

Northwest Regional Office CLEAN WATER PROGRAM

Application Type

Renewal

Non
Facility Type

Major / Minor

Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. PA0100676

APS ID 1080065

Authorization ID 1425444

·	Applicant and Eq	aility Information	
	Applicant and Fa	cility Information	
Applicant Name	Reorganized Church of Jesus Christ of Latter Day St 9017 Chillicothe Road Temple Grove	Facility Name	Temple Grove Campground
Applicant Address	Business Office Kirtland, OH 44094-9261	Facility Address	347 Hamburg Road Transfer, PA 16154-2603
Applicant Contact	Chuck Ryhal	Facility Contact	Rich Davis
Applicant Phone	(440) 463-4695	Facility Phone	(724) 962-2530
Applicant Email	chasmel@gmail.com or cryhal@parker.com	Facility Contact	rich_davis13z@yahoo.com
Client ID	45008	Site ID	257750
Ch 94 Load Status	Not Overloaded	Municipality	Delaware Township
Connection Status	No Limitations	County	Mercer
Date Application Rece	eived February 1, 2023	EPA Waived?	Yes
Date Application Acce	pted October 4, 2023	If No, Reason	
Purpose of Application	Renewal of a NPDES Permit for an	Existing Discharge of	0.01

Summary of Review

This is a renewal NPDES Permit for an existing discharge of 0.01 from a non-municipal minor sewage facility.

Treatment permitted under WQM Permit 4371423 consists of: Two 394,000-gallon lagoons in series with aluminum sulfate addition between the first and second lagoon for Phosphorus control, followed by tablet chlorine disinfection with a 500-gallon contact tank.

Treatment permitted under WQM Permit 4305402 consisting of: A 600-gallon chlorine contact tank, a tablet dechlorination unit, and an existing 500-gallon chlorine contact tank as a dechlorination contact tank.

Act 14 - Proof of Notification was submitted and received.

SPECTIAL CONDITIONS: NONE

The EPA waiver is in effect.

There are NO open violations in WMS for the subject Client ID (45008) as of October 6, 2023 11/14/2023 CWY

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-

Approve	Deny	Signatures	Date
Х		Aeshah Shameseldin Aeshah Shameseldin / Civil Engineer Trainee	October 10, 2023
Х		Chad W. Yurisic Chad W. Yurisic, P.E. / Environmental Engineer Manager	11/14/2023

Summary of Review
day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the <i>Pennsylvania Bulletin</i> at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Discharge, Receiving W	Discharge, Receiving Waters and Water Supply Information						
Outfall No. 001			Design Flow (MGD)	.01			
Latitude 41° 19' 4	15.58"		Longitude	-80° 21' 19.68"			
Quad Name Fredor	nia		Quad Code	41080C3			
Wastewater Description	n: S	Sewage Effluent					
Receiving Waters S	Shenan	go River (WWF)	Stream Code	35482			
NHD Com ID 13	30025	925	RMI	49.0			
Drainage Area 34	43 squ	are miles	Yield (cfs/mi²)	0.16			
Q ₇₋₁₀ Flow (cfs) <u>5</u> 4	4.88		Q ₇₋₁₀ Basis	Calculated			
Elevation (ft) 90	05		Slope (ft/ft)				
Watershed No. 20	0-A		Chapter 93 Class.	WWF			
Existing Use			Existing Use Qualifier				
Exceptions to Use			Exceptions to Criteria				
Assessment Status		Attaining Use(s)					
Cause(s) of Impairmen	nt						
Source(s) of Impairmer	nt _						
TMDL Status	_		Name				
Background/Ambient D	Data		Data Source				
pH (SU)		7.0	Default				
Temperature (°F)		25	Default				
Hardness (mg/L)		100	Default				
Other:							
Nearest Downstream F			Pennsylvania American Wate	•			
	enango	River	Flow at Intake (cfs) 16.2				
PWS RMI <u>5.1</u>	PWS RMI <u>5.1</u>			Distance from Outfall (mi) 42.0			

Changes Since Last Permit Issuance: Amendment of an WQM Permit 4305402 to install a new chlorine contact tank and a tablet dechlorination unit has been issued on 12/23/2022.

Other Comments: None.

Treatment Facility Summary

Treatment Facility Name: Temple Grove Campground

WQM Permit No.	Issuance Date
4371423	1971 - 1972
4305402	01/30/2006

Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
Sewage	Secondary	Stabilization Lagoon	Hypochlorite	0.01

Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal
0.01	13	Not Overloaded		

Changes Since Last Permit Issuance:

Other Comments:

Compliance History

DMR Data for Outfall 001 (from September 1, 2022 to August 31, 2023)

Parameter	AUG-23	JUL-23	JUN-23	MAY-23	APR-23	MAR-23	FEB-23	JAN-23	DEC-22	NOV-22	OCT-22	SEP-22
Flow (MGD)	0.00037	0.00115		0.00104	0.00055		0.00245	0.00425	0.00437	0.00444		0.00609
Average Monthly	9	9		7	6	0.00215	9	5	1	3	0.006	53
Flow (MGD)	0.00084	0.00174		0.00374	0.00663	0.01204	0.01585	0.01406	0.03135	0.03135		0.00971
Daily Maximum	6	8		2	6	5	9	3	9	9	0.006	1
pH (S.U.)												
Instantaneous												
Minimum	7.54	7.17		8.34	8.05	8.07	8.13	8.56	8.23	8.23	8.12	7.25
pH (S.U.)												
Instantaneous												
Maximum	7.89	7.87		8.9	8.95	8.87	8.89	8.87	8.81	8.81	8.67	8.32
DO (mg/L)												
Instantaneous												
Minimum	5.23	4.32		6.29	10.48	4.15	8.38	4.32	11.36	11.36	9.95	6.19
TRC (mg/L)												
Average Monthly	0.5	0.5		0.5	0.5	1.0	0.5	0.5	0.5	0.3	0.5	0.2
TRC (mg/L)												
Instantaneous												
Maximum	1.48	1.48		1.18	1.33	1.96	1.04	1.48	1.54	0.89	1.47	1.56
CBOD5 (mg/L)												
Average Monthly	16.4	10.5		< 2	< 2.9	< 4.6	4.6	6.2	7.2	< 4.3	6.99	14.6
TSS (mg/L)												
Average Monthly	16.5	18.0		< 5	< 5.0	10	13.0	8.5	7	7.5	7.0	15.5
Fecal Coliform												
(No./100 ml)					_	_	_		_		_	
Geometric Mean	< 28	< 19		15	< 7	< 5	< 5	< 42	< 5	< 48	5	364
Fecal Coliform												
(No./100 ml)												
Instantaneous	400	- 4		4.5	4.0	_	_	004	_	004	_	000
Maximum	162	74		15	< 10	< 5	< 5	361	< 5	231	5	630
Total Nitrogen (mg/L)	0.44	0.04		0.00	0.40	4 000	4.40	0.5	4.50	0.00	0.00	0.70
Average Monthly	6.11	3.04		3.86	3.18	1.223	1.48	3.5	4.59	3.86	6.03	6.79
Total Nitrogen (mg/L)												
Instantaneous	7	2.70		2.06	2.57	4.5	4.40	2.60	4.6	2.04	6.40	7.40
Maximum	7	3.78		3.86	3.57	1.5	1.48	3.68	4.6	3.94	6.18	7.12
Ammonia (mg/L)		.0.4		.04	_	. 0.0	. 4	_	. 0.40	0.77	4.07	140
Average Monthly	2	< 0.4		< 0.4	2	< 0.8	< 1	5	< 2.16	2.77	4.27	4.16
Total Phosphorus												
(mg/L)	.00	0.4		0.57	0.40	. 0 44	0.00	0.47	0.05	0.5	0.70	0.07
Average Monthly	< 0.6	0.4		0.57	0.42	< 0.11	0.26	0.47	0.65	0.5	0.76	0.97

NPDES Permit Fact Sheet Temple Grove Campground

NPDES Permit No. PA0100676

Total Phosphorus (mg/L)											
Înstantaneous											
Maximum	1.1	0.42	0.57	0.58	0.12	0.26	0.057	0.71	0.52	0.83	0.98

Development of Effluent Limitations							
Outfall No.	001		Design Flow (MGD)	.01			
Latitude	41° 19' 44.56	6"	Longitude	-80° 21' 19.38"			
Wastewater D	escription:	Sewage Effluent					

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)
E. Coli	Report (No./100 ml)	IMAX	-	92a.61

Comments: Monitoring for E. Coli is placed in the permit in accordance with the Department's SOP entitled "Establishing Effluent Limitations for Individual Sewage Permits."

Water Quality-Based Limitations

A "Reasonable Potential Analysis" determined the following parameters were candidates for limitations: TRC, CBOD5, Ammonia, and Dissolved Oxygen (DO). TRC is evaluated using the TRC spread sheet (See Attachment 2).

The following limitations were determined through water quality modeling (output files attached):

Parameter	Limit (mg/l)	SBC	Model
Dissolved Oxygen	4	Daily Min.	WQM 7.0
CBOD5	25	Monthly Avg.	WQM 7.0
Ammonia Nitrogen	25	Monthly Avg.	WQM 7.0
Summer	50	IMAX	
Ammonia Nitrogen Winter	Monitor		

Comments: CBOD5, Ammonia, and DO are evaluated using WQM 7.0 (See Attachment 1).

Best Professional Judgment (BPJ) Limitations

Comments: A dissolved oxygen effluent limit of a minimum of 4.0 mg/l, and monitoring for total nitrogen, total phosphorus are placed in the permit in accordance with the Department's SOP entitled "Establishing Effluent Limitations for Individual Sewage Permits."

The monitoring frequencies for pH, DO, and TRC have been increased from 3/week to "Daily when Discharging" in accordance with the Department's February 3, 2022 SOP "New and Reissuance Sewage Individual NPDES Permit Applications"

NPDES Permit Fact Sheet Temple Grove Campground

Annual monitoring for E. Coli has been added in accordance with the Department's March 24, 2021 SOP "Establishing Effluent Limitations for Individual Sewage Permits". 11/14/2023 CWY

Anti-Backsliding

No backsliding of limits is being proposed.

Threatened and Endangered Mussel Species Concerns and Considerations

The main segment of the Shenango River from Porter Road near Greenville, Pennsylvania, downstream to the point of inundation by Shenango River Lake near Big Bend, Mercer County, Pennsylvania was designated by the United States Fish and Wildlife Services (USFWS) as "Critical Habitat" for the rabbitsfoot mussel, a federally listed threatened species, and is known to also contain other threatened and endangered mussel species. The Temple Grove Campgound outfall pipe is a direct discharge to the Shenango River within the critical habitat area. Therefore, potential impacts to endangered mussel species were evaluated.

The USFWS has indicated in comment letters and email correspondence on other NPDES Permits, that to protect threatened and endangered mussel species, wastewater discharges containing ammonia-nitrogen (NH3-N), chloride (Cl-), dissolved nickel, dissolved zinc, and total copper where mussels or their habitat exist, can be no more than 1.9 mg/l, 78 mg/l, 7.3 ug/l, 13.18 ug/l, and 10 ug/l respectively. Therefore, the Department has considered all of these parameters in this evaluation.

Ammonia (NH3-N):

Monitoring for ammonia was placed in the last permit renewal. A 12-month review of eDMR sample results from September 2022 to August 2023 indicates an average discharge concentration of <2.26 mg/l. Based on these sample results, the attached Mussel Impact Evaluation Sheet indicates an area of impact of less than one square meter. The Mussel Impact Evaluation Sheet is included as Attachment 3.

Chloride and Dissolved Nickel:

Although sample results for Chloride and Dissolved Nickel were not collected as part of the NPDES renewal application, it was determined during the last permit renewal these parameters are not parameters of concern for this facility. The average Chloride concentration based on sample results submitted with the last permit renewal was 19.6 mg/l and the maximum concentration was 21.0 mg/L. The previous permit fact sheet also indicated that Dissolved Nickel concentrations are expected to be below detection limits based on studies at a similar facility.

There have been no known changes to the characteristics of the waste stream since the last renewal and Chloride and Dissolved Nickel are not expected to adversely affect threatened or endangered mussel species in the Shenango River. Therefore, no monitoring will be included with the renewed permit. A copy of the "Threatened and Endangered Mussel Species Concerns and Considerations" section from the previous Fact Sheet is included as Attachment 4 for reference.

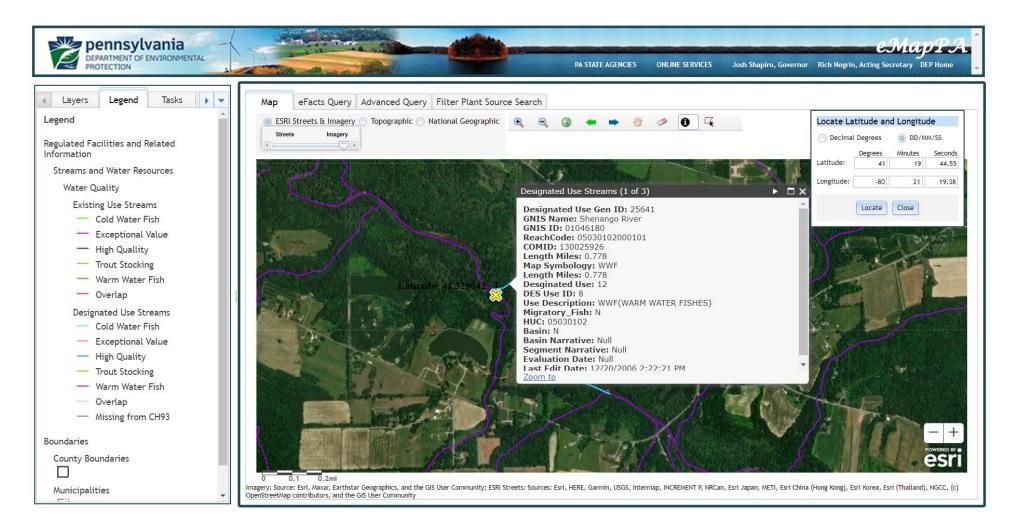
Dissolved Zinc and Total Copper:

Dissolved Zinc and Total Copper are parameters of interest the USFWS has added since the last permit renewal cycle. As there are no sampling results available for this or similar size/type facilities, monitoring at a frequency of 1 per year has been added to the renewed permit to collect data for consideration in future permit cycles. 11/20/2023 CWY

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.


			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average	Average		Average		Instant.	Measurement	Sample
	Monthly	Weekly	Minimum	Monthly	Maximum	Maximum	Frequency	Туре
		Report						
Flow (MGD)	Report	Daily Max	XXX	XXX	XXX	XXX	Continuous	Recorded
			6.0				Daily when	
pH (S.U.)	XXX	XXX	Inst Min	XXX	XXX	9.0	discharging	Grab
			4.0				Daily when	
DO	XXX	XXX	Inst Min	XXX	XXX	XXX	discharging	Grab
							Daily when	
TRC	XXX	XXX	XXX	0.5	XXX	1.6	discharging	Grab
								8-Hr
CBOD5	XXX	XXX	XXX	25.0	XXX	50	2/month	Composite
								8-Hr
TSS	XXX	XXX	XXX	30.0	XXX	60	2/month	Composite
Fecal Coliform (No./100 ml)	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2007	2007	2000	NO.04	40000	0/ 11	
Oct 1 - Apr 30	XXX	XXX	XXX	Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml)	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2007	2007	200	NO.04	4000	0/ 11	
May 1 - Sep 30	XXX	XXX	XXX	Geo Mean	XXX	1000	2/month	Grab
E. Coli (No./100 ml)	XXX	XXX	xxx	XXX	XXX	Report	1/year	Grab
2. 6611 (146.) 166 1111)	7000	7000	7000	7001	7001	Торон	17 y Gai	Clas
Total Nitrogen	XXX	XXX	XXX	Report	XXX	Report	2/month	Grab
Ammonia	1			'				8-Hr
Oct 1 - Apr 30	XXX	XXX	XXX	Report	XXX	XXX	2/month	Composite
Ammonia				•				8-Hr
May 1 - Sep 30	XXX	XXX	XXX	25	XXX	50	2/month	Composite
Total Phosphorus	xxx	XXX	XXX	Report	XXX	Report	2/month	Grab
	7001	7000	7000	Report	7001	1.000.1	2,11101101	0.00
Dissolved Zinc	XXX	XXX	XXX	Daily Max	XXX	XXX	1/year	Grab
				Report			-	
Total Copper	XXX	XXX	XXX	Daily Max	XXX	XXX	1/year	Grab

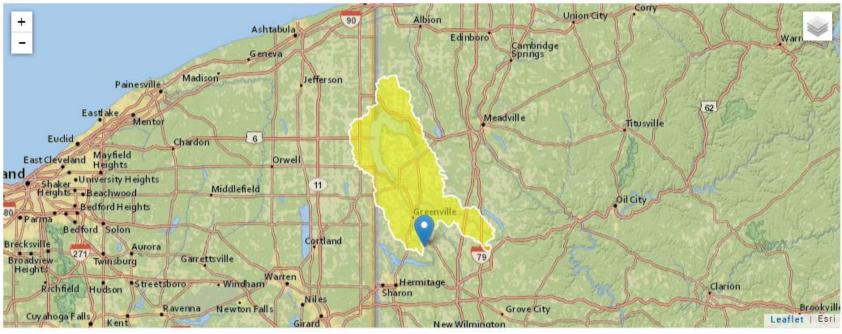
Compliance Sampling Location: Outfall 001, after disinfection.

Other Comments: None.

NPDES Permit No. PA0100676

Outfall Location - eMap with Aerial Imagery

Drainage Area Location – StreamStats with Aerial Imagery


StreamStats Report

Region ID: PA

 Workspace ID:
 PA20231004183805723000

 Clicked Point (Latitude, Longitude):
 41.32932, -80.35519

Time: 2023-10-04 14:38:37 -0400

Collapse All ■

Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	343	square miles

Attachment 1

WQM 7.0 Effluent Limits

		<u>n Code</u> 482		<u>Stream Nam</u> SHENANGO RI			
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
49.000	Temple Grove	PA0100676	0.010	CBOD5	25		
				NH3-N	25	50	
				Dissolved Oxygen			4

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	5		

Thursday, October 5, 2023 Version 1.0b Page 1 of 1

Input Data WQM 7.0

					4000	pat Dat								
	SWP Basir			Str	eam Nam	e	RMI		ration ft)	Drainage Area (sq mi)	Slope (ft/ft)	With	VS drawal igd)	Appl FC
	20A	35	482 SHEN	ANGO R	IVER		49.0	00	905.00	343.00	0.0000	00	0.00	V
						Stream Da	ta							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p pH	Te	<u>Streaı</u> emp	m pH	
Cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	('	°C)		
Q7-10 Q1-10 Q30-10	0.160	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000)	0.00	0.00) 2:	5.00 7.	00	0.00	0.00	
						Discharge	Data						1	
			Name	Pe	rmit Numt	Disc	Permitt Disc Flow (mgd)	Disc Flow	Res V Fa	Dis erve Ter ctor (°C	np	Disc pH		
		Temp	le Grove	PA	0100676	0.010	0.000	0.00	000	0.000 2	25.00	7.50		
						Parameter	Data							
				Paramete	r Name				Stream Conc	Fate Coef				
	_		8		is uniterative as	(m	ng/L) (r	ng/L)	(mg/L)	(1/days)		_		
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			4.00	7.54	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				
	(5)												200	

Input Data WQM 7.0

	SWP Basir			Stre	eam Nam	e	RMI		evation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	Witho	VS drawal gd)	Apply FC
	20A	354	482 SHEN	ANGO RI	VER		47.50	00	901.00	352.00	0.0000	00	0.00	~
e:						Stream Dat	ta							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth		<u>Tributary</u> np pH	Te	<u>Strear</u> emp	<u>n</u> pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	('	°C)		
27-10 21-10 230-10	0.160	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000)	0.00	0.0	00 2	5.00 7.	00	0.00	0.00	
						Discharge	Data						1	
			Name	Per	rmit Numt	Disc	Permitte Disc Flow (mgd)	Dis Flo	c Res	Di erve Ter ctor	mp	Disc pH		
		Temp	le Grove	PA	0100676	0.000	0.000	0.0	0000	0.000	0.00	7.00		
						Parameter	Data							
			1	Paramete	r Name	С	onc C	Trib Conc ng/L)	Stream Conc (mg/L)	Fate Coef (1/days)				
	-		VARAGORA PRINCIPA DE									_		
			CBOD5				25.00	2.00	0.00					
			Dissolved	Oxygen			3.00	8.24	0.00					
			NH3-N				25.00	0.00	0.00	0.70				

WQM 7.0 Hydrodynamic Outputs

	<u>sv</u>	VP Basin 20A		<u>m Code</u> 5482				<u>Stream</u> IENANG	<u>Name</u> O RIVER			
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-10	0 Flow											
49.000	54.88	0.00	54.88	.0155	0.00051	1.01	119.95	118.75	0.45	0.202	25.00	7.00
Q1-10	0 Flow											
49.000	35.12	0.00	35.12	.0155	0.00051	NA	NA	NA	0.35	0.260	25.00	7.00
Q30-	10 Flov	v										
49.000	74.64	0.00	74.64	.0155	0.00051	NA	NA	NA	0.54	0.170	25.00	7.00

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name
20A	35482	SHENANGO RIVER

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	
49.00	0 Temple Grove	6.76	50	6.76	50	0	0	
13-N (RMI	Chronic Allocati Discharge Name	ons Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	
49.00	0 Temple Grove	1.34	25	1.34	25	0	0	
solve	ed Oxygen Alloc	ations						

49.00 Temple Grove

Attachment 2

0.01 = 0	500-00-500	A3:A9 and D3:D9			
54.88 = (0.01 = (The Assessment Control of the Contro				
0.01 = 0		ifs)	0.5	= CV Daily	
	Q discharge			= CV Hourly	
ა∪ ■	no. samples	•	1	= AFC_Partial N	lix Factor
0.3 = 0	Chlorine De	emand of Stream	1	= CFC_Partial N	fix Factor
0 = 0	Chlorine De	emand of Discharge	15	= AFC_Criteria	Compliance Time (min)
0.5	BAT/BPJ Va	alue	720	CFC_Criteria	Compliance Time (min)
0 =	% Factor of	f Safety (FOS)	0	=Decay Coeffic	ient (K)
	eference	AFC Calculations		Reference	CFC Calculations
SAMPLE CALLS	1.3.2.iii	WLA afc =		1.3.2.iii	WLA cfc = 1103.287
PENTOXSD TRG	5.1a	LTAMULT afc =	meet al compressi	5.1c	LTAMULT cfc = 0.581
PENTOXSD TRG	5.1b	LTA_afc=	421.689	5.1d	LTA_cfc = 641.399
Source	**	Effluer	nt Limit Calcu	lations	
PENTOXSD TRG	5.1f	SERVICE SASKASVI ALI	AML MULT =		
PENTOXSD TRG	5.1g		_IMIT (mg/l) =		BAT/BPJ
		INST MAAL	_I M IT (mg/l) =	1.660	
A STATE OF THE PARTY OF THE PAR	20 - Manual Street, Mary Manual Street, or S	C_tc)) + [(AFC_Yc*Qs*.019/ c_Yc*Qs*Xs/Qd)]*(1-FOS/10/	declared and an experience of the same	_tc))	
	the state of the s	cvh^2+1))-2.326*LN(cvh^2-			
LTA_afc wl	la_afc*LTAI	MULT_afc			
	+ Xd + (CFC	C_tc) + [(CFC_Yc*Qs*.011/ ;_Yc*Qs*Xs/Qd)]*(1-FOS/10	0)	•	
		cvd^2/no_samples+1))-2.32	26*LN(cvd^2/r	no_samples+1) ^	0.5)
LTA_cfc wi	la_cfc*LTAI	MULT_cfc			
		N((cvd^2/no_samples+1)^0.		d^2/no_samples	+1))
		J,MIN(LTA_afc,LTA_cfc)*AI			
INST MAX LIMIT 1.	5*((av_mon	_limit/AML_MULT)/LTAMUL	.T_afc)		

Attachment 3

11/20/2023

Outfall 001

Facility	2	Temple Grove Campground	
	Number:	PA0100676	Effective: Expiration:
Outfall	No:	001	
Locatio		Delaware Township, Mercer Count	Y
Dischar		Shenango River	
Site Sp	ecific Mussel Survey Completed:		
Discha	rge and Stream Characteristics		Comments
Q_s	Stream Flow	35 MGD / 54.88 cfs	
Q_0	Discharge Flow	0.01 MGD / 0.01547 cfs	
C _{S(Cl*)}	Instream chloride Concentration	14.55 mg/L	
C _{E(Cl⁻)}	Discharge chloride (existing)	19.2 mg/L	
C _{P(Cl*)}	Discharge chloride (proposed)	19.2 mg/L	
C _{S(Ni)}	Instream nickel Concentration	μg/L	
C _{E(Ni)}	Discharge nickel (existing)	μg/L	
C _{P(Ni)}	Discharge nickel (proposed)	μg/L	
C _{S(Zn)}	Instream zinc Concentration	μg/L	
C _{E(Zn)}	Discharge zinc (existing)	μg/L	
Zn _{P(Zn)}	Discharge zinc (proposed)	μg/L	
C _{S(Cu)}	Instream copper Concentration	μg/L	
C _{E(Cu)}	Discharge copper (existing)	μg/L	
Zn _{P(Cu)}	Discharge copper (proposed)	μg/L	
C _{S(NH3-N}	nstream NH ³ -N	0.1 mg/L	
C _{E(NH3-N}	Discharge NH ³ -N (existing)	2.27 mg/L	
C _{P(NH3-N}	Discharge NH ³ -N (proposed)	2.27 mg/L	
pH ₅	Instream pH	7.4 S.U.	
T _s	Instream Temp.	25 °C	Default value for a WWF
C _{C(NH3-N}	Ammonia criteria	1.095 mg/L	From ammonia criteria comparison spreadsheet -using instream pH and Temp
C _{C(Cl⁻)}	Chloride criteria	78 mg/L	USFWS criteria
C _{C(Ni)}	Nickel criteria	7.3 µg/L	USFWS criteria
C _{C(Zn)}	Zinc criteria	13.18 μg/L	USFWS criteria
C _{C(Cu)}	Copper criteria	10 μg/L	USFWS criteria
W_s	Stream width	25.9 meters	Google Earth (Approximate)
Ammo	nia Criteria Calculations:		
		S.U. (Default value is 7.0)	
			a CWF and 25° for a WWF)

pH _s	7.4 S.U.	(Default value is	7.0)	
T ₅	25 °C	(Default value is .	20° for a CWF and 25° for a WWF)	
Acute	Criteria			
	METHOD and UNITS	CRITERIA		Comments
	Old CMC (mg TAN/L) =	4.661		
	EPA 2013 CMC (mg TAN/L) =	7.048	Oncorhynchus present	* formula on pg. 41 (plateaus at 15.7 C
	0/2	7.048	Oncorhynchus absent	* formula on pg. 42 (plateaus at 10.2 C
Chron	ic Criteria			
	METHOD and UNITS	CRITERIA		COMMENTS
	Old CMC (mg TAN/L) =	1.064		
C-/2007	N) EPA 2013 CMC (mg TAN/L) =	1.095		* formula on pg. 46 (plateaus at 7 C)

Endangered Mussel Species Impact Area Calculations:

Existing Area of Impact

☑ N/A - No Site Specific Mussel Survey Completed for this Discharger

Approximate Area of Impact Determined from Survey =	N/A m ²
Existing Mussel Density within Area of Impact =	
Rabbitsfoot (Quadrula cylindrical)	per m ²
Northern Riffleshell (Epioblasma torulosa rangiana)	per m ²
Rayed Bean (Villosa fabalis)	per m ²
Clubshell (Pleurobema clava)	per m ²
Sheepnose (Plethobasus cyphyus)	per m ²
Snuffbox (Epioblasma triquetra)	per m ²
TOTAL	0 per m²

(Enter N/A if no site specific survey has been completed)

Method 1 - Utilizing Site Specific Mussel Survey Information

☑ N/A - No Site Specific Mussel Survey Completed for this Discharger

This method utilizes a simple comparison of the size of the existing area of impact as determined from a site specific mussel survey and the chlorides in the existing discharge compared to the chlorides in the proposed discharge after the facility upgrades treatment technologies. This method is only applicable to where the stream impairment is caused by TDS and/or chlorides as the plume has been delineated through conductivity measurements.

Д	. Area of Impact Determined from Survey:	N/A	m ²
В	. Chlorides in Existing Discharge:		19 mg/L
	. Chlorides in Proposed Discharge after Treatment Facility Upgrades:		19.2 mg/L
D	. Approximate Area of Impact after Treatment Facility Upgrades:		N/A m ²

A/B = D/C There

Therefore, D = (A*C)/B

11/20/2023

Outfall 001

Facility:	Temple Grove Campground		
Permit Number:	PA0100676	Effective:	Expiration:
Outfall No:	001		
Location:	Delaware Township, Mercer County		
Discharge to:	Shenango River		
Site Specific Mussel Survey Completed:			

Endangered Mussel Species Impact Area Calculations: (continued...)

Method 2 - Mass Balance Relationship of Loading and Assimilative Capacity of Stream

	$L_{S(Q^*)}$ = Available Chloride Loading in Stream = $C_{Q(Q^*)}$ - $C_{S(Q^*)}$ X $Q_S(MGD)$ X 8.34 =	18,521 lbs/Day
Nickel(Ni) Chloride	$L_{D-MAX(G\Gamma)}$ = Current Maximium Discharge Chloride Loading exceeding criteria = $(C_{E(G\Gamma)}, C_{E(G\Gamma)}) \times Q_D(MGD) \times 8.34 =$	-5 lbs/Day
	$\%_{E(CC)}$ = Percent of Stream Capacity for Current Loading = $L_{D-MAX(CC)}$ / $L_{S(CC)}$ =	0% of Stream Capacity
ride	$L_{D(G^-)}$ = Proposed Discharge G^- Loading exceeding criteria after Treatment Facility Upgrades = $(C_{P(G^-)} - C_{P(G^-)}) \times Q_D(MGD) \times 8.34 =$	-4.90392 lbs/Day
뒫	$%_{P(Cl^{-})} = Percent of Stream Capacity for Proposed Loading = L_{D(Cl^{-})} / L_{S(Cl^{-})} =$	-0.03% of Stream Capacity
0	Proposed Area of Impact due to Chloride * = $(\%_{(C')} \times W_s)^2 \times 0.5 =$	0.00 m ²
	* assuming equal flow across transect and 90° spread at discharge	33-00
	$L_{S(Ni)}$ = Available Nickel Loading in Stream = $C_{C(Ni)} - C_{S(Ni)} \times Q_{S}(MGD) \times 8.34 =$	2,131 lbs/Day
	$L_{D-MAX(N)}$ = Current Maximium Discharge Nickel Loading exceeding criteria = $\{C_{E(N)}, C_{E(N)}\}$ X $Q_{D}(MGD)$ X 8.34 =	-1 lbs/Day
(iN	$\%_{E(Ni)}$ = Percent of Stream Capacity for Current Loading = $L_{D-MAX(Ni)} / L_{S(Ni)}$ =	0% of Stream Capacity
kel($L_{D(N)}$ = Proposed Discharge Ni Loading exceeding ofteria after Treatment Facility Upgrades = $(C_{P(N)} - C_{P(N)}) \times Q_0(MGD) \times 8.34 =$	-0.60882 lbs/Day
ž	$\Re_{P(Ni)}$ = Percent of Stream Capacity for Proposed Loading = $L_{D(Ni)}/L_{S(Ni)}$ =	-0.03% of Stream Capacity
	Proposed Area of Impact due to Nickel * = $(\%_{P(N)} \times W_S)^2 \times 0.5 =$	0.00 m ²
	* assuming equal flow across transect and 90° spread at discharge	
	$L_{S(Zn)}$ = Available Zinc Loading in Stream = C_{QZn} - $C_{S(Zn)}$ X $Q_S(MGD)$ X 8.34 =	3,847 lbs/Day
nc (Z	$L_{D-MAX(Zn)}$ = Current Maximium Discharge Zinc Loading exceeding criteria = $(C_{E(Zn)}, C_{E(Zn)}) \times Q_D(MGD) \times 8.34$ =	-1 lbs/Day
	$\Re_{E[Zn)}$ = Percent of Stream Capacity for Current Loading = $L_{D-MAX(Zn)}/L_{S(Zn)}$ =	0% of Stream Capacity
	$L_{D(Zn)}$ = Proposed Discharge Zn Loading exceeding criteria after Treatment Facility Upgrades = $(C_{P(Zn)} - C_{P(Zn)}) \times Q_0(MGD) \times 8.34 = 0.00$	-1.099212 lbs/Day
Zir	$%_{P(Zn)}$ = Percent of Stream Capacity for Proposed Loading = $l_{D(Zn)} / l_{S(Zn)}$ =	-0.03% of Stream Capacity
	Proposed Area of Impact due to Zinc * = $(\%_{P(Zn)} \times W_s)^2 \times 0.5 =$	0.00 m ²
	* assuming equal flow across transect and 90° spread at discharge	
	$L_{S(O_s)}$ = Available Copper Loading in Stream = $C_{C(O_s)} - C_{S(CO_s)} \times Q_S(MGD) \times 8.34 =$	2,919 lbs/Day
	$L_{D-MAX(CU)}$ = Current Maximium Discharge Copper Loading exceeding criteria = $(C_{E(CU)}, C_{E(CU)}) \times Q_D(MGD) \times 8.34 =$	-1 lbs/Day
3	$\Re_{E(Cu)}$ = Percent of Stream Capacity for Current Loading = $L_{D-MAX(Cu)} / L_{S(Cu)}$ =	0% of Stream Capacity
per	$L_{D(Cu)}$ = Proposed Discharge Cu Loading exceeding criteria after Treatment Facility Upgrades = $(C_{P(Cu)} - C_{PCu)}) \times Q_D(MGD) \times 8.34$ =	-0.834 lbs/Day
Copper (Cu)	$%_{P(Cu)} = Percent of Stream Capacity for Proposed Loading = L_{D(Cu)} / L_{S(Cu)} =$	-0.03% of Stream Capacity
	Proposed Area of Impact due to Copper* = $(\%_{(Q_i)} \times W_s)^2 \times 0.5 =$	0.00 m ²
	* assuming equal flow across transect and 90° spread at discharge	
	$L_{S(NH3-N)}$ = Available NH3-N Loading in Stream = $C_{Q(NH3-N)} - C_{S(NH3-N)} \times Q_{S}(MGD) \times 8.34 =$	290 lbs/Day
ger	L _{D-MAX(NH3-N)} = Current Maximium Discharge NH3-N Loading = C _{E(NH3-N)} X Q _D (MGD) X 8.34 =	0 lbs/Day
Ammonia-Nitrogen (NH3-N)	$\%_{E(NH3-N)}$ = Percent of Stream Capacity for Current Loading = $L_{D-MAX(NH3-N)}/L_{S(NH3-N)}$ =	0% of Stream Capacity
ia-N H3-	L _{DINH3N)} = Proposed Discharge NH3-N Loading after Treatment Facility Upgrades = C _{PINH3-N} - C _{C(NH3-N)} X Q _D (MGD) X 8.34 =	0 lbs/Day
nor N)	$\%_{P(NH3:N)}$ = Percent of Stream Capacity for Proposed Loading = $L_{D(NH3:N)} / L_{S(NH3:N)}$ =	0.00% of Stream Capacity
l j	Proposed Area of Impact due to NH3-N * = $(\%_{P(NH3-N)} X W_s)^2 X 0.5 =$	0.00 m ²
4	* assuming equal flow across transect and 90° spread at discharge	

11/20/2023

Outfall 001

Facility:	Temple Grove Campground		
Permit Number:	PA0100676	Effective:	Expiration:
Outfall No:	001		
Location:	Delaware Township, Mercer County		
Discharge to:	Shenango River		
Site Specific Mussel Survey Completed:			

Endangered Mussel Species Impact Area Calculations: (continued...)

Method 3 - Mass Balance Relationship of Stream Flow, Proposed Effluent Quality, and Mussel Protection Criteria

TVICTIOU	3 - Mass Balance Relationship of Stream Flow, Proposed Effluent Quality, and Muss	er Frotection Citteria
	$Q_{A(Cl^{2})}C_{S(Cl^{2})} + Q_{D}C_{P(Cl^{2})} = Q_{T}C_{Q(Cl^{2})}$	
	Q _{A(Cl')} = Assimilative Stream Flow Required to Achieve Criteria (cfs)	
	$Q_{T} = Q_{S} + Q_{D} (cfs)$	
_	$Q_{A(Cl)}C_{S(Cl)} + Q_{D}C_{P(Cl)} = (Q_{D} + Q_{S})C_{C(Cl)}$	
Chloride (Cl ⁻)	SOLVING FOR $Q_{A(CL)} = [(Q_D C_{P(CL)} / C_{C(CL)} - Q_D)] / (1 - C_{S(CL)} / C_{C(CL)}) =$	-0.0143363 cfs
ig.	% _{P(Cl)} = Percent of Stream Width Required to Assimilate Chlorides to Criteria	
윤	Concentration = Q _{A(Cl^)} / Q _S (cfs) =	-0.0261%
0	W _{I(Cl')} = Proposed Width of Stream required to Assimilate Chlorides to Criteria	
	Concentration = W _s X % _{P(O,7)}	-0.006766 meters
	Proposed Area of Impact due to Chloride * = $(W_{I(G)})^2 \times 0.5 =$	0.00 m ²
	* assuming equal flow across transect and 90° spread at discharge	
	$Q_{A(N)}C_{S(N)} + Q_DC_{P(N)} = Q_TC_{Q(N)}$	
	Q _{A(Ni)} = Assimilative Stream Flow Required to Achieve Criteria (cfs)	
	$Q_{T} = Q_{S} + Q_{D} (cfs)$	
2007	$Q_{A(N)}C_{S(N)} + Q_{D}C_{P(N)} = (Q_{D}+Q_{S})C_{C(N)}$	
(E)	SOLVING FOR $Q_{A(N)} = [(Q_DC_{P(N)} / C_{Q(N)}) - Q_D)] / (1 - C_{S(N)} / C_{Q(N)}) =$	-0.01547 cfs
Nickel (Ni)	% _{P(Cl*)} = Percent of Stream Width Required to Assimilate Nickel to Criteria	
Nic	Concentration = Q _{A(MI)} / Q _S (cfs) =	-0.0282%
1-10	W _{i(Ni)} = Proposed Width of Stream required to Assimilate Nickel to Criteria	
	Concentration = W _s X % _{P(Ni)}	-0.007301 meters
	Proposed Area of Impact due to Nickel * = $(W_{I(N)})^2 \times 0.5 =$	0.00 m ²
	* assuming equal flow across transect and 90° spread at discharge	
	$Q_{A(Zn)}C_{S(Zn)} + Q_DC_{P(Zn)} = Q_TC_{C(Zn)}$	
	Q _{A(Zn)} = Assimilative Stream Flow Required to Achieve Criteria (cfs)	
Zinc (Zn)	$Q_T = Q_S + Q_D \text{ (cfs)}$	
	$Q_{A(Zn)}C_{S(Zn)} + Q_{D}C_{P(Zn)} = (Q_{D} + Q_{S})C_{C(Zn)}$	
	SOLVING FOR $Q_{A(Zn)} = [(Q_DC_{PZn)} / C_{C(Zn)}) - Q_D)] / (1 - C_{S(Zn)}/C_{C(Zn)}) =$	-0.01547 cfs
Z) ɔ	% _{P(Cl⁻)} = Percent of Stream Width Required to Assimilate Zinc to Criteria	370333777333
Zin	Concentration = $Q_{A(Zn)}/Q_S(cfs)$ =	-0.0282%
	W _{I(Zn)} = Proposed Width of Stream required to Assimilate Zinc to Criteria	
	Concentration = W _S X % _{PZn)}	-0.007301 meters
	Proposed Area of Impact due to Zinc * = (W _(2n)) ² X 0.5 =	0.00 m ²
	* assuming equal flow across transect and 90° spread at discharge	
	$Q_{A(Cu)}C_{S(Cu)} + Q_{D}C_{P(Cu)} = Q_{T}C_{Q(Cu)}$	
	Q _{A(Cu)} = Assimilative Stream Flow Required to Achieve Criteria (cfs)	
	$Q_T = Q_S + Q_D (cfs)$	
172211	$Q_{A(Cu)}C_{S(Cu)} + Q_{D}C_{P(Cu)} = (Q_{D}+Q_{S})C_{C(Cu)}$	
Copper (Cu)	SOLVING FOR $Q_{A(Co)} = [(Q_DC_{PQJ})/C_{Q(QJ)}] - Q_D]/(1 - C_{S(QJ)}/C_{Q(QJ)}) =$	-0.01547 cfs
Jec	% _{P(C))} = Percent of Stream Width Required to Assimilate Copper to Criteria	
do	Concentration = $Q_{A(C_U)}/Q_{S}$ (cfs) =	-0.0282%
	W _{I(Cu)} = Proposed Width of Stream required to Assimilate Copper to Criteria	
	Concentration = W _s X % _{PCu)}	-0.007301 meters
	Proposed Area of Impact due to Copper * = (W _{I(Co)}) ² X 0.5 =	0.00 m ²
	* assuming equal flow across transect and 90° spread at discharge	
	$Q_{A(NH3:N)}C_{S(NH3:N)} + Q_DC_{P(NH3:N)} = Q_TC_{Q(NH3:N)}$	
=	Q _{A(NH3-N)} = Assimilative Stream Flow Required to Achieve Criteria (cfs)	
<u>8</u>	$Q_{T} = Q_{S} + Q_{D} (cfs)$	
Ė	$Q_{A(NH3\cdot N)}C_{S(NH3\cdot N)} + Q_{D}C_{P(NH3\cdot N)} = (Q_{D}+Q_{S})C_{C(NH3\cdot N))}$	
gen	SOLVING FOR $Q_{A(NH3-N)} = [(Q_DC_{P(NH3-N)} / C_{C(NH3-N)}) - Q_D)] / (1 - C_{S(NH3-N)} / C_{C(NH3-N)}) =$	0.018269 cfs
trog	% _{P(NH3-N)} = Percent of Stream Width Required to Assimilate NH3-N to Criteria	
N-6	Concentration = $Q_{A(NH3-N)}/Q_{S}$ (cfs) =	0.0333%
onić	W _{I(NH3-N)} = Proposed Width of Stream required to Assimilate NH3-N to Criteria	
Ammonia-Nitrogen (NH3-N)	Concentration = W _S X % _{P(NHS-N)}	0.008622 meters
Ā	Proposed Area of Impact due to NH3-N * = $(W_{(NH3-N)})^2 \times 0.5 =$	0.00 m ²
	* assuming equal flow across transect and 90° spread at discharge	

Attachment 4

Threatened and Endangered Mussel Species Concerns and Considerations (From Previous Permit)

The main segment of the Shenango River from Porter Road near Greenville, Pennsylvania, downstream to the point of inundation by Shenango River Lake near Big Bend, Mercer County, Pennsylvania was designated by the United States Fish and Wildlife Services (USFWS) as "Critical Habitat" for the rabbitsfoot mussel, a federally listed threatened species, and is known to also contain other threatened and endangered mussel species. The Temple Grove Campgound outfall pipe is a direct discharge to the Shenango River within the critical habitat area. Therefore, potential impacts to endangered mussel species were evaluated.

The USFWS has indicated in comment letters on other NPDES permits that in order to protect threatened and endangered mussel species, wastewater discharges containing ammonia-nitrogen (NH₃-N), chloride (Cl⁻) and nickel, where mussels or their habitat exist, can be no more than 1.9 mg/l, 78 mg/l and 7.3 ug/l, respectively.

This existing 10,000 gallon per day (0.01 MGD) discharge is from a campground sewage treatment facility consisting of wastewater treatment lagoons with phosphorus control and chlorine disinfection. The subject NPDES permit did not include monitoring requirements for pollutants such as ammonia-nitrogen, chloride and nickel. Therefore, during the initial draft permit comment period in December 2015, the applicant was requested to provide sampling data for ammonia-nitrogen and chloride. At the time of the draft permit, the USFWS had not made the Department aware that nickel was a parameter of concern related to the protection of threatened and endangered mussel species. As requested, the applicant provided ammonia-nitrogen and chloride sampling results as summarized in the following table. Additionally, the Department conducted a site visit on June 28, 2016 to review the discharge location and conduct effluent sampling for ammonia-nitrogen. The sampling results from the June 28, 2016 site visit are also summarized in the following table.

Compling Data for LICEMIC Decemptors of Concern					
	Sampling Data for USFWS Parameters of Concern				
Sampling Date	Ammonia- Nitrogen (NH₃-N) (mg/L)	Chloride (mg/L)	Comments		
1/5/2015	2.3	-	Sampling point at STP, after disinfection		
1/7/2015	6.3	-	Sampling point at STP, after disinfection		
2/2/2015	3.5	-	Sampling point at STP, after disinfection		
2/4/2015	4.3	-	Sampling point at STP, after disinfection		
3/3/2015	3.25	-	Sampling point at STP, after disinfection		
3/4/2015	4.35	-	Sampling point at STP, after disinfection		
4/7/2015	< 0.2	-	Sampling point at STP, after disinfection		
4/8/2015	< 0.2	-	Sampling point at STP, after disinfection		
5/6/2015	< 0.2	-	Sampling point at STP, after disinfection		
8/4/2015	6.5	-	Sampling point at STP, after disinfection		
9/22/2015	5.8	-	Sampling point at STP, after disinfection		
10/6/2015	7.4	-	Sampling point at STP, after disinfection		
10/7/2015	6.1	-	Sampling point at STP, after disinfection		
11/3/2015	6.1	-	Sampling point at STP, after disinfection		
11/4/2015	7.8	-	Sampling point at STP, after disinfection		
12/1/2015	7.0	-	Sampling point at STP, after disinfection		
12/2/2015	5.2	-	Sampling point at STP, after disinfection		
1/20/2016	-	21.0	Sampling point at STP, after disinfection		
1/27/2016	-	19.0	Sampling point at STP, after disinfection		
2/2/2016	-	17.5	Sampling point at STP, after disinfection		
6/28/2016	0.10	-	Sampling point at STP, after disinfection (Pa. DEP Sample)		
6/28/2016	0.09	-	Sample taken at Outfall Pipe (Pa. DEP Sample)		

Based on these sampling results, the Department evaluated the ammonia-nitrogen concentrations that exceed the criteria of 1.9 mg/l and any potential impacts that this may have to threatened and endangered mussel species in the Shenango River. To that end, DEP compared the effluent quality at Temple Grove to a similar facility, Camp Nazareth.

NPDES Permit Fact Sheet Temple Grove Campground

Camp Nazareth (PA0103942) Sampling Study

A sampling study was completed in 2017 at a similar minor sewage facility, American Carpatho-Russian Orthodox Greek Catholic Diocese of the U.S.A. - Camp Nazareth (PA0103942) located in Delaware Township, Mercer County, Pennsylvania. At the time of the study, Camp Nazareth was a 5,000 gallon per day discharge with a proposal to be expanded to 8,500 gallons per day and discharges directly to the Shenango River. Although the treatment technology was different for Camp Nazareth (septic tanks, sand filters, with chlorine disinfection), the general sewage make-up should be similar and the facilities are generally similar in flow size. The Camp Nazareth sampling study was completed on two different dates (June 5, 2017 and August 15, 2017).

The sampling study completed on June 5, 2017 by the Department at Camp Nazareth consisted of DEP staff collecting a sample of the discharge effluent and a sample in the river, where the effluent contacts and mixes with the stream. The effluent sampling was taken at the end of the outfall pipe and the results for ammonia-nitrogen (NH₃-N) was 4.17 mg/l, chloride (Cl⁻) was 308.7 mg/l, and nickel was <4.0 μ g/l (non-detect). The sample taken at the point which the treated effluent entered the stream had an ammonia-nitrogen (NH₃-N) concentration of 0.19 mg/l, a chloride (Cl⁻) concentration of 28.7 mg/l, and a nickel concentration of <4.0 μ g/l (non-detect). A summary table is provided on the following page.

The sampling study completed on August 15, 2017 by the Department at Camp Nazareth consisted of DEP staff collecting a sample of the discharge effluent and 4 in-stream locations including sample in the river, where the effluent contacts and mixes with the stream and an upstream location (background conditions), downstream "nearfield" location and a downstream "farfield" location. The effluent sampling was taken at the end of the outfall pipe and the results for ammonia-nitrogen (NH₃-N) was 33.99 mg/l, chloride (Cl⁻) was 335.0 mg/l, and nickel was 6.590 µg/l (non-detect). The sample taken at the point which the treated effluent entered the stream had an ammonia-nitrogen (NH₃-N) concentration of 1.42 mg/l, a chloride (Cl⁻) concentration of 29.4 mg/l, and a nickel concentration of <4.0µg/l (non-detect). The sample taken at a point in the river upstream of the outfall pipe for the purpose of providing background stream conditions had an ammonia-nitrogen (NH₃-N) concentration of 0.03 mg/l. a chloride (Cl⁻) concentration of 12.4 mg/l, and a nickel concentration of <4.0µg/l (non-detect). The sample taken at the "nearfield" point (approximately 5' to 10') downstream of the outfall pipe and in the expected flow path of the effluent mixing zone had an ammonia-nitrogen (NH₃-N) concentration of 0.03 mg/l, a chloride (Cl⁻) concentration of 12.7 mg/l, and a nickel concentration of <4.0µg/l (non-detect). A summary table is provided on the following page. The sample taken at the "farfield" point (approximately 20' to 30') downstream of the outfall pipe and in the expected flow path of the effluent mixing zone had an ammonia-nitrogen (NH₃-N) concentration of 0.03 mg/l, a chloride (Cl⁻) concentration of 11.5 mg/l, and a nickel concentration of <4.0µg/l (non-detect). A summary table is provided on the following pages.

Based on the Camp Nazareth sampling study, the existing discharge from Camp Nazareth is not believed to be having any adverse effects on threatened or endangered mussel species in the Shenango River considering the effluent quality from the existing wastewater treatment facility when compared to the pollutant concentrations specified by the USFWS. Additionally, the proposed expanded discharge from the camp is not expected to adversely affect threatened or endangered mussel species in the Shenango River considering the sampling data of the existing discharge, the size of the proposed discharge expansion, and the available instantaneous assimilative capacity of the Shenango River. Sampling location photographs and additional information can be found in the Fact Sheet for the Camp Nazareth NPDES permit (Issued September 26, 2017, Effective October 1, 2017).

A summary of the Camp Nazareth (PA0103942) existing discharge sampling is as follows:

				9/19/201
American Carpatho-Russian Ort	thodox Greek Cath	olic Dioc	ese of the U.S.A.	
Camp Nazareth				
NPDES Permit No. PA0103942	WQM Permit No.	4377401		
acility Address:	339 Pew Road, Mercer,	PA 16137-980	02	
Municipality / County:	Delaware Township, Me	rcer County		
Discharge Location:	Direct Discharge to the S	Shenango Rive	er	
Coordinates:	41° 18' 25.95", -80° 19' 2	21.2"		
reatment Type (EXISTING):	Existing: Septic Tanks. O	pen Bed Sand	Filters, and Chorination	Disinfection
, ,			nd Filters, Chorination Di	
reatment Type (PROPOSED):	and Dechlorination			
DATE SAMPLE(S) COLLECTED	6/5/2017		8/15/2017	
EFFLUENT SAMPLING RESULTS*	Sample ID:	3641 005		
Ammonia-Nitrogen (NH ₃ -N)	4.17	mg/L	33.99	mg/L
Chloride (CI ⁻)	308.7	mg/L	335	mg/L
Nickel	<4.0	μg/L	6.59	μg/L
MIXING ZONE SAMPLING RESULTS	Sample ID:	3641 006		
Ammonia-Nitrogen (NH ₃ -N)	0.19	mg/L	1.42	mg/L
Chloride (Cl ⁻)	28.7	mg/L	29.4	mg/L
Nickel	<4.0	μg/L	<4.0	μg/L
UPSTREAM (STREAM BACKGROUND)				
RESULTS				
Ammonia-Nitrogen (NH ₃ -N)	-	-	0.03	mg/L
Chloride (CI ⁻)		-	12.4	mg/L
Nickel	-	-	<4.0	μg/L
DOWNSTREAM (APPROX 5 to 10'				
DOWNSTREAM OF DISCHARGE				
Ammonia-Nitrogen (NH ₃ -N)	-	-	0.03	mg/L
Chloride (CI ⁻)	-	-		mg/L
Nickel	-	-	<4.0	μg/L
DOWNSTREAM (APPROX 20' to 30'				
DOWNSTREAM OF DISCHARGE				
Ammonia-Nitrogen (NH ₃ -N)	-	-	0.03	mg/L
Chloride (Cl ⁻)	-	-		mg/L
Nickel	-	-	<4.0	μg/L

Temple Grove Campground (PA0100676) Conclusions

Although nickel was not sampled at Temple Grove Campground, it would be expected that the nickel concentrations found in the Camp Nazareth effluent (non-detect at <4.0 mg/l) would be representative of the concentrations at the Temple Grove Campground discharge.

Considering the ammonia-nitrogen and chloride sampling data of the existing discharge, the size of the discharge, stream conditions at the outfall pipe, the available instantaneous assimilative capacity of the Shenango River and the sampling study completed at a similar facility, Camp Nazareth (PA0103942), Temple Grove Campground is not expected to adversely affect threatened or endangered mussel species in the Shenango River.

Temple Grove Campground (PA0100676) Outfall Photographs (Photos taken by DEP on June 28, 2016)

PHOTO #1
Temple Grove Campground (PA0103942) Outfall #001
Looking South at Outfall Pipe

PHOTO #2
Temple Grove Campground (PA0103942) Outfall #001
Looking East (Outfall Pipe Discharges on Right / Shenango River on Left)

PHOTO #3

Temple Grove Campground (PA0103942) Outfall #001

Looking South (Outfall Pipe Discharges on Bottom (Behind) / Shenango River on Top)

