

Southwest Regional Office CLEAN WATER PROGRAM

Application Type
Renewal
NonFacility Type
Municipal
Major / Minor
Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. **PA0098523**APS ID **1076510**

Authorization ID 1419016

Applicant and Facility Information					
Glen Me	eadows MHP LLC	Facility Name	Glen Meadow MHP		
4007 De	an Martin Drive	Facility Address	1 Laurie Lane		
Las Veg	as, NV 89103-4137		Washington, PA 15135		
Kelly The	omas	Facility Contact	Tom Bibby		
724-209	-4442	Facility Phone	724-366-5184		
358257		Site ID	250399		
Not Ove	rloaded	Municipality	Amwell Township		
No Limit	ations	County	Washington		
ved	December 1, 2022	EPA Waived?	Yes		
oted _	December 22, 2022	If No, Reason			
	4007 De Las Veg Kelly Th 724-209 358257 Not Ove No Limit	Glen Meadows MHP LLC 4007 Dean Martin Drive Las Vegas, NV 89103-4137 Kelly Thomas 724-209-4442 358257 Not Overloaded No Limitations ved December 1, 2022	Glen Meadows MHP LLC 4007 Dean Martin Drive Las Vegas, NV 89103-4137 Kelly Thomas 724-209-4442 Facility Contact Facility Phone 358257 Site ID Not Overloaded No Limitations Ved December 1, 2022 Facility Name Facility Address Facility Contact Facility Phone County EPA Waived?		

Summary of Review

The permittee has applied for a renewal of NPDES Permit No. PA0098523 on December `1, 2022. NPDES Permit No. PA0098523was previously issued by the PA Department of Environmental Protection (DEP) on December 14, 2020 and expired on August 31, 2022.

The existing treatment process consists of extended aeration, final clarification, and ultraviolet disinfection.

The facility discharges to Little Tenmile Creek through outfall 001. Little Tenmile Creek is classified as Trout Stock Fishes (TSF) per Chapter 93 Designated Uses.

The applicant is currently enrolled in and will continue to use eDMR.

The applicant has complied with Act 14 Notifications and no comments were received.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania*

Approve	Deny	Signatures	Date
Х		Jothan T Coldenite	
		Jordan Coldsmith / Environmental Engineering Specialist	April 13, 2023
х		MAHBUBA IASMIN	
		Mahbuba lasmin, Ph.D., P.E. / Environmental Engineering Manager	May 8, 2023

Summary of Review
Bulletin at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

0 16 11 11 00 1			5 . 5 (105)			
Outfall No. 001			Design Flow (MGD)	.0367		
	57.71"		Longitude	-80° 13' 49.37"		
	shingto		Quad Code	40080B2		
Wastewater Descrip	otion:	Sewage Effluent				
Receiving Waters	Little	Tenmile Creek (TSF)	Stream Code	40813		
NHD Com ID	99410	568	RMI	12.4		
Drainage Area	0.3		Yield (cfs/mi²)	0.007		
Q ₇₋₁₀ Flow (cfs)	0.001	97	Q ₇₋₁₀ Basis	USGS StreamStats		
Elevation (ft)	1332		Slope (ft/ft)			
Watershed No.	19-B		Chapter 93 Class.	TSF		
Existing Use			Existing Use Qualifier			
Exceptions to Use			Exceptions to Criteria			
Assessment Status		Impaired				
Cause(s) of Impairn	nent	HABITAT ALTERATIONS	TAT ALTERATIONS, HABITAT ALTERATIONS, SILTATION, SILTATION			
Source(s) of Impair	ment		OR SHORELINE ZONES, GRAZ EMOVAL OF RIPARIAN VEGET/ N			
TMDL Status		None	Name None			
Background/Ambier pH (SU) Temperature (°F)	nt Data		Data Source			
Hardness (mg/L)						
Other:						
		c Water Supply Intake	TRI CNTY JT MUNI AUTH			
		c Water Supply Intake ahela River (WWF)	TRI CNTY JT MUNI AUTH Flow at Intake (cfs)			

Changes Since Last Permit Issuance: None

	Treatment Facility Summary						
Treatment Facility Na	me: Glen Meadow MHP						
WQM Permit No.	Issuance Date						
6370407 A-1 T-1	12/04/2020						
	Dograp of		1	Ava Annual			
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)			
Sewage	Secondary	Extended Aeration	UV	0.0367			
Hydraulic Capacity	Organic Capacity			Biosolids			
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal			
0.0367		Not Overloaded		Other WWTP			

Changes Since Last Permit Issuance: None

Other Comments:

The existing treatment process consists of:

- · extended aeration
- final clarification
- ultraviolet disinfection.

Compliance History

Operations Compliance Check Summary Report

Facility: Glen Meadows MHP STP

NPDES Permit No.: PA0098523

Compliance Review Period: 3/1/2018-4/17/2023

Inspection Summary:

INSPECTED DATE	INSP TYPE	AGENCY	INSPECTION RESULT DESC
08/13/2021	Compliance Evaluation	PA Dept of Environmental Protection	No Violations Noted
06/24/2021	Administrative/File Review	PA Dept of Environmental Protection	Administratively Closed
10/18/2019	Administrative/File Review	PA Dept of Environmental Protection	Violation(s) Noted
10/08/2019	Administrative/File Review	PA Dept of Environmental Protection	Violation(s) Noted

Violation Summary:

VIOLATION	VIOLATION		RESOLVED	INSPECTED
DATE	TYPE	VIOLATION TYPE DESC	DATE	DATE
10/18/2019	92A.44	NPDES - Violation of effluent limits in Part A of permit	10/18/2019	10/18/2019
10/08/2019	302.202	Operator Certification - Failure to submit annual system fee	10/29/2019	10/08/2019

Open Violations by Client ID: No open violations noted for Client ID 358257 (Current) or Client ID 45124 (Previous)

Enforcement Summary:

ENF TYPE	ENF TYPE DESC	EXECUTED DATE	VIOLATIONS	AMOUNT RECEIVED	ENF FINAL STATUS
CACP	Consent Assessment of Civil Penalty	10/25/2019	92A.44	\$8,000.00	Comply/Closed
NOV	Notice of Violation	10/08/2019	302.202		Comply/Closed

Effluent Violation Summary:

MON_PD_BEGIN	MON_PD_END	OUTFALL	PARAMETER	SAMPLE	PERMIT	UNIT	STAT_BASE_CODE
5/1/2019	5/31/2019	1	Ammonia-Nitrogen	10.1	2	mg/L	Average Monthly
5/1/2019	5/31/2019	1	Ammonia-Nitrogen	14.3	4	mg/L	Instantaneous Maximum
3/1/2018	3/31/2018	1	Ammonia-Nitrogen	4.7	3	mg/L	Average Monthly Instantaneous
3/1/2018	3/31/2018	1	Ammonia-Nitrogen Total Suspended	7.5	6	mg/L	Maximum
3/1/2018	3/31/2018	1	Solids Total Suspended	36	30	mg/L	Average Monthly Instantaneous
3/1/2018	3/31/2018	1	Solids	64	60	mg/L	Maximum

 $\underline{\textbf{Compliance Status:}} \quad \text{Facility is currently in compliance with no outstanding violations or pending enforcements}.$

Completed bv: Amanda Schmidt

Completed date: 4/17/23

Compliance History

DMR Data for Outfall 001 (from March 1, 2022 to February 28, 2023)

Parameter	FEB-23	JAN-23	DEC-22	NOV-22	OCT-22	SEP-22	AUG-22	JUL-22	JUN-22	MAY-22	APR-22	MAR-22
Flow (MGD)												
Average Monthly	0.012	0.015	0.014	0.014	0.015	0.014	0.012	0.014	0.009	0.014	0.013	0.016
pH (S.U.)												
Instantaneous												
Minimum	6.7	6.4	6.5	6.6	6.5	6.5	6.5	6.7	6.8	6.2	6.3	6.3
pH (S.U.)												
Daily Maximum	6.9	6.9	6.9	7.0	6.9	7.0	7.1	6.9	6.9	7.1	7.0	7.1
DO (mg/L)												
Instantaneous												
Minimum	5.3	5.5	5.6	5.9	5.5	5.6	5.3	5.6	5.6	5.6	5.3	5.5
CBOD5 (mg/L)												
Average Monthly	3.4	6.2	3.95	5.1	4.0	5.5	4.0	2.1	2.75	2.6	2.4	< 2.0
CBOD5 (mg/L)												
Instantaneous												
Maximum	4.7	8.0	4.5	5.6	4.5	8.3	5.2	2.2	3.0	2.9	2.8	< 2.0
TSS (mg/L)												
Average Monthly	16.0	9.5	< 5.0	< 5.0	6.0	7.0	5.5	10.5	< 5.0	5.5	6.0	15.0
TSS (mg/L)												
Instantaneous												
Maximum	25.0	10.0	< 5.0	< 5.0	7.0	9.0	6.0	16.0	< 5.0	6.0	7.0	25.0
Fecal Coliform												
(No./100 ml)	_			_				_	_			_
Geometric Mean	3	53	16	2	118	12	89	2	4	134	16	7
Fecal Coliform												
(No./100 ml)												
Instantaneous	-	5 7	00		004	40	00	0	40	000	404	0.4
Maximum	5	57	62	2	261	18	96	2	18	298	121	24
UV Transmittance (%)	400	400	400	400	04	00	00	400	400	80	00	400
Average Monthly	100	100	100	100	91	90	88	100	100	80	89	100
Total Nitrogen (mg/L) Daily Maximum			32.91									
			32.91									
Ammonia (mg/L)	0.1	0.8	0.65	0.3	0.6	0.45	0.55	0.95	0.8	0.15	2.05	0.95
Average Monthly Ammonia (mg/L)	U. I	0.0	0.05	0.5	0.6	0.45	0.55	0.95	0.6	0.15	2.95	0.95
Instantaneous												
Maximum	0.1	0.8	0.9	0.3	0.7	0.5	0.9	1.3	1.3	0.2	5.8	1.5
Total Phosphorus	U. I	0.6	0.8	0.3	0.7	0.5	0.8	1.3	1.3	0.2	5.0	1.0
(mg/L)												
Daily Maximum			2.1									
Daily Maxillium			۷.۱							1		

Development of Effluent Limitations					
Outfall No.	001		Design Flow (MGD)	.0367	
Latitude	40° 7' 57.71"	_	Longitude	-80° 13' 49.37"	
Wastewater D	Description:	Sewage Effluent			

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform (5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform (5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform (10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform (10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations

The discharge was evaluated using WQM7.0 to determine the CBOD₅, ammonia nitrogen, and dissolved oxygen parameters. The model results show slightly more restrictive limits for CBOD₅ and for summer ammonia-nitrogen Limits. The Limits evaluated for winter ammonia-nitrogen and DO are less restrictive than limits previously imposed.

To comply with anti-backsliding regulations, the previous, more restrictive limits for winter ammonia-nitrogen and DO, will again be imposed for the facility.

Parameter	Limit (mg/l)	SBC	Model
CBOD ₅	25	Average Monthly	WQM7.0
Dissolved Oxygen	6.0	Minimum	WQM7.0
Ammonia Nitrogen (Nov. 1 Apr. 20)	2.0	Average Monthly	
Ammonia Nitrogen (Nov 1 – Apr 30)	3.9	IMAX	WQM7.0
Ammonia Nitragan (May 1 Oct 21)	2.8	Average Monthly	
Ammonia Nitrogen (May 1 – Oct 31)	5.6	IMAX	WQM7.0

The facility has shown through submitted DMR data that they are capable of meeting the new Ammonia Nitrogen limit, so they will not receive a compliance schedule for this parameter. However, they have not shown that that they are capable of meeting the new limit for DO. Therefore, the facility will be receiving a compliance period of one year for DO and a schedule has been added to the NPDES Draft permit.

Anti-Backsliding

Section 402(o) of the Clean Water Act (CWA), enacted in the Water Quality Act of 1987, establishes anti-backsliding rules governing two situations. The first situation occurs when a permittee seeks to revise a Technology-Based effluent limitation based on BPJ to reflect a subsequently promulgated effluent guideline which is less stringent. The second situation addressed by Section 402(o) arises when a permittee seeks relaxation of an effluent limitation which is based upon a State treatment standard of water quality standard.

NPDES Permit Fact Sheet Glen Meadow MHP

Previous limits can be used pursuant to EPA's anti-backsliding regulation 40 CFR 122.44 (I) Reissued permits. (1) Except as provided in paragraph (I)(2) of this section when a permit is renewed or reissued. Interim effluent limitations, standards or conditions must be at least as stringent as the final effluent limitations, standards, or conditions in the previous permit (unless the circumstances on which the previous permit was based have materially and substantially changed since the time the permit was issued and would constitute cause for permit modification or revocation and reissuance under §122.62). (2) In the case of effluent limitations established on the basis of Section 402(a)(1)(B) of the CWA, a permit may not be renewed, reissued, or modified on the basis of effluent guidelines promulgated under section 304(b) subsequent to the original issuance of such permit, to contain effluent limitations which are less stringent than the comparable effluent limitations in the previous permit.

The facility is not seeking to revise the previously permitted effluent limits.

Additional Considerations

Sewage discharges will include monitoring, at a minimum, for E. Coli, in new and reissued permits, with a monitoring frequency of 1/year for facilities with design flows of 0.002 - 0.05 MGD.

An annual sampling frequency for total phosphorus and total nitrogen will again be imposed per 25 PA Code §92a.61.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through End of Twelve (12) Months from Permit Effective Date.

		Monitoring Requirements						
Parameter	Mass Units	(lbs/day) (1)		Concentrati	Minimum ⁽²⁾	Required		
raiailletei	Average Monthly	Average Weekly	Instantaneous Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
	Monthly	Weekiy	William	Wieniny	Maximum	Waxiiiaiii	rrequeries	Турс
DO	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab

Compliance Sampling Location: Outfall 001

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Beginning of Thirteen (13) months from Permit Effective Date through Permit Expiration Date.

			Monitoring Requirements					
Parameter	Mass Units	(lbs/day) (1)		Concentrati	ons (mg/L)	Minimum ⁽²⁾	Required	
r ai ailletei	Average Monthly	Average Weekly	Instantaneous Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
DO	XXX	XXX	6.0	XXX	XXX	XXX	1/day	Grab

Compliance Sampling Location: Outfall 001

Proposed Effluent Limitations and Monitoring Requirements

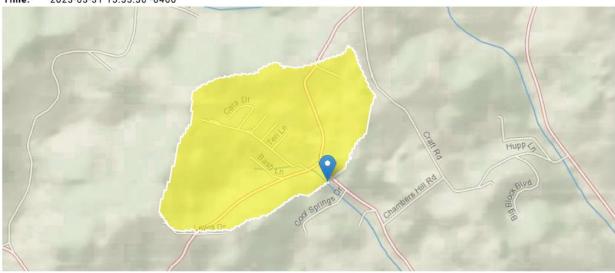
The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

		Monitoring Requirements						
Parameter	Mass Units	(lbs/day) (1)		Concentrati	ons (mg/L)		Minimum ⁽²⁾	Required
i arameter	Average Monthly	Average Weekly	Instantaneous Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	XXX	XXX	XXX	XXX	XXX	2/month	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	9.0	XXX	1/day	Grab
CBOD5	XXX	XXX	XXX	25.0	XXX	50.0	2/month	Grab
TSS	XXX	XXX	xxx	30.0	XXX	60.0	2/month	Grab
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/year	Grab
UV Transmittance (%)	XXX	XXX	Report	XXX	XXX	XXX	1/day	Measured
Total Nitrogen	XXX	XXX	XXX	XXX	Report	XXX	1/year	Grab
Ammonia-Nitrogen Nov 1 - Apr 30	XXX	XXX	XXX	2.0	XXX	3.9	2/month	Grab
Ammonia-Nitrogen May 1 - Oct 31	XXX	XXX	XXX	2.0	XXX	4.0	2/month	Grab
Total Phosphorus	XXX	XXX	XXX	XXX	Report	XXX	1/year	Grab

Compliance Sampling Location: Outfall 001

Attachment 1
Downstream and Upstream USGS StreamStats Report


StreamStats Report

Region ID: PA

Workspace ID: PA20230331195505795000

Clicked Point (Latitude, Longitude): 40.13266, -80.23036

Time: 2023-03-31 15:55:30 -0400

> Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	0.3	square miles
ELEV	Mean Basin Elevation	1332	feet

> Low-Flow Statistics

Low-Flow Statistics Parameters [Low Flow Region 4]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.3	square miles	2.26	1400
ELEV	Mean Basin Elevation	1332	feet	1050	2580

Low-Flow Statistics Disclaimers [Low Flow Region 4]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Low-Flow Statistics Flow Report [Low Flow Region 4]

Statistic	Value	Unit
7 Day 2 Year Low Flow	0.00777	ft^3/s
30 Day 2 Year Low Flow	0.016	ft^3/s
7 Day 10 Year Low Flow	0.00197	ft^3/s
30 Day 10 Year Low Flow	0.00467	ft^3/s

Permit No. PA0098523

StreamStats Report

Region ID: PA

Workspace ID: PA20230404195338381000

Clicked Point (Latitude, Longitude): 40.08296, -80.17925

Time: 2023-04-04 15:54:06 -0400

> Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	13.3	square miles
ELEV	Mean Basin Elevation	1216	feet

> Low-Flow Statistics

Low-Flow Statistics Parameters [Low Flow Region 4]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	13.3	square miles	2.26	1400
ELEV	Mean Basin Elevation	1216	feet	1050	2580

Low-Flow Statistics Flow Report [Low Flow Region 4]

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	ASEp
7 Day 2 Year Low Flow	0.541	ft^3/s	43	43
30 Day 2 Year Low Flow	0.926	ft^3/s	38	38
7 Day 10 Year Low Flow	0.201	ft^3/s	66	66
30 Day 10 Year Low Flow	0.355	ft^3/s	54	54
90 Day 10 Year Low Flow	0.643	ft^3/s	41	41

Attachment 2 Summer WQM7 Modeling

SWP Basin

Stream Code

Input Data WQM 7.0

	SWP Basin			Stre	eam Name		RMI	Elevat	ion [Orainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	19B	408	313 LITTLE	E TENMIL	E CREEK		12.40	0 133	2.00	0.30	0.00000	0.00	✓
					St	ream Dat	a						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Temp	ributary pH	Tem	<u>Stream</u> p pH	
Conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C))	
Q7-10	0.007	0.00	0.00	0.000	0.000	0.0	0.00	0.00	25.	.00 7.0	0 (0.00)
Q1-10		0.00	0.00	0.000	0.000								
Q30-10		0.00	0.00	0.000	0.000								
					Di	scharge l	Data						
			Name	Per	mit Number	Existing Disc Flow	Permitte Disc Flow	d Design Disc Flow	Rese Fact			I .	

	Dis	scharge D	ata					
Name	Permit Number	Existing Disc Flow (mgd)	Permitte Disc Flow (mgd)	d Design Disc Flog (mg	c Res w Fa	erve T ctor	Disc emp (°C)	Disc pH
Glen Meadows	PA0098523	0.0367	0.0000	0.0	000 (0.000	20.00	7.00
	Pai	rameter D	ata					
Pa	rameter Name	Dis Co		rib onc	Stream Conc	Fate Coef		
1 a	rameter Name	(mg	y/L) (m	g/L)	(mg/L)	(1/days)		
CBOD5		2	5.00	2.00	0.00	1.50		
Dissolved O	xygen		4.00	8.24	0.00	0.00		
NH3-N		2	5.00	0.00	0.00	0.70		

WQM 7.0 Hydrodynamic Outputs

	19B	4	0813			LITTL	E TENM	ILE CREI	EK		
Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
0 Flow											
0.00	0.00	0.00	.0568	0.00439	.335	3.16	9.44	0.06	5.517	20.17	7.00
0 Flow											
0.00	0.00	0.00	.0568	0.00439	NA	NA	NA	0.06	5.554	20.11	7.00
10 Flow	,										
0.00	0.00	0.00	.0568	0.00439	NA	NA	NA	0.06	5.480	20.23	7.00
	Stream Flow (cfs) 0 Flow 0.00 0 Flow 0.00 10 Flow	Flow With (cfs) (cfs) 0 Flow 0.00 0.00 0 Flow 0.00 0.00 10 Flow	Stream Flow PWS With Stream Flow (cfs) Net Stream Flow (cfs) 0 Flow 0.00 0.00 0.00 0 Flow 0.00 0.00 0.00 10 Flow 10 Flow 0.00 0.00	Stream PWS Net Disc Flow With Stream Analysis Flow Flow Flow (cfs) (cfs) (cfs) O Flow 0.00 0.00 0.00 0.00 0.0568	Stream Flow PWS With With Stream Analysis Flow (cfs) Net Flow Flow Flow (cfs) Disc Reach Slope Flow (cfs) Reach Flow (ft/ft) 0 Flow 0.00 0.00 0.00 0.068 0.00439 0 Flow 0.00 0.00 0.00 0.0568 0.00439 10 Flow 1	Stream Flow PWS With Stream Flow (cfs) Net Flow Flow (cfs) Disc Reach Slope Flow (cfs) Depth Flow (ft/ft) 0 Flow 0.00 0.00 0.00 0.00 0.00439	Stream Flow PWS With Stream Analysis Flow (cfs) Net Flow Flow (cfs) Disc Reach Slope Flow (cfs) Depth Width (ft) Width (ft) 0 Flow 0.00 0.00 0.00 0.00 0.00439 0.335 0.00439 0.00 0.00 0.00 0.00439 0.00 0	Stream Flow PWS With Stream Analysis Flow (cfs) Net Flow Flow (cfs) Disc Reach Slope Flow (ft/ft) Depth Width W/D Ratio Flow (ft/ft) 0 Flow 0.00 0.00 0.00 0.00 0.00439 0.335 0.316 0.44 0 Flow 0.00 0.00 0.00 0.00439 0.0043	Stream Flow PWS With Stream Analysis Slope Reach Flow (cfs) Depth Width (ft) Width Ratio Velocity Ratio 0 Flow (cfs) (cfs) (cfs) (ft/ft) (ft) (ft) (fps) 0 Flow 0.00 0.00 0.0568 0.00439 .335 3.16 9.44 0.06 0 Flow 0.00 0.00 0.0568 0.00439 NA NA NA NA 0.06 10 Flow NA NA NA NA 0.06 0.06 0.06 0.00	Stream Flow PWS With Stream Flow (cfs) Net Flow (cfs) Disc Flow Flow (cfs) Reach Flow (ft/ft) Depth Width (ft) Width Ratio (fps) Velocity Flow Trav Time (days) 0 Flow 0.00 0.00 0.00 0.00 0.00439	Stream Flow PWS With Stream Flow (cfs) Net Flow (cfs) Disc Flow Flow (cfs) Reach Flow (cfs) Depth (ft) Width (ft) W/D Ratio Velocity Trav Trav Time (fps) Analysis Temp Time (fps) 0 Flow 0.00 0.00 0.00 0.00 0.00439 0.00 0.00 0.00 0.00439 0.00 0.00 0.00 0.00 0.00 0.00439 0.00 0.00 0.00 0.00 0.00 0.00439 0.00 0.00 0.00 0.00 0.00 0.00439 0.00 0.00 0.00 0.00 0.00439 0.00 0.00 0.00 0.00 0.00439 0.00 <td< td=""></td<>

Stream Name

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	6		

WQM 7.0 Wasteload Allocations

 SWP Basin
 Stream Code
 Stream Name

 19B
 40813
 LITTLE TENMILE CREEK

NH3-N Acute Allocations

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
12.400	Glen Meadows	16.61	16.98	16.61	16.98	0	0

NH3-N Chronic Allocations

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
12.40	0 Glen Meadows	1.86	1.95	1.86	1.95	0	0

Dissolved Oxygen Allocations

		<u>CBOD5</u> <u>NH3-N</u> <u>D</u>				Dissolved	d Oxygen	Critical	Percent
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple	Baseline (mg/L)	Multiple (mg/L)		Reduction
12.40 Gle	en Meadows	25	25	1.95	1.95	6	6	0	0

WQM 7.0 D.O.Simulation

SWP Basin St	tream Code			Stream Nan	<u>1e</u>	
19B	40813		LITT	LE TENMILE	CREEK	
RMI	Total Discharge	Flow (mgd) Ana	ysis Tempera	ture (°C)	Analysis pH
12.400	0.03	7		20.168		7.000
Reach Width (ft)	Reach De	pth (ft)		Reach WDR	<u>atio</u>	Reach Velocity (fps)
3.164	0.33	5		9.439		0.055
Reach CBOD5 (mg/L)	Reach Kc (1/days)	<u>R</u>	each NH3-N (<u>(mg/L)</u>	Reach Kn (1/days)
24.23	0.44			1.88		0.709
Reach DO (mg/L)	Reach Kr (Kr Equatio	<u>n</u>	Reach DO Goal (mg/L)
6.075	23.68	33		Owens		6
Reach Travel Time (days)		Subreach	Results			
5.517	TravTime		NH3-N	D.O.		
	(days)	(mg/L)	(mg/L)	(mg/L)		
	0.552	18.88	1.27	8.22		
	1.103	14.71	0.86	8.22		
	1.655	11.46	0.58	8.22		
	2.207	8.93	0.39	8.22		
	2.758	6.96	0.27	8.22		
	3.310	5.42	0.18	8.22		
	3.862	4.23	0.12	8.22		
	4.413	3.29	0.08	8.22		
	4.965	2.57	0.06	8.22		
	5.517	2.00	0.04	8.22		

WQM 7.0 Effluent Limits

	SWP Basin Stream	n Code		Stream Name	<u>e</u>		
	19B 40	813		LITTLE TENMILE	CREEK		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
12.400	Glen Meadows	PA0098523	0.037	CBOD5	25		
				NH3-N	1.95	3.9	
				Dissolved Oxygen			6

Attachment 3 Winter WQM7 Modeling

Input Data WQM 7.0

SWP Basin	Stream Code	Stream Name	RMI	Elevation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
19B	40813 LIT	TLE TENMILE CREEK	12.400	1332.00	0.30	0.00000	0.00	✓
		Stream D	ata					

Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	<u>Tribut</u> Temp	<u>ary</u> pH	Strear Temp	<u>n</u> pH
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)	
Q7-10	0.014	0.00	0.00	0.000	0.000	0.0	0.00	0.00	5.00	7.00	0.00	0.00
Q1-10		0.00	0.00	0.000	0.000							
Q30-10		0.00	0.00	0.000	0.000							

		Dis	charge Da	ata							
	Name	Permit Number	Existing Disc Flow (mgd)	Perm Dis Flo (mo	sc	Design Disc Flow (mgd)	Res Fac	erve T ctor	Disc emp (°C)	Disc pH	
0	Glen Meadows	PA0098523	0.0367	0.0	0000	0.000	00 (0.000	15.00	7.00	
	Parameter Data										
	Par	rameter Name	Disc Cor		Trib Con		ream Conc	Fate Coef			
	rai	ameter ivame	(mg/	/L)	(mg/	L) (r	ng/L)	(1/days)			
	CBOD5		25	5.00	2	2.00	0.00	1.50			
	Dissolved Ox	ygen	4	1.00	12	2.51	0.00	0.00			
	NH3-N		25	5.00	0	.00	0.00	0.70			

WQM 7.0 Hydrodynamic Outputs

	<u>sw</u>	P Basin		ım Code				<u>Stream</u>				
		19B	4	0813			LITTL	E TENM	ILE CREI	ΕK		
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
12.400	0.00	0.00	0.00	.0568	0.00439	.335	3.16	9.44	0.06	5.517	14.66	7.00
Q1-1	0 Flow											
12.400	0.00	0.00	0.00	.0568	0.00439	NA	NA	NA	0.06	5.554	14.78	7.00
Q30-	10 Flow	1										
12.400	0.00	0.00	0.00	.0568	0.00439	NA	NA	NA	0.06	5.480	14.55	7.00

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	6		

WQM 7.0 Wasteload Allocations

 SWP Basin
 Stream Code
 Stream Name

 19B
 40813
 LITTLE TENMILE CREEK

NI	H3-N	l Acute	Allocation	ıs

R	RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
1:	2.400 G	ilen Meadows	24.1	24.64	24.1	24.64	0	0

NH3-N Chronic Allocations

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
12.400 Glen Meadows		2.68	2.81	2.68	2.81	0	0

Dissolved Oxygen Allocations

		CBOD5		<u>NH3-N</u>		Dissolved Oxygen		Critical	Doroont
RMI	Discharge Name	Baseline (mg/L)		Baseline (mg/L)	Multiple	Daseille	Multiple (mg/L)	Reach	Reduction
12.40 Glen Meadows		25	25	2.81	2.81	6	6	0	0

WQM 7.0 D.O.Simulation

SWP Basin S	tream Code			Stream Nan	<u>ne</u>	
19B	40813		LITT	LE TENMILE	CREEK	
RMI	Total Discharge	Flow (mgd	l) Ana	lysis Tempera	iture (°C)	Analysis pH
12.400	0.03	7		14.665		7.000
Reach Width (ft)	Reach De	pth (ft)		Reach WDR	atio	Reach Velocity (fps)
3.164	0.33	5		9.439		0.055
Reach CBOD5 (mg/L)	Reach Kc (1/days)	<u>R</u>	each NH3-N	(mg/L)	Reach Kn (1/days)
24.23	0.57			2.71		0.464
Reach DO (mg/L)	Reach Kr (Kr Equation	<u>on</u>	Reach DO Goal (mg/L)
6.218	20.78	35		Owens		6
Reach Travel Time (days)		Subreach	Results			
5.517	TravTime	CBOD5	NH3-N	D.O.		
	(days)	(mg/L)	(mg/L)	(mg/L)		
	0.552	18.88	2.10	9.16		
	1.103	14.71	1.63	9.16		
	1.655	11.46	1.26	9.16		
	2.207	8.93	0.97	9.16		
	2.758	6.96	0.75	9.16		
	3.310	5.42	0.58	9.16		
	3.862	4.23	0.45	9.16		
	4.413	3.29	0.35	9.16		
	4.965	2.57	0.27	9.16		
	5.517	2.00	0.21	9.16		

WQM 7.0 Effluent Limits

	SWP Basin Strea	ım Code		Stream Nam	<u>e</u>		
	19B 4	0813		LITTLE TENMILE	CREEK		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
12.400	Glen Meadows	PA0098523	0.037	CBOD5	25		
				NH3-N	2.81	5.62	
				Dissolved Oxygen			6