

Northwest Regional Office CLEAN WATER PROGRAM

Application Type Renewal
Facility Type Non-Municipal
Major / Minor Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. PA

Authorization ID

PA0100056 1065069

1399099

	Applicant and	Facility Information	
Applicant Name	Rose Point Park Campground Co.	Facility Name	Rose Point Park Campground
Applicant Address	314 Rose Point Road	Facility Address	Old US 422
	New Castle, PA 16101-9358	_	New Castle, PA 16101
Applicant Contact	Fred Yeager	Facility Contact	Fred Yeager
Applicant Phone	(724) 924-2415	Facility Phone	
Applicant E Mail	infor@rosepointpark.com	Facility E Mail	infor@rosepointpark.com
Client ID	283120	Site ID	261979
Municipality	Slippery Rock Township	County	Lawrence
Ch 94 Load Status	Not Overloaded	Connection Status	No Limitations
Date Application Rece	eived June 6, 2022	EPA Waived?	Yes
Date Application Acce	epted June 30, 2022	If No, Reason	

Summary of Review

A Notice of Violation (NOV) for effluent violations was issued on October 9, 2019 and is currently open. The last noncompliance date was July 13, 2022. *The Operations Section is planning to issue a COA concurrently with issuance of the Final Permit. CWY* 7/7/2023

Proposed is annual E Coli and daily DO, pH and TRC monitoring. The daily monitoring is the minimum recommendation and reflects a concert with the reported high TRC and fecal coliforms.

0.153-dry tons sludge removed in the past year by Pullman Sanitary to the Mahoning Township WWTP for further treatment and disposal.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
X		William 74. Mentzer William H. Mentzer, P.E.	
		Environmental Engineering Specialist	June 29, 2023
X		Chad W. Yurisic Chad W. Yurisic, P.E. Environmental Engineer Manager	7/7/2023

Discharge, Receiving	Waters and Water Supply Informa	ation				
Outfall No.	001	Desig	gn Flow (MGD)	.01		
Latitude DP	40° 58′ 22.20″	Long	itude DP	-80° 10' 59.70"		
Latitude NHD	40° 58′ 19.97″	Long	itude NHD	-80° 10' 53.52"		
Quad Name	Portersville	Quad	l Code	1104	_	
Wastewater Descrip	otion: Treated campground waste	S				
Receiving Waters	Unnamed tributary to Slippery Rocl	k Creek	Stream Code	unknown		
NHD Com ID	126216829		RMI	0.1		
Drainage Area	0.28		Yield (cfs/mi²)	0		
Q ₇₋₁₀ Flow (cfs)	0		Q ₇₋₁₀ Basis	Dry stream		
Elevation (ft)	1040.00		Slope (ft/ft)	0.02		
Watershed No.	20-C		Chapter 93 Class.	CWF		
Existing Use	statewide		Existing Use Quali	fier none		
Exceptions to Use	none		Exceptions to Crite	eria <u>none</u>		
Comment	Confluence with Slippery Rock Cre	ek at node	RMI 0.07. Design flo	ow is the annual averag	ge.	
	The hydraulic capacity and design	monthly ma	aximum flow is 0,01-	MGD.		
Assessment Status	Attaining Use(s)					
Cause(s) of Impairm	nent					
Source(s) of Impairr	ment					
TMDL Status		Na	ame			
Background/Ambier	nt Data	Data Source	ce			
pH (SU)	<u> </u>					
Temperature (°F)						
Hardness (mg/L)	· · · · · · · · · · · · · · · · · · ·				_	
Other:						
Nooroot Downstroo	m Public Water Supply Intake	PA Americ	on			
	Connoquenessing Creek			NΛ		
-		Flow at Intake (cfs) NA Distance from Outfall (mi) 16,58				
PWS KIVII U	0.01	Distance		16,58		

Changes Since Last Permit Issuance:

PA American consolidated regional operations resulting in removal of the Slippery Rock Creek intake and adding a downstream Connoquenessing Creek intake above its confluence with the Beaver River,

	Tre	eatment Facility Summa	ry	
Treatment Facility Na	me: Rose Point Park Cam	pground		
WQM Permit No.	Issuance Date			
3779402	7/13/1979			
A1	12/7/2010			
	Degree of			Avg Annual
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)
		Sequencing Batch		
Sewage	Secondary	Reactor	Hypochlorite	0.0087
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal
0.01	21.8	Not Overloaded	Aerobic Digestion	Other WWTP

Changes Since Last Permit Issuance: none

Other Comments:

3779402: (4) Chromaglass Model CA-25 aerobic treatment units, (2) subsurface sand filters, and (2) chlorination units.

3779402-A1: (2) Chromaglass CA-25 units (the two newest, existing units) and a new CA 50 unit – operating in parallel, new, 3,000-gallon post equalization unit (one of the old CA-25 units - converted), Chemical Addition, Disk Filtration, new - 3,000-gallon Chlorine Contact Tank with chlorination and de-chlorination and an Aerate Sludge Holding Tank (the other converted old CA-25 unit.

The sand filters and the original chlorination units were abandoned in the upgrade

	I	nfluent O	rganic	Load	l and I	Effluent	Data		
		Mea	an M	<i>l</i> lean	Min	Mean	Max	No	Comments
Mon	th Ye	ar MG	iD F	PPD		mg/L	mg/L	mg/L	
Design Annual Average:		0.010	000						
Design Hydraulic Capacity:		0.010	000						
Design Organic Capacity:			2	21.8					
NNUk Average Flow:	20	19 0.003	909						
	20	20 0.002	977						
	20	21 0.005	176						
Highest Monthly Average: Jul	y 20	21 0.005	178						
рН					6.82		7.44	24	
TRC						0.56	2.1	12	trifle high
Fecal Coliform						438.8	2594	12	seasonal concern
CBOD5						16.72	160	12	high maximum
TSS						32.98	88	12	high
NU3N						3.98	19,83	5	
Nitrogen						8.5	42.5	5	
Phosphorus						2.53	12.66	5	

The data includes a period of effluent noncompliance.

Compliance History

DMR Data for Outfall 001 (from May 1, 2022 to April 30, 2023)

Parameter	APR-23	MAR-23	FEB-23	JAN-23	DEC-22	NOV-22	OCT-22	SEP-22	AUG-22	JUL-22	JUN-22	MAY-22
Flow (MGD)												
Average Monthly							0.00235	0.002385	0.002967	0.004142	0.00404	0.004235
pH (S.U.)												
Instantaneous Min							6.37	6.23	6.05	6.2	6.0	6.4
pH (S.U.)												
Instantaneous Max							6.77	6.44	7.01	6.64	7.4	7.22
DO (mg/L)												
Instantaneous Min							7.15	4.26	4.6	8.20	4.7	5.0
TRC (mg/L)												
Average Monthly							0.64	0.35	0.56	0.62	0.55	0.52
TRC (mg/L)												
Instantaneous Max							1.05	0.77	1.5	1.0	1.0	1.1
CBOD5 (mg/L)												
Average Monthly							8.85	9.08	18.9	9.52	12.44	10
TSS (mg/L)												
Average Monthly							35	32	33	20	29	18
F Coliform (#/100 ml)												
Geometric Mean							43	52	35	241	178	131
F Coliform (#/100 ml)												
Instantaneous Max							187	275	122	5794	504	3448
Total Nitrogen (mg/L)												
Average Quarterly					72.2			41.7			27.9	
Ammonia (mg/L)												
Average Quarterly					28.5			5.37			18.4	
T Phosphorus (mg/L)												
Average Quarterly					18			12			7.1	

Poor bathing season disinfection

Low waste flow and high TSS.

Compliance History

Effluent Violations for Outfall 001, from: June 1, 2022 To: April 30, 2023

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
TRC	06/30/22	Avg Mo	0.55	mg/L	.5	mg/L
TRC	08/31/22	Avg Mo	0.56	mg/L	.5	mg/L
TRC	07/31/22	Avg Mo	0.62	mg/L	.5	mg/L
TRC	10/31/22	Avg Mo	0.64	mg/L	.5	mg/L
TSS	08/31/22	Avg Mo	33	mg/L	30	mg/L
TSS	09/30/22	Avg Mo	32	mg/L	30	mg/L
TSS	10/31/22	Avg Mo	35	mg/L	30	mg/L
Fecal Coliform	07/31/22	Geo Mean	241	No./100 ml	200	No./100 ml
Fecal Coliform	07/31/22	IMAX	5794	No./100 ml	1000	No./100 ml

Other Comments: Both TRC and fecals high in August 2022. Aeration and settling adjustment should be considered. Daily TRC monitoring recommend to assure adequate disinfection.

	Develop	oment of Effluent Limitations	
Outfall No.	001	Design Flow (MGD)	.01
Latitude	40° 58' 22.20"	Longitude	-80° 10' 59.70"
Wastewater D	Description: Effluent	-	

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD ₅	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 - 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)
DO	4.0	Daily Minimum		BPJ
E Coli	Report	Annual Average		BPJ

Comments: Compliance is expected

Water Quality-Based Limitations

A Sewerage program based "Reasonable Potential Analysis" determined the following parameters were candidates for limitations: CBOD5, TSS, Nitrogen, Ammonia, Phosphorus, Coliforms, Dissolved Oxygen (DO), Total Residual Chlorine (TRC) and pH.

CBOD5, Ammonia, and DO are evaluated using WQM 7.1. TRC is evaluated using the TRC spread sheet. Nitrogen, phosphorus and E Coli are monitor and report.

The following limitations were determined through water quality modeling (output files attached):

Para	meter		Limit (mg/l)		SBC		Model	
		Min	Mean	Max		Min	Mean	Max
CBOD5			25.0	25.0	NA		25.0	50.0
Ammonia	Summer		Monitor				25.0	50.0
	Winter							
DO		4.0				4.0		

Comments:

No ammonia limitations are proposed and monitoring continued.

Best Professional Judgment (BPJ) Limitations

Comments: Applied to DO.

Anti-Backsliding

No need

Procedure Proc	В	С	D	E	F	G	Н	T	J K	L M
Municipality Country Political Formation Political Formati					2			2201 08 - 90		
PROJ.								Revised	Wednesday, June 28, 20	123
NODES Permit PACIFICOSES TREE VALUATION				K TOWNSHIP						
### TRC EVALUATION ### Spring propriets values in PSI 25 and ESI EST ### 20 258 ### 20										
The content of the	and the second second	0.5	100							
92.38		data walion to F	M-D0 E4-1			TRC EVA	LUATION			
10 1100						0.5	= CV Daily			
0.3										
Commonwealth Comm		30						Mix Factor		
## ATRIBLY Value 9									1000 HARM	
		0			je					
Reference		0				720			e (mm)	
### Chronical Processing	S					•			CFC Calcula	tions
Security				100						
Stures				E						
SENTONSO TRO S.10	LINTOXOD	ino	5.10		LIA_ait-	217.217	,		LIA_00 - 330	7.530
### ### ##############################								ent Limit Calculat	ions	
### ### ##############################									AT/DD I	
TAMAULT at: SPRING DEVILOR(1974-1) 230 230 130 2	ENTOXOU	IRO	J. 19						WINDLA	
TAMAULT at: SPRING DEVILOR(1974-1) 230 230 130 2										
Def	WLA afc					e(-k*AFC_tc))				
MA_cfe	TAMILIT -4-					5)				
					Africali. 7+13.0 ;	Ü				
	E									
TAMULT Control Contr	WLA_cfc					(-k*CFC_tc))				
TA_cfc	TAMIII T. efc.					ovd49/no samnli	e+1\A0.5)			
MAIL MULT MIN(EAT_BPJ/MIN(ETA_art_ETA_ctr/AM_MULT)					· 1))-2.320 LIV	cva zmo_sampn	23.17 0.07			
NST MAXLIMT										
1.5"(ı .					mples+1))			
0.011/EXP(HCFC_te/1440))+(((FE_tC_tC_tC_t)^2(40))+(((FE_tC_tC_t)^2(40)))+(((FE_tC_tC_tC_t)^2(40)))+(((FE_tC_tC_tC_t)^2(40)))+(((FE_tC_tC_tC_t)^2(40)))+(((FE_tC_tC_tC_t)^2(40)))+(((FE_tC_tC_tC_t)^2(40)))+(((FE_tC_tC_tC_t)^2(40)))+(((FE_tC_tC_tC_t)^2(40)))+(((FE_tC_t)^2(40)))+(((FE_tC_t)^2(40)))+((FE_tC_t)^2(40))+(((FE_tC_t)^2(40)))+(((FE										
			No. 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
Stream	*EXP(-K*C	FC_tc/1440)))+X Chlorine Requir	d+(CFC_Yc*Qs	*Xs/1.547*Qd))*(1 =	-FOS/100) perennial		Demand	+ (Chlorine Residual	
Stream Code			Conditions	2						
Samples 30 30 30 30 30 30 30 3	Stream					34032				
reach outfall RMI 0.10 11.21 Reach End RMI 0.1 11.16 reach fret 528 264 drainage sq miles 0.28 372.55 IRC limitation average mg/L 0.210 0.500 maximum mg/L 0.666 1.830 elevation modelled feet 1040 1029.48 elevation modelled feet 1040 1029.48 elevation modelled feet 1020.4 1029.06 elevation modelled foot/foot 0.020 0.002 own flow cfs/sq mi 0.076 0.076 elevation modelled foot/foot 0.020 0.002 own flow cfs/sq mi 0.076 0.076 elevation modelled foot/foot 0.020 0.002 own flow cfs/sq mi 0.076 0.076 elevation modelled foot/foot 0.020 0.002 own flow blischarge mg/d 0.0100 0.0100 elevation modelled foot/foot 0.020 0.002 own flow blischarge mg/d 0.0100 0.0100 elevation modelled foot/foot 0.020 0.002 elevation modelled foot/foot 0.020 0.002 elevation modelled feet 1029.48 1029.06 elevation modelled feet 1029.06 elevation modelled feet 1029.06 elevation modelled feet 1029.06 elevation modelled feet 1029.48 1029.06 elevation modelled feet 1029.06 elevation modelled f	Samples	Function				30				
reach feet 528 264 drainage sq miles 0.28 372.55 drainage mg/L 0.210 0.500 maximum mg/L 0.686 1.630 elevation modelled feet 1040 0.29.48 elevation modelled feet 1029.48 1029.06 elevation modelled feet 1029.48 1029.06 elevation modelled feet 10.000 0.00		outfall		RMI						
Stream flow Cfs 0.02125 28.26887					0	11.16				
Imitation average mg/L 0.210 0.500										
maximum mg/L 0.686 1.630		limitation	averane							
alevation modelled feet 1040 1029.48 1029.06	1110	IIIIIEGEIOII								
Stream Flow MGD 0.021 0.021 0.021			modelled	feet	1040					
ow flow cfs/sq mi										
Runoff			modelled							
Ory stream discharge with no need for aquatic life protection BAT control is adequate for perennial stream conditions at Slippery Rock Creek, stream flow cfs 0.02125 28.26887 stream flow total MGD 0.013732 18.270651 stream flow total MGD 0.023732 18.280651 stream chlorine demand mg/L 0.3 0.3 discharge demand mg/L stream Total Stream/Waste ratio 2.4 1828.1 BAT TRC mean BAT 0.5 0.5 BAT TRC maximum BAT 1.6 1.6	discharge				0.0100	0.0100				
stream flow cfs 0.02125 28.26887 stream flow MGD 0.013732 18.270651 stream flow total MGD 0.023732 18.280651 stream chlorine demand mg/L 0.3 0.3 discharge demand mg/L stream Total Stream/Weste ratio 2.4 1828.1										
stream flow MGD 0.013732 18.270651 stream flow total MGD 0.023732 18.280651 stream chlorine demand mg/L discharge demand mg/L stream Total Stream/Waste ratio 2.4 1828.1 BAT TRC mean BAT 0.5 BAT TRC maximum BAT 1.6 BAT TRC maximum BAT 1.6	⊃ry stream (discharge with n	o need for aqu	iatic life protection	ni BAT contr	oi is adequate fo	or perennial s	tream conditions a	at Slippery Rock Creek,	
stream flow MGD 0.013732 18.270651 stream flow total MGD 0.023732 18.280651 stream chlorine demand mg/L discharge demand mg/L stream Total Stream/Waste ratio 2.4 1828.1 BAT TRC mean BAT 0.5 BAT TRC maximum BAT 1.6 BAT TRC maximum BAT 1.6										
stream flow MGD 0.013732 18.270651 stream flow total MGD 0.023732 18.280651 stream chlorine demand mg/L discharge demand mg/L stream Total Stream/Waste ratio 2.4 1828.1 BAT TRC mean BAT 0.5 BAT TRC maximum BAT 1.6 BAT TRC maximum BAT 1.6	etro am	flow		ofe	0.02425	70 76007				
stream flow total MGD 0.023732 18.280651 stream chlorine demand mg/L 0.3 0.3 ischarge demand mg/L stream Total Stream/Waste ratio 2.4 1828.1 3AT TRC mean BAT 0.5 0.5 BAT TRC maximum BAT 1.6 1.6										
discharge demand mg/L stream Total Stream/Waste ratio 2.4 1828.1 BAT TRC mean BAT 0.5 0.5 BAT TRC maximum BAT 1.6 1.6	stream	flow		MGD	0.023732	18.280651				
Total Stream/Waste ratio 2.4 1828.1 3AT TRC mean BAT 0.5 0.5 BAT TRC maximum BAT 1.6 1.6					0.3	0.3				
BAT TRC mean BAT 0.5 0.5 BAT TRC maximum BAT 1.6 1.6					24	1828 1				
BAT TRC maximum BAT 1.6 1.6		, star of earli	.,		4.0	.020.1				
BAT TRC maximum BAT 1.6 1.6										
BAT TRC maximum BAT 1.6 1.6										
BAT TRC maximum BAT 1.6 1.6					a =	202				
	DAI	IKC	maximum	DAI	1.6	1.6				
B C D E F G H I J K L I										

Input Data WQM 7.0

	SWP Basin	Strea		Stre	eam Nam	е	RMI		vation (ft)	Drainage Area (sq mi)	Slo (ft/	Witl	PWS ndrawal mgd)	Apply FC
	20C	34	032 SLIPP	ERY ROC	CK CREE	K	11.31	10	1040.00	0.2	28 0.00	0000	0.00	
31						Stream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p p	Н	<u>Stre</u> Temp	am pH	
Cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	O°))		(°C)		
Q7-10 Q1-10 Q30-10	0.076	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000)	0.00	0.0	00 2	0.00	7.00	0.00	0.00	
	Discharge Data Existing Permitted Design Disc Disc													
			Name	Per	rmit Numl	Disc	Permitte Disc Flow (mgd)	Dis Flo	c Res w Fa	erve T ctor	Disc emp (°C)	Disc pH		
		Rose	Point G	PA	0100056	0.010	0.010	0.0	100	0.000	25.00	6.40		
						Parameter I	Data							
			1	Paramete	r Name	Di C		Frib Conc	Stream Conc	Fate Coef				
						(m	g/L) (n	ng/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			4.00	8.24	0.00	0.00	į			
			NH3-N			:	25.00	0.10	0.00	0.70				

Input Data WQM 7.0

	SWP Basin	Strea Coa		Stre	eam Nam	e	RMI		evation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PV Witho (m	Irawal	Apply FC
	20C	34	032 SLIPP	ERY ROO	CK CREE	K	11.2	10	1029.48	372.55	0.0000	0	0.00	~
5						Stream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth		<u>Tributary</u> ip pH	Те	<u>Strear</u> mp	n pH	
Cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°	C)		
Q7-10 Q1-10 Q30-10	0.076	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000	0	0.00	0.0	00 20	0.00 7.	00	0.00	0.00	
Discharge Data														
			Name	Per	mit Num	Disc	Permitte Disc Flow (mgd)	Dis Flo	sc Res ow Fa	Direrve Ter ctor	mp	Disc pH		
		·				0.000	0.000	0.0	0000	0.000	25.00	7.00		
						Parameter I	Data							
			1	Paramete	r Name	Di Ci		Trib Conc	Stream Conc	Fate Coef				
			81	200-5001800009-2208	9	(m	g/L) (n	ng/L)	(mg/L)	(1/days)		_		
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N			i	25.00	0.00	0.00	0.70				

Input Data WQM 7.0

	SWP Basin	Strea Coa		Stre	eam Nam	e	RMI		vation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PV Witho (m	Irawal	Apply FC
	20C	34	032 SLIPP	ERY ROO	CK CREE	K	0.00	00	809.14	827.85	0.00000	0	0.00	~
						Stream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth		<u>Tributary</u> p pH	Te	<u>Strear</u> mp	n pH	
oona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C))	(°	C)		
Q7-10 Q1-10 Q30-10	0.076	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000	0	0.00	0.0	00 20	0.00 7.	00	0.00	0.00	
Discharge Data]			
			Name	Per	mit Numl	Disc	Permitte Disc Flow (mgd)	Dis Flo	c Res	Dis erve Ter ctor (°C	np	Disc pH		
		·				0.000	0.000	0.0	0000	0.000 2	25.00	7.00		
						Parameter I	Data							
			1	Paramete	r Name	Di Ci		Trib Conc	Stream Conc	Fate Coef				
			21	- X/AAAAAA 6.232AAAAAAAAAAAA	A decisionnessèrem	(m	g/L) (n	ng/L)	(mg/L)	(1/days)		_		
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N			į	25.00	0.00	0.00	0.70				

WQM 7.0 Hydrodynamic Outputs

	<u>sw</u>	P Basin	Strea	m Code				Stream	Name			
		20C	3	4032			SLIPE	PERY RO	CK CRE	EK		
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-10	Flow											
11.310	0.02	0.00	0.02	.0155	0.01992	.302	2.48	8.19	0.05	0.125	22.10	6.65
11.210	28.31	0.00	28.31	.0155	0.00372	.93	84.06	90.43	0.36	1.890	20.00	7.00
Q1-10	Flow											
11.310	0.01	0.00	0.01	.0155	0.01992	NA	NA	NA	0.04	0.142	22.66	6.59
11.210	18.12	0.00	18.12	.0155	0.00372	NA	NA	NA	0.28	2.426	20.00	7.00
Q30-	10 Flow	,										
11.310	0.03	0.00	0.03	.0155	0.01992	NA	NA	NA	0.05	0.112	21.74	6.69
11.210	38.51	0.00	38.51	.0155	0.00372	NA	NA	NA	0.43	1.591	20.00	7.00

Wednesday, June 28, 2023 Version 1.1 Page 1 of 1

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	~
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	~
D.O. Saturation	95.00%	Use Balanced Technology	~
D.O. Goal	5		

Wednesday, June 28, 2023 Version 1.1 Page 1 of 1

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name
20C	34032	SLIPPERY ROCK CREEK

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
11.31	0 Rose Point G	NA	50	17.55	50	0	0
11.21	0	NA	NA	16.77	NA	NA	NA
H3-N	Chronic Allocati	ons					
	Discharge Name	Baseline Criterion	Baseline WLA	Multiple Criterion	Multiple WLA	Critical Reach	Percent Reduction
RMI	4000 0000 0000 0000 00 0 0000 - 00000 000000	(mg/L)	(mg/L)	(mg/L)	(mg/L)		
	0 Rose Point G	(mg/L)	(mg/L)	(mg/L)	(mg/L)	0	0

Dissolved Oxygen Allocations

		CBC	DD5	NH	3-N	Dissolved	d Oxygen	0-1411	Danset
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Critical Reach	Percent Reduction
11.31	Rose Point G	25	25	25	25	4	4	О	О
11.21		NA	NA	NA	NA	NA	NA	NA	NA

Wednesday, June 28, 2023

Page 1 of 1

WQM 7.0 D.O.Simulation

SWP Basin St	ream Code			Stream Name			
20C	34032		SLIP	PERY ROCK CREEK			
RMI	Total Discharge	Flow (mgd) Ana	lysis Temperature (°C)	Analysis pH		
11.310	0.01	0		22.105	6.647		
Reach Width (ft)	Reach De	pth (ft)		Reach WDRatio	Reach Velocity (fps)		
2.478	0.30	2		0.049			
Reach CBOD5 (mg/L)	Reach Kc (R	each NH3-N (mg/L)	Reach Kn (1/days)		
11.68	1.33			10.58	0.823		
Reach DO (mg/L) 6.457	Reach Kr (27.63			Kr Equation Owens	Reach DO Goal (mg/L) NA		
Reach Travel Time (days) 0.125	TravTime	Subreach CBOD5	Results NH3-N	D.O.			
	(days)	(mg/L)	(mg/L)	(mg/L)			
	0.012	11.47	10.47	6.46			
	0.025	11.26	10.37	6.47			
	0.037	11.06	10.26	6.48			
	0.050	10.86	10.16	6.50			
	0.062	10.66	10.05	6.52			
	0.075	10.46	9.95	6.55			
	0.087	10.27	9.85	6.57			
	0.100	10.09	9.75	6.60			
	0.112	9.90	9.65	6.63			
	0.125	9.72	9.55	6.66			
<u>RMI</u>	Total Discharge	Flow (mgd) <u>Ana</u>	lysis Temperature (°C)	Analysis pH		
11.210	0.01	- T-1-10		20.003	6.999		
Reach Width (ft) 84.060	Reach De 0.93			Reach WDRatio 90.431	Reach Velocity (fps) 0.363		
Reach CBOD5 (mg/L)			R	teach NH3-N (mg/L)	Reach Kn (1/days)		
2.01	Reach Kc (1/days)		· -	0.01	0.700		
2.01	0.003						
	0.00: <u>Reach Kr (</u>			Kr Equation	Reach DO Goal (mg/L)		
Reach DO (mg/L) 8.241		1/days)		<u>Kr Equation</u> Tsivoglou	Reach DO Goal (mg/L) 5		
Reach DO (mg/L) 8.241	Reach Kr (<u>1/days)</u> 6	Paculte	70. 20. 27	Reach DO Goal (mg/L) 5		
Reach DO (mg/L) 8.241	Reach Kr (1/days)	Results NH3-N (mg/L)	70. 20. 27			
<u>Reach DO (mg/L)</u> 8.241 Reach Travel Time (days)	Reach Kr (6.29 TravTime	1/days) 6 Subreach CBOD5	инз-и	Tsivoglou			
<u>Reach DO (mg/L)</u> 8.241 Reach Travel Time (days)	Reach Kr (6.29) TravTime (days)	1/days) 6 Subreach CBOD5 (mg/L)	NH3-N (mg/L)	Tsivoglou D.O. (mg/L)			
<u>Reach DO (mg/L)</u> 8.241 Reach Travel Time (days)	Reach Kr (6.29) TravTime (days) 0.189	1/days) 6 Subreach CBOD5 (mg/L) 2.01	NH3-N (mg/L) 0.01	Tsivoglou D.O. (mg/L) 8.24			
<u>Reach DO (mg/L)</u> 8.241 Reach Travel Time (days)	Reach Kr (6.29) TravTime (days) 0.189 0.378	1/days) 6 Subreach CBOD5 (mg/L) 2.01 2.01	NH3-N (mg/L) 0.01 0.01	D.O. (mg/L) 8.24 8.24			
Reach DO (mg/L) 8.241 Leach Travel Time (days)	Reach Kr (6.29) TravTime (days) 0.189 0.378 0.567	Subreach CBOD5 (mg/L) 2.01 2.01 2.01	NH3-N (mg/L) 0.01 0.01 0.01	D.O. (mg/L) 8.24 8.24 8.24 8.24			
Reach DO (mg/L) 8.241 Leach Travel Time (days)	Reach Kr (6.29) TravTime (days) 0.189 0.378 0.567 0.756	Subreach CBOD5 (mg/L) 2.01 2.01 2.01 2.01	NH3-N (mg/L) 0.01 0.01 0.01 0.01	D.O. (mg/L) 8.24 8.24 8.24 8.24 8.24			
Reach DO (mg/L) 8.241 Leach Travel Time (days)	Reach Kr (6.29) TravTime (days) 0.189 0.378 0.567 0.756 0.945	2.01 2.01 2.01 2.01 2.01 2.01 2.01	NH3-N (mg/L) 0.01 0.01 0.01 0.01 0.01	D.O. (mg/L) 8.24 8.24 8.24 8.24 8.24 8.24			
<u>Reach DO (mg/L)</u> 8.241 Reach Travel Time (days)	Reach Kr (6.29) TravTime (days) 0.189 0.378 0.567 0.756 0.945 1.134	1/days) 6 Subreach CBOD5 (mg/L) 2.01 2.01 2.01 2.01 2.01 2.01 2.01	NH3-N (mg/L) 0.01 0.01 0.01 0.01 0.01 0.01	Tsivoglou D.O. (mg/L) 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.2			
<u>Reach DO (mg/L)</u> 8.241 Reach Travel Time (days)	Reach Kr (6.29) TravTime (days) 0.189 0.378 0.567 0.756 0.945 1.134 1.323	1/days) 6 Subreach CBOD5 (mg/L) 2.01 2.01 2.01 2.01 2.01 2.00 2.00	NH3-N (mg/L) 0.01 0.01 0.01 0.01 0.01 0.01 0.00	Tsivoglou D.O. (mg/L) 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.2			

Version 1.1

WQM 7.0 Effluent Limits

SWP Basin Str 20C	34032					
Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
Rose Point G	PA0100056	0.010	CBOD5	25		
			NH3-N	25	50	
			Dissolved Oxygen			4
	20C Name	Name Permit Number	Name Permit Flow Number (mgd)	Name Permit Number Disc Flow (mgd) Parameter Rose Point G PA0100056 0.010 CBOD5 NH3-N	20C 34032 SLIPPERY ROCK CREEK Name Permit Number Disc Flow (mgd) Parameter Effl. Limit 30-day Ave. (mg/L) Rose Point G PA0100056 0.010 CBOD5 25 NH3-N 25	20C 34032 SLIPPERY ROCK CREEK Name Permit Number Disc Flow Planameter Parameter Effl. Limit 30-day Ave. (mg/L) Effl. Limit Maximum (mg/L) Rose Point G PA0100056 0.010 CBOD5 25 NH3-N 25 50

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Red	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
raiametei	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	XXX	XXX	XXX	XXX	XXX	1/week	Measured
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	4.0 Inst Min	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
CBOD5	XXX	XXX	XXX	25	XXX	50	2/month	Grab
TSS	XXX	XXX	XXX	30	XXX	60	2/month	Grab
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	Report Annl Avg	XXX	XXX	1/year	Grab
Total Nitrogen	XXX	XXX	XXX	Report Avg Qrtly	XXX	XXX	1/quarter	8-Hr Composite
Ammonia	XXX	XXX	XXX	Report Avg Qrtly	XXX	XXX	1/quarter	8-Hr Composite
Total Phosphorus	XXX	XXX	XXX	Report Avg Qrtly	XXX	XXX	1/quarter	8-Hr Composite

Compliance Sampling Location: Outfall 001 after disinfection