 – 9/30)            | 1,000 / 100 ml  | IMAX            | -                  | 92a.47(a)(4)     |
| Fecal Coliform          |                 |                 |                    |                  |
| (10/1 – 4/30)           | 2,000 / 100 ml  | Geo Mean        | -                  | 92a.47(a)(5)     |
| Fecal Coliform          |                 |                 |                    |                  |
| (10/1 - 4/30)           | 10,000 / 100 ml | IMAX            | -                  | 92a.47(a)(5)     |
| Total Residual Chlorine | 0.5             | Average Monthly | -                  | 92a.48(b)(2)     |

#### Water Quality-Based Limitations

The discharge was evaluated using WQM7.0 to evaluate the CBOD<sub>5</sub>, ammonia-nitrogen, and dissolved oxygen parameters. The modeling results show technology-based effluent limitations for these parameters are appropriate.

In the previous permit cycle, an average monthly limit of 20.0 mg/L and an IMAX of 40.0 mg/L in the summer was imposed for ammonia-nitrogen. Reporting for ammonia-nitrogen was required in the winter. Current modeling shows that a summer average monthly limit 25 mg/L is acceptable for ammonia-nitrogen. Per DEP SOP "Establishing Effluent Limitations for Individual Sewage Permits" (Rev. March 24, 2021, BCW-PMT-033), when modeling indicates that a summer limit 25 mg/L for ammonia-nitrogen is acceptable, a year-round monitoring requirement will be established, at a minimum. In order to comply with anti-backsliding regulations and to satisfy the requirements as stated in DEP SOPs, the summer average monthly limit of 20.0 mg/L and IMAX of 40.0 mg/L for ammonia-nitrogen will remain in place and monitoring will be imposed in the winter.

The discharge was evaluated using the Total Residual Chlorine spreadsheet (TRC\_CALC). The modeling results confirm that a total residual chlorine limit is necessary to meet the in-stream water quality criterion. The TRC spreadsheet recommended a limit of 0.5 mg/L, which complies with regulatory standards under §§92a.47(a)(8) and 92a.48(b).

The following limitations were determined through water quality modeling (output files attached):

| Parameter                         | Limit (mg/l) | SBC             | Model    |
|-----------------------------------|--------------|-----------------|----------|
| Dissolved Oxygen                  | 4            | Minimum         | WQM7.0   |
| Ammonia Nitrogen (May 1 – Oct 31) | 25           | Average Monthly | WQM7.0   |
| Total Residual Chlorine           | 0.5          | Average Monthly | TRC_CALC |

#### Best Professional Judgment (BPJ) Limitations

In accordance with the WQM7.0 modeling results, the standard in 25 PA Code Chapter 93, and best professional judgment, a Dissolved Oxygen minimum limitation of 4.0 mg/L will be implemented.

#### Anti-Backsliding

Section 402(o) of the Clean Water Act (CWA), enacted in the Water Quality Act of 1987, establishes anti-backsliding rules governing two situations. The first situation occurs when a permittee seeks to revise a Technology-Based effluent limitation based on BPJ to reflect a subsequently promulgated effluent guideline which is less stringent. The second situation addressed by Section 402(o) arises when a permittee seeks relaxation of an effluent limitation which is based upon a State treatment standard of water quality standard.

Previous limits can be used pursuant to EPA's anti-backsliding regulation 40 CFR 122.44 (I) Reissued permits. (1) Except as provided in paragraph (I)(2) of this section when a permit is renewed or reissued. Interim effluent limitations, standards or conditions must be at least as stringent as the final effluent limitations, standards, or conditions in the previous permit (unless the circumstances on which the previous permit was based have materially and substantially changed since the time the permit was issued and would constitute cause for permit modification or revocation and reissuance under §122.62). (2) In the case of effluent limitations established on the basis of Section 402(a)(1)(B) of the CWA, a permit may not be renewed, reissued, or modified on the basis of effluent guidelines promulgated under section 304(b) subsequent to the original issuance of such permit, to contain effluent limitations which are less stringent than the comparable effluent limitations in the previous permit.

The facility is not seeking to revise the previously permitted effluent limits.

#### **Additional Considerations**

Sewage discharges will include monitoring, at a minimum, for E. coli, in new and reissued permits, with a monitoring frequency of 1/year for design flows >= 0.002 and < 0.05 MGD.

The receiving stream is not impaired for nutrients, therefore, annual sampling for nitrogen and phosphorus will be imposed per 25 PA Code §92.61b.

Monitoring frequency for the proposed effluent limits are based upon Table 6-3, Self-Monitoring Requirements for Sewage Dischargers, from the Department's Technical Guidance for the Development and Specification of Effluent Limitations.

#### **Proposed Effluent Limitations and Monitoring Requirements**

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

#### Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

|                                               |                    |                          | Effluent L      | imitations.         |                   |                     | Monitoring Requiremen    |                |
|-----------------------------------------------|--------------------|--------------------------|-----------------|---------------------|-------------------|---------------------|--------------------------|----------------|
| Baramatar                                     | Mass Units         | (lbs/day) <sup>(1)</sup> |                 | Concentrati         | ions (mg/L)       |                     | Minimum <sup>(2)</sup>   | Required       |
| Parameter                                     | Average<br>Monthly | Average<br>Weekly        | Minimum         | Average<br>Monthly  | Weekly<br>Average | Instant.<br>Maximum | Measurement<br>Frequency | Sample<br>Type |
| Flow (MGD)                                    | Report<br>Wkly Avg | XXX                      | xxx             | xxx                 | XXX               | xxx                 | 1/week                   | Measured       |
| рН (S.U.)                                     | XXX                | XXX                      | 6.0<br>Inst Min | xxx                 | XXX               | 9.0                 | 1/day                    | Grab           |
| DO                                            | xxx                | XXX                      | 4.0<br>Inst Min | xxx                 | XXX               | xxx                 | 1/day                    | Grab           |
| TRC                                           | ХХХ                | XXX                      | XXX             | 0.5                 | XXX               | 1.6                 | 1/day                    | Grab           |
| CBOD5                                         | xxx                | XXX                      | ХХХ             | 25.0                | 40.0              | 50                  | 2/month                  | Grab           |
| TSS                                           | XXX                | XXX                      | ХХХ             | 30.0                | 45.0              | 60                  | 2/month                  | Grab           |
| Fecal Coliform (No./100 ml)<br>Oct 1 - Apr 30 | XXX                | XXX                      | XXX             | 2000<br>Geo Mean    | XXX               | 10000               | 2/month                  | Grab           |
| Fecal Coliform (No./100 ml)<br>May 1 - Sep 30 | XXX                | XXX                      | xxx             | 200<br>Geo Mean     | XXX               | 1000                | 2/month                  | Grab           |
| E. Coli (No./100 ml)                          | xxx                | XXX                      | ххх             | xxx                 | XXX               | Report              | 1/year                   | Grab           |
| Total Nitrogen                                | xxx                | XXX                      | XXX             | Report<br>Daily Max | XXX               | XXX                 | 1/year                   | Grab           |
| Ammonia-Nitrogen<br>Nov 1 - Apr 30            | XXX                | XXX                      | XXX             | Report              | XXX               | XXX                 | 2/month                  | Grab           |
| Ammonia-Nitrogen<br>May 1 - Oct 31            | XXX                | XXX                      | XXX             | 20.0                | XXX               | 40.0                | 2/month                  | Grab           |
| Total Phosphorus                              | xxx                | XXX                      | xxx             | Report<br>Daily Max | XXX               | xxx                 | 1/year                   | Grab           |

Compliance Sampling Location: Outfall 001

# ATTACHMENT A: USGS STREAMSTATS


# StreamStats Report

 Region ID:
 PA

 Workspace ID:
 PA20220421181636018000

 Clicked Point (Latitude, Longitude):
 39.78595, -79.91612

 Time:
 2022-04-21 14:17:06 -0400



| Basin Characteris |                                         |       |              |
|-------------------|-----------------------------------------|-------|--------------|
| Parameter Code    | Parameter Description                   | Value | Unit         |
| DRNAREA           | Area that drains to a point on a stream | 64.9  | square miles |
| ELEV              | Mean Basin Elevation                    | 1326  | feet         |

| Parameter Code | Parameter Name | Value | Units                 | Min Limit | Max Limit |  |
|----------------|----------------|-------|-----------------------|-----------|-----------|--|
| DRNAREA        | Drainage Area  | 64.9  | square mi <b>l</b> es | 2.26      | 1400      |  |

| Parameter Code    | Parameter Name                                                   | Value   | Units     |           | Min Lim  | it Ma   | ax Limit   |
|-------------------|------------------------------------------------------------------|---------|-----------|-----------|----------|---------|------------|
| ELEV              | Mean Basin Elevation                                             | 1326    | feet      |           | 1050     | 25      | 80         |
| Low-Flow Statist  | ics Flow Report [Low Fl                                          | ow Regi | on 4]     |           |          |         |            |
|                   | erval-Lower, P <b>l</b> u: Predictio<br>ndard Error (other see r |         | al-Upper, | , ASEp: A | verage S | Standar | d Error of |
| Statistic         |                                                                  | Va      | ue        | Unit      | SE       | A .     | SEp        |
| 7 Day 2 Year Low  | Flow                                                             | 3.5     | 1         | ft^3/s    | 43       | 43      | 3          |
| 30 Day 2 Year Lov | Flow                                                             | 5.6     | 5         | ft^3/s    | 38       | 38      | 3          |
| 7 Day 10 Year Lov | / Flow                                                           | 1.49    | Ð         | ft^3/s    | 66       | 66      | 5          |
| 30 Day 10 Year Lo | w Flow                                                           | 2.3     | 5         | ft^3/s    | 54       | 54      | 1          |
| 90 Day 10 Year Lo | w Flow                                                           | 4.03    | 3         | ft^3/s    | 41       | 41      | 1          |

Low-Flow Statistics Citations

#### Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.8.1 StreamStats Services Version: 1.2.22 NSS Services Version: 2.1.2

# ATTACHMENT B: WQM7.0 MODELING RESULTS

|                 | SWP<br>Basin |              |                | Stre           | am Name         |             | RMI          | Eleva<br>(ft |                  | Drainage<br>Area<br>(sq mi) | Slope<br>(ft/ft) | PWS<br>Withdrawal<br>(mgd) | Apply<br>FC |
|-----------------|--------------|--------------|----------------|----------------|-----------------|-------------|--------------|--------------|------------------|-----------------------------|------------------|----------------------------|-------------|
|                 | 19G          | 413          | 340 GEOR       | GES CRE        | EK              |             | 0.13         | 30 7         | 81.00            | 64.90                       | 0.00000          | 0.00                       |             |
|                 |              |              |                |                | S               | tream Da    | ta           |              |                  |                             |                  |                            |             |
| Design          | LFY          | Trib<br>Flow | Stream<br>Flow | Rch<br>Trav    | Rch<br>Velocity | WD<br>Ratio | Rch<br>Width | Rch<br>Depth | <u>T</u><br>Temp | Tributary<br>pH             | Tem              | <u>Stream</u><br>p pH      |             |
| Cond.           | (cfsm)       | (cfs)        | (cfs)          | Time<br>(days) | (fps)           |             | (ft)         | (ft)         | (°C)             |                             | (°C              | )                          |             |
| Q7-10           | 0.023        | 1.49         | 0.00           | 0.000          | 0.000           | 0.0         | 0.00         | 0.00         | 25               | .00 7.0                     | 00 (             | 0.00 0.00                  | )           |
| Q1-10<br>Q30-10 |              | 0.00         | 0.00           | 0.000          | 0.000           |             |              |              |                  |                             |                  |                            |             |

| Input | Data | WQM | 7.0 |
|-------|------|-----|-----|
|-------|------|-----|-----|

|                 | Dis           | scharge D | ata                                |                                 |                   |                      |            |
|-----------------|---------------|-----------|------------------------------------|---------------------------------|-------------------|----------------------|------------|
| Name            | Permit Number | Disc      | Permitted<br>Disc<br>Flow<br>(mgd) | Design<br>Disc<br>Flow<br>(mgd) | Reserve<br>Factor | Disc<br>Temp<br>(°C) | Disc<br>pH |
| Albert Gallatin | PA0980400     | 0.0000    | 0.0000                             | 0.0143                          | 0.000             | 20.00                | 7.00       |
|                 | Pa            | rameter D | ata                                |                                 |                   |                      |            |
| D,              | rameter Name  | Dis<br>Co | -                                  |                                 | sam Fai           |                      |            |
|                 | rameter Name  | (mg       | /L) (mg                            | /L) (m                          | g/L) (1/da        | ays)                 |            |
| CBOD5           |               | 2         | 5.00                               | 2.00                            | 0.00              | 1.50                 |            |
| Dissolved O     | kygen         |           | 4.00                               | 8.24                            | 0.00              | 0.00                 |            |
| NH3-N           |               | 2         | 5.00                               | 0.00                            | 0.00              | 0.70                 |            |

#### Input Data WQM 7.0

|        | SWP<br>Basin | Strea<br>Cod |                | Stre                | am Name         |             | RMI          |              | vation<br>(ft) | Drainage<br>Area<br>(sq mi) | Slope<br>(ft/ft) | PWS<br>Withdrawal<br>(mgd) | Apply<br>FC |
|--------|--------------|--------------|----------------|---------------------|-----------------|-------------|--------------|--------------|----------------|-----------------------------|------------------|----------------------------|-------------|
|        | 19G          | 413          | 340 GEOR       | GES CRE             | EK              |             | 0.08         | 30           | 780.00         | 65.00                       | 0.00000          | 0.00                       |             |
|        |              |              |                |                     | s               | tream Da    | ta           |              |                |                             |                  |                            |             |
| Design | LFY          | Trib<br>Flow | Stream<br>Flow | Rch<br>Trav<br>Time | Rch<br>Velocity | WD<br>Ratio | Rch<br>Width | Rch<br>Depth | Теп            | <u>Tributary</u><br>p pH    | Tem              | <u>Stream</u><br>p pH      |             |
| Cond.  | (cfsm)       | (cfs)        | (cfs)          | (days)              | (fps)           |             | (ft)         | (ft)         | (°C            | )                           | (°C              | )                          |             |
| 27-10  | 0.023        | 1.49         | 0.00           | 0.000               | 0.000           | 0.0         | 0.00         | 0.0          | 0 2            | 5.00 7.0                    | 00 (             | 0.00 0.00                  | )           |
| 21-10  |              | 0.00         | 0.00           | 0.000               | 0.000           |             |              |              |                |                             |                  |                            |             |
| 230-10 |              | 0.00         | 0.00           | 0.000               | 0.000           |             |              |              |                |                             |                  |                            |             |

|             | Dis           | charge D                          | ata                                |                                   |             |               |                    |            |
|-------------|---------------|-----------------------------------|------------------------------------|-----------------------------------|-------------|---------------|--------------------|------------|
| Name        | Permit Number | Existing<br>Disc<br>Flow<br>(mgd) | Permitted<br>Disc<br>Flow<br>(mgd) | d Design<br>Disc<br>Flow<br>(mgd) | Rese<br>Fac | rve Te<br>lor | )isc<br>emp<br>⁰C) | Disc<br>pH |
|             |               | 0.0000                            | 0.0000                             | 0.000                             | 0 0.        | 000           | 25.00              | 7.00       |
|             | Par           | rameter D                         | ata                                |                                   |             |               |                    |            |
| P           | arameter Name | Dis<br>Cor                        |                                    |                                   | eam<br>onc  | Fate<br>Coef  |                    |            |
|             |               | (mg                               | /L) (mę                            | g/L) (n                           | ng/L)       | (1/days)      |                    |            |
| CBOD5       |               | 2                                 | 5.00                               | 2.00                              | 0.00        | 1.50          |                    |            |
| Dissolved C | kygen         | ;                                 | 3.00                               | 8.24                              | 0.00        | 0.00          |                    |            |
| NH3-N       |               | 2                                 | 5.00                               | 0.00                              | 0.00        | 0.70          |                    |            |

## WQM 7.0 Modeling Specifications

| Parameters         | Both   | Use Inputted Q1-10 and Q30-10 Flows | $\checkmark$ |
|--------------------|--------|-------------------------------------|--------------|
| WLA Method         | EMPR   | Use Inputted W/D Ratio              |              |
| Q1-10/Q7-10 Ratio  | 0.64   | Use Inputted Reach Travel Times     |              |
| Q30-10/Q7-10 Ratio | 1.36   | Temperature Adjust Kr               |              |
| D.O. Saturation    | 90.00% | Use Balanced Technology             |              |
| D.O. Goal          | 5      |                                     |              |

## WQM 7.0 Hydrodynamic Outputs

|                      | <u>sw</u>               | P Basin<br>19G       |                                | im Code<br>1340                   | -                         |               |               | Stream<br>CORGES | Name<br>CREEK     |                                 |                          |                |
|----------------------|-------------------------|----------------------|--------------------------------|-----------------------------------|---------------------------|---------------|---------------|------------------|-------------------|---------------------------------|--------------------------|----------------|
| RMI                  | Stream<br>Flow<br>(cfs) | PWS<br>With<br>(cfs) | Net<br>Stream<br>Flow<br>(cfs) | Disc<br>Analysis<br>Flow<br>(cfs) | Reach<br>Slope<br>(ft/ft) | Depth<br>(ft) | Width<br>(ft) | W/D<br>Ratio     | Velocity<br>(fps) | Reach<br>Trav<br>Time<br>(days) | Analysis<br>Temp<br>(°C) | Analysis<br>pH |
| <b>Q7-1</b><br>0.130 | 0 Flow<br>1.49          | 0.00                 | 1.49                           | .0221                             | 0.00379                   | .604          | 24.24         | 40.16            | 0.10              | 0.030                           | 24.93                    | 7.00           |
| 0.130                | 0 Flow<br>0.95          | 0.00                 | 0.95                           | .0221                             | 0.00379                   | NA            | NA            | NA               | 0.08              | 0.038                           | 24.89                    | 7.00           |
| Q30-<br>0.130        | 2.03                    | 0.00                 | 2.03                           | .0221                             | 0.00379                   | NA            | NA            | NA               | 0.12              | 0.025                           | 24.95                    | 7.00           |

#### WQM 7.0 D.O.Simulation

| SWP Basin               | Stream Code     |           |         | Stream Name      |                      |
|-------------------------|-----------------|-----------|---------|------------------|----------------------|
| 19G                     | 41340           |           | G       | EORGES CREEK     |                      |
| RMI                     | Total Discharge | Flow (mgd | ) Anal  | ysis Temperature | (°C) Analysis pH     |
| 0.130                   | 0.01            | 4         |         | 24.927           | 7.000                |
| Reach Width (ft)        | Reach De        | pth (ft)  |         | Reach WDRatio    | Reach Velocity (fps) |
| 24.241                  | 0.60            | 4         |         | 40.160           | 0.103                |
| Reach CBOD5 (mg/L)      | Reach Kc        | (1/days)  | R       | each NH3-N (mg/L | .) Reach Kn (1/days) |
| 2.34                    | 0.22            | -         |         | 0.37             | 1.023                |
| Reach DO (mg/L)         | Reach Kr (      |           |         | Kr Equation      | Reach DO Goal (mg/L) |
| 8.181                   | 4.18            | 1         |         | Tsivoglou        | 5                    |
| Reach Travel Time (days | )               | Subreach  | Results |                  |                      |
| 0.030                   | TravTime        | CBOD5     | NH3-N   | D.O.             |                      |
|                         | (days)          | (mg/L)    | (mg/L)  | (mg/L)           |                      |
|                         | 0.003           | 2.33      | 0.36    | 7.55             |                      |
|                         | 0.006           | 2.33      | 0.36    | 7.55             |                      |
|                         | 0.009           | 2.33      | 0.36    | 7.55             |                      |
|                         | 0.012           | 2.33      | 0.36    | 7.55             |                      |
|                         | 0.015           | 2.33      | 0.36    | 7.55             |                      |
|                         | 0.018           | 2.32      | 0.36    | 7.55             |                      |
|                         | 0.021           | 2.32      | 0.36    | 7.55             |                      |
|                         | 0.024           | 2.32      | 0.36    | 7.55             |                      |
|                         | 0.027           | 2.32      | 0.36    | 7.55             |                      |
|                         | 0.030           | 2.32      | 0.35    | 7.55             |                      |

|       |                    | am Code<br>41340                |                                      |                                               | ream Name<br>RGES CREEP   | ¢                              |                      |         |
|-------|--------------------|---------------------------------|--------------------------------------|-----------------------------------------------|---------------------------|--------------------------------|----------------------|---------|
| NH3-N | Acute Allocatio    | ns                              |                                      |                                               |                           |                                |                      |         |
| RMI   | Discharge Name     | Baseline<br>Criterion<br>(mg/L) | Baseline<br>WLA<br>(mg/L)            | Multiple<br>Criterion<br>(mg/L)               | Multiple<br>WLA<br>(mg/L) | Critical<br>Reach              | Percent<br>Reduction | 1       |
| 0.13  | 30 Albert Gallatin | 11.18                           | 50                                   | 11.18                                         | 50                        | 0                              | 0                    | -       |
| NH3-N | Chronic Allocat    | Baseline<br>Criterion           | Baseline<br>WLA                      | Multiple                                      | Multiple                  | Critical                       | Percent              |         |
|       | Discharge Name     | (mg/L)                          | (mg/L)                               | Criterion<br>(mg/L)                           | WLA<br>(mg/L)             | Reach                          | Reduction            | _       |
| 0.13  | 30 Albert Gallatin |                                 |                                      | (mg/L)                                        |                           | Reach<br>0                     | Reduction<br>0       | -       |
|       | -                  | (mg/L)<br>1.37                  | (mg/L)                               | (mg/L)                                        | (mg/L)                    |                                |                      | -       |
|       | 30 Albert Gallatin | (mg/L)<br>1.37<br>cations       | (mg/L)<br>25<br>280D5<br>ne Multiple | (mg/L)<br>1.37<br><u>NH3-N</u><br>Baseline Mu | (mg/L)<br>25              | 0<br>ved Oxygen<br>be Multiple | 0<br>Critical        | Percent |

## WQM 7.0 Wasteload Allocations

# WQM 7.0 Effluent Limits

|       | SWP Basin Str<br>19G | eam Code<br>41340 |                       | Stream Name<br>GEORGES CRE | -                                    |                                  |                                  |
|-------|----------------------|-------------------|-----------------------|----------------------------|--------------------------------------|----------------------------------|----------------------------------|
| RMI   | Name                 | Permit<br>Number  | Disc<br>Flow<br>(mgd) | Parameter                  | Effl. Limit<br>30-day Ave.<br>(mg/L) | Effl. Limit<br>Maximum<br>(mg/L) | Effl. Limit<br>Minimum<br>(mg/L) |
| 0.130 | Albert Gallatin      | PA0980400         | 0.000                 | CBOD5                      | 25                                   |                                  |                                  |
|       |                      |                   |                       | NH3-N                      | 25                                   | 50                               |                                  |
|       |                      |                   |                       | Dissolved Oxygen           |                                      |                                  | 4                                |
|       |                      |                   |                       |                            |                                      |                                  |                                  |

# ATTACHMENT C: TRC\_CALC MODELING RESULTS

| Input appropri                                             |                                                                                                            |                                                                                                                            |                                                                                 |                            |                     |  |  |  |
|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------|---------------------|--|--|--|
| in par appi opin                                           | ate values in A                                                                                            | A3:A9 and D3:D9                                                                                                            |                                                                                 |                            |                     |  |  |  |
| 1.4                                                        | 9 = Q stream (c                                                                                            | :fs)                                                                                                                       | 0.5                                                                             | = CV Daily                 |                     |  |  |  |
| 0.0149 = Q discharge (MGD)                                 |                                                                                                            |                                                                                                                            | 0.5                                                                             | = CV Hourly                |                     |  |  |  |
|                                                            | 0 = no. samples                                                                                            | • •                                                                                                                        |                                                                                 | = AFC_Partial Mix Factor   |                     |  |  |  |
| 0.                                                         | 3 = Chlorine De                                                                                            | emand of Stream                                                                                                            |                                                                                 | 1 = CFC_Partial Mix Factor |                     |  |  |  |
|                                                            |                                                                                                            | emand of Discharge                                                                                                         |                                                                                 | Compliance Time (min)      |                     |  |  |  |
| 0.5 = BAT/BPJ Value<br>0 = % Factor of Safety (FOS)        |                                                                                                            |                                                                                                                            |                                                                                 | Compliance Time (min)      |                     |  |  |  |
|                                                            |                                                                                                            |                                                                                                                            |                                                                                 | =Decay Coefficient (K)     |                     |  |  |  |
| Source                                                     | Reference                                                                                                  | AFC Calculations                                                                                                           |                                                                                 | Reference                  | CFC Calculations    |  |  |  |
| TRC                                                        | 1.3.2.111                                                                                                  | WLA afc =                                                                                                                  | 20.640                                                                          | 1.3.2.iii                  | WLA cfc = 20.114    |  |  |  |
| PENTOXSD TRG                                               | 5.1a                                                                                                       | LTAMULT afc =                                                                                                              | 0.373                                                                           | 5.1c                       | LTAMULT cfc = 0.581 |  |  |  |
| PENTOXSD TRG                                               | 5.1b                                                                                                       | LTA_afc=                                                                                                                   | 7.691                                                                           | 5.1d                       | LTA_cfc = 11.694    |  |  |  |
| Source                                                     |                                                                                                            | Efflue                                                                                                                     | nt Limit Calcu                                                                  | lations                    |                     |  |  |  |
| PENTOXSD TRG                                               |                                                                                                            |                                                                                                                            | AML MULT =                                                                      | 1.231                      |                     |  |  |  |
| PENTOXSD TRG                                               | 5.1g                                                                                                       | AVG MON                                                                                                                    | LIMIT (mg/l) =                                                                  | 0.500                      | BAT/BPJ             |  |  |  |
|                                                            |                                                                                                            |                                                                                                                            | LIMIT (mg/l) =                                                                  | 1.055                      |                     |  |  |  |
| WLA afc                                                    | •                                                                                                          | C_tc)) + [(AFC_Yc*Qs*.019/<br>; Yc*Qs*Xs/Qd)]*(1-FQS/10/                                                                   |                                                                                 | _tc))                      |                     |  |  |  |
|                                                            | +Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)                                                                       |                                                                                                                            |                                                                                 |                            |                     |  |  |  |
| LTAMULT afc                                                | EXP((0.5*LN(                                                                                               | EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5)<br>wla_afc*LTAMULT_afc                                                        |                                                                                 |                            |                     |  |  |  |
| LTAMULT afc<br>LTA_afc                                     |                                                                                                            |                                                                                                                            | 1)^0.5)                                                                         |                            |                     |  |  |  |
|                                                            | wla_afc*LTAN<br>(.011/e(-k*CF                                                                              |                                                                                                                            | Qd*e(-k*CFC_                                                                    | tc) )                      |                     |  |  |  |
| LTA_afc                                                    | wla_afc*LTAN<br>(.011/e(-k*CF<br>+ Xd + (CFC                                                               | MULT_afc<br><b>:C_tc) + [(CFC_Yc*Qs*.011/</b>                                                                              | Qd*e(-k*CFC_<br>0)                                                              |                            | .5)                 |  |  |  |
| LTA_afc<br><b>WLA_cfc</b><br>LTAMULT_cfc                   | wla_afc*LTAN<br>(.011/e(-k*CF<br>+ Xd + (CFC                                                               | MULT_afc<br><b>C_tc) + [(CFC_Yc*Qs*.011/(</b><br><b>C_Yc*Qs*Xs/Qd)]*(1-FO8/10</b><br>cvd^2/no_samples+1))-2.32             | Qd*e(-k*CFC_<br>0)                                                              |                            | .5)                 |  |  |  |
| LTA_afc<br><b>WLA_cfc</b>                                  | wla_afc*LTAN<br>(.011/e(-k*CF<br>+ Xd + (CFC<br>EXP((0.5*LN(<br>wla_cfc*LTAN                               | MULT_afc<br><b>C_tc) + [(CFC_Yc*Qs*.011/(</b><br><b>C_Yc*Qs*Xs/Qd)]*(1-FO8/10</b><br>cvd^2/no_samples+1))-2.32             | Qd*e(-k*CFC_<br>0)<br>6*LN(cvd^2/no                                             | o_samples+1)^0             |                     |  |  |  |
| LTA_afc<br><b>WLA_cfc</b><br>LTAMULT_cfc<br><b>LTA_cfc</b> | wla_afc*LTAM<br>(.011/e(-k*CF<br>+ Xd + (CFC<br>EXP((0.5*LN(<br>wla_cfc*LTAM<br>EXP(2.326*LM<br>MIN(BAT_BP | MULT_afc<br><b>C_tc) + [(CFC_Yc*Qs*.011//</b><br><b>C_Yc*Qs*Xs/Qd)]*(1-FO8/10</b><br>cvd^2/no_samples+1))-2.32<br>MULT_cfc | <b>Qd*e(-k*CFC_</b><br><b>0)</b><br>6*LN(cvd^2/nd<br>5)-0.5*LN(cvd*<br>1L_MULT) | o_samples+1)^0             |                     |  |  |  |